
Hierarchic Superposition:

Completeness without Compactness

Peter Baumgartner

NICTA and ANU, Canberra

Uwe Waldmann

MPI für Informatik, Saarbrücken

1

Hierarchic Reasoning

Question:

We have a decision procedure for some kind of arithmetic.

How can we use it to solve problems that involve more than

arithmetic?

2

Hierarchic Reasoning

The decision procedure implements a background (BG)

specification:

sorts, e.g., {int}

operators, e.g., {0, 1,−1, 2,−2, . . . ,−, +,>,≥,α,β, . . . }

models, e.g., linear integer arithmetic (LIA), where the

parameters α,β, . . . can be interpreted by arbitrary

elements of the universe.

Example:

∀x(x ≤ 0 ∨ x ≥ α) ∧ α > 0 → sat (choose α = 1)

∀x(x < 0 ∨ x > α) ∧ α > 0 → unsat

3

Hierarchic Reasoning

A foreground (FG) specification extends the BG specification by

new sorts, e.g., {list}

new operators, e.g., {cons : int × list → list,

length : list → int,

empty : list,

a : list}

first-order clauses, e.g., {length(a) ≥ 1,

length(cons(x , y)) ≈ length(y) + 1}.

4

Hierarchic Reasoning

Goal:

Check whether the FG specification has models or not,

using the BG decision procedure as a subroutine.

Note: We are only interested in models that leave the

interpretation of BG sorts and operators unchanged,

i. e., in conservative extensions.

5

Hierarchic Reasoning

Calculi for hierarchic reasoning:

If the FG clauses are ground:

DPLL(T) + Nelson–Oppen

⇒ decision procedure for the hierarchic combination.

Otherwise:

Hierarchic superposition

⇒ refutationally complete under certain conditions.

6

Hierarchic Superposition

Hierarchic superposition calculus:

Saturation-based calculus

(like resolution or standard superposition).

Input: a finite set N of FG clauses.

Output: a possibly infinite set N0 of BG clauses

(to be passed to the BG prover).

If N0 is unsatisfiable w. r. t. the BG specification,

then N is unsatisfiable w. r. t. the hierarchic specification.

(Reverse direction needs additional conditions.)

7

Condition 1

Fundamental problem 1:

The BG prover can detect an inconsistency only if it is

expressed in the language of the BG prover.

⇒ Condition 1: Sufficient completeness

In every model of the FG clauses, every ground FG term

that has a BG sort must be equivalent to some BG term.

− Very restrictive in practice.

− Undecidable.

− But can be established automatically by introducing new

parameters if all BG-sorted FG terms are ground.

8

Condition 2

Fundamental problem 2:

We can only pass finite sets of BG clauses to the BG prover.

⇒ Condition 2: Compactness

Every unsatisfiable set of BG clauses must have a finite

unsatisfiable subset.

− Holds for the first-order theory of LIA.

− Does not hold for the standard model Z of LIA

(in the presence of parameters).

9

Condition 2

Example:

Input: { p(0),

¬p(x) ∨ x < α,

¬p(x) ∨ x +1 < y ∨ p(y) }

Output: { 0 < α,

0+ 1 < y1 ∨ y1 < α,

0+ 1 < y1 ∨ y1 +1 < y2 ∨ y2 < α,

0+ 1 < y1 ∨ y1 +1 < y2 ∨ y2 +1 < y3 ∨ y3 < α,

. . . }

10

Condition 2

Example:

Input: { p(0),

¬p(x) ∨ x < α,

¬p(x) ∨ x +1 < y ∨ p(y) }

Output: { 0 < α,

1 < α,

2 < α,

3 < α,

. . . }

11

Completeness without Compactness

Question:

Are there classes of FG-clause sets for which we can guarantee

that the first-order theory of LIA and the standard model of

LIA behave in the same way?

(This would imply refutational completeness even w. r. t. the

standard model of LIA.)

12

Completeness without Compactness

Answer:

Yes, it works, provided that every BG-sorted term is either

• a variable,

• or ground,

• or a sum x + k of a variable x and a number k ≥ 0

that occurs on the right-hand side of a positive literal

s < x + k.

Note: The counterexample above had x + 1 on the

left-hand side of the literal x + 1 < y .

13

Proof

Key observation:

After the initial introduction of parameters to ensure

sufficient completeness, hierarchic superposition does

not introduce any new BG-sorted ground terms.

Consequence:

The possibly infinite set of BG-clauses that is generated

is built over a finite set of ground terms T

(and an infinite set X of variables).

We can show that is it equivalent to some finite set

of BG-clauses.

14

Proof

Step 1:

Let N0 be a set of BG clauses with the restrictions above;

let T be the finite set of ground terms occurring in N0.

Eliminate > and ≥;

replace ¬ s < t by t ≤ s and ¬ s ≤ t by t < s.

Result: All literals have the form s ≈ t, s 6≈ t, s < t, s ≤ t,

or s < x + k, where s, t ∈ X ∪ T and k ∈ N.

15

Proof

Step 2:

Introduce new relation symbols <k defined by

a <k b ⇔ a < b + k.

Replace s < t by s <0 t,

s ≤ t by s <1 t,

s < x + k by s <k x .

Observe that s <k t entails s <n t whenever k ≤ n.

16

Proof

Step 3:

Eliminate variables:

N ∪ {C ∨ x 6≈ x } → N ∪ {C }

N ∪ {C ∨ x 6≈ t } → N ∪ {C [x 7→ t] }

N ∪ {C ∨ x ≈ x } → N

N ∪ {C ∨ x ≈ t } → N ∪ {C ∨ x <1 t, C ∨ t <1 x }

N ∪ {C ∨
∨

i∈I

x <ki
si ∨

∨

j∈J

tj <nj
x }

→ N ∪ {C ∨
∨

i∈I

∨

j∈J

tj <ki+nj
si }

17

Proof

Step 4:

Ensure that any pair of terms s, t from T is related by at

most one literal in any clause, e. g.:

N ∪ {C ∨ s <k t ∨ s ≈ t } → N ∪ {C ∨ s <k t } if k ≥ 1

N ∪ {C ∨ s <0 t ∨ s ≈ t } → N ∪ {C ∨ s <1 t }

N ∪ {C ∨ s <k t ∨ s <n t } → N ∪ {C ∨ s <n t } if k ≤ n

N ∪ {C ∨ s <k t ∨ t <n s } → N if k + n ≥ 1

N ∪ {C ∨ s <0 t ∨ t <0 s } → N ∪ {C ∨ s 6≈ t }

. . .

18

Proof

Result:

All literals are ground.

Any pair of terms s, t ∈ T is related by at most one literal

per clause.

⇒ At most 1

2
m(m + 1) literals per clause, where m = |T |.

But the indices of <k are unbounded, so the number of

clauses can still be infinite.

19

Proof

Step 5:

Introduce an equivalence relation ∼ on clauses:

C ∼ C ′, if for all s, t ∈ T

• s ≈ t ∈ C iff s ≈ t ∈ C ′,

• s 6≈ t ∈ C iff s 6≈ t ∈ C ′,

• s <k t ∈ C for some k iff s <n t ∈ C ′ for some n.

⇒ Finitely many equivalence classes.

20

Proof

Step 6:

Clauses C ,C ′ in one equivalence class differ at most in the

indices of the ordering literals.

C entails C ′ if the tuple of indices in C is pointwise smaller

than the tuple of indices in C ′.

Dickson’s lemma: For every set of tuples in N
n the subset of

all minimal tuples is finite.

The clauses that correspond to these minimal tuples entail all

other clauses.

So N0 is equivalent to a finite set of clauses. 2

21

Linear Rational Arithmetic

An analogous result for linear rational arithmetic can be proved

in essentially the same way.

22

Thanks for your attention.

23

