A Goal-driven Auto-Configuration Tool for the

Distributed Workflow Management System Mentor-lite

Michael Gillmann, Jeanine Weissenfels, Ger man Shegalov, Wolfgang Wonner, Gerhard Weikum
Department of Computer Science
University of the Saarland, Germany
E-mail: { gillmann,weissenfels,shegal ov,wonner,weikum} @cs.uni-sh.de
WWW: http://www-dbs.cs.uni-sb.de/

Abstract Paper ID: D24

The Mentor-lite prototype has been developed within the research project "Architecture, Configuration, and
Administration of Large Workflow Management Systems" funded by the German Science Foundation (DFG). In
this paper, we outline the distributed architecture of Mentor-lite and elaborate on a goal-driven auto-
configuration tool for Mentor-lite and similar workflow management systems (WFMS). This tool aims to
recommend an appropriate system configuration in terms of replicated workflow, application, and
communication servers, so asto meet given goals for performance, availability, and performability at low system
costs. The demo will show the monitoring capabilities of Mentor-lite and the various components of the auto-
configuration tool.

1 System Overview

The Mentor-lite prototype system for distributed workflow management has evolved from its predecessor
Mentor [MWW+98a, MWW+98b], but aims at a simpler architecture. The main goal of Mentor-lite has been to
build a light-weight, extensible, and tailorable workflow management system (WFMS) with small footprint and
easy-to-use administration capabilities. Our approach is to provide only kernel functionality inside the workflow
engine, and consider system components like history management and worklist management as extensions on
top of the kernel. The key point to retain the light-weight nature is that these extensions are implemented as
workflows themselves. An invocation interface for application programs is provided by a generic IDL interface
on the engine side and specific wrappers on the application side [MWG+99].

As shown in Figurel, the basic building block of Mentor-lite is an interpreter for workflow specifications. In
Mentor-lite, workflows are specified in terms of state and activity charts, the specification formalism that has
been adopted for the behavioral dimension of the UML industry standard and was already used in Mentor. Two
additional components, the communication manager (ComMgr) and the log manager (LogMgr), are closely
integrated with the workflow interpreter. All three components together form the workflow engine. The
execution of a workflow instance can be distributed over several workflow engines at different sites. A separate
workflow log is used at each site where a Mentor-lite workflow engine is running. Databases like the workflow
repository (i.e., a repository of workflow specifications) or the worklist database can be shared by Mentor-lite
workflow engines at different sites.

appe! \ ‘\‘ Worklist Mgmt

Extensions are

— A Workflows!
P . History Mgmt
appel p \‘ Vi
Application L Workflow Spec.
appel / . Workflow Engine1 %
N Workflow Interpreter | ,
appe T J Worklist Database
Application E ‘ ComMgr H LogMgr h
Wrappe E Workflow Engine 2 ‘
Application A Workflow Repository
Program / C
E Workflow Enginen %

" Workflow Logs
Figure1: The Mentor-lite architecture

1

2 Distributed Workflow Execution

The workflow specifications are interpreted at runtime, which is a crucial prerequisite for flexible exception
handling and dynamic modifications during runtime. The interpreter performs a stepwise execution of the
workflow specification according to its formal semantics [WW297]. For each step, the activities to be performed
by the step are determined and started.

Mentor-lite supports a protocol for distributed execution of workflows spread across multiple workflow
engines. This support is crucial for workflows that span large, decentralized enterprises with largely autonomous
organizational units or even cross multiple enterprises to form so-called “virtual enterprises’. The
communication manager is responsible for sending and receiving synchronization messages between the
engines. These messages contain information about locally raised events, updates of state chart variables and
state information of the local engine [MWW+98b]. When a synchronization message is received, the
corresponding updates at the receiving site are performed. In order to guarantee a consistent global state evenin
the presence of site or network failures, we have built reliable message queues using the CORBA Object
Transaction Services. As the basic communication infrastructure for the distributed execution we use the
CORBA implementation Orbix.

The use of an object request broker (ORB) for the communication layer allows us not only to distribute the
workflow execution, but also to seperate the execution of the applications from the workflow engines.
Consequently, we are able to run the applications on dedicated application servers that can be replicated for
availability and performance reasons. Finally, CORBA provides the replication of the communication servers,
i.e, the ORBs, itself.

3 Workflow Monitoring

For administration, Mentor-lite provides a Java-based workbench for workflow design, workflow
partitioning acrass multiple workflow servers, and a Java-based runtime monitoring tool illustrated in Figure 2.
The monitoring tool is able to display the current execution state of a running workflow, highlighting the control
flow path traversed so far (see Figure 2: the current state is colored red and the traversed control flow is blue).
Further runtime data such as the current values of control flow variables are also available. In addition to
tracking and visualizing the execution of individual workflow instances, the monitoring tool can also provide
aggregate figures about workflow types, e.g., the invocation rate of workflows, the frequency of specific
activities within workflows of a given type, etc.

E =
Electronic_Purchase SC < Type: 11, ID: 47 Show Eunditwonsl Close | Show ECH—RUIESI Update How! | [EY—— |
ﬂl% InfornLaudffice_s | 0
nfornLaudfFice_
= WF_EXIT S
% fo
Faument_S /
CreditCardPayment_S
2
o
o
(Dol ivery 503
Hot i fy_50
\1} \
Newdrder_S 0
4 ireditCardCheck S
WF_INIT_S /
= =

Figure 2 : Monitoring of a workflow instance

4 The Auto-Configuration Tool

A distributed configuration of Mentor-lite consists of different workflow servers (i.e, instances of the
workflow engine), application servers, and one communication server (i.e,, ORB). Each server of the first two
categories can be dedicated to a specified set of workflow activities and invoked applications, resp., on a per
type basis. Each of these dedicated servers and also the communication server can be replicated across multiple
computers for enhanced performance and availability. Given this flexibility (which is provided in similar ways
also by some commercial WFMSs), it is a difficult problem to choose an appropriate configuration for the entire
WFMS that meets all requirements with regard to throughput, interaction response time, and availability.
Moreover, it may be necessary to adapt an initial configuration over time due to changes of the workflow load,
€.g., upon adding new workflow types.

To this end, we have developed a suite of analytic models, using stochastic methods like continuous-time
Markov chains and Markov reward moddls, to predict the performance, availability, and performability under a
given load. The performance model estimates the maximum sustainable throughput in terms of workflow
instances per time unit and the mean waiting time for service requests such as interactions upon starting an
activity on the basis of a Markov chain model for the statistical behavior of the various workflow types. The
availability model estimates the mean downtime of the entire system for given failure and restart rates for the
various components. Finally, the performability modd takes into account the performance degradation during
transient failures and estimates the effective mean waiting time for service requests with explicit consideration of
periods during which only a subset of a server type's replicas are running. These models, which are described in
detail in [GWW+00], form the underpinnings of an auto-configuration tool for distributed WFM Ss.

The auto-configuration tool is primarily driven by statistics on the workload from the monitoring tool of
Mentor-lite. It can feed this information into its analytic models to a hypothetical configuration in a what-if
analysis. By systematic variation of the parameters for such hypothetical configurations the toal is also able to
derive the (analytically) best configuration, i.e., the minimum degree of replication of each of the involved server
types to meet given availability and performance or performability goals, and recommend appropriate
reconfigurations. The tool is largely independent of a specific WFMS, using product-specific stubs for its
various components that need to interact with the WFMS.

The components of the configuration tool and its embedding into the overall system environment are
illustrated in Figure 3. Thetool consists of four main components:

* the mapping of workflow specifications onto the tool’ s internal models,
* thecalibration of theinternal models by means of statistics from monitoring the system,
* theevaluation of the models for given input parameters, and

* the computation of recommendations to system administrators and architects, with regard to specified
goals.

For the mapping the tool interacts with a workflow repository where the specifications of the various
workflow types are stored. In addition, statistics from online monitoring are used as a second source (e.g., to
estimate typical control flow behavior etc.). The configuration tool translates the workflow specifications into
corresponding continuous-time Markov chain models. For the evaluation of the models, additional parameters
may have to be calibrated; for example, the first two moments of server-type-specific service times for various
dementary service requests (e.g., starting an activity) have to be fed into the models. This calibration is again
based on appropriate online monitoring. So both the mapping and calibration components exploit online
statistics about the running system. Consequently, when the tool is to be used for configuring a completely new
workflow environment, many parameters have to be intellectually estimated by a human expert. Later, after the
system has been operational for a while, these parameters can be automatically adjusted, and the tool can then
make appropriate recommendations for reconfiguring the system.

The evaluation of the tool’s internal models is primarily driven by specified performance goals with
consideration of transient component downtimes, so-called performability goals. System administrators or
architects can specify goals of the following kinds:

* the minimum throughput in terms of completed workflow instances per time unit that the entire
WFM S must be able to sustain,

* atolerancethreshold for the mean waiting time of service requests that would still be acceptable to the
end-users,

* a tolerance threshold for the unavailability of the entire WFMS, or in other words, a minimum
availability level.

The first two goals requires evaluating the performance or the more comprehensive performability model,
whereas the third one merely needs the availability model. The tool can invoke these evaluations either for a
given system, or it can search for the minimum-cost configuration that satisfies all goals. The cost of a
configuration is assumed to be proportional to the total number of servers that constitute the entire WFMS, but
this could be further refined with respect to different server types. Also, the goals can be refined into workflow-
type-specific goals, by requiring, for example, different maximum waiting times or availability levels for
specific types.

Thetool uses the results of the model evaluations to generate recommendations to the system administrators
or architects. Such recommendations may be asked for regarding specific aspects only (e.g., focusing on
performance and disregarding availability), and they can take into account specific constraints such as limiting or
fixing the degree of replication of particular server types (e.g., for cost reasons).

The most far-reaching use of the configuration tool is to ask it for the minimum-cost configuration that
meets specified performability and availability goals. Computing this configuration requires searching the space
of possible configurations, and evaluating the tool’ s internal models for each candidate configuration. While this
may eventually entail full-fledged algorithms for mathematical optimization such as branch-and-bound or
simulated annealing, our first version of the tool uses a simple greedy heuristics. The algorithm iterates over
candidate configurations by increasing the number of replicas of the most critical server type until both the
performability and the availability goals are satisfied. Since either of the two criteria may be the critical one and
because an additional server replica improves both metrics at the same time, the two criteria are considered in an
interleaved manner. Thus, each iteration of the loop over candidate configurations evaluates the performability
and the availability, but adds servers to two different server types only after re-evaluating whether the goals are
still not met. This way the algorithm avoids “ oversizing” the system configuration.

To summarize, the functionality of the configuration tool comprises an entire spectrum ranging from the
mere analysis and assessment of an operational system all the way to providing assistance in designing a
reasonable initial system configuration, and, as the ultimate step, automatically recommending a reconfiguration
of arunning WFMS.

Repository WFMS

l I WE - App. op

% engine server)
Monitoring Y , \ =5

.
&
&
E

| Configuration Tool |

Mapping Calibration

v
| Evaluation | Recom

| Recommendation l<

Tresholds Administrator

Figure 3 : Integration of the auto-configuration tool

5 About the Demo

The demo consists of two parts. Thefirst part shows the distributed architecture of the Mentor-lite prototype.
The second part shows the various components of the auto-configuration tool and the tool’s interaction with
Mentor-lite.

For the demo of the Mentor-lite prototype we use the specification of a simple e-commerce workflow that
we developed for the benchmarking of WFMSs [GMW+99]. To illustrate the complete functionality of control
flow handling, the workflow includes the full spectrum of control flow structures, i.e, splits, parallelism, joins,
and loops. The workflow builds on the TPC-C benchmark for transaction systems, but enhances it by control and
data flow between the activities "NewQOrder", "Shipment", and "Payment" and includes additional activities. For
illustration, Figure 4 shows two kinds of user interfaces, the worklist of user John Doe and the activity
"NewOrder" which corresponds to the work item "insert new order" in the worklist. The worklist presents all
pending work items assigned to the user John Doe.

The demo of the auto-configuration tool will show what-if analyses for assessing given hypothetical
configurations, and it will demonstrate the steps of the iterated model evaluations that are needed for deriving the
analytically best configuration for given performability and availability goals. Both of these different uses of the
tool will highlight the interactions with the entire WFMS, especially the monitoring component.

References

[DKO+98] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth (Eds), Workflow Management Systems and

Interoperability, NATO Advanced Study Ingtitute, Springer, 1998

M. Gillmann, P. Muth, G. Weikum, J. Weissenfels, Benchmarking of Workflow Management Systems (in

German), German Conf. on Databases in Office, Engineering, and Scientific Applications (BTW), Freiburg,

Germany, 1999

M. Gillmann, J Weissenfels, G. Weikum, A. Kraiss, Performance and Availability Assessment for the

Configuration of Distributed Workflow Management Systems, Conf. on Extending Database Technology

(EDBT), Konstanz, Germany, 2000

P. Muth, J. Weisseenfels, M. Gillmann, G. Weikum, Integrating Light-Weight Workflow Management

Systems within Existing Business Environments, Int'l Conf. on Data Engineering (ICDE), Sydney, Australia,

1999

[MWW+984] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz Dittrich, Enterprise-wide Workflow Management
based on State and Activity Charts, in [DKO+98]

[MWW+98Db] P. Muth, D. Wodtke, J. Weissenfels, A. Kotz Dittrich, G. Weikum, From Centralized Workflow Specification
to Distributed Workflow Execution, Journal of Intelligent Information Systems, Special |ssue on Workflow
Management, Val. 10, No. 2, 1998

[GMW+99]

[GWW+00]

[MWG+99]

[WW97] D. Wodtke, G.Weikum, A Formal Foundation for Digtributed Workflow Execution Based on State Charts,
Int’l Conf. on Database Theory (ICDT), Delphi, Greece, 1997
&NewOrder-
Date [250789 =] Time 131523 =
722:1:30 : 154 ’O'dEI'DD ‘ e
. [1o0801 =] [eoo
Name Miller Co

Address

Ordered Items

Register

200110 - Mouse Pads

100805 - 2 GB SCSIDrive #4

#100

B |555-4a?5

E-Mail

&Worklisl of John Doe

miller@mi.com

g

Sortky: [WFType =

WFType ‘WFlnstance Alivity Deseription

11 47
1 42
11 50
3 12

insert new order

update customer information
insert new oder

check customer call

Refesh | aut |

28.07.199%9, 6pm
31.07.1999, -

28.07.199%, 6pm
28.07.1929, 10 am

Figure 4 : Worklist of John Doe and user interface of activity "NewOrder"

