

Variable and clause elimination for LTL satisfiability checking

Martin Suda

Max Planck Institut für Informatik

MACIS-2013

Introduction ●0000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
-----------------------	-------------------	---------------	--------------------	-------------------------	-----------------

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
 - model checking

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

	Introduction •0000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	-----------------------	-------------------	---------------	--------------------	-------------------------	-----------------

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
 - model checking

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

	Introduction •0000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	-----------------------	-------------------	---------------	--------------------	-------------------------	-----------------

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
 - model checking

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

	Introduction •0000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	-----------------------	-------------------	---------------	--------------------	-------------------------	-----------------

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
 - model checking

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

	Introduction •0000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	-----------------------	-------------------	---------------	--------------------	-------------------------	-----------------

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
 - model checking

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

Introduction ○●○○○	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

• take the given formula φ

translate it into a clausal normal form

- clause: a disjunction of literals
- literal: a variable or its negation

derive new clauses by the resolution inference

 $\frac{C \lor p \quad D \lor \neg p}{C \lor D}$

until the empty clause \perp is derived \longrightarrow UNSAT

- \blacksquare or it is obvious this will not happen $\longrightarrow \mathsf{SAT}$
 - either by finding a model,
 - or by saturating the clause set

Introduction 00000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
0000	000	000	00	0000	0

- take the given formula φ
- translate it into a clausal normal form
 - clause: a disjunction of literals
 - literal: a variable or its negation
- derive new clauses by the resolution inference

 $\frac{C \lor p \quad D \lor \neg p}{C \lor D}$

- until the empty clause \perp is derived \longrightarrow UNSAT
- \blacksquare or it is obvious this will not happen \longrightarrow SAT
 - either by finding a model,
 - or by saturating the clause set

	Introduction ○●○○○	LTL preliminaries	Labels 000	Elimination in LTL 00	Experimental evaluation	Conclusion o
--	-----------------------	-------------------	---------------	--------------------------	-------------------------	-----------------

- take the given formula φ
- translate it into a clausal normal form
 - clause: a disjunction of literals
 - literal: a variable or its negation
- derive new clauses by the resolution inference

 $\frac{C \lor p \quad D \lor \neg p}{C \lor D}$

- until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
 - either by finding a model,
 - or by saturating the clause set

Introduction 0e000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

- take the given formula φ
- translate it into a clausal normal form
 - clause: a disjunction of literals
 - literal: a variable or its negation
- derive new clauses by the resolution inference

$$\frac{C \lor p \quad D \lor \neg p}{C \lor D}$$

- \hfill until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
 - either by finding a model,
 - or by saturating the clause set

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Preprocessing

simplify the the normal form before starting the main algorithm

- 1. removes redundancies of the original formula
- 2. compensates for a potentially suboptimal NF-translation

inspired by the SAT community:

Variable and clause elimination (Eén and Biere 2005)

- eliminate a variable by clause distribution
- remove tautologies (e.g., C ∨ p ∨ ¬p) and subsumed clauses (C ⊆ D)
- repeat while improving

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Preprocessing

simplify the the normal form before starting the main algorithm

- 1. removes redundancies of the original formula
- 2. compensates for a potentially suboptimal NF-translation
- inspired by the SAT community:

Variable and clause elimination (Eén and Biere 2005)

- eliminate a variable by clause distribution
- remove tautologies (e.g., C ∨ p ∨ ¬p) and subsumed clauses (C ⊆ D)
- repeat while improving

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Preprocessing

simplify the the normal form before starting the main algorithm

- 1. removes redundancies of the original formula
- 2. compensates for a potentially suboptimal NF-translation
- inspired by the SAT community:

Variable and clause elimination (Eén and Biere 2005)

- eliminate a variable by clause distribution
- remove tautologies (e.g., C ∨ p ∨ ¬p) and subsumed clauses (C ⊆ D)
- repeat while improving

max planck institut informatik

- "Rule for Eliminating Atomic Formulas" (Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

 $N = N_p \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_0$

distribute over p

 $N_{p} \otimes N_{\neg p} = \{ (C \lor D) \mid (C \lor p) \in N_{p}, (D \lor \neg p) \in N_{\neg p} \}$

• replace N_p and $N_{\neg p}$ in N by the result

 $\overline{N} = (N_p \otimes N_{\neg p}) \cup N_0$

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas" (Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$N = N_{\rho} \mathrel{\dot{\cup}} N_{\neg \rho} \mathrel{\dot{\cup}} N_{0}$$

distribute over p

$$\textit{N}_{p} \otimes \textit{N}_{\neg p} = \{(\textit{C} \lor \textit{D}) \mid (\textit{C} \lor p) \in \textit{N}_{p}, (\textit{D} \lor \neg p) \in \textit{N}_{\neg p}\}$$

• replace N_p and $N_{\neg p}$ in N by the result

$$\overline{N} = (N_p \otimes N_{\neg p}) \cup N_0$$

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas" (Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$N = N_{\rho} \mathrel{\dot{\cup}} N_{\neg \rho} \mathrel{\dot{\cup}} N_{0}$$

distribute over p

$$N_p \otimes N_{\neg p} = \{(C \lor D) \mid (C \lor p) \in N_p, (D \lor \neg p) \in N_{\neg p}\}$$

• replace N_p and $N_{\neg p}$ in N by the result

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas" (Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$N = N_p \mathrel{\dot{\cup}} N_{\neg p} \mathrel{\dot{\cup}} N_0$$

distribute over p

$$\textit{N}_{p} \otimes \textit{N}_{\neg p} = \{(\textit{C} \lor \textit{D}) \mid (\textit{C} \lor p) \in \textit{N}_{p}, (\textit{D} \lor \neg p) \in \textit{N}_{\neg p}\}$$

• replace N_p and $N_{\neg p}$ in N by the result

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_0$$

	Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

- the normal form consists of temporal clauses
 - bound to a specific temporal context
 - interactions need to be controlled
- one variable may refer to more than one time point

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

	Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

- the normal form consists of temporal clauses
 - bound to a specific temporal context
 - interactions need to be controlled
- one variable may refer to more than one time point

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

	Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

- the normal form consists of temporal clauses
 - bound to a specific temporal context
 - interactions need to be controlled
- one variable may refer to more than one time point

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
 and, in particular, to lift variable and clause elimination

	Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

- the normal form consists of temporal clauses
 - bound to a specific temporal context
 - interactions need to be controlled
- one variable may refer to more than one time point

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

00000 •00 000 000 0	Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
---------------------	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

LTL primer

- basic signature: $\Sigma = \{p, q, \ldots\}$
- prop. logic syntax plus: next \bigcirc , always \Box , sometime \diamond , ...
- prop. valuation a.k.a. state: $W : \Sigma \rightarrow \{0, 1\}$
- LTL interpretation a sequence of states: $W = (W_i)_{i \in \mathbb{N}}$

Semantics

```
 \begin{array}{l} \mathcal{W}, i \models p \\ \mathcal{W}, i \models \neg \varphi \\ \mathcal{W}, i \models \varphi \land (\lor) \psi \\ \mathcal{W}, i \models \bigcirc \varphi \\ \mathcal{W}, i \models \bigcirc \varphi \\ \mathcal{W}, i \models \bigcirc \varphi \\ \mathcal{W}, i \models \diamond \varphi \end{array}
```

```
\begin{array}{l} \text{iff } W_i \models p, \\ \text{iff not } \mathcal{W}, i \models \varphi, \\ \text{iff } \mathcal{W}, i \models \varphi \text{ and (or) } \mathcal{W}, i \models \psi, \\ \text{iff } \mathcal{W}, i + 1 \models \varphi, \\ \text{iff for every } j \ge i, \mathcal{W}, j \models \varphi, \\ \text{iff for some } j \ge i, \mathcal{W}, j \models \varphi, \end{array}
```


Introduction LTL preliminaries Labels Elimination in LTL Experimental evaluation Conclusion 00000 ●00 000 00 0000 0	ion
---	-----

LTL primer

- basic signature: $\Sigma = \{p, q, \ldots\}$
- prop. logic syntax plus: next \bigcirc , always \Box , sometime \diamond , ...
- prop. valuation a.k.a. state: $W : \Sigma \rightarrow \{0, 1\}$
- LTL interpretation a sequence of states: $W = (W_i)_{i \in \mathbb{N}}$

Semantics

. . .

$$\begin{array}{l} \mathcal{W}, i \models \boldsymbol{p} \\ \mathcal{W}, i \models \neg \varphi \\ \mathcal{W}, i \models \varphi \land (\lor) \psi \\ \mathcal{W}, i \models \bigcirc \varphi \\ \mathcal{W}, i \models \Box \varphi \\ \mathcal{W}, i \models \Box \varphi \\ \mathcal{W}, i \models \Diamond \varphi \end{array}$$

iff
$$W_i \models p$$
,
iff not $W, i \models \varphi$,
iff $W, i \models \varphi$ and (or) $W, i \models \psi$,
iff $W, i + 1 \models \varphi$,
iff for every $j \ge i, W, j \models \varphi$,
iff for some $j \ge i, W, j \models \varphi$,

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

Separated Normal Form (Fisher 1991) for an LTL formula

 $\varphi \longrightarrow \mathbf{i} \wedge \tau[\Box(\neg \mathbf{i} \lor \varphi)],$

$$\begin{split} \tau[\Box(\neg x \lor l)] &\longrightarrow \Box(\neg x \lor l), \text{ if } l \text{ is a literal,} \\ \tau[\Box(\neg x \lor (\varphi \land \psi))] &\longrightarrow \tau[\Box(\neg x \lor \varphi)] \land \tau[\Box(\neg x \lor \psi)], \\ \tau[\Box(\neg x \lor (\varphi \lor \psi))] &\longrightarrow \Box(\neg x \lor \mathbf{u} \lor \mathbf{v}) \land \\ \tau[\Box(\neg u \lor \varphi)] \land \tau[\Box(\neg \mathbf{v} \lor \psi)], \\ \tau[\Box(\neg x \lor \bigcirc \varphi)] &\longrightarrow \Box(\neg x \lor \bigcirc \mathbf{u}) \land \tau[\Box(\neg \mathbf{u} \lor \varphi)], \\ \tau[\Box(\neg x \lor \Box \varphi)] &\longrightarrow \Box(\neg x \lor \mathbf{u}), \land \\ \Box(\neg u \lor \bigcirc \mathbf{u}) \land \tau[\Box(\neg \mathbf{u} \lor \varphi)], \\ \tau[\Box(\neg x \lor \diamond \varphi)] &\longrightarrow \Box(\neg x \lor \diamond \mathbf{u}) \land \tau[\Box(\neg \mathbf{u} \lor \varphi)], \end{split}$$

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses *I*, step clauses *T*, and goal clauses *G*

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

<u> </u>	Introduction	LTL preliminaries 00●	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
----------	--------------	--------------------------	---------------	--------------------	-------------------------	-----------------

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

<u> </u>	Introduction	LTL preliminaries 00●	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
----------	--------------	--------------------------	---------------	--------------------	-------------------------	-----------------

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

<u> </u>	Introduction	LTL preliminaries 00●	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
----------	--------------	--------------------------	---------------	--------------------	-------------------------	-----------------

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

<u> </u>	Introduction	LTL preliminaries 00●	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o
----------	--------------	--------------------------	---------------	--------------------	-------------------------	-----------------

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

Introduction LTL preliminaries Labels Elimination in ○○○○○ ○○ ○○	LTL Experimental evaluation Conclusion
---	--

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

Introduction LTL preliminaries Labels Elimination in ○○○○○ ○○ ○○	LTL Experimental evaluation Conclusion
---	--

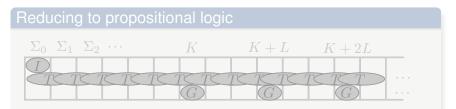
- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($\bigcirc p \longrightarrow p'$)
- Initial clauses I, step clauses T, and goal clauses G

$$\left(\bigwedge_{C_i \in I} C_i\right) \land \Box \left(\bigwedge_{C_t \lor D'_t \in T} (C_t \lor \bigcirc D_t)\right) \land \Box \diamondsuit \left(\bigwedge_{C_g \in G} C_g\right)$$

Introduction LTL preliminaries	Labels ●oo	Elimination in LTL	Experimental evaluation	Conclusion o
--------------------------------	---------------	--------------------	-------------------------	-----------------

(K, L)-models

We can assume the time indexes of the G-states form an arithmetic progression j = K + i ⋅ L for some K ∈ N and L ∈ N⁺



- Once the placement of the *G*-states is fixed, we are left with an infinite set of standard clauses over an infinite signature.
- It is just copies of the original clauses shifted in time ...

Introduction LTL preliminaries Labels Elimination in L	LTL Experimental evaluation Conclusion
--	--

(K, L)-models

We can assume the time indexes of the G-states form an arithmetic progression j = K + i ⋅ L for some K ∈ N and L ∈ N⁺

Reducing to propositional logic Σ_0 Σ_1 Σ_2 KK + LK + 2LTTT

- Once the placement of the G-states is fixed, we are left with an infinite set of standard clauses over an infinite signature.
- It is just copies of the original clauses shifted in time ...

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

"Lifting" with labels

We annotate the original clauses with labels in order to

- finitely represent the infinite set of clauses,
- reason about all possible G-state placements at once.

Starting label assignment

$$\begin{array}{rcl} \text{initial} & I & \longrightarrow & \bigwedge C_i & \longrightarrow & \bigwedge (0, *, 0) || C_i \\ \text{step} & T & \longrightarrow & \bigwedge C_t & \longrightarrow & \bigwedge (*, *, 0) || C_t \\ \text{goal} & G & \longrightarrow & \bigwedge C_g & \longrightarrow & \bigwedge (*, 0, 0) || C_g \end{array}$$

	Introduction	LTL preliminaries	Labels ○●○	Elimination in LTL	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------	-------------------------	-----------------

"Lifting" with labels

We annotate the original clauses with labels in order to

- finitely represent the infinite set of clauses,
- reason about all possible G-state placements at once.

Starting label assignment

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Labeled resolution

$$\mathcal{I}\frac{(b_1, k_1, l_1) || C_1 \lor p \quad (b_2, k_2, l_2) || C_2 \lor \neg p}{(b, k, l) || C \lor D}$$

- where (b, k, l) is the <u>merge</u> of labels (b_1, k_1, l_1) and (b_2, k_2, l_2)
 - intuitively captures intersection of the represented contexts
- up to infinitely many prop. resolutions correspond to one labeled inference

Temporal shift

need to align unprimed and primed symbols in labeled clauseswe prefix resolution with a shift of one of the premises

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Labeled resolution

$$\mathcal{I}\frac{(b_1, k_1, l_1) || C_1 \lor p \quad (b_2, k_2, l_2) || C_2 \lor \neg p}{(b, k, l) || C \lor D}$$

- where (b, k, l) is the <u>merge</u> of labels (b_1, k_1, l_1) and (b_2, k_2, l_2)
 - intuitively captures intersection of the represented contexts
- up to infinitely many prop. resolutions correspond to one labeled inference

Temporal shift

- need to align unprimed and primed symbols in labeled clauses
- we prefix resolution with a shift of one of the premises

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	•0	0000	

$N = N_p \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_0$

$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \rho \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \stackrel{\rho}{\neg} \stackrel{q}{\vee} r \quad (*, 0, 0) || \stackrel{\neg}{\neg} \stackrel{\rho}{\vee} \stackrel{q}{\neg} \quad (0, 0, 0) || \stackrel{q}{\vee} r$$

$$(*, *, 0) || \stackrel{\rho}{\neg} \stackrel{\vee}{\vee} \stackrel{\neg}{\neg} r$$

$$(*, *, 0) || r \vee \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

 $(*, 0, 0) || p \lor \neg q$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \rho \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || \rho \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r$$

$$(*, 0, 0) || p \lor \neg q$$

$$(*, 0, 0) || \neg p \lor q$$

$$(0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \rho \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || \rho \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \stackrel{p}{\vee} \stackrel{q}{\vee} \stackrel{r}{} (*, 0, 0) || \stackrel{\neg}{\neg} \stackrel{p}{\vee} \stackrel{q}{} (0, *, 0) || \stackrel{\neg}{\neg} \stackrel{p}{\vee} \stackrel{\neg}{\neg} r$$

$$(*, *, 0) || \stackrel{r}{\vee} \stackrel{\neg}{\neg} \stackrel{p'}{} \stackrel{\bot}{} \overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || \stackrel{q}{\vee} \stackrel{r}{} r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \rho \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || \rho \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

(0,*,0)| (*,0,0)|

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \qquad (*, 0, 0) || \neg p \lor q \qquad (*, 0, 0) || q \lor \neg q$$

$$(*, 0, 0) || p \lor \neg q \qquad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{\rho} \stackrel{.}{\cup} N_{\neg \rho} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || \rho \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || \rho \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{\rho} \otimes N_{\neg \rho}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || p \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r \quad (0, 0, 0) || \neg q \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || p \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

$$(0, 0, 0) || \neg q \lor \neg r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$0, *, 0) || p \lor q \lor r$$

$$(*, 0, 0) || \neg p \lor q$$

$$(0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$0, 0, 0) || q \lor r$$

$$0, 0, 0) || \neg q \lor \neg r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 1, 0) || p' \lor \neg q' \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

$$(0, 0, 0) || \neg q \lor \neg r$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \qquad (*, 0, 0) || \neg p \lor q$$

$$(*, 1, 0) || p' \lor \neg q' \qquad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p' \qquad (*, 1, 0) || r \lor \neg q'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

$$(0, 0, 0) || \neg q \lor \neg r$$

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || p \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

$$(0, 0, 0) || q \lor r$$

$$(*, 1, 0) || r \lor \neg q'$$

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || p \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(0, 0, 0) || q \lor r$$

$$(*, 1, 0) || r \lor \neg q'$$

ococo coco coco coco coco coco coco co	Introduction	LTL preliminaries	Labels 000	Elimination in LTL ●○	Experimental evaluation	Conclusion o
--	--------------	-------------------	---------------	--------------------------	-------------------------	-----------------

$$N = N_{p} \stackrel{.}{\cup} N_{\neg p} \stackrel{.}{\cup} N_{0}$$

$$(0, *, 0) || p \lor q \lor r \quad (*, 0, 0) || \neg p \lor q$$

$$(*, 0, 0) || p \lor \neg q \quad (0, *, 0) || \neg p \lor \neg r$$

$$(*, *, 0) || r \lor \neg p'$$

$$\overline{N} = (N_{p} \otimes N_{\neg p}) \cup N_{0}$$

$$(*, 1, 0) || r \lor \neg q'$$

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Limitations

cannot eliminate variables occurring both primed and unprimed

 $p \lor q \lor p' \lor \neg r'$

(the result may not be expressible in LTL)

clauses with multiple primes are meaningful but obtrusive

$$\frac{p \lor r' \neg r \lor \neg q'}{p \lor \neg q''}$$

(no problem if later shown redundant)

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Limitations

cannot eliminate variables occurring both primed and unprimed

$$p \lor q \lor p' \lor \neg r'$$

(the result may not be expressible in LTL)

clauses with multiple primes are meaningful but obtrusive

$$\frac{p \lor r' \quad \neg r \lor \neg q'}{p \lor \neg q''}$$

(no problem if later shown redundant)

Introduction 00000	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Phase 1: translation

- Of the original formulas (general LTL) ...
- ... to TST's (accessible to both provers)

Phase 2: simplification

- recording number of variables and clauses eliminated
- in total: 39 % of the variables (7% original, 32% auxiliary) and 32 % of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Phase 1: translation

Of the original formulas (general LTL) ...

... to TST's (accessible to both provers)

Phase 2: simplification

- recording number of variables and clauses eliminated
- in total: 39 % of the variables (7% original, 32% auxiliary) and 32 % of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

Introduction	LTL preliminaries	Labels	Elimination in LTL	Experimental evaluation	Conclusion
00000	000	000	00	0000	

Phase 1: translation

Of the original formulas (general LTL) ...

... to TST's (accessible to both provers)

Phase 2: simplification

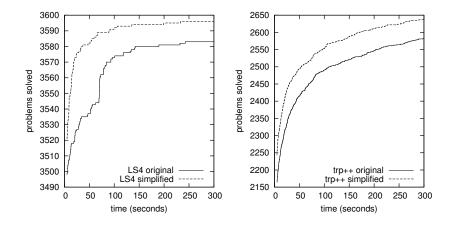
- recording number of variables and clauses eliminated
- in total: 39 % of the variables (7% original, 32% auxiliary) and 32 % of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

Introdu 00000		reliminaries		Labels 000	Elimination in LTL 00	Experime 00●0	ental evaluation	Conclusion o
	family	size			LS4	t	rp++	
	lanniy	5120		solved	time	solved	time	-
	acacia	71	0	71	7.1s	71	39.3s	-
	acacia	71	s	71	7.1s	71	11.3s	
		140	0	121	6607.0s	9	39423.2s	-
	alaska	140	s	139	882.0s	12	38717.5s	
		111	0	93	5754.2s	0	33300.0s	-
	anzu		s	94	5482.2s	0	33300.0s	
	forobots	20	0	39	4.3s	39	1198.8s	-
	IOPODOUS	39	s	39	3.9s	39	194.2s	
		2320	0	2278	13312.9s	2063	96293.7s	
	rozier	2320	s	2278	13270.7s	2120	76921.1s	
	a ahunn an	72	0	41	9332.8s	36	11189.8s	
	schuppan	12	s	41	9320.9s	37	10741.0s	
		070	0	940	12327.5s	364	189045.2s	•
	trp	970	s	934	11887.5s	359	190138.3s	
	total	2702	0	3583	47345.8s	2582	370490.0s	-
	total	3723	S	3596	40854.3s	2638	350023.4s	

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion o



Introduction LTL preliminaries Labels Elimination in LTL Experimental evaluation Co	onclusion
---	-----------

Summary

a new preprocessing technique for LTL satisfiability

- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL
- could other techniques be generalized as well?
 - e.g., blocked clause elimination (Järvisalo et al. 2010)?

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion

Summary

- a new preprocessing technique for LTL satisfiability
- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL
- could other techniques be generalized as well?
 - e.g., blocked clause elimination (Järvisalo et al. 2010)?

Introduction	LTL preliminaries	Labels 000	Elimination in LTL	Experimental evaluation	Conclusion

Summary

- a new preprocessing technique for LTL satisfiability
- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL
- could other techniques be generalized as well?
 - e.g., blocked clause elimination (Järvisalo et al. 2010)?

