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ABSTRACT

We present a novel method for predicting the secondary structure of a protein from its amino
acid sequence. Most existing methods predict each position in turn based on a local window of
residues, sliding this window along the length of the sequence. In contrast, we develop a prob-
abilistic model of protein sequence/structure relationships in terms of structural segments,
and formulate secondary structure prediction as a general Bayesian inference problem. A
distinctive feature of our approach is the ability to develop explicit probabilistic models for

-helices, -strands, and other classes of secondary structure, incorporating experimentally
and empirically observed aspects of protein structure such as helical capping signals, side
chain correlations, and segment length distributions. Our model is Markovian in the seg-
ments, permitting ef� cient exact calculation of the posterior probability distribution over all
possible segmentations of the sequence using dynamic programming. The optimal segmenta-
tion is computed and compared to a predictor based on marginal posterior modes, and the
latter is shown to provide signi� cant improvement in predictive accuracy. The marginaliza-
tion procedure provides exact secondary structure probabilities at each sequence position,
which are shown to be reliable estimates of prediction uncertainty. We apply this model
to a database of 452 nonhomologous structures, achieving accuracies as high as the best
currently available methods. We conclude by discussing an extension of this framework to
model nonlocal interactions in protein structures, providing a possible direction for future
improvements in secondary structure prediction accuracy.

Key words: protein secondary structure prediction, Bayesian methods, probabilistic modeling.

1. INTRODUCTION

Prediction of the secondary structure of a protein from its amino acid sequence remains an
important and dif� cult task. Not only can successful predictions provide a starting point for direct

tertiary structure modeling (Friesner and Gunn, 1996; Jones et al., 1994; Monge et al., 1994; Rost et al.,
1996), but they can also signi� cantly improve sequence analysis and sequence-structure threading (Fischer
and Eisenberg, 1996; Russell et al., 1996) for aiding in structure and function determination. However,
despite considerable progress in secondary structure prediction over the last decade (see Barton (1995)
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for a recent survey), the current best methods reach accuracies of about 75% when multiple homologous
sequences are available (Frishman and Argos, 1997), and 71% for single sequence predictions (Salamov
and Solovyev, 1997). New methods which more accurately re� ect features of protein structure folding and
stabilization may be necessary to advance prediction beyond these levels.

Since early attempts to predict secondary structure (Garnier et al., 1978), most efforts have focused on
development of mappings from a local window of residues in the sequence to the structural state of the
central residue in the window, and a large number of methods for estimating such mappings have been
developed. Early approaches scored individual amino acids by frequency of occurrence in each structural
state, combining them in ways corresponding to conditional independence models (Chou and Fasman,
1974; Garnier et al., 1978). Improvements in accuracy were achieved by methods considering correlations
among positions within the window, either implicitly using semi- and non-parametric statistical models
such as neural networks (Holley and Karplus, 1989; Qian and Sejnowski, 1988; Stolorz et al., 1992) and
nearest-neighbor classi� ers (Yi and Lander, 1993; Zhang et al., 1992), or explicitly (Garnier et al., 1996;
Munson et al., 1994; Riis and Krogh, 1996). Further improvements were demonstrated by the inclusion of
evolutionary information via multiple alignments of homologous sequences (Di Francesco et al., 1996; Rost
and Sander, 1993a; Rost and Sander, 1994; Salamov and Solovyev, 1995), although the relative contribution
of such information has been debated (Benner, 1995; Frishman and Argos, 1996). Interestingly, most recent
improvements in accuracy have come from methods which are capable of considering nonlocal interactions
in the sequence which occur outside a � xed length window (Frishman and Argos, 1996, 1997; Salamov
and Solovyev, 1997). Here we take a model-based approach, formulating secondary structure prediction
as a general Bayesian inference problem. Such an approach avoids many of the problems associated with
window-based predictions, such as the need for post-prediction “� ltering” (Frishman and Argos, 1996; Rost
and Sander, 1993b) and provides a general framework for incorporation of the growing body of scienti� c
knowledge about protein structure into the prediction process.

2. METHODS

We begin by choosing a representation of sequence/structure relationships in proteins which is based on
segments of secondary structure. We parameterize this model in a convenient fashion by representing the
segment positions and structural types. We denote segment locations by the position of the last residue in
the segment, following Auger and Lawrence (1989) and Liu and Lawrence (1996). Because segments are
required to be contiguous, this parameterization uniquely identi� es a set of segment locations for a given
sequence.

Let R 5 (R1, R2, . . . Rn ) be a sequence of n amino acid residues, S 5 fi : Struct(R i ) 65 Struct(R i 1 1)g
be a sequence of m positions denoting the end of each individual structural segment (so that Sm 5 n),
and T 5 (T1, T2, . . . , Tm ) be the sequence of secondary structural types for each respective segment. An
example is given in Figure 1. We will concern ourselves with the 3-state problem, where 8iTi 2 fH , E , L g,
although generalizations may be desirable. Together m, S and T completely determine a secondary structure
assignment for a given amino acid sequence. In the case of secondary structure prediction, the quantities
of interest are thus the values of m, S 5 (S1, S2, . . . , Sm ) and T 5 (T1, T2, . . . , Tm) corresponding to the
known amino acid sequence R 5 (R1, R2, . . . Rn), i.e., the locations and types of the secondary structural
segments. The problem is to infer the values of (m, S , T ) given a residue sequence R .

We take a Bayesian approach to the assignment of these parameter values, by de� ning a joint prob-
ability distribution P (R , m, S , T ) for an amino acid sequence and its secondary structure assignment.
We then compute the conditional or posterior probability distribution over structural assignments given a
new sequence P (m , S , T j R ) via Bayesian inference, and predict those secondary structure assignments
(m, S , T ) which maximize this posterior distribution. In Section 2.1, we de� ne a general segment-based
joint probability model which lends itself to ef� cient exact calculation of the posterior. Section 2.2 provides

FIG. 1. Representation of the secondary structure of a protein sequence in terms of structural segments. The pa-
rameters shown represent the segment types T 5 (L,E,L,E,L,H,L, . . .) and endpoints S 5 (4,9,11,15,18,25, . . .). The
associated structure assignment is LLLLEEEEELLEEEELLLHHHHHHHLLL . . . .
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speci� c models for a-helices, b-strands, and loops, and shows how such models can be used to capture key
aspects of protein structure formation observed in experimental settings and database analyses. Section 2.3
describes an algorithm for computation of quantities of interest under the posterior distribution.

2.1. Basic model

A key aspect of our approach is the choice of a joint probability model P (R , m, S , T ) which is decom-
posable into individual segment terms. In other words, the joint distribution may be factored by conditional
independence of inter-segment residues, so that the sequence likelihood can be written as a product of
segment likelihoods:

P (R j m , S , T ) 5
mY

j 5 1

P (R [S j 5 11 1:S j ] j S , T ) (1)

where the j th term on the right-hand side of (1) is the likelihood of the subsequence of R beginning at
position S j ¡ 1 1 1 and ending at position S j , in other words, the amino acids in segment j . The exact form
of this segment likelihood is structure-dependent, and the speci� cation of this form for each structural type
amounts to developing a probabilistic model of the given type of segment. The particular models used in
this paper are developed in Section 2.2, but some general comments are appropriate here. First, note that
this model does not assume conditional independence of intra-segment residues; in fact, as described in
Section 2.2, an explicit goal of our approach is to choose a form which allows us to model correlation
among positions within a segment. Moreover, the terms P (R [S j ¡ 11 1:S j ] j S , T )for individual segments can
take on arbitrary form and may depend on general properties of a segment (such as hydrophobic moment
or helix dipole) beyond properties of individual residues.

Given (1), we need only provide the prior distribution P (m , S , T ) to completely specify the joint
distribution P (R , m , S , T ). A computationally convenient choice is to factor P (S , T j m) as a Markov
process:

P (m, S , T ) 5 P (m)
mY

j 5 1

P (T j j T j ¡ 1)P (S j j S j ¡ 1, T j ) (2)

where each segment type depends only on its nearest neighbors, and the conditioning of S j on (S j ¡ 1, T j )
allows explicit modeling of the differing length distributions of each segment type observed in the Protein
Data Bank (Bernstein et al., 1977), as shown in Figure 2. Here we take P (m) to be improper uniform;
more informative priors on m are possible, but have little impact (Schmidler, 2000). By the choice of (2),
our model becomes closely related to the class of hidden semi-Markov or semi-Markov source models
discussed in Levinson (1986), Rabiner (1989), and Russell and Moore (1985) for applications in speech
recognition. In the speech recognition literature, however, observations during a given state occupancy
are typically modeled as iid (independent and identically distributed). As described in Section 2.2, the
ability to model both nonindependence and nonidentity of distributions is the major motivation for our
segment-based approach. We note also that a model very similar to that given in (1) and (2) has been
developed independently by Burge and Karlin (1997) and applied to gene parsing in eukaryotic DNA with
great success.

2.2. Probabilistic models for protein structure

Our goal here is to choose a speci� c form of the segment likelihood P (R [S j ¡ 1 1 1:S j ] j S , T ) which captures
core aspects of protein secondary structure formation: amino acid propensities, hydrophobicity patterns,
side chain interactions, and helical capping signals. In other words, we wish to develop probabilistic models
for protein structural segments. For example, the function P (R [i: j ] j i, j, H ) provides the likelihood of the
subsequence R [i: j ] under the assumption that a helix begins at position i and ends at position j . Given
such a segment likelihood for each structural class (H, E, L), computing the likelihood of a sequence under
any given structural assignment is trivially done by evaluating the product of (1) and (2). Here we provide
the exact forms for these segment likelihoods used in this paper.

Helix model. The presence of correlated side chain mutations in a-helices has been well studied, deriv-
ing from both environmental constraints such as hydropathy (Eisenberg et al., 1984) and from stabilizing
side chain interactions (Klingler and Brutlag, 1994). These correlations in nonadjacent sequence positions
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FIG. 2. Empirical length distribution of observed structural segments for a-helices (dark) and b-strands (light).
Distributions are calculated from the structural database described in Section 3.

are induced by their spatial proximity in the folded protein molecule and hence provide an important
source of information about the underlying structure. Figure 3 shows an example of an amphipathic a-
helix which exhibits periodicity in sequence hydrophobicity. Because of the differing rates of rotation in
helices and strands, this side chain periodicity can be an important clue for identifying the underlying
backbone conformation.

Another important source of information for identifying a-helical segments in protein sequences is the
existence of helical capping signals, the preference for particular amino acids at the N- and C-terminal ends
which terminate helices through side chain-backbone hydrogen bonds or hydrophobic interactions. Such
signals have been well characterized experimentally in terms of their stabilizing effect in helical peptides
(Doig and Baldwin, 1995; Presta and Rose, 1988; Richardson and Richardson, 1988) (see Aurora and Rose
(1998) for a review), as well as empirically through observed correlations (Klingler and Brutlag, 1994).
This capping effect results in amino acid distributions at end-segment positions which differ signi� cantly
from those of internal positions. Figure 4 shows some of these informative distributions.

Our goal is to develop a helical segment model which captures such position-speci� c preferences and
probabilistic dependence of intra-segment residues, in addition to standard amino acid propensities. The
model must also account for helices of various lengths. In this paper we use the following form of this
distribution:

P (R [S j ¡ 1 1 1:S j ] j S j ¡ 1, S j , H ) 5

S j ¡ 11 `H
NY

i 5 S j ¡ 11 1

P H
N i ¡ S j ¡ 1

(R i j R [S j ¡ 1 1 1:i ¡ 1])

£
S j ¡ `H

CY

i 5 S j ¡ 11 `H
N 1 1

P H
I (R i j R [S j ¡ 1 1 1:i ¡ 1])

£
S jY

i 5 S j ¡ `H
C 1 1

P H
CS j ¡ i 1 1

(R i j R [S j ¡ 11 1:i ¡ 1]).

(3)

Here `H
N indicates the length of the helix N-cap model, N i , Ci indicate the i th position from the N- and

C-termini respectively; and I indicates an internal (noncap) position. Figure 5 shows graphically how this
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FIG. 3. Amphipathic helix from b-lactamase (4blm) showing hydrophobic side chain periodicity induced in sequence.
The � rst image shows the helix in its native environment in the folded structure. The second image shows that this
amphipathic environment induces a distinct preference for hydrophobic side chains on the buried surface of the helix
(hydrophobic side chains are shown in white). The third image demonstrates how this preference in combination with
the rotation of the helix induces a distinct periodicity in the amino acid sequence.

model is applied to the particular amino acid subsequence of the helix in Figure 3: the � rst product term
in (3) models the distribution of amino acids at each of the � rst `H

N N-terminal positions (N-cap, N1,
N2, N3, . . .), and similarly the last term for the C-terminal positions (. . . , C3, C2, C1, C-cap), while the
middle term models all internal positions as identically distributed but dependent.

In choosing the length of the helix cap models `H
N , `H

C , we considered caps of up to 4 positions at
each end of the segment. The � rst 4 such positions at each terminus in a-helices are of particular interest
due to their inability to form intra-helical hydrogen bonds, their propensity for acidic/basic side chains,
and stabilization effects of the helical dipole moment. Figure 4A shows distributions for these positions in
a-helices. As described in Section 3, we use secondary structure assignments provided by DSSP (Kabsch
and Sander, 1983) which do not include the � rst and last hydrogen bonded residues in a helix. Hence the
N-cap and C-cap positions are not typically included by DSSP. (To correct for this, we allow the segment
transition term in (2) to depend on the last residue of the previous segment.) Nevertheless, Figure 4A
displays previously observed patterns such as the prevalence of Pro at position N1 and Glu and Asp at
position N2, while Figure 4b shows the expected prevalence of Ala and various hydrophobic residues at
internal positions of helices.

Table 1 shows the statistical deviance between the amino acid distribution at each end-segment position
and the amino acid distribution at internal positions, calculated using the data set described in Section 3.
The strongest signal appears in the � rst two positions of the helical N-terminus (N1 and N2), while
b-strands and loops show little change in these positions. The positions we included in each structural
model for predictive purposes are highlighted (so that `H

N 5 4, `H
C 5 1), capturing the positions that

are signi� cantly different. It should be noted that such information is inherently dif� cult to include in
window-based prediction methods, which must scan a residue across each position in the window in turn.

Equation (3) provides everything except the exact intra-segment residue dependencies in the model. For
a-helices, these are given by:

P H
i (R i j R [ j :i ¡ 1]) 5 P H

i (R i j hi )P H
i (hi j hi ¡ 2, h i ¡ 3, hi ¡ 4) (4)

where hi 2 fhydrophobic, neutral, hydrophilicg indicates the hydrophobicity class of residue R i assigned
by Klingler and Brutlag (1994). In other words, dependency between positions is modeled using a reduced
alphabet in order to avoid combinatorial explosion of parameters. Figure 6 provides a graphical model
representation (Whittaker, 1990) of the dependency structure given by (4). This form of the distribution
allows us to explicitly capture the previously described intra-segment residue correlations corresponding
to the periodicity of an a-helix, by conditioning the probability of a particular residue on the i ¡ 4, i ¡ 3,
and i ¡ 2 residues. Internal positions are therefore modeled as identically distributed, but dependent. We
note that Stultz et al. (1993) also provide a model for amphipathicty in a-helices in their development of
structured hidden Markov models for particular tertiary folds.

b-Strand and Loop models. The general form of (3) is convenient for modeling variable-length seg-
ments, and we retain such a form for b-strand and loop segments. However, the utility of distinguishing
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FIG. 5. Evaluation of the a-helix segment model for a particular amino acid subsequence. Grayed areas are the
N- and C-cap positions speci� ed by distinct amino acid probability distributions. Internal positions are modeled as
identically distributed but dependent. Throughout, amino acid distributions are conditioned on neighboring residues
according to known helical side chain interactions as described in Section 2.2.

Table 1. Segment Capping Positions

Kullback-Leibler divergence
from internal position

Cap
position a-helix b-strand Loop/coil

N1 .146 .053 .050
N2 .196 .034 .032
N3 .115 .025 .020
N4 .08 — .014
C4 .019 — .008
C3 .029 .020 .012
C2 .037 .015 .011
C1 .059 .077 .056

Kullback-Leibler divergence (cross-entropy) measured from the
amino acid distribution at internal segment positions to N- and C-
terminal positions. Positions shown in boldface are included in capping
models as described in text. KL divergence between two probability

distributions p and q is de� ned as
P

i p(i) log
±

p(i)
q(i )

²
.

end-capping residues in b -strands and loops is less obvious than in the case of a-helices. In choosing
`E

N , `E
C , `L

N , `L
C we once again considered up to 4 positions for loops and 3 for b-strands (due to sparse

data). Again, Table 1 shows the statistical deviance, and it is seen that b -strands and loops show little
change in these positions. Accordingly, we set `E

N 5 1, `E
C 5 1, `L

N 5 2, `L
C 5 1. Figures 4A and 4B reveal

some expected patterns in the associated amino acid distributions, such as Pro in position 2 as an initial1

helix-terminating position in loops, a prevalence of Gly in internal loop positions, and various hydrophobic
residues in strands.

Another difference between the models for a-helices, b -strands, and loops lies in the exact form of (4),
re� ecting the differing intra-segment correlations induced by the underlying backbone-side chain geometry
being modeled. Re� ecting the periodicity of b-strand side chains, conditioning is done on residues i ¡ 1
and i ¡ 2, and loops are modeled similarly.

1The occurrence of the peak at position 1 rather than position 2 is again an artifact of the helix boundaries de� ned
by DSSP.
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FIG. 6. A graphical model (Whittaker, 1990) representing the conditional independence structure for the amino
acids in an example a-helix segment. Ri are the amino acids of the a-helix and Hi are their associated hydrophobicity
classes as assigned by (Klingler and Brutlag, 1994). The model provides for dependence among the hydrophobicity
classes at appropriate periodicity allowing the amino acid distributions to be modeled as conditionally independent,
thus reducing the dimensionality of the model.

Finally, we note that no algorithmic model selection was done to select the best models of form (3) and
(4), and so the models described above, while effective, are not necessarily optimal. Moreover, (3) and
(4) are only one of many conceivable forms for the segment models, and many other possibilities exist.
For example, many of the statistical models used for window-based prediction methods might be adapted
for this purpose. Thus, we view the development of new models for structural segments to be a promising
area of research. So long as the factorization given by (1) is maintained, our general framework holds and
the computational methods described in the next section are applicable. Generalizations of (1) itself are
discussed in Section 4.2.

2.3. Computation and inference

Assuming the probability model given by (1–4), we wish to infer the secondary structure assignment
parameters (m , S , T ) for a new protein sequence R . Thus we wish to � nd (m , S , T ) such that P (m, S , T j R )
is maximized.2 As mentioned in Section 2.1, our class of models is structurally similar to the class of
semi-Markov source models described in Rabiner (1989). Thus, computation can be done exactly using a
slight generalization of the standard forward-backward algorithm for hidden Markov models (HMMs), as
described in Rabiner (1989), using the forward and backward variables de� ned as follows:

a( j, t ) 5

j ¡ 1X

v 5 l

X

l2SS

a(v , l)P (R [v 1 1: j ] j Sprev 5 v , S 5 j, T 5 t , h)

£ P (S 5 j j T 5 t , Sprev 5 v , h)P (T 5 t j Tprev 5 l, h)

(5)

b ( j, t) 5
nX

v 5 j 1 1

X

l2SS

b(v , l)P (R [ j 1 1:v ] j Snex t 5 v , S 5 j, Tnex t 5 l, h)

£ P (Snex t 5 v j S 5 j, Tnex t 5 1, h)P (Tnex t 5 l j T 5 t, h)

(6)

where SS 5 fH , E , L g, the set of possible secondary structural types and h represents the model parameters.
This yields an O (n3) algorithm, but in practice we limit the maximum size considered for any one segment
to some length D . Thus, the � rst summation in (5) begins at ( j ¡ D ) and the � rst summation in (6) ends

2Throughout, the parameters of the probability model are assumed to be � xed, and we discuss only computation
of predictive quantities of interest. Estimation of these probability parameters from the structural database described
in Section 3 is straightforward using maximum likelihood or maximum a posteriori methods and amounts to counting
observed frequencies for the desired quantities (the length of a-helices, or the occurrence of particular amino acids
in the C-terminal capping position of an a-helix, for example). Because the database contains only sequences with
known structures, no Baum-Welch type iteration is required during estimation. This contrasts with the use of HMM-like
models in many other applications (such as multiple sequence alignment), where the underlying model is assumed
unknown, or the data is not fully observable.
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at ( j 1 D ), yielding an algorithm which is linear (O (nD 2)) in the length of the input sequence for � xed
D . All experiments in this paper use a value of D 5 30, which is suf� ciently large to account for nearly
all observed structural segments as can be seen from Figure 2. We note that the model given by (3) allows
further reduction of the D 2 term to yielding O (nD ); however, this does not hold in general and in practice
the additional computational savings provided by this form are unnecessary.

We can therefore compute the maximum a posteriori values of (m , S , T ):

StructMAP 5 arg max
(m,S ,T )

P (m, S , T j R , h)

using a procedure analogous to the Viterbi algorithm for HMMs (see Rabiner (1989)), simply by replacing
the summations in (5) with maximization. We refer to these values of (m, S , T ) as the MAP segmentation.
A similar approach is taken by Burge and Karlin (1997) to � nd the optimal parse of a DNA sequence.
We note, however, that many different segmentations may exist which, although not optimal, may have
signi� cant probability mass. In addition, the most commonly reported measure of accuracy for protein
secondary structure prediction is the Q 3 value, the percentage correct on a per residue basis. Thus the
MAP segmentation is not as desirable as the marginal posterior mode at each position:

StructMode 5

«
arg max

T
P (TR [i] j R , h)

¼ n

i 5 1

where P (TR [i ] j R , h) represents the marginal posterior distribution over structural types at position i .
Fortunately, this is easily calculated from (5) and (6) above:

P (TR i 5 t j R , h) 5
i ¡ 1X

j 5 i ¡ D 1 1

j 1 D ¡ 1X

k 5 i

X

l2SS

a( j, l)b(k, t )P (R [ j 1 1:k] j Sprev 5 j, S 5 k, T 5 t, h)

£ P (S 5 k j Sprev 5 j, T 5 t , h)P (T 5 t j Tprev 5 l, h)=Z

(7)

where Z is the normalizing constant (or partition function) P (R j h) which is available directly from the
forward pass (5). The calculation in (7) yields the marginal posterior distribution at each position in the

FIG. 7. Helix prediction probabilities for example sequence (1cc5). Positions in black (white) are correctly predicted
by the BSPSS algorithm to be helix (coil); light gray positions are under-predicted (true structure helix, predicted
structure coil), and dark gray are over-predicted (true structure coil, predicted structure helix). Prediction probabilities
at each position correlate highly with prediction accuracy (see Figure 8).
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sequence in O (nD ) time. We show in Section 3 that this marginal mode strategy signi� cantly outperforms
the MAP segmentation strategy by the Q 3 measure.

It is worth reiterating that (7) gives us the exact marginal posterior distribution over secondary structural
types at each position, averaging over all possible segmentations, and hence provides an exact measure
of the uncertainty of prediction at each position (subject to modeling assumptions). Figure 8 in Section 3
shows that this measure correlates very strongly with prediction accuracy and is still somewhat conservative.
Figure 7 shows a typical sequence prediction, where we see that segment endpoints are the regions of
highest uncertainty, as we would expect given the variability of assignments in such positions (Colloc’h
et al., 1993).

Lastly, we note that our approach can easily incorporate prior knowledge about regions or positions in
the sequence if such is available. That is, the methods described in this section can be easily modi� ed
to calculate probabilities conditional on certain positions or segments taking on known conformations.
Such might be the case, for example, if experimental evidence exists such as circular dichroism data or
footprinting experiments, or if highly signi� cant motif hits occur on the sequence and we wish to include
them, for example, with helix-turn-helix DNA binding motifs. Again, such information is inherently dif� cult
to include in most existing secondary structure prediction methods.

3. RESULTS

In order to evaluate the accuracy of our approach, we created a nonredundant set of 452 globular
protein structures from the Protein Data Bank (Bernstein et al., 1977) using OBSTRUCT (Heringa et al.,
1992). We created a maximal set of structures determined at better than 2.5 angstroms resolution with less
than 25% sequence identity, removing those structures classi� ed as membrane proteins within the SCOP
hierarchy (Murzin et al., 1995) and those sequences less than 50 amino acids in length. Table 2 reports the
results of cross-validation experiments whereby each structure was predicted in turn, using parameters of
(2), (3), (4) estimated from the remaining 451 structures. Quantities reported are the total percent correct
(Q3), percent of each structural type predicted correctly (sensitivity), percent of predictions for each type
which were correct (positive predictive value), and Matthew’s correlation (Matthews, 1975). Computation
time on an SGI 195MHz Octane ranges from 0.2 seconds for the shortest sequence (50 residues) to 6.4
seconds for the longest (869 residues). The gold-standard secondary structure assignments were taken
to be those provided by DSSP (Kabsch and Sander, 1983), with adjustments following (Frishman and
Argos, 1996) to restrict the minimum b -strand length to 3, and the minimum a-helix length to 5. Our
Bayesian segmentation algorithm (BSPSS) achieves a Q3 accuracy of 68.8%, as high as most published
single-sequence methods (Frishman and Argos, 1996) and only slightly below the best reported value of
71% (Salamov and Solovyev, 1997). Of the two predictors described in Section 2.3, the marginal mode at
each position signi� cantly outperforms the MAP segmentation on a per residue basis.

As described in Section 2.3, the BSPSS algorithm calculates the exact posterior distribution over struc-
tural types at each position. Figure 8 shows the Q3 accuracy as a function of the probability assigned to
the predicted structure at each position. As can be seen from the strong correlation, a clear advantage of
our explicit probabilistic approach is the ability to accurately estimate the con� dence in prediction at each
position. At a threshold prediction probability of .6, we make predictions for 58% of positions and achieve
an accuracy of 80.6%. At a threshold probability of .8 we achieve an accuracy of 91.4%, but predict only

Table 2. Accuracy of Secondary Structure Predictions

Percent correct (%) Matthews’ correlation

Total Helix Strand Loop Helix Strand Loop
(Q3) (Q a) (Q b ) (Q L ) (Ca) (Cb ) (CL )

MAP segmentation 64.2 67.3 (61.8) 23.3 (61.3) 79.1 (65.9) .49 .30 .38
Marginal mode 68.8 64.0 (69.7) 46.0 (61.0) 81.0 (70.5) .54 .43 .47

Results of experiments described in Section 3 evaluating the predictive accuracy for the two predictors de� ned in Section 2.3.
Based on (1) the MAP segmentation and (2) the mode of the marginal posterior distribution at each position. Percentage correct is
given as sensitivity (positive predictive value), and Cx are Matthews’ correlation coef� cients as de� ned in Matthews (1975).
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FIG. 8. Plot of predictive accuracy vs. probability assigned to prediction. The clear correlation indicates the value
of prediction probabilities for interpreting structure predictions at various positions in the target sequence.

21% of positions with this level of con� dence. It is worth noting that, according to Rost and Schneider
(1997), these threshold percentages indicate that the BSPSS algorithm performs 6 times as well as other
single sequence methods with reliability estimates, and multiple sequence alignment methods such as PhD
(Rost and Sander, 1994) perform only 7/6 times better than BSPSS.

As described in Section 2, some model selection was done based on the dataset described (such as the
determination of model cap lengths in Section 2.2). In principle, this means that the cross-validation results
given for this dataset may potentially overestimate the accuracy expected for sequences outside this dataset.
In order to account for this, we repeated the above experiments after model selection had been completed,
using a new (larger) dataset which includes structures published in the interim. We used a dataset generated
by the PDB_SELECT algorithm (Hobohm and Sander, 1994) with less than 25% sequence similarity. This
set contained 685 protein structures, which was reduced to 660 by removal of structures classi� ed as
membrane proteins by SCOP (Murzin et al., 1995) and those for which DSSP (Kabsch and Sander, 1983)
produced no output. Results on this dataset were only slightly lower (68.4% for marginal mode predictions
and 63.9% for MAP assignments), indicating that these estimates are largely unbiased. This difference
in performance on the two datasets is comparable to that exhibited by other published algorithms when
applied to multiple datasets (Frishman and Argos, 1997; Salamov and Solovyev, 1997).

4. DISCUSSION

4.1. Related work

In Section 2, we noted the similarity between our models and work in the speech recognition literature
(Levinson, 1986; Rabiner, 1989; Russell and Moore, 1985) on semi-Markov source models. Here we brie� y
outline other related work.

Standard hidden Markov or Markov source models (Rabiner, 1989) have been used extensively in the
literature on computational biology (Eddy, 1996; Krogh et al., 1994). Recently, these have been related
(Lawrence et al., 1993; Liu et al., 1999) in a uni� ed framework to block-multinomial models for motif
detection (Lawrence et al., 1993; Liu et al., 1995). HMMs have been applied to secondary structure
prediction (Asai et al., 1993; Stultz et al., 1993) but have achieved limited accuracy. As described in detail
in Section 2 above, we believe the intra-segment residue independence and geometric length distributions
implied by HMMs to be inappropriate for modeling protein secondary structure, motivating our segment-
based approach. Auger and Lawrence (1989) and Liu and Lawrence (1996) develop an algorithm for
sequence segmentation which is analogous to the Viterbi algorithm for hidden semi-Markov models. Recent
work on gene-� nding in eukaryotic DNA sequences has used a similar approach (Burge and Karlin, 1997;
Kulp et al., 1996). Because of the linear nature of patterns in DNA, no attempt has been made to generalize
these ideas to include segment interactions of the sort described in Section 4.2 below.

Although the vast majority of work on secondary structure prediction takes a window-based approach,
the idea of locating segments of secondary structure goes back as far as the earliest work in this area (Chou
and Fasman, 1974). More recently, Cohen et al. (1986) and Presnell et al. (1992) use deterministic pattern-
matching methods to locate turns and helices, including regular expressions for helical caps. Solovyev and
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Salamov (1994) use discriminant analysis of segment summary statistics (including residue pairs and the
hydrophobic moment) to predict segments of secondary structure. Our approach is similar in spirit to many
of these methods. Here, we place such ideas on � rm theoretical ground within a Bayesian framework,
providing explicit probabilistic models for protein sequence/structure relationships, and computational
machinery for prediction and inference.

The a-helix models described in Section 2.2 contain as a special case statistical mechanical models
developed in the theory of helix-coil transitions (Doig et al., 1994; Poland and Scheraga, 1970; Stapley
et al., 1995). This connection and the implications of the more general framework provided here are
explored in detail by Schmidler (2000).

4.2. Extensions and future directions

A fundamental assumption of (1) is the conditional independence of residues which occur in distinct
segments. This assumption enables the exact calculation of posterior probabilities via (5–7). However, this
assumption is clearly violated in the case of protein sequences. There exist numerous structural motifs
which rely on sequentially distant segments interacting in three-dimensional space, including b sheets,
coiled coils, disul� de bonds, and many others. The presence of correlated mutations in such motifs is
well known; coiled coils may have stabilizing side chain interactions (Krylov et al., 1994), and b-sheets
may have charged-pair interactions and other correlations (Lifson and Sander, 1980; Smith and Regan,
1995), such as hydropathy correlations between strands induced by the environment of each face of the
sheet. It has been frequently suggested that the inability to capture such nonlocal patterns in window-based
classi� ers may be responsible for the low accuracy typically achieved in b-strand prediction, and recent
empirical results lend support to this view (Frishman and Argos, 1996). Only recently have attempts been
made to incorporate such information into general prediction schemes with some success (Frishman and
Argos, 1996). It is interesting that our BSPSS algorithm achieves accuracy slightly higher than the 68%
reported by Frishman and Argos (1996) without consideration of such nonlocal interactions. Thus the
inclusion of nonlocal information into our model may further improve accuracy.

Conceptually, it is straightforward to incorporate segment interaction terms into our model. For two
segments j and k we need simply replace the two terms:

P (S j j S j ¡ 1, T j )P (R [S j ¡ 1 1 1:S j ] j S j ¡ 1, S j , T j ) and P (Sk j Sk ¡ 1, Tk )P (R [Sk ¡ 1 1 1:Sk ] j Sk ¡ 1, Sk , Tk )

in the product of (1) and (2) above with a single term:

P (S j , Sk j S j ¡ 1, Sk ¡ 1, T j , Tk )P (R [S j ¡ 1 1 1:S j ], R [Sk ¡ 11 1:Sk ] j S j ¡ 1, S j , T j , Sk ¡ 1, Sk , Tk ) (8)

for appropriate T j , Tk . This enables us to incorporate arbitrary joint segment distributions, or pairwise
potentials, into our model. The extension to three or more segments (e.g., for 4-helix bundles or amphipathic
b-sheets) is obvious. However, the dif� culty arises in calculation of the posterior distribution under such
a model. As mentioned, the conditional independence exhibited by (1) is critical for recursive de� nition
of the joint probability distribution over (R , m , S , T ) and therefore for ef� cient calculation of posterior
probabilities via dynamic programming. Although terms such as (8) can be introduced in a limited fashion
via higher-order Markovian dependence in (1) and (2), the computational expense increases dramatically.
Furthermore, it is not possible to allow interaction between arbitrary segments along the sequence in this
fashion, without allowing Markovian dependence of order n. It is therefore infeasible to compute exactly
the posterior distribution as was done in Section 2.3 above. We are currently developing ef� cient Monte
Carlo sampling-based methods for approximate computation of the posterior distribution under such models
(Schmidler, 2000; Schmidler et al., 2000).

Signi� cant evidence also exists that the inclusion of multiple sequence alignment information, when
available, can improve single sequence prediction methods by as much as 5–7% (Di Francesco et al.,
1996; Rost and Sander, 1993a, 1994; Salamov and Solovyev, 1995). Indeed, the most accurate methods
published to date (Frishman and Argos, 1997) utilize multiple sequence alignments to achieve improved
performance. Extension of our algorithm to account for multiple aligned sequences is straightforward, and
we are currently doing so (Schmidler, 2000).
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5. CONCLUSION

We have presented a novel approach to the prediction of protein secondary structure from sequence.
We provide probabilistic models for protein structural segments and an algorithm for prediction based
on Bayesian inference. Evaluation of this approach on a database of 452 nonhomologous sequences with
known structure achieves accuracies comparable to the best published single sequence methods, with the
advantage of accurate estimates of prediction uncertainty. Extensions to more general models for segment
interactions are discussed.
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