
Abstract
The Mentor-lite prototype has been developed within

the research project "Architecture, Configuration, and
Administration of Large Workflow Management Systems"
funded by the German Science Foundation (DFG). In this
paper, we present the architecture of Mentor-lite and our
approach towards customizability. The demo will show the
feasibility of the presented approach.

1 System Overview
The Mentor-lite prototype has evolved from the

Mentor workflow management system [4, 5], but aims at a
simpler architecture. The main goal of Mentor-lite has
been to build a light-weight, extensible, and tailorable
system with small footprint and easy-to-use administration
capabilities. Our approach is to provide only kernel
functionality inside the workflow engine, and consider
system components like history management and worklist
management as extensions on top of the kernel. The key
point to retain the light-weight nature is that these
extensions are implemented as workflows themselves. An
invocation interface for application programs is provided

by a generic IDL interface on the engine side and specific
wrappers on the application side [3].

As shown in Figure1, the basic building block of
Mentor-lite is an interpreter for workflow specifications.
In Mentor-lite, workflows are specified in terms of state
and activity charts, the specification formalism that has
been adopted for the behavioral dimension of the UML
industry standard and was already used in Mentor. Two
additional components, the communication manager
(ComMgr) and the log manager (LogMgr), are closely
integrated with the workflow interpreter. All three
components together form the workflow engine. The
execution of a workflow instance can be distributed over
several workflow engines at different sites. A separate
workflow log is used at each site where a Mentor-lite
workflow engine is running. Databases like the workflow
repository (i.e., a repository of workflow specifications) or
the worklist database can be shared by Mentor-lite
workflow engines at different sites.

2 Implementation Details
The workflow specifications are interpreted at

runtime, which is a crucial prerequisite for flexible

The Mentor-lite Prototype:
A Light-Weight Workflow Management System

Jeanine Weissenfels, Michael Gillmann, Olivier Roth, German Shegalov, Wolfgang Wonner
 University of the Saarland, Germany

E-mail: {weissenfels,gillmann,roth,shegalov,wonner}@cs.uni-sb.de
WWW: http://www-dbs.cs.uni-sb.de

Wrapper

Application
Program

Workflow Interpreter

ComMgr LogMgr

Workflow Engine 1

Workflow Engine 2

Workflow Engine n

Workflow Logs

A
P
P
L.

 I
N
T
E
R
F
A
C
E

Worklist Database

Workflow Repository

Extensions are
Workflows !

History Mgmt

Workflow Spec.

Worklist Mgmt

Wrapper

Application
ProgramWrapper

Application
ProgramWrapper

Application
ProgramWrapper

Application
Program

Figure 1: The Mentor-lite architecture



exception handling and dynamic modifications during
runtime. The interpreter performs a stepwise execution of
the workflow specification according to its formal
semantics [6]. For each step, the activities to be performed
by the step are determined and started.

Mentor-lite supports a protocol for distributed
execution of workflows. The communication manager is
responsible for sending and receiving synchronization
messages between the engines. These messages contain
information about locally raised events, updates of state
chart variables and state information of the local engine
[5]. When a synchronization message is received, the
corresponding updates at the receiving site are performed.
In order to guarantee a consistent global state even in the
presence of site or network failures, we have built reliable
message queues using the CORBA Object Transaction
Services. As the basic communication infrastructure for the
distributed execution we use the CORBA implementation
Orbix.

The log manager provides logging facilities and
recovery mechanisms. The use of a DBMS (Oracle in our
implementation) for keeping the workflow log data
provides advantages with regard to reliability and
scalability.

The workflow engine, comprising the three
components interpreter, communication manager, and log
manager, is implemented as an Orbix server. Its IDL
interface provides a method to start a workflow instance
and a method to set variables and conditions within the
workflow instance.

Application dependent facilities like worklist
management and history management are implemented on
top of the engine as state and activity charts. Hence, they
are interpreted by the workflow interpreter just like any
other workflow specification. This allows us to use the
functionality of the Mentor-lite workflow engine through a
single interface, namely the state chart and activity chart
interpreter. The activities used in these subworkflows store
worklist data and history data in an Oracle database. The
user interfaces, including worklists and workhistory
evaluation tools, are implemented as Java applets. The
applets use the JDBC interface to access the databases.

In most other workflow management systems,
interfaces to application programs have to be completely
implemented inside of application wrappers. In Mentor-
lite, only basic communication interfaces are implemented
by wrappers, using the distributed computing environment
CORBA. On top of these interfaces, protocols for complex
interactions with application programs are specified in
terms of state and activity charts. Hence, we use the same
language for specifying workflows and interface protocols
(see [3] for details). The workflow engine starts the
wrappers asynchronously and uses the methods of the
wrapper objects to read or set variables. The application

wrappers can in turn use the workflow engine’s method to
set control flow variables.

3 About the Demo
For the demo, we use the specification of a simple e-

commerce workflow that we developed for benchmarking
workflow management systems [2]. To illustrate the
complete functionality of control flow handling, the
workflow includes the full spectrum of control flow
structures, i.e, splits, parallelism, joins, and loops. The
workflow builds on the TPC-C benchmark for transaction
systems, but enhances it by control and data flow between
the activities "NewOrder", "Shipment", and "Payment" and
includes additional activities. To demonstrate the
feasibility of our light-weight approach, the workflow
includes not only automatic but also interactive activities.
We will show several strategies specified as state and
activity charts to manage the user’s worklists.

For administration, Mentor-lite provides a Java based
Workbench for workflow design, partitioning across
multiple engines, and system configuration, and a Java
based runtime monitoring tool. The monitoring tool is able
to display the current execution state of a running
workflow, highlighting the control flow path traversed so
far. Further runtime data such as the current values of
control flow variables are also available.

References
[1] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth

(Eds.): Workflow Management Systems and
Interoperability, NATO Advanced Study Institute, Springer,
1998

[2] M. Gillmann, P. Muth, G. Weikum, J. Weissenfels:
Benchmarking of Workflow Management Systems (in
German), German Conf. on Databases in Office,
Engineering, and Scientific Applications (BTW), Freiburg,
Germany, 1999

[3] P. Muth, J. Weissenfels, M. Gillmann, G. Weikum:
Integrating Light-Weight Workflow Management Systems
within Existing Business Environments, Int’l Conf. on Data
Engineering (ICDE), Sydney, Australia, 1999

[4] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz
Dittrich: Enterprise-wide Workflow Management based on
State and Activity Charts, in [1]

[5] P. Muth, D. Wodtke, J. Weissenfels, A. Kotz Dittrich, G.
Weikum: From Centralized Workflow Specification to
Distributed Workflow Execution, Journal of Intelligent
Information Systems, Special Issue on Workflow
Management, Vol. 10, No. 2, 1998

[6] D. Wodtke, G.Weikum: A Formal Foundation for
Distributed Workflow Execution Based on State Charts, Int’l
Conf. on Database Theory (ICDT), Delphi, Greece, 1997


