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Hierarchic Reasoning

Question:

We have a decision procedure for some kind of arithmetic.

How can we use it to solve problems that involve more than

arithmetic?
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Hierarchic Reasoning

The decision procedure implements a background (BG)

specification:

sorts, e.g., {int}

operators, e.g., {0, 1,−1, 2,−2, . . . ,−, +,>,≥,α,β, . . . }

models, e.g., linear integer arithmetic (LIA), where the

parameters α,β, . . . can be interpreted by arbitrary

elements of the universe.

Example:

∀x(x ≤ 0 ∨ x ≥ α) ∧ α > 0 → sat (choose α = 1)

∀x(x < 0 ∨ x > α) ∧ α > 0 → unsat
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Hierarchic Reasoning

A foreground (FG) specification extends the BG specification by

new sorts, e.g., {list}

new operators, e.g., {cons : int × list → list,

length : list → int,

empty : list,

a : list}

first-order clauses, e.g., {length(a) ≥ 1,

length(cons(x , y)) ≈ length(y) + 1}.
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Hierarchic Reasoning

Goal:

Check whether the FG specification has models or not,

using the BG decision procedure as a subroutine.

Note: We are only interested in models that leave the

interpretation of BG sorts and operators unchanged,

i. e., in conservative extensions.
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Hierarchic Reasoning

Calculi for hierarchic reasoning:

If the FG clauses are ground:

DPLL(T) + Nelson–Oppen

⇒ decision procedure for the hierarchic combination.

Otherwise:

Hierarchic superposition

⇒ refutationally complete under certain conditions.
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Hierarchic Superposition

Hierarchic superposition calculus:

Saturation-based calculus

(like resolution or standard superposition).

Input: a finite set N of FG clauses.

Output: a possibly infinite set N0 of BG clauses

(to be passed to the BG prover).

If N0 is unsatisfiable w. r. t. the BG specification,

then N is unsatisfiable w. r. t. the hierarchic specification.

(Reverse direction needs additional conditions.)
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Condition 1

Fundamental problem 1:

The BG prover can detect an inconsistency only if it is

expressed in the language of the BG prover.

⇒ Condition 1: Sufficient completeness

In every model of the FG clauses, every ground FG term

that has a BG sort must be equivalent to some BG term.

− Very restrictive in practice.

− Undecidable.

− But can be established automatically by introducing new

parameters if all BG-sorted FG terms are ground.

8



Condition 2

Fundamental problem 2:

We can only pass finite sets of BG clauses to the BG prover.

⇒ Condition 2: Compactness

Every unsatisfiable set of BG clauses must have a finite

unsatisfiable subset.

− Holds for the first-order theory of LIA.

− Does not hold for the standard model Z of LIA

(in the presence of parameters).

9



Condition 2

Example:

Input: { p(0),

¬p(x) ∨ x < α,

¬p(x) ∨ x +1 < y ∨ p(y) }

Output: { 0 < α,

0+ 1 < y1 ∨ y1 < α,

0+ 1 < y1 ∨ y1 +1 < y2 ∨ y2 < α,

0+ 1 < y1 ∨ y1 +1 < y2 ∨ y2 +1 < y3 ∨ y3 < α,

. . . }
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Condition 2

Example:

Input: { p(0),

¬p(x) ∨ x < α,

¬p(x) ∨ x +1 < y ∨ p(y) }

Output: { 0 < α,

1 < α,

2 < α,

3 < α,

. . . }
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Completeness without Compactness

Question:

Are there classes of FG-clause sets for which we can guarantee

that the first-order theory of LIA and the standard model of

LIA behave in the same way?

(This would imply refutational completeness even w. r. t. the

standard model of LIA.)
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Completeness without Compactness

Answer:

Yes, it works, provided that every BG-sorted term is either

• a variable,

• or ground,

• or a sum x + k of a variable x and a number k ≥ 0

that occurs on the right-hand side of a positive literal

s < x + k.

Note: The counterexample above had x + 1 on the

left-hand side of the literal x + 1 < y .
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Proof

Key observation:

After the initial introduction of parameters to ensure

sufficient completeness, hierarchic superposition does

not introduce any new BG-sorted ground terms.

Consequence:

The possibly infinite set of BG-clauses that is generated

is built over a finite set of ground terms T

(and an infinite set X of variables).

We can show that is it equivalent to some finite set

of BG-clauses.
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Proof

Step 1:

Let N0 be a set of BG clauses with the restrictions above;

let T be the finite set of ground terms occurring in N0.

Eliminate > and ≥;

replace ¬ s < t by t ≤ s and ¬ s ≤ t by t < s.

Result: All literals have the form s ≈ t, s 6≈ t, s < t, s ≤ t,

or s < x + k, where s, t ∈ X ∪ T and k ∈ N.
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Proof

Step 2:

Introduce new relation symbols <k defined by

a <k b ⇔ a < b + k.

Replace s < t by s <0 t,

s ≤ t by s <1 t,

s < x + k by s <k x .

Observe that s <k t entails s <n t whenever k ≤ n.
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Proof

Step 3:

Eliminate variables:

N ∪ {C ∨ x 6≈ x } → N ∪ {C }

N ∪ {C ∨ x 6≈ t } → N ∪ {C [x 7→ t] }

N ∪ {C ∨ x ≈ x } → N

N ∪ {C ∨ x ≈ t } → N ∪ {C ∨ x <1 t, C ∨ t <1 x }

N ∪ {C ∨
∨

i∈I

x <ki
si ∨

∨

j∈J

tj <nj
x }

→ N ∪ {C ∨
∨

i∈I

∨

j∈J

tj <ki+nj
si }
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Proof

Step 4:

Ensure that any pair of terms s, t from T is related by at

most one literal in any clause, e. g.:

N ∪ {C ∨ s <k t ∨ s ≈ t } → N ∪ {C ∨ s <k t } if k ≥ 1

N ∪ {C ∨ s <0 t ∨ s ≈ t } → N ∪ {C ∨ s <1 t }

N ∪ {C ∨ s <k t ∨ s <n t } → N ∪ {C ∨ s <n t } if k ≤ n

N ∪ {C ∨ s <k t ∨ t <n s } → N if k + n ≥ 1

N ∪ {C ∨ s <0 t ∨ t <0 s } → N ∪ {C ∨ s 6≈ t }

. . .
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Proof

Result:

All literals are ground.

Any pair of terms s, t ∈ T is related by at most one literal

per clause.

⇒ At most 1

2
m(m + 1) literals per clause, where m = |T |.

But the indices of <k are unbounded, so the number of

clauses can still be infinite.
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Proof

Step 5:

Introduce an equivalence relation ∼ on clauses:

C ∼ C ′, if for all s, t ∈ T

• s ≈ t ∈ C iff s ≈ t ∈ C ′,

• s 6≈ t ∈ C iff s 6≈ t ∈ C ′,

• s <k t ∈ C for some k iff s <n t ∈ C ′ for some n.

⇒ Finitely many equivalence classes.
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Proof

Step 6:

Clauses C ,C ′ in one equivalence class differ at most in the

indices of the ordering literals.

C entails C ′ if the tuple of indices in C is pointwise smaller

than the tuple of indices in C ′.

Dickson’s lemma: For every set of tuples in N
n the subset of

all minimal tuples is finite.

The clauses that correspond to these minimal tuples entail all

other clauses.

So N0 is equivalent to a finite set of clauses. 2
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Linear Rational Arithmetic

An analogous result for linear rational arithmetic can be proved

in essentially the same way.
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Thanks for your attention.
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