Towards Collaborative Search in Digital
Libraries Using Peer-to-Peer Technology

Matthias Bender, Sebastian Michel, Christian Zimmer, Gerhard Weikum
{mbender, smichel, czimmer, weikum }@mpi-sb.mpg.de

Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany

Abstract. We consider the problem of collaborative search across a
large number of digital libraries and query routing strategies in a peer-
to-peer (P2P) environment. Both digital libraries and users are equally
viewed as peers and, thus, as part of the P2P network. Our system
provides a versatile platform for a scalable search engine combining local
index structures of autonomous peers with a global directory based on a
distributed hash table (DHT) as an overlay network.

1 Introduction

The peer-to-peer (P2P) approach, which has become popular in the context of
file-sharing systems such as Gnutella or KaZaA, allows to handle huge amounts
of data in a distributed way. In such a system, all peers are equal and all of the
functionality is shared among all peers so that there is no single point of failure
and the load is balanced across a large number of peers. These characteristics
offer potential benefits for building a powerful search engine in terms of scala-
bility, resilience to failures, and high dynamics. In addition, a P2P search engine
can potentially benefit from the intellectual input of a large user community, for
example, prior usage statistics, personal bookmarks, or implicit feedback derived
from user logs and click streams.

Our framework combines well-studied search strategies with new aspects of
P2P routing strategies. In our context of digital libraries, a peer can either be a
library itself or a user that wants to benefit from the huge amount of data in the
network. Each peer is a priori autonomous and has its own local search engine
with a crawler and a corresponding local index. Peers share their local indexes (or
specific fragments of local indexes) by posting the meta-information into the P2P
network, thus effectively forming a large global, but completely decentralized
directory. In our approach, this directory is maintained as a distributed hash
table (DHT). A query posed by a user is first executed on the user’s own peer,
but can be forwarded to other peers for better result quality. Collaborative search
strategies use the global directory to identify peers that are most likely to hold
relevant results. The query is then forwarded to an appropriately selected subset
of these peers, and the local results obtained from there are merged by the query
initiator.

2 Related Work

Recent research on P2P systems, such as Chord [25], CAN [22], Pastry [24], or
P-Grid [1], is based on various forms of distributed hash tables (DHTs) and sup-
ports mappings from keys, e.g., titles or authors, to locations in a decentralized
manner such that routing scales well with the number of peers in the system.
Typically, an exact-match key lookup can be routed to the proper peer(s) in at
most O(log n) hops, and no peer needs to maintain more than O(log n) routing
information. These architectures can also cope well with failures and the high
dynamics of a P2P system as peers join or leave the system at a high rate and
in an unpredictable manner. Earlier work on scalable distributed storage struc-
tures, e.g., [16,28], addressed similar issues. However, in all these approaches
searching is limited to exact-match queries on keys. This is insufficient for text
queries that consist of a variable number of keywords, and it is absolutely inap-
propriate when queries should return a ranked result list of the most relevant
approximate matches [6]. Our work makes use of one of these systems, namely
Chord, for efficiently organizing a distributed global directory; our search engine
is layered on top of this basic functionality.

PlanetP [10] is a publish-subscribe service for P2P communities and the first
system supporting content ranking search. PlanetP distinguishes local indexes
and a global index to describe all peers and their shared information. The global
index is replicated using a gossiping algorithm. The system, however, is limited
to a few thousand peers.

Odissea [26] assumes a two-layered search engine architecture with a global
index structure distributed over the nodes in the system. A single node holds
the entire index for a particular text term (i.e., keyword or word stem). Query
execution uses a distributed version of Fagin’s threshold algorithm [11]. The
system appears to cause high network traffic when posting document metadata
into the network, and the query execution method presented currently seems
limited to queries with one or two keywords only.

The system outlined in [23] uses a fully distributed inverted text index, in
which every participant is responsible for a specific subset of terms and manages
the respective index structures. Particular emphasis is put on three techniques
to minimize the bandwidth used during multi-leyword searches: Bloom filters
[3], caching, and incremental result gathering. Bloom filters are a compact rep-
resentation of membership in a set, eliminating the need to send entire index
lists across servers. Caching reduces the frequency of exchanging Bloom filters
between servers. Incremental result gathering allows search operations to halt
after finding a certain number of results.

[18] considers content-based retrieval in hybrid P2P networks where a peer
can either be a simple node or a directory node. Directory nodes serve as super-
peers, which may possibly limit the scalability and self-organization of the overall
system. The peer selection for forwarding queries is based on the Kullback-
Leibler divergence between peer-specific statistical models of term distributions.
The approach that we propose in this paper also uses such statistical measures
but applies them in a much more light-weight manner for better scalability,

primarily using bookmarks rather than full index information and building on a
completely decentralized directory for meta-information.

Strategies for P2P request routing beyond simple key lookups but without
considerations on ranked retrieval have been discussed in [30,8, 7], but are not
directly applicable to our setting. The construction of semantic overlay networks
is addressed in [17,9] using clustering and classification techniques; these tech-
niques would be orthogonal to our approach. [27] distributes a global index onto
peers using LSI dimensions and the CAN distributed hash table. In this approach
peers give up their autonomy and must collaborate for queries whose dimensions
are spread across different peers.

In addition to this recent work on P2P Web search, prior research on dis-
tributed IR and metasearch engines is potentially relevant, too. [4] gives an
overview of algorithms for distributed IR like result merging and database con-
tent discovery. [12] presents a formal decision model for database selection in net-
worked IR. [21] investigates different quality measures for database selection. [13,
19] study scalability issues for a distributed term index. GIOSS [14] and CORI
[5] are the most prominent distributed IR systems, but neither of them aimed at
very-large-scale, highly dynamic, self-organizing P2P environments (which were
not an issue at the time these systems were developed).

A good overview of metasearch techniques is given by [20]. [29] discusses spe-
cific strategies to determine potentially useful local search engines for a given
user query. Notwithstanding the relevance of this prior work, collaborative P2P
search is substantially more challenging than metasearch or distributed IR over a
small federation of sources such as digital libraries, as these approaches mediate
only a small and rather static set of underlying engines, as opposed to the high
dynamics of a P2P system.

3 Chord - A Scalable P2P Lookup Service

The efficient location of nodes in a P2P architecture is a fundamental problem
that has been tackled from various directions. Early (but nevertheless popular)
systems like Gnutella or KaZaA rely on unstructured architectures in which a
peer forwards messages to all known neighbors. Typically, these messages include
a Time-to-live (TTL) tag that is decreased whenever the message is forwarded
to another peer. Even though studies show that this message flooding (or gos-
siping) works remarkably well in most cases, there are no guarantees that all
relevant nodes will eventually be reached. Additionally, the fact that numer-
ous unnecessary messages are sent interferes with our goal of a highly scalable
architecture.

Chord [25] is a distributed lookup protocol that addresses this problem. It
provides the functionality of a distributed hash table (DHT) by supporting the
following lookup operation: given a key, it maps the key onto a node. For this
purpose, Chord uses consistent hashing [15]. Consistent hashing tends to balance
load, since each node receives roughly the same number of keys. Moreover, this
load balancing works even in the presence of a dynamically changing hash range,
i.e., when nodes fail or leave the system or when new nodes join.

Chord Ring

Figure 1. Chord Architecture

Chord not only gurarantees to find the node responsible for a given key, but
also can do this very efficiently: in an N-node steady-state system, each node
maintains information about only O(log N) other nodes, and resolves all lookups
via O(log N) messages to other nodes. These properties offer the potential for
efficient large-scale systems.

The intuitive concept behind Chord is as follows: all nodes p; and all keys k;
are mapped onto the same cyclic ID space. In the following, we use keys and
peer numbers as if the hash function had already been applied, but we do not
explicitly show the hash function for simpler presentation. Every key k; is now
assigned to its closest successor p; in the ID space, i.e. every node is responsible
for all keys with identifiers between the ID of its predecessor node and its own
ID.

For example, consider Figure 1. Ten nodes are distributed across the ID space.
Key ks4, for example, is assigned to node psg as its closest successor node. A
naive approach of locating the peer responsible for the key is also illustrated:
since every peer knows how to contact its current successor on the ID circle,
a query for a key ks initiated by peer pg is passed around the circle until it
encounters a pair of nodes that straddle the desired identifier; the second in the
pair (pse) is the node that is responsible for the key. This lookup process closely
resembles searching a linear list and has an expected number of hops of O(N)
to find a target node, while only requiring O(1) information about other nodes.

Lookup(54)

Figure 2. Scalabe Lookups Using Finger Tables

To accelerate lookups, Chord maintains additional routing information: each
peer p; maintains a routing table called finger table. The m-th entry in the table
of node p; contains a pointer to the first node p; that succeeds p; by at least
2m~1 on the identifier circle. This scheme has two important characteristics.
First, each node stores information about only a small number of other nodes,
and knows more about nodes closely following it on the identifier circle than
about nodes farther away. Secondly, a node’s finger table does not necessarily
contain enough information to directly determine the node responsible for an
arbitrary key k;. However, since each peer has finger entries at power of two
intervals around the identifier circle, each node can forward a query at least
halfway along the remaining distance between itself and the target node. This
property is illustrated in Figure 2 for node pg. It follows that the number of
nodes to be contacted (and thus the number of messages to be sent) to find a
target node in an N-node system is O(log N).

Chord implements a stabilization protocol that each peers runs periodically in
the background and which updates Chord’s finger tables and successor pointers
in order to ensure that lookups execute correctly as the set of participating peers
changes. But even with routing information becoming stale, system performance
degrades gracefully. Chord can also guarantee correct lookups if only one piece
of information per node is correct.

Chord can provide lookup services for various applications, such as distributed
file systems or cooperative mirroring. However, Chord by itself is not a search
engine, as it only supports single-term exact-match queries and does not support
any form of ranking.

4 Design Fundamentals

Figure 3 illustrates our new approach which closely follows a publish-subscribe
paradigm. We view every library as autonomous. Peers, i.e. libraries acting as
peers, can post meta-information at their discretion. Our conceptually global
but physically distributed directory does not hold information about individual
documents previously crawled by the peers, but only very compact aggregated
information about the peers’ local indexes and only to the extent that the in-
dividual peers are willing to disclose to other peers. We use a distributed hash
table (DHT) to partition the term space, such that every peer is responsible for
a randomized subset of terms within the global directory. For failure resilience
and availability, the entry for a term may be replicated across multiple peers.

Every peer publishes a summary (Post) for every term in its local index to the
underlying overlay network. A Post is routed to the peer currently responsible
for the Post’s term. This peer maintains a PeerList of all postings for this term
from across the network. Posts contain contact information about the peer who
posted this summary together with local IR-style statistics (e.g., TF and IDF
values [6]) for a term and other quality-of-service measures (e.g., length of the
index list for a given term, or average response time for remote queries).

Users wishing to pose a query are equally modelled as peers. Their poten-
tial input to the global directory consists of local bookmarks that conceptually
represent high-authority documents within the overall document space.

The querying process for a multi-term query proceeds as follows: First, the
querying peer retrieves a list of potentially useful libraries by issuing a PeerList
request for each query term to the global directory. Next, a number of promising
libraries for the complete query is selected from these PeerLists (e.g., based
on the quality-of-service measures associated with the Posts). Subsequently, the
query is forwarded to these carefully selected libraries and executed based on the
their local indexes. Note that this communication is done in a pairwise point-
to-point manner between the peers, allowing for efficient communication and
limiting the load on the global directory. Finally, the results from the various
libraries are combined at the querying peer into a single result list.

Distributed Directory Distributed Directory

Term -> List of Peers Term -> List of Peers

Step 0: Step 1: Step 2:
Post per-term Retrieve list of peers Retrieve and combine local
summaries of local indexes for each query term query results from peers

Figure 3. P2P Query Routing

We have chosen this approach for the following reasons:

— The goal of finding high-quality search results with respect to precision and
recall cannot easily be reconciled with the design goal of unlimited scalability,
as the best information retrieval techniques for query execution rely on large
amounts of document metadata. In contrast, posting only aggregated infor-
mation about local indexes and executing queries at carefully selected peers
exploits extensive local indexes for good query results while, at the same time,
limiting the size of the global directory and, thus, consuming only little net-
work bandwidth.

— If each peer were to post metadata about each and every document it has
crawled, the amount of data moved across the network and, thus, the amount
of data held by the distributed directory would increase drastically as more
and more peers enter the network. In contrast, our design allows each peer to
publish merely a concise summary per term representing its local index. As
new peers enter the network, we expect this approach to scale very well as more
and more peers jointly maintain this moderately growing global directory.

This approach can easily be extended in a way that multiple distributed di-
rectories are created to store information beyond local index summaries, such as
information about user bookmarks or relevance assessments derived from peer-
specific query logs, click streams, or explicit user feedback. This information
could be leveraged when executing a query to further enhance result quality.

5 System Model

In this section we formalize the design that we have previouly presented. Let
P := {p;]1 <i < r} be the set of peers currently attached to the system. Let
D :={d;|1 <i < n} be the global set of all documents; let T := {t;|1 <i < m}
analogously be the set of all terms.

Each peer p; € P has one or more of the following local data available:

— Local index lists for terms in 7; C T (usually |T;| < |T)).
The local index lists cover all terms in the set of locally seen documents
D; C D (usually |D;| < |DJ).

— Bookmarks B; C D; (|B;| < |D|)
Bookmarks are intellectually selected links to selected documents or other peer
profile information and, thus, are a valuable source for high-quality search
results as well as for the thematic classification of peers.

— Cached documents C; C D
Cached documents are readily available from a peer.

Separate hash functions hashierms : T — ID, hasShpookmarks : P — ID, and
hasheaeheq : D — ID can be used in order to build conceptually global, but
physically distributed directories that are well-balanced across the peers in the
ID space.

Given hash functions that assign identifiers to keys using idy ; := hash;(k)
with j € {terms, bookmarks, ...}, the underlying distributed hash table offers a
function lookup : ID — P that returns the peer p currently responsible for an
id.

Building on top of this basic functionality, different PeerList requests plr; can
be defined as functions plrierms : T X P — 28 plrpookmarks : D x P — 2F and
Plreaene : D x P — 2F that, from a peer p previously determinded using lookup,
return lists of peers that have posted information about a key id in dimension j.
Note that idy ; for a specific key k is unambiguously defined across the directory
using hash; (k).

In order to form a distributed directory, each peer p; at its own discretion
globally posts subsets T} C T;, B, C B;, and C/ C C; C D

(potentially along with further information or local QoS statistics) forming
the corresponding global directories:

— systerms : T — 2F with systerms(t) = plrierms(t, lookup(hashierms(t)))
This directory provides a mapping from terms to PeerLists and can be used
to identify candidate peers that hold index information about a specific term.

— sysbm : D — 2F with sysbm(d) = plryoormarks(d, lookup(hashpookmarks(d)))
This function provides information about which peers have bookmarked spe-
cific documents and is a combination of the above methods analogously to
systerms.

— syscd : D — 2P with syscd(d) = plreacned(d, lookup(hasheached(d)))

This function provides information about the availability of documents in the
caches of local peers, which is a valuable information for the efficient gathering
of results.

We consider a query ¢ as a set of (term, weight)-pairs and the set of available
queries as Q := 27*R_In order to process a query ¢, first a candidate set of peers
that are confronted with the query has to be determined. This can be done us-
ing the functions selectionieyms : Q — 2F, selectionsookmarks : 27 — 2F, and
selectioneachea : 27 — 2F that select candidate subsets for each dimension by
appropriately combining the results returned by systerms, sysbm, and syscd, re-
spectively. These candidate subsets are combined (e.g., by intersection or union)
using a function comb : 28 x 2F x 2P — 2P,

Combining the above, the final candidate set is computed using a function

selection : Q x 2P x 2P — oF

selection(q, By, C{}) := comb(selectierms(q), selectvookmarks(Bg)s select cachea(CH))

where Bj C By and Cj C Cj are the bookmarks and cached documents, re-
spectively, that the querying peer has chosend to support query execution. For
example, a peer may choose its own bookmarks and a sample of its cached
documents as B{] and C{/, respectively.

The execution of a query is a function exec : 20 x @ — 2P that combines
the local results returned by the peers that are involved in the query execution
into one single final result set. Finally, we can define the global query execution
function result : Q x 2P x 2P — 2P that is evaluated as

result(q, By, C{)) := exec(selection(q, By, Cy), q)

= exec(comb(selectierms(q), selectbookmarks(Bg) select cachea(CY))s Q)

6 Implementation

Figure 4 illustrates the architecture of a single library peer as part of our dis-
tributed system. Each peer works on top of our globally distributed index which
is organized as a distributed hash table (DHT) that provides a mapping from
terms to peers by returning a PeerDescriptor object representing the peer cur-
rently responsible for a term. A Communicator can be established to send mes-
sages to other peers. Every peer has an Fvent Handler that receives incoming
messages and forwards them to the appropriate local components.

Sy U ,{ Local QProcessor

—_— PeerList Processor| — »

Term > PeerList -

Local
q Index >
Event Handler Communicator

Poster

—> Y | —>
i(jlobal QProcessoﬁ—V
¥___Peer ; Descriptor Peer! Descriptor

Distributed Hashtable l‘

P

Figure 4. System Architecture

Every peer has its own local index that can be imported from external crawlers
and indexers. The index is used by the Local QueryProcessor component to an-
swer queries locally and by the Poster component to publish per-term summaries
(Posts) to the global directory. To do so, the Poster uses the underlying DHT to
find the peer currently responsible for a term; the PeerList Processor at this peer
maintains a PeerList of all Posts for this term from across the network. When the
user poses a query, the Global QueryProcessor component analogously uses the
DHT to find the peer responsible for each query term and retrieves the respec-
tive PeerLists from the PeerList Processors using Communicator components.
After appropriately processing these lists, the Global QueryProcessor forwards
the complete query to selected peers, which in turn process the query using their
Local QueryProcessors and return their results. Finally, the Global QueryPro-
cessor merges these results and presents them to the user.

We have built a prototype system that handles the above procedures. Our sys-
tem uses a Java-based reimplementation of Chord [25] as its underlying DHT,
but can easily be used with other DHT’s providing a lookup(key) method. Com-
munication is conducted socket-based, but Web-Service-based [2] peers can easily
be included to support an arbitrarily heterogeneous environment. The local index
is stored in a database. It consists of a collection of standard IR measures, such
as TF and IDF values. Result ranking is based on a smoothed TF*IDF quality
measure. Figure 5 shows a screenshot of the user interface of our prototype. The
user creates a peer by either creating a new Chord ring or by joining an existing

system. Both actions require the specification of a local Chord port for commu-
nication concerning the global directory and a local application port for direct
peer-to-peer communication. The join operation requires additional information
on how to find an already existing peer. Status information regarding the Chord
ring is displayed. The Posts section provides information about the terms that a
peer is currently responsible for, i.e., for which it has received Posts from other
peers. The button Post posts the information contained in the local index to the
DHT. The Queries section can be used to execute queries. Similar to Google,
multiple keywords can be entered into a form field. After query execution, the
results obtained from the system are displayed.

=101 x|
Chord Component——
9001 value
i 139,19,54,20
ring exponent | £5536
16

ting expanent

- suce id 36155

refresh list

Queries

IP:Part Scare

Peer 127.0.0,1:9002 1.0986132556656, .,
Peer 127.0.0,1:9002 0.4785563631972. .,

Figure 5. Prototype GUI

7 Ongoing and Future Work

Our prototype implementations allows for the easy exchange of strategies for
query routing (i.e., selecting the peers to which the query is sent) as well as
for merging the results returned by different peers. We are currently analyzing
different strategies and are preparing extensive comparative experiments. We
want to contact as few peers as possible to retrieve the best possible results,
i.e., we want to estimate a benefit/cost ratio when deciding on whether to
contact a specific peer. While a typical cost measure could be based on expected
response time (network latency, current load of remote peer), meaningful benefit
measures seem harder to find. Possible measures could follow the intuition that
good answers are expected to come from peers that are similar to the query,
but at the same time have only little overlap with our local index and, thus,
can potentially contribute new results. We also take a closer look at existing

strategies for combining local query results from metasearch engine research
and try to fit those with our P2P environment.

We investigate the trade-offs of not storing all Posts for a term, but only the
top-k posts (based on some quality measure) to reduce space consumption of
the global directory. While this seems intuitive at first sight (good results should
come from good peers), early experiments indicate that this strategy might be
dangerous for multi-term queries, as good combined results are not necessarily
top results for any one of the search terms.

Due to the dynamics typical for P2P systems, Posts stored in the PeerLists
become invalid (peers may no longer be accessible, or the responsibility for a
specific term may have moved to another peer). A possible mechanism to handle
these problems is to assign a TTL (Time-to-live) stamp to every Post in the
list. Every peer periodically revalidates its Posts. Stale Posts will eventually
be removed from the PeerList. We address the question of choosing a good time
period for refreshing the Posts and compare this strategy to a strategy of actively
moving Posts to other peers as responsibilities change.

References

1. K. Aberer, M. Punceva, M. Hauswirth, and R. Schmidt. Improving data access in
p2p systems. IEEE Internet Computing, 6(1):58-67, 2002.

2. G. Alonso, F. Casati, and H. Kuno. Web Services - Concepts, Architectures and
Applications. Springer, Berlin;Heidelberg;New York, 2004.

3. B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commaun.
ACM, 13(7):422-426, 1970.

4. J. Callan. Distributed information retrieval. Advances in information retrieval,
Kluwer Academic Publishers., pages 127-150, 2000.

5. J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with in-
ference networks. In Proceedings of the 18th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 21-28.
ACM Press, 1995.

6. S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, 2002.

7. E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer to peer networks:
Harnessing latent semantics. In Proceedings of the IEEE INFOCOM’03 Confer-
ence, April 2003, April 2003.

8. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In
Proc. of the 28th Conference on Distributed Computing Systems, July 2002.

9. A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems.
Technical report, Stanford University, October 2002.

10. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Sharing Com-
munities. Technical Report DCS-TR-487, Rutgers University, Sept. 2002.

11. R. Fagin. Combining fuzzy information from multiple systems. J. Comput. Syst.
Sci., 58(1):83-99, 1999.

12. N. Fuhr. A decision-theoretic approach to database selection in networked IR.
ACM Transactions on Information Systems, 17(3):229-249, 1999.

13. T. Grabs, K. Béhm, and H.-J. Schek. Powerdb-ir: information retrieval on top
of a database cluster. In Proceedings of the tenth international conference on
Information and knowledge management, pages 411-418. ACM Press, 2001.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

L. Gravano, H. Garcia-Molina, and A. Tomasic. Gloss: text-source discovery over
the internet. ACM Trans. Database Syst., 24(2):229-264, 1999.

D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In ACM Symposium on Theory of Computing,
pages 654-663, May 1997.

W. Litwin, M.-A. Neimat, and D. A. Schneider. Lh* — a scalable, distributed data
structure. ACM Trans. Database Syst., 21(4):480-525, 1996.

A. Loser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay
clusters within super-peer networks. In Proceedings of the International Workshop
on Databases, Information Systems and Peer-to-Peer Computing, 2008 (DBISP2P
03), pages 33-47.

J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer networks. In
Proceedings of the twelfth international conference on Information and knowledge
management, pages 199-206. ACM Press, 2003.

S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a distributed
full-text index for the web. ACM Trans. Inf. Syst., 19(3):217-241, 2001.

W. Meng, C. T. Yu, and K.-L. Liu. Building efficient and effective metasearch
engines. ACM Computing Surveys, 34(1):48-89, 2002.

H. Nottelmann and N. Fuhr. Evaluating different methods of estimating retrieval
quality for resource selection. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval, pages 290—
297. ACM Press, 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proceedings of ACM SIGCOMM 2001, pages 161
172. ACM Press, 2001.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In Proceed-
ings of International Middleware Conference, pages 21-40, June 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Confer-
ence on Distributed Systems Platforms (Middleware), pages 329-350, 2001.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In Proceedings of
the 2001 conference on applications, technologies, architectures, and protocols for
computer communications, pages 149-160. ACM Press, 2001.

T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and K. Shan-
mugasunderam. Odissea: A peer-to-peer architecture for scalable web search and
information retrieval. Technical report, Polytechnic Univ., 2003.

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communica-
tions, pages 175-186. ACM Press, 2003.

R. Vingralek, Y. Breitbart, and G. Weikum. Snowball: Scalable storage on networks
of workstations with balanced load. Distributed and Parallel Databases, 6(2):117—
156, 1998.

Z. Wu, W. Meng, C. T. Yu, and Z. Li. Towards a highly-scalable and effective
metasearch engine. In World Wide Web, pages 386-395, 2001.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks. In Pro-
ceedings of the 22 nd International Conference on Distributed Computing Systems
(ICDCS’02), pages 5-14. IEEE Computer Society, 2002.

