# Hierarchic Superposition: <br> Completeness without Compactness 

Peter Baumgartner<br>NICTA and ANU, Canberra

Uwe Waldmann
MPI für Informatik, Saarbrücken

## Hierarchic Reasoning

Question:
We have a decision procedure for some kind of arithmetic.
How can we use it to solve problems that involve more than arithmetic?

## Hierarchic Reasoning

The decision procedure implements a background (BG) specification:

```
sorts, e.g., \(\{\) int \(\}\)
```

operators, e.g., $\{0,1,-1,2,-2, \ldots,-,+,>, \geq, \alpha, \beta, \ldots\}$ models, e.g., linear integer arithmetic (LIA), where the parameters $\alpha, \beta, \ldots$ can be interpreted by arbitrary elements of the universe.

Example:

$$
\begin{array}{lll}
\forall x(x \leq 0 \vee x \geq \alpha) \wedge \alpha>0 & \rightarrow & \text { sat (choose } \alpha=1) \\
\forall x(x<0 \vee x>\alpha) \wedge \alpha>0 & \rightarrow & \text { unsat }
\end{array}
$$

## Hierarchic Reasoning

A foreground (FG) specification extends the BG specification by new sorts, e.g., \{list\}
new operators, e.g., $\{$ cons : int $\times$ list $\rightarrow$ list,

```
length : list }->\mathrm{ int,
empty : list,
a : list}
```

first-order clauses, e.g., $\{$ length $(a) \geq 1$, length $(\operatorname{cons}(x, y)) \approx \operatorname{length}(y)+1\}$.

## Hierarchic Reasoning

Goal:
Check whether the FG specification has models or not, using the BG decision procedure as a subroutine.

Note: We are only interested in models that leave the interpretation of BG sorts and operators unchanged,
i. e., in conservative extensions.

## Hierarchic Reasoning

Calculi for hierarchic reasoning:
If the FG clauses are ground:
DPLL(T) + Nelson-Oppen
$\Rightarrow$ decision procedure for the hierarchic combination.
Otherwise:
Hierarchic superposition
$\Rightarrow$ refutationally complete under certain conditions.

## Hierarchic Superposition

Hierarchic superposition calculus:
Saturation-based calculus
(like resolution or standard superposition).
Input: a finite set $N$ of FG clauses.
Output: a possibly infinite set $N_{0}$ of $B G$ clauses (to be passed to the BG prover).

If $N_{0}$ is unsatisfiable w.r.t. the BG specification, then $N$ is unsatisfiable w.r.t. the hierarchic specification.
(Reverse direction needs additional conditions.)

## Condition 1

Fundamental problem 1:
The BG prover can detect an inconsistency only if it is expressed in the language of the BG prover.
$\Rightarrow$ Condition 1: Sufficient completeness
In every model of the FG clauses, every ground FG term
that has a $B G$ sort must be equivalent to some $B G$ term.

- Very restrictive in practice.
- Undecidable.
- But can be established automatically by introducing new parameters if all BG-sorted FG terms are ground.


## Condition 2

Fundamental problem 2:
We can only pass finite sets of BG clauses to the BG prover.
$\Rightarrow$ Condition 2: Compactness
Every unsatisfiable set of BG clauses must have a finite unsatisfiable subset.

- Holds for the first-order theory of LIA.
- Does not hold for the standard model $\mathbb{Z}$ of LIA (in the presence of parameters).


## Condition 2

## Example:

Input: $\{p(0)$,

$$
\begin{aligned}
& \neg p(x) \vee x<\alpha, \\
& \neg p(x) \vee x+1<y \vee p(y)\}
\end{aligned}
$$

Output: $\{0<\alpha$,

$$
\begin{aligned}
& 0+1<y_{1} \vee y_{1}<\alpha \\
& 0+1<y_{1} \vee y_{1}+1<y_{2} \vee y_{2}<\alpha \\
& 0+1<y_{1} \vee y_{1}+1<y_{2} \vee y_{2}+1<y_{3} \vee y_{3}<\alpha, \\
& \ldots\}
\end{aligned}
$$

## Condition 2

## Example:

Input: $\{p(0)$,

$$
\begin{aligned}
& \neg p(x) \vee x<\alpha, \\
& \neg p(x) \vee x+1<y \vee p(y)\}
\end{aligned}
$$

Output: $\{0<\alpha$,

$$
\left.\begin{array}{c}
1<\alpha \\
2<\alpha \\
3<\alpha \\
\ldots
\end{array}\right\}
$$

## Completeness without Compactness

## Question:

Are there classes of FG-clause sets for which we can guarantee that the first-order theory of LIA and the standard model of LIA behave in the same way?
(This would imply refutational completeness even w.r.t. the standard model of LIA.)

## Completeness without Compactness

Answer:
Yes, it works, provided that every BG-sorted term is either

- a variable,
- or ground,
- or a sum $x+k$ of a variable $x$ and a number $k \geq 0$ that occurs on the right-hand side of a positive literal $s<x+k$.

Note: The counterexample above had $x+1$ on the left-hand side of the literal $x+1<y$.

## Proof

Key observation:
After the initial introduction of parameters to ensure sufficient completeness, hierarchic superposition does not introduce any new BG-sorted ground terms.

Consequence:
The possibly infinite set of BG-clauses that is generated is built over a finite set of ground terms $T$ (and an infinite set $X$ of variables).

We can show that is it equivalent to some finite set of BG-clauses.

## Proof

## Step 1:

Let $N_{0}$ be a set of BG clauses with the restrictions above; let $T$ be the finite set of ground terms occurring in $N_{0}$.

Eliminate $>$ and $\geq$;
replace $\neg s<t$ by $t \leq s$ and $\neg s \leq t$ by $t<s$.
Result: All literals have the form $s \approx t, s \not \approx t, s<t, s \leq t$, or $s<x+k$, where $s, t \in X \cup T$ and $k \in \mathbb{N}$.

## Proof

## Step 2:

Introduce new relation symbols $<_{k}$ defined by $a<k b \Leftrightarrow a<b+k$.

Replace $s<t$ by $s<0 t$,

$$
\begin{array}{ll}
s \leq t & \text { by } s<_{1} t \\
s<x+k & \text { by } s<_{k} x .
\end{array}
$$

Observe that $s<_{k} t$ entails $s<_{n} t$ whenever $k \leq n$.

## Proof

Step 3:
Eliminate variables:

$$
\begin{aligned}
N \cup\{C \vee x \not \approx x\} & \rightarrow N \cup\{C\} \\
N \cup\{C \vee x \not \approx t\} & \rightarrow N \cup\{C[x \mapsto t]\} \\
N \cup\{C \vee x \approx x\} & \rightarrow N \\
N \cup\{C \vee x \approx t\} & \rightarrow N \cup\left\{C \vee x<_{1} t, C \vee t<_{1} x\right\} \\
N \cup\left\{C \vee \bigvee_{i \in I} x<_{k_{i}}\right. & \left.s_{i} \vee \bigvee_{j \in J} t_{j}<_{n_{j}} x\right\} \\
& \rightarrow N \cup\left\{C \vee \bigvee_{i \in I} \bigvee_{j \in J} t_{j}<_{k_{i}+n_{j}} s_{i}\right\}
\end{aligned}
$$

## Proof

Step 4:
Ensure that any pair of terms $s, t$ from $T$ is related by at most one literal in any clause, e. g.:

$$
\begin{array}{lll}
N \cup\left\{C \vee s<_{k} t \vee s \approx t\right\} & \rightarrow N \cup\left\{C \vee s<_{k} t\right\} & \text { if } k \geq 1 \\
N \cup\left\{C \vee s<_{0} t \vee s \approx t\right\} & \rightarrow N \cup\left\{C \vee s<_{1} t\right\} & \\
N \cup\left\{C \vee s<_{k} t \vee s<_{n} t\right\} & \rightarrow N \cup\left\{C \vee s<_{n} t\right\} & \text { if } k \leq n \\
N \cup\left\{C \vee s<_{k} t \vee t<_{n} s\right\} & \rightarrow N & \text { if } k+n \geq 1 \\
N \cup\left\{C \vee s<_{0} t \vee t<_{0} s\right\} & \rightarrow N \cup\{C \vee s \not \approx t\} &
\end{array}
$$

## Proof

## Result:

All literals are ground.
Any pair of terms $s, t \in T$ is related by at most one literal per clause.
$\Rightarrow$ At most $\frac{1}{2} m(m+1)$ literals per clause, where $m=|T|$.
But the indices of $<_{k}$ are unbounded, so the number of clauses can still be infinite.

## Proof

## Step 5:

Introduce an equivalence relation $\sim$ on clauses:
$C \sim C^{\prime}$, if for all $s, t \in T$

- $s \approx t \in C$ iff $s \approx t \in C^{\prime}$,
- $s \not \approx t \in C$ iff $s \not \approx t \in C^{\prime}$,
- $s<_{k} t \in C$ for some $k$ iff $s<_{n} t \in C^{\prime}$ for some $n$.
$\Rightarrow$ Finitely many equivalence classes.


## Proof

Step 6:
Clauses $C, C^{\prime}$ in one equivalence class differ at most in the indices of the ordering literals.
$C$ entails $C^{\prime}$ if the tuple of indices in $C$ is pointwise smaller than the tuple of indices in $C^{\prime}$.

Dickson's lemma: For every set of tuples in $\mathbb{N}^{n}$ the subset of all minimal tuples is finite.

The clauses that correspond to these minimal tuples entail all other clauses.

So $N_{0}$ is equivalent to a finite set of clauses.

## Linear Rational Arithmetic

An analogous result for linear rational arithmetic can be proved in essentially the same way.

Thanks for your attention.

