TITWII max mank initiur

Variable and clause elimination for LTL satisfiability checking

Martin Suda

Max Planck Institut für Informatik

MACIS-2013

Linear temporal logic (LTL)

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
- model checking

Satisfiability checking of LTL formulas

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

Linear temporal logic (LTL)

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
- model checking

Satisfiability checking of LTL formulas

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

Linear temporal logic (LTL)

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
- model checking

Satisfiability checking of LTL formulas

- proving LTL theorems
\square
- LTL model checking reducible to LTL satisfiability

Linear temporal logic (LTL)

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
- model checking

Satisfiability checking of LTL formulas

- proving LTL theorems
- ensure quality of specifications

Linear temporal logic (LTL)

- modal logic for specifying temporal relations
- time modeled as a linear discrete sequence of time moments
- analysis of natural language expressibility (Kamp, 1968)
- specification language for systems with non-terminating computations (Pnueli, 1977)
- model checking

Satisfiability checking of LTL formulas

- proving LTL theorems
- ensure quality of specifications
- LTL model checking reducible to LTL satisfiability

General resolution-based approach to satisfiability

- take the given formula φ
- translate it into a clausal normal form
- clause: a disjunction of literals
- literal: a variable or its negation
- derive new clauses by the resolution inference

- until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
- either by finding a model,
- or by saturating the clause set

General resolution-based approach to satisfiability

- take the given formula φ
- translate it into a clausal normal form
- clause: a disjunction of literals
- literal: a variable or its negation
- derive new clauses by the resolution inference

- until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
- either by finding a model,
- or by saturating the clause set

General resolution-based approach to satisfiability

- take the given formula φ
- translate it into a clausal normal form
- clause: a disjunction of literals
- literal: a variable or its negation
- derive new clauses by the resolution inference

$$
\frac{C \vee p \quad D \vee \neg p}{C \vee D}
$$

- until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
- either by finding a model,
- or by saturating the clause set

General resolution-based approach to satisfiability

- take the given formula φ
- translate it into a clausal normal form
- clause: a disjunction of literals
- literal: a variable or its negation
- derive new clauses by the resolution inference

$$
\frac{C \vee p \quad D \vee \neg p}{C \vee D}
$$

- until the empty clause \perp is derived \longrightarrow UNSAT
- or it is obvious this will not happen \longrightarrow SAT
- either by finding a model,
- or by saturating the clause set

Preprocessing

- simplify the the normal form before starting the main algorithm

1. removes redundancies of the original formula
2. compensates for a potentially suboptimal NF-translation

Variable and clause elimination (Eén and Biere 2005)

- eliminate a variable by clause distribution
- remove tautologies (e.g., $C \vee p \vee \neg p)$ and subsumed clauses $(C \subseteq D)$
- repeat while improving

Preprocessing

- simplify the the normal form before starting the main algorithm

1. removes redundancies of the original formula
2. compensates for a potentially suboptimal NF-translation

- inspired by the SAT community:

Variable and clause elimination (Eén and Biere 2005)

- eliminate a variable by clause distribution
- remove tautologies (e.g. $C \vee n \vee \neg n$) and subsumed clauses ($C \subseteq D$)
- repeat while improving

Preprocessing

－simplify the the normal form before starting the main algorithm
1．removes redundancies of the original formula
2．compensates for a potentially suboptimal NF－translation
－inspired by the SAT community：

Variable and clause elimination（Eén and Biere 2005）

－eliminate a variable by clause distribution
－remove tautologies（e．g．，$C \vee p \vee \neg p$ ）and subsumed clauses $(C \subseteq D)$
－repeat while improving

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas" (Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

- distribute over p

- replace N_{ρ} and N_{-p} in N by the result

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas"
(Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$
N=N_{p} \dot{\cup} N_{-p} \cup \dot{\cup} N_{0}
$$

- distribute over p

- replace N_{p} and N_{-p} in N by the result

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas"
(Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$
N=N_{p} \dot{\cup} N_{-p} \cup \dot{\cup} N_{0}
$$

- distribute over p

$$
N_{p} \otimes N_{\neg p}=\left\{(C \vee D) \mid(C \vee p) \in N_{p},(D \vee \neg p) \in N_{\neg p}\right\}
$$

- replace N_{p} and N_{-p} in N by the result

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas"
(Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$
N=N_{p} \dot{\cup} N_{-p} \dot{\cup} N_{0}
$$

- distribute over p

$$
N_{p} \otimes N_{\neg p}=\left\{(C \vee D) \mid(C \vee p) \in N_{p},(D \vee \neg p) \in N_{\neg p}\right\}
$$

- replace N_{p} and $N_{\neg p}$ in N by the result

$$
\bar{N}=\left(N_{p} \otimes N_{-p}\right) \cup N_{0}
$$

Propositional variable elimination (by clause distribution)

- "Rule for Eliminating Atomic Formulas"
(Davis and Putnam 1960)
- given a variable p, separate clause set N based on p

$$
N=N_{p} \dot{\cup} N_{-p} \dot{\cup} N_{0}
$$

- distribute over p

$$
N_{p} \otimes N_{\neg p}=\left\{(C \vee D) \mid(C \vee p) \in N_{p},(D \vee \neg p) \in N_{\neg p}\right\}
$$

- replace N_{p} and $N_{\neg p}$ in N by the result

$$
\bar{N}=\left(N_{p} \otimes N_{-p}\right) \cup N_{0}
$$

- p no longer occurs; the set is equisatisfiable

The main challenge of preprocessing in LTL

- the normal form consists of temporal clauses
- bound to a specific temporal context
- interactions need to be controlled
- one variable may refer to more than one time point

Solution proposed by this work

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

The main challenge of preprocessing in LTL

- the normal form consists of temporal clauses
- bound to a specific temporal context
- interactions need to be controlled
- one variable may refer to more than one time point

Solution proposed by this work

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

॥IU\|!

The main challenge of preprocessing in LTL

- the normal form consists of temporal clauses
- bound to a specific temporal context
- interactions need to be controlled
- one variable may refer to more than one time point

Solution proposed by this work

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations

The main challenge of preprocessing in LTL

- the normal form consists of temporal clauses
- bound to a specific temporal context
- interactions need to be controlled
- one variable may refer to more than one time point

Solution proposed by this work

- further refine the traditional normal form
- assign labels to clauses to track their temporal relations
- enables us to "lift" resolution-based reasoning from SAT to LTL
- and, in particular, to lift variable and clause elimination

LTL primer

- basic signature: $\Sigma=\{p, q, \ldots\}$
- prop. logic syntax plus: next \bigcirc, always \square, sometime \diamond, \ldots
- prop. valuation a.k.a. state: $W: \Sigma \rightarrow\{0,1\}$
- LTL interpretation - a sequence of states: $\mathcal{W}=\left(W_{i}\right)_{i \in \mathbb{N}}$

Semantics

LTL primer

- basic signature: $\Sigma=\{p, q, \ldots\}$
- prop. logic syntax plus: next \bigcirc, always \square, sometime \diamond, \ldots
- prop. valuation a.k.a. state: $W: \Sigma \rightarrow\{0,1\}$
- LTL interpretation - a sequence of states: $\mathcal{W}=\left(W_{i}\right)_{i \in \mathbb{N}}$

Semantics

$\mathcal{W}, i=p$
$\mathcal{W}, i=\neg \varphi$
$\mathcal{W}, i \vDash \varphi \wedge(\vee) \psi$
$\mathcal{W}, i=\bigcirc \varphi$
$\mathcal{W}, i=\square \varphi$
$\mathcal{W}, i=\diamond \varphi$
...
iff $W_{i} \models p$,
iff not $\mathcal{W}, i \vDash \varphi$,
iff $\mathcal{W}, i \models \varphi$ and (or) $\mathcal{W}, i=\psi$,
iff $\mathcal{W}, i+1 \vDash \varphi$,
iff for every $j \geq i, \mathcal{W}, j=\varphi$,
iff for some $j \geq i, \mathcal{W}, j=\varphi$,

Separated Normal Form (Fisher 1991) for an LTL formula

$$
\begin{aligned}
\varphi \longrightarrow & \mathbf{i} \wedge \tau[\square(\neg \mathbf{i} \vee \varphi)], \\
\tau[\square(\neg x \vee I)] & \square(\neg x \vee I), \text { if } / \text { is a literal, }, \\
\tau[\square(\neg x \vee(\varphi \wedge \psi))] \longrightarrow & \tau[\square(\neg x \vee \varphi)] \wedge \tau[\square(\neg x \vee \psi)], \\
\tau[\square(\neg x \vee(\varphi \vee \psi))] \longrightarrow & \square(\neg x \vee \mathbf{u} \vee \mathbf{v}) \wedge \\
& \tau[\square(\neg \mathbf{u} \vee \varphi)] \wedge \tau[\square(\neg \mathbf{v} \vee \psi)], \\
\tau[\square(\neg x \vee \bigcirc \varphi)] \longrightarrow & \square(\neg x \vee \bigcirc \mathbf{u}) \wedge \tau[\square(\neg \mathbf{u} \vee \varphi)], \\
\tau[\square(\neg x \vee \square \varphi)] \longrightarrow & \square(\neg x \vee \mathbf{u}), \wedge \\
& \square(\neg \mathbf{u} \vee \bigcirc \mathbf{u}) \wedge \tau[\square(\neg \mathbf{u} \vee \varphi)], \\
\tau[\square(\neg x \vee \diamond \varphi)] \longrightarrow & \square(\neg x \vee \diamond \mathbf{u}) \wedge \tau[\square(\neg \mathbf{u} \vee \varphi)],
\end{aligned}
$$

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next $\left(\bigcirc p \quad \longrightarrow \quad p^{\prime}\right)$
- Initial clauses I, step clauses T, and goal clauses G

Semantics in a picture

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

\square

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

Temporal Satisfiability Task (TST)

- further refine SNF (Degtyarev et al. 2002)
- use priming notation to denote next ($O p \quad \longrightarrow \quad p^{\prime}$)
- Initial clauses I, step clauses T, and goal clauses G

$$
\left(\bigwedge_{C_{i} \in I} C_{i}\right) \wedge \square\left(\bigwedge_{C_{t} \vee D_{t}^{D_{t} \in T}}\left(C_{t} \vee \bigcirc D_{t}\right)\right) \wedge \square \diamond\left(\bigwedge_{C_{g} \in G} C_{g}\right)
$$

Semantics in a picture

(K, L)-models

- We can assume the time indexes of the G-states form an arithmetic progression $j=K+i \cdot L$ for some $K \in \mathbb{N}$ and $L \in \mathbb{N}^{+}$

Reducing to propositional logic

- Once the placement of the G-states is fixed, we are left with an infinite set of standard clauses over an infinite signature.
- It is just copies of the original clauses shifted in time

(K, L)-models

- We can assume the time indexes of the G-states form an arithmetic progression $j=K+i \cdot L$ for some $K \in \mathbb{N}$ and $L \in \mathbb{N}^{+}$

Reducing to propositional logic

- Once the placement of the G-states is fixed, we are left with an infinite set of standard clauses over an infinite signature.
- It is just copies of the original clauses shifted in time ...

"Lifting" with labels

We annotate the original clauses with labels in order to

- finitely represent the infinite set of clauses,
- reason about all possible G-state placements at once.

Starting label assignment

"Lifting" with labels

We annotate the original clauses with labels in order to

- finitely represent the infinite set of clauses,
- reason about all possible G-state placements at once.

Starting label assignment

$$
\begin{aligned}
& \text { initial } I \longrightarrow \wedge C_{i} \longrightarrow \bigwedge(0, *, 0) \| C_{i} \\
& \text { step } T \longrightarrow \Lambda C_{t} \longrightarrow \bigwedge(*, *, 0) \| C_{t} \\
& \text { goal } G \longrightarrow \Lambda C_{g} \longrightarrow \Lambda(, 0,0) \| C_{g}
\end{aligned}
$$

Labeled resolution

$$
\mathcal{I} \frac{\left(b_{1}, k_{1}, l_{1}\right)\left\|C_{1} \vee p \quad\left(b_{2}, k_{2}, l_{2}\right)\right\| C_{2} \vee \neg p}{(b, k, l) \| C \vee D}
$$

- where (b, k, l) is the merge of labels $\left(b_{1}, k_{1}, l_{1}\right)$ and $\left(b_{2}, k_{2}, l_{2}\right)$
- intuitively captures intersection of the represented contexts
- up to infinitely many prop. resolutions correspond to one labeled inference

Temporal shift

- need to align unprimed and primed symbols in labeled clauses
- we prefix resolution with a shift of one of the premises

Labeled resolution

$$
\mathcal{I} \frac{\left(b_{1}, k_{1}, l_{1}\right)\left\|C_{1} \vee p \quad\left(b_{2}, k_{2}, l_{2}\right)\right\| C_{2} \vee \neg p}{(b, k, l) \| C \vee D}
$$

- where (b, k, l) is the merge of labels $\left(b_{1}, k_{1}, l_{1}\right)$ and $\left(b_{2}, k_{2}, l_{2}\right)$
- intuitively captures intersection of the represented contexts
- up to infinitely many prop. resolutions correspond to one labeled inference

Temporal shift

- need to align unprimed and primed symbols in labeled clauses
- we prefix resolution with a shift of one of the premises

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$$
\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
$$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$$
\begin{array}{ll}
(0, *, 0) \| p \vee q \vee r & (*, 0,0)\|\neg p \vee q \quad(0,0,0)\| q \vee r \\
(*, 0,0) \| p \vee \neg q & (0, *, 0) \| \neg p \vee \neg r \\
& (*, *, 0) \| r \vee \neg p^{\prime} \\
& \bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
\end{array}
$$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$

$$
(0, *, 0)\|\neg p \vee \neg r \quad(0, *, 0)\| q \vee r \vee \neg r
$$

$$
(*, *, 0) \| r \vee \neg p^{\prime}
$$

$$
\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
$$

$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime} \quad \perp$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0) \| p \vee q \vee r$

$$
(*, 0,0) \| p \vee \neg q
$$

$$
\begin{aligned}
& (*, 0,0)\|\neg p \vee q \quad(*, 0,0)\| q \vee \neg q \\
& (0, *, 0) \| \neg p \vee \neg r \\
& (*, *, 0) \| r \vee \neg p^{\prime} \\
& \bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
\end{aligned}
$$

$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0) \| p \vee q \vee$
$(*, 0,0) \| p \vee \neg q$

$$
\begin{aligned}
& (*, 0,0) \| \neg p \vee q \\
& (0, *, 0)\|\neg p \vee \neg r \quad(0,0,0)\| \neg q \vee \neg r \\
& (*, *, 0) \| r \vee \neg p^{\prime} \\
& \bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
\end{aligned}
$$

$(0,0,0) \| q \vee r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0) \| p \vee q \vee r$

$$
\begin{aligned}
& (*, 0,0) \| \neg p \vee q \\
& (0, *, 0) \| \neg p \vee \neg r \\
& (*, *, 0) \| r \vee \neg p^{\prime} \\
& \bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
\end{aligned}
$$

$(*, 0,0) \| p \vee \neg q$
$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0) \| p \vee q \vee r$

$$
\begin{aligned}
& (*, 0,0) \| \neg p \vee q \\
& (0, *, 0) \| \neg p \vee \neg r \\
& (*, *, 0) \| r \vee \neg p^{\prime} \\
& \bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}
\end{aligned}
$$

$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 1,0) \| p^{\prime} \vee \neg q^{\prime}$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0)\left\|r \vee \neg p^{\prime} \quad(*, 1,0)\right\| r \vee \neg q^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$
$(*, 1,0) \| r \vee \neg q^{\prime}$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(0,0,0) \| q \vee r$
$(0,0,0) \| \neg q \vee \neg r$
$(*, 1,0) \| r \vee \neg q^{\prime}$

Example

$$
N=N_{p} \dot{\cup} N_{\neg p} \dot{\cup} N_{0}
$$

$(0, *, 0)\|p \vee q \vee r \quad(*, 0,0)\| \neg p \vee q$
$(*, 0,0) \| p \vee \neg q$
$(0, *, 0) \| \neg p \vee \neg r$
$(*, *, 0) \| r \vee \neg p^{\prime}$
$\bar{N}=\left(N_{p} \otimes N_{\neg p}\right) \cup N_{0}$
$(*, 1,0) \| r \vee \neg q^{\prime}$

Limitations

- cannot eliminate variables occurring both primed and unprimed

$$
p \vee q \vee p^{\prime} \vee \neg r^{\prime}
$$

(the result may not be expressible in LTL)

- clauses with multiple primes are meaningful but obtrusive (no problem if later shown redundant)

Limitations

- cannot eliminate variables occurring both primed and unprimed

$$
p \vee q \vee p^{\prime} \vee \neg r^{\prime}
$$

(the result may not be expressible in LTL)

- clauses with multiple primes are meaningful but obtrusive

$$
\frac{p \vee r^{\prime} \neg r \vee \neg q^{\prime}}{p \vee \neg q^{\prime \prime}}
$$

(no problem if later shown redundant)

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Prototype implementation based on Minisat 2.2

- reuse the SAT solver's simplification loop
- emulate labels by marking literals

Input problems

- 3723 formulas collected by Schuppan and Darmawan (2011)
- several families, various flavors (application, crafted, random)

Two resolution LTL provers

- LS4: an LTL prover with partial model guidance (Suda and Wiedenbach, 2012)
- trp++: saturation prover using CTR (Hustadt and Konev, 2003)

Phase 1: translation

- Of the original formulas (general LTL) ...
- . . . to TST's (accessible to both provers)

Phase 2: simplification

- recording number of variables and clauses eliminated
- in total 39% of the variables (7% original 32% auxiliary) and 32% of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

Phase 1: translation

- Of the original formulas (general LTL) ...
- . . . to TST's (accessible to both provers)

Phase 2: simplification

- recording number of variables and clauses eliminated
- in total: 39% of the variables (7% original, 32\% auxiliary) and 32% of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

Phase 1: translation

- Of the original formulas (general LTL) ...
- . . to TST's (accessible to both provers)

Phase 2: simplification

- recording number of variables and clauses eliminated
- in total: 39% of the variables (7% original, 32% auxiliary) and 32% of clauses eliminated
- numbers vary across the individual families

Phase 3: effect of simplification on prover runtime

- attempt solving original and simplified version of the problem
- 300 second time limit per problem

family	size		LS4		trp++	
			solved	time	solved	time
acacia	71	0	71	7.1s	71	39.3s
		s	71	7.1 s	71	11.3s
alaska	140	0	121	6607.0s	9	39423.2s
		s	139	882.0s	12	38717.5s
anzu	111	0	93	5754.2s	0	33300.0s
		s	94	5482.2s	0	33300.0s
forobots	39	0	39	4.3 s	39	1198.8s
		s	39	3.9s	39	194.2s
rozier	2320	0	2278	13312.9s	2063	96293.7s
		s	2278	13270.7s	2120	76921.1s
schuppan	72	0	41	9332.8s	36	11189.8s
		s	41	9320.9s	37	10741.0s
trp	970	0	940	12327.5s	364	189045.2s
		S	934	11887.5s	359	190138.3s
total	3723	0	3583	47345.8s	2582	370490.0s
		s	3596	40854.3s	2638	350023.4s

Summary

- a new preprocessing technique for LTL satisfiability
- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL - could other techniques be generalized as well? - e.g., blocked clause elimination (Järvisalo et al. 2010)?

Summary

- a new preprocessing technique for LTL satisfiability
- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL
- e.g., blocked clause elimination (Järvisalo et al. 2010)?

Summary

- a new preprocessing technique for LTL satisfiability
- mechanism of labeled clauses effectively "lifts" variable and clause elimination from SAT to LTL
- could other techniques be generalized as well?
- e.g., blocked clause elimination (Järvisalo et al. 2010)?

