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ABSTRACT
This work is a proposal for a database index structure that
has been specifically designed to support the evaluation of
XPath queries. As such, the index is capable to support all
XPath axes (including ancestor, following, preceding-

sibling, descendant-or-self, etc.). This feature lets the
index stand out among related work on XML indexing struc-
tures which had a focus on regular path expressions (which
correspond to the XPath axes children and descendant-

or-self plus name tests). Its ability to start traversals from
arbitrary context nodes in an XML document additionally
enables the index to support the evaluation of path traver-
sals embedded in XQuery expressions. Despite its flexibility,
the new index can be implemented and queried using purely
relational techniques, but it performs especially well if the
underlying database host provides support for R-trees. A
performance assessment which shows quite promising results
completes this proposal.

1. INTRODUCTION
It is hard to find a proper answer to the question of why

XML has been so successful in being adopted as a univer-
sal data exchange format, but a piece of the truth might be
the following: the data type underlying the XML paradigm,
namely the tree, is expressive enough to capture the struc-
ture of diverse data sources, yet simple enough to lend itself
to efficient as well as elegant (esp. recursive) algorithms
operating on such data.

Essentially, XML provides an unlimited number of tree di-
alects, some of which have been formally described by DTDs
or XML Schema types, some of which are used in a one-time
or ad-hoc manner (schema-less instances), however. The
elegance and simplicity of the XML approach made hun-
dreds of dialects emerge, among these the most widely used
dialect HTML (or XHTML, to be precise). Other dialects
include the NITF standard (data exchange in the news in-
dustry), the weather markup language WeatherML, CellML
(computer-based biological models), or XMLPay, whose in-
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stances describe Internet-based payments.
As more and more sources switch over and express their

contents using XML dialects, the sheer volume of data calls
for XML-aware data management solutions build on database
technology.

The database community is well underway to adapt its
technology to host large XML stores and to query these
stores efficiently, preferably using query languages developed
in the XML domain: XPath [1] and XQuery [4].

In line with the tree-centric nature of XML, XPath pro-
vides operators to describe path traversals in a tree-shaped
document. Path traversals evaluate to a collection of sub-
trees (forests), which may then, recursively, be subject to
further traversal. Starting from a so-called context node, an
XPath query traverses its input document using a number
of location steps. For each step, an axis describes which
document nodes (and the subtrees below these nodes) form
the intermediate result forest for this step. The XPath
specification [1] lists a family of 13 axes (among these the
children and descendant-or-self axes, probably more
widely known by their mnemonic abbreviations / and //,
respectively).

The recursion inherent in tree-shaped data types as well
as in operations over these types turns out to be a challenge
for database-based approaches to XML storage and query-
ing. This is especially true for relational database technol-
ogy whose native data model (tables of tuples) and native
query language SQL have originally not been designed to
deal with recursion.

Recently, a whole host of efficient storage structures and
indexing schemes that summarize an XML document so that
these problems can be dealt with have been developed [14,
6, 9]. Almost exclusively, these techniques put their focus on
providing efficient support for sequences of / and // location
steps, the regular path expressions, however. This is hardly
adequate support for the XPath language (or XQuery for
that matter, whose expression syntax allows for embedded
path traversals). Additionally, these proposals quite often
rely on query processing algorithms which call for imple-
mentation techniques that lie outside the relational domain,
with all the related drawbacks (software layers in addition
to the database host, transactional issues, performance im-
plications, etc.)

This work proposes an index structure, the XPath accel-
erator, that can completely live inside a relational database
system, i.e., it is a relational storage structure in the sense
of [13]: the index can be constructed and queried using rela-
tional idioms only. Its implementation, however, can benefit
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Figure 1: Tree representation of a small XML doc-
ument instance.

from advanced index technology, esp. the R-tree, that has
by now found its way into mainstream relational database
systems. The index has been developed with a close eye on
the XPath semantics and is thus able to support all XPath
axes. Loading as well as querying the index is simple, yet
its performance comes close to or beats measurements pub-
lished in recent related work.

The paper proceeds as follows. The next section provides
a closer look at the XPath axes and their semantics. This
will yield the notion of document regions. An efficient en-
coding for these is then described in Section 3. Such an
encoding can be generated on the fly during XML docu-
ment loading. This will be detailed in Section 4. If the un-
derlying database host does not provide R-tree support, it
is particularly important to further optimize index lookups
(Section 5). Section 6 reports on performance measurements
and comparisons. The two final sections review related work
and then conclude.

2. XPATH AXES AND
XML DOCUMENT REGIONS

The core of the XPath language, the path expression, di-
rectly reflects the recursive nature of tree-shaped data. To
be more precise, XPath expressions operate on trees of el-
ement or attribute nodes, a small example of which is de-
picted in Figure 1 (details of the XPath data model can be
found in [1]).

In this tree, the inner nodes a, b, c, f, g, h represent XML
element nodes, the leaf nodes d, e, g, i, and j represent either
element or attribute nodes (later, we will care about this
distinction and also add element content). A corresponding
XML fragment would be:

<a>
<b>

<c>
<d> </d><e> </e>

</c>
</b>
<f>

<g> </g>
<h>

<i> </i><j> </j>
</h>

</f>
</a>

(To synchronize some terminology: node a is the root of
the tree; height(v) is the length of the longest path from
v to a leaf in the subtree rooted at v, e.g., height(a) = 3;
level(a) = 0, while level(v) = n if the path from the root to
v has length n.)

XPath expressions specify a tree traversal via two param-

Axis α Result Forest

child direct element child nodes of v
descendant recursive closure of child
descendant-or-self like descendant, plus v
parent direct parent node of v
ancestor recursive closure of parent
ancestor-or-self like ancestor, plus v
following nodes following v in doc. order
preceding nodes preceding v in doc. order
following-sibling like following, same parent as v
preceding-sibling like preceding, same parent as v
attribute attribute nodes of node v
self v
namespace namespace nodes of node v

Table 1: Semantics of axes α supported by XPath
(step v/α).

eters: (1) a context node (not necessarily the root) which
is the starting point of the traversal, (2) and a sequence of
location steps syntactically separated by /, evaluated from
left to right. Given a context node, a step’s axis establishes
a subset of document nodes (a document region). This set
of nodes, or forest1, provides the context nodes for the next
step which is evaluated for each node of the forest in turn.
The results are unioned together and sorted in document
order.

To illustrate the semantics of the XPath axes, Figure 2
depicts the result forests for three steps along different axes
taken from context node f (note that the preceding axis
does not include the ancestors of the context node). Table 1
lists all XPath axes and verbally sketches their semantics.
We will provide a precise specification soon.

2.1 XML Document Partitions
There are four axes which are of primary interest to us,

namely: descendant, ancestor, following, and preceding.
For the sole purpose of easy identification, we will call these
major axes from now on.

For any given context node v, the four major axes specify
a partitioning of the document containing v (this is our main
motivation for calling the respective result forests document
regions). The node set

v/descendant ∪ v/ancestor ∪
v/following ∪ v/preceding ∪ {v}

contains each document node exactly once. Figure 2 illus-
trates this property for context node f (note: f/following
yields the empty forest for this document instance). We
have(

f/descendant ∪ f/ancestor ∪
f/following ∪ f/preceding ∪ {f}

)
= {a . . . j}.

The evaluation of an XPath step sequence thus amounts
to the repeated computation of partitions of XML document
trees.

The key idea of this work is to find an index structure such
that, for any given context node, we can efficiently determine
the set of nodes in the four document partitions specified
by the major axes. The further XPath axes (parent, child,
descendant-or-self, ancestor-or-self, following-sib-

1In the following we will frequently identify a node and the
subtree rooted at that node.
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Figure 2: XPath semantics: circled nodes are elements of the result forest if an ancestor::* (preceding::*,
descendant::*) step is taken from context node f (shown from left to right).

ling, and preceding-sibling) determine specific supersets
or subsets of these node sets which are easy to characterize.
Attribute nodes will be marked as such during document
loading to support the attribute axis.

To complete this section, let us note that an XPath step
along axis α can be augmented by a name test for element
tag or attribute name n (the syntactic form is α::n). Again,
this specifies a subset of the region indicated by axis α, con-
taining those nodes with element tag or attribute name equal
to n. The name test α::* succeeds for any element tag or
attribute name.2

3. ENCODING XML
DOCUMENT REGIONS

We are now left with the challenge to find an encoding of
the tree-shaped node hierarchy in an XML document that

1. retains the region notion induced by the four major
XPath axes, and

2. can be efficiently supported by existing database tech-
nology.

Here, efficiency means that the encoding has to map the
input tree-shape into a domain in which a node’s region
membership may be tested by a simple relational query.

The problem is that the XPath semantics are far from sim-
ple. To quote the XPath 2.0 specification, “. . . the preceding

axis contains all nodes in the same document as the context
node that are before the context node in document order,
excluding any ancestors and excluding attributes nodes and
namespace nodes.” [1]

Informally, the document order in an XML instance orders
its nodes corresponding to the order in which a sequential
read of the XML (textual) representation of the instance
would encounter the nodes. A much more useful character-
ization of document order in our context is that this order
is determined by a preorder traversal of the document tree.
In a preorder traversal, a tree node v is visited and assigned
its preorder rank pre(v) before its children are recursively
traversed from left to right.

For the example instance shown in Figure 1, the document
order is a < b < c < d < e < f < g < h < i < j, and thus
pre(a) = 0, pre(b) = 1, . . . , pre(j) = 9.

A postorder traversal is the dual of preorder traversal: a
node v is assigned its postorder rank post(v) after all its
children have been traversed from left to right. Again, for
the example we get post(d) = 0, post(e) = 1, . . . , post(a) =
9.

2XPath furthermore includes a generic predicate test α[p]
to constrain the result forest of a step but this is not the
focus of this paper.
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Figure 3: Node distribution in the pre/post plane and
XML document regions as seen from context nodes
f ( __ ) and i ( ).

As others have noted [7, 14, 18], one can use pre(v) and
post(v) to efficiently characterize the descendants v′ of v.
We have that

v′ is a descendant of v
⇔

pre(v) < pre(v′) ∧ post(v′) < post(v) .

Intuitively, this may be read as: during a sequential read
of the XML document, we have seen the opening tag <v>
before <v′> and the closing tag </v> after </v′>. In other
words, the element corresponding to v′ is contained in the
element corresponding to v.

This characterizes the descendant axis of context node v,
but we can use pre(v) and post(v) to characterize all four
major axes equally simple.

Figure 3 illustrates the node distribution of the exam-
ple document after its nodes have been mapped into the
pre/post plane (e.g., document root a is located at coordi-
nates 〈pre = 0, post = 9〉) like its preorder and postorder
ranks determine).

As indicated, node f induces a partition of the plane into
four disjoint regions (cf. Figure 2):

1. the lower-right partition contains all descendants of
f ,

2. in the upper-left partition we find the ancestors of f ,
i.e., node a only,

3. the lower-left region hosts the nodes preceding f in
document order, and finally



4. the upper-right partition represents the nodes follow-
ing f in document order (as we have noted earlier, this
region is empty for this example instance).

This characterization of document regions applies to all
nodes in the plane (note that the descendant axis of node
i is empty, since i is a leaf node). This means that we may
pick any node v and use its location in the plane to start
an XPath traversal, i.e., make v the context node. This
turns out to be an important feature when it comes to the
implementation of XQuery, where iteration constructs (for,
every, some, . . . ) arbitrarily bind context nodes and then
traverse from there (which is different from the evaluation
of standalone XPath queries, say, where the context node
preferably is the document root).

3.1 Axes and Query Windows
Evaluating a step along a major axis thus amounts to

respond to a rectangular region query in the pre/post plane.
Database indices, esp. R-trees but also B-trees, are highly
optimized to support this kind of query.

To support the further XPath axes and name tests, we
need only little extra bookkeeping for each node.

For context node v, axes ancestor-or-self and descen-

dant-or-self simply add v to the ancestor or descendant
regions, respectively. Node v is easily identified in the plane
since its preorder rank pre(v) is unique. For axes following-
sibling and preceding-sibling it is sufficient to keep track
of the parent’s preorder rank par(v) for each node v (sib-
lings share the same parent). par(v) readily characterizes
axes child and parent, too. To support the attribute

axes and, in line with the XPath semantics, to exclude at-
tribute nodes from all other axes, we maintain the boolean
attribute att(v) for each node v. Finally, name tests are
supported by attribute tag(v) which stores the element tag
or attribute name for node v.

This completes the encoding. Each node v is represented
by its 5-dimensional descriptor

desc(v) =
〈
pre(v), post(v), par(v), att(v), tag(v)

〉
.

An XPath axis corresponds to a specific query window
in the space of node descriptors. Table 2 summarizes the
windows together with the corresponding axes they imple-
ment. A node v′ is inside the query window if its descriptor
desc(v′) matches the query window component by compo-
nent (for the first two components, pre and post , pre(v′) and
post(v′) have to lie inside the respective ranges). A ∗ entry
indicates a don’t care match which always succeeds. The
query window for the name test α::n is window(α, v) with
its tag entry set to n.

Note that we try to be specific in the definition of the
query windows. For a node v′ to be a child of context node
v it is sufficient to test the condition par(v′) = pre(v), thus
we could have defined

window(child, v) =
〈
∗, ∗, pre(v), false, ∗

〉
.

However, a child v′ of v is clearly contained in the descendant
region of v, so we additionally know that pre(v) < pre(v′)∧
post(v′) < post(v). Similar remarks apply to the windows
assigned to the parent and attribute axes.

We will have to say more about essential opportunities to
shrink window sizes in Section 5.

3.2 XPath Evaluation Scheme

We have now collected all the necessary pieces to specify
a first relational SQL-based evaluation scheme for an XPath
traversal.

Assume that we have loaded the node descriptors of a doc-
ument into a 5-column table accel pre post par att tag

(loading is discussed in the following section).
We specify the evaluation scheme inductively: if e denotes

an XPath path expression and α denotes an axis, we define

query(e/α) =
SELECT v′.*

FROM query(e) v, accel v′

WHERE v′ INSIDE window(α, v) .

(The hypothetical SQL keyword INSIDE symbolizes the win-
dow test, i.e., a conjunction of simple comparison operations
on the descriptor components of v and v′.)

The SQL query binds v to the node descriptors which
provide the context nodes for the next step along axis α.
(Note that we can obtain a translation for a step of the
form e/α[p] if we rewrite the WHERE clause into the obvious(
v′ INSIDE window(α, v) AND p(v′)

)
.)

The base case for this recursive translation scheme may
be provided by any subset of node descriptors in table accel
or, specifically if e is an absolute path expression, by the
document root, i.e., the only node v with pre(v) = 0.

As given, the translation scheme generates an SQL query
of nesting depth n for a path expression of n steps. Straight-
forward query unnesting, however, may transform the orig-
inal query into a flat n-ary self-join. For the XPath expres-
sion /descendant::n1/preceding-sibling::n2, for exam-
ple, we obtain

SELECT v2.*

FROM accel v1, accel v2

WHERE 0 < v1.pre
AND v1.tag = n1

AND v2.pre < v1.pre AND v2.post < v1.post
AND v2.par = v1.par
AND v2.tag = n2 .

4. XML INSTANCE LOADING
Now that we are this far, we know that loading an XML

document instance into the database essentially means to
map its nodes into the 5-dimensional descriptor space. Each
document node makes for exactly one node in the descriptor
space so that the size of the loaded index will be linear in
the size of the input instance.

All five components of the node descriptors can be com-
puted during a single sequential parsing pass over the input
XML instance. If we use an event-based parsing XML frame-
work, like SAX [15], we are guaranteed to need only very
limited scratch space during loading: the size of temporary
memory needed is bounded by the instance’s height (not by
its size).

In a nutshell, the instance loader is implemented by two
simple SAX callback procedures: startElement(t, a, atts) and
endElement(t). The SAX parser backend calls procedure
startElement(t, a, atts) whenever it encounters an XML open-
ing element tag. Parameter t then holds the tag name,
boolean parameter a is set to false (indicating that the
parser has encountered an element, not an attribute), and
atts is bound to a list of attribute names if the element con-
tains attributes or nil otherwise. Procedure endElement(t)
is invoked whenever a closing tag for element t is encoun-



Axis α Query window window(α, v)
pre post par att tag

child 〈(pre(v),∞) , [0, post(v)) , pre(v) , false , ∗ 〉
descendant 〈(pre(v),∞) , [0, post(v)) , ∗ , false , ∗ 〉
descendant-or-self 〈[pre(v),∞) , [0, post(v)] , ∗ , false , ∗ 〉
parent 〈[par(v), par(v)] , (post(v),∞) , ∗ , false , ∗ 〉
ancestor 〈[0, pre(v)) , (post(v),∞) , ∗ , false , ∗ 〉
ancestor-or-self 〈[0, pre(v)] , [post(v),∞) , ∗ , false , ∗ 〉
following 〈(pre(v),∞) , (post(v),∞) , ∗ , false , ∗ 〉
preceding 〈(0, pre(v)) , (0, post(v)) , ∗ , false , ∗ 〉
following-sibling 〈(pre(v),∞) , (post(v),∞) , par(v) , false , ∗ 〉
preceding-sibling 〈(0, pre(v)) , (0, post(v)) , par(v) , false , ∗ 〉
attribute 〈(pre(v),∞) , [0, post(v)) , pre(v) , true , ∗ 〉

Table 2: XPath axes α and their corresponding query windows window(α, v) (context node v).

tered.
We display the two callback procedures below.3 To keep

track of elements whose opening tag we have already seen
but whose closing tag is still to come, we maintain a stack
S of yet incomplete node descriptors. (The stack operations
push, pop, top, and empty should be self-explaining.) When-
ever we encounter an element’s closing tag, we are ready to
fix up its yet unspecified post component and then insert
the node into the database table. Obviously, the size of S
is bounded by the input instance’s height. No additional
temporary memory space is needed.

startElement(t, a, atts)

v ← 〈pre = gpre, post = ,
par = (S.top()).pre, att = a, tag = t〉;

S.push(v);
gpre ← gpre + 1;
for v′ in atts do

startElement(v′, true,nil);
endElement(v′);

endElement(t)

v ← S.pop();
v .post ← gpost ;
gpost ← gpost + 1;
insert v into table accel ;

Loading is initiated as follows:

gpre ← 0; gpost ← 0;
S.empty();
S.push(〈pre = −1, post = , par = , att = , tag = 〉);
SAXparseFile();
S.pop();

Note how procedure startElement(t, a, atts) itself gener-
ates events for all attributes v′ in atts associated with ele-
ment t. This ensures that attribute nodes are inserted with
correct document order (pre(v′) value). An XML element
like

<a b =" " c =" " >
<d> </d>

</a>
3For the sake of clarity, note that we slightly simplify the
actual implementation. The real loader code, however, is
only marginally different.

will thus be treated like the document tree

a

b
rrrr

c d
LLLL

which is in line with XML document order semantics (the
attributes of a node v appear before v’s children in document
order).

Up to now we have not discussed how to store the actual
element content (CDATA sections) of an XML document.
Two alternatives suggest themselves:

1. Handle the content inline, i.e., treat element content
like an additional child of its containing element (much
like the attribute treatment sketched above). As a
consequence, CDATA content is stored right next to
the containing node.

2. Maintain a separate table pre cdata , save the ele-
ment content in the cdata column and establish pre as
a foreign key referencing the accel table.

The latter variant has been identified as superior by previous
work [8].

Finally, remember that name tests are implemented as
equality tests on the tag component of the node descriptors.
It is sufficient to store hash values rather than the actual
element names in the tag component. If the DTD of the
input document is known a priori, we can even set up a
simple translation table to map element names to numerical
values before loading starts.

A word on updating the accel table. Due to the order in
which the preorder and postorder traversal visit tree nodes,
it is necessary to renumber all nodes in the following and
ancestor axes of a newly inserted document node. To delete
a node, however, it is sufficient to remove its descriptor entry
from accel .

4.1 Node Descriptor Indexing
Node descriptors are elements of a 5-dimensional space.

Domains of such dimensionality have been found to be ef-
ficiently supported by R-trees [2]. Our experiments indeed
indicate that XPath step evaluation with the help of R-trees
performs well (Section 6).

Our approach to model document regions via query win-
dows is, of course, directly tailored to be supported by a
multi-dimensional index structure like the R-tree [10]. R-
trees are well suited to accelerate XPath location steps for
a number of other reasons.
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Figure 4: Example of a pre/post rank distribution for
an XML document instance of 100 nodes.

4.2 R-trees
Figure 4 shows a typical node distribution in the pre/post

plane for an XML instance of 100 nodes. The diagonal of
this plane is tightly packed with nodes, while the upper left
is only sparsely populated. The lower right half is com-
pletely empty. (This is due to dependencies between the
tree height and the preorder as well as postorder ranks in a
tree—Section 5 will investigate this more closely to optimize
index lookups.) R-trees adapt well to such distributions be-
cause of their incomplete partitioning of the space (as op-
posed to space partitioning trees like the quad tree). The
data-driven R-tree remains balanced even in the presence of
skewed distributions.

If R-trees are indeed supported by the database host, we
can further optimize the XML bulk-loading process and use
R-tree packing [12] techniques: at the cost of using tempo-
rary storage for sorting, we insert node descriptors in in-
creasing order of pre values. This insertion order leads to a
100 % storage utilization in the R-tree leaves and addition-
ally improves query performance considerably as coverage
and overlapping of the leaves are minimized (Figure 5).

Note how the R-tree leaf level reflects the typical shape
of an XML document tree in which the upper levels contain
significantly fewer nodes than the lower levels: the upper
three levels of the example instance are completely covered
by two R-tree leaves only.

Preorder packing the R-trees had an additional benefi-
cial effect in our implementation of the XPath accelerator:
R-tree window queries returned the result nodes in increas-
ing order of pre values, i.e., in document order.4 Since the
XQuery specification demands document order on forests re-
sulting from path expressions, this saved the implementation
from extra sorting effort. For XPath, the preorder packing
facilitates the implementation of context positions [1, Sec-
tion 2.3.3] which are used in XPath predicates of the form
α[position() = i].

4.3 B-trees
4This behavior is, of course, not part of the R-tree speci-
fication. Nevertheless, all R-tree implementations we were
using observed this order.
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Figure 5: Leaf level of a preorder packed R-tree after
loading an XML instance of 100 nodes (leaf capacity
6 nodes).

Should R-trees be unavailable, a combination of B-tree in-
dices can lead to good performance figures, too. We created
two ascending B-tree indices on the pre and post columns
of the accel table, respectively (note that both pre and post
are unique). Additionally, we requested to cluster the accel
table with respect to the pre index. This led, just like in
the R-tree variant, to query results that were sorted in doc-
ument order. (This time, sorting is guaranteed.)

In the B-tree case, an XPath axis query window is searched
using two independent B-tree range scans on both the pre
and post indices. The SQL query optimizer of the rela-
tional database system we were using in our experiments,
IBM DB2 V7.1, recognized the opportunity to exploit in-
dex intersection (plan operator IXAND) to efficiently compute
the window contents. All other node descriptor components
(par , att , tag) simply require equality comparisons which we
accelerated via hash indices.

Section 6 reports on the results of performance experi-
ments for both the R-tree and the B-tree variants.

5. SHRINK-WRAPPING THE //-AXIS
It should be obvious that the area covered by the query

window corresponding to an XPath axis has an impact on
the performance of step evaluation along this axis. Espe-
cially in the case of B-trees, where two independent scans
over the pre and post indices yield potential result nodes
but in general also yield false hits (see the previous section),
query window size plays a major role.

As we have mentioned in Section 3.1, we already tried to
be restrictive in defining the extent of the query windows,
but specific properties of the preorder and postorder ranks in
a tree allows us to further shrink the windows substantially.
Specifically, we will discuss how to reduce the query window
corresponding to the descendant (and descendant-or-self

or //) axis. As the child and attribute axes select subsets
in the descendant document region, these will also benefit
from this optimization.

The following observation justifies the optimization: for
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Figure 6: Identifying the nodes with minimum
post(v′′) and maximum pre(v′) ranks if a //-step is
taken from v.

any node v in a tree t, we have that5

pre(v)− post(v) + size(v) = level(v) (1)

(where size(v) denotes the size of subtree rooted at v). In
Figure 1, for example, we know that pre(b) = 1, post(b) = 3,
and size(b) = 3, so that 1− 3 + 3 = 1 equals level(b).

Consequently, for a leaf v′ of the tree, we have size(v′) = 0
by definition, so that the above becomes

pre(v′)− post(v′) = level(v′) 6 height(t) . (2)

For a specific leaf below v, namely the rightmost leaf v′

(Figure 6), we additionally know that

post(v) = post(v′) +
(
level(v′)− level(v)

)︸ ︷︷ ︸
6height(t)

(3)

since a postorder traversal of tree t consecutively ranks the
level(v′)− level(v) ancestors of v′ until it finally visits node
v.

Now suppose that we are about to take a step along the
descendant axis from context node v. In the subtree below
v, the rightmost leaf node v′ clearly is the node with the
maximum preorder rank (any other node in the subtree has
been visited prior to v′ and consequently has a preorder rank
< pre(v′)).

Equations (2) and (3) provide us with an upper bound for
pre(v′) and thus for all nodes in the subtree, namely

pre(v′) 6 post(v) + height(t) .

A dual argument applies to the leftmost leaf node v′′ be-
low v. Its postorder rank post(v′′) is minimal in the subtree.
Again, (2) and (3) characterize a lower bound for post(v′′)
and therefore for all other nodes in subtree:

post(v′′) ≥ pre(v)− height(t) .

Note that both bounds are exclusively expressed in terms
of the context node’s descriptor and the overall height of
the XML document. This enables us, given only the con-
text node v, to shrink the associated descendant window as
shown below:

window(descendant, v) =〈 (
pre(v), post(v) + height(t)

]
,[

pre(v)− height(t), post(v)
)
,

∗, false, ∗
〉
.

5Note, how (1) relates our work to the order -size scheme of
[14].
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Figure 7: Original ( __ ) and shrunk ( ) pre and
post scan ranges for a //-step to be taken from v.

The definitions for axes window(descendant-or-self, v),
window(child, v), and window(attribute, v) can be impro-
ved in the same manner. Figure 7 illustrates the original as
well as the improved query window and scan ranges.

Especially for B-tree based XPath acceleration we have
found this optimization to make a substantial difference.
In anticipation of the performance figures and experimental
setup in the next section, we ran a series of queries stressing
the //-axis against an B-tree based XPath accelerator built
on top of IBM DB2 loaded with an XML instance of 1.1 MB
size (21051 document nodes). Table 3 shows the timing re-
sults as well as the size of the result forests (see Figure 9 in
Section 6 for a sketch of the document type we were query-
ing against). Shrinking the descendant window resulted in
a speed-up of up to three orders of magnitude.

5.1 Attribute (Leaf) Access
For a certain class of XPath steps we can tell at query com-

pile time that all nodes in the result forest will be leaves.
This is specifically so for any step along the attribute

axis as well as for explicit leaf queries, like p/n[not(*)]
or p//n[not(*)] (with n denoting a name test including
*).

If the indexing scheme underlying the XPath accelerator
can evaluate non-rectangular queries (e.g., as in the B-tree
case), we can shrink the windows further with the help of
(2).

Due to (2), in the pre/post plane for document tree t, we
know that for any leaf node l, pre(l) and post(l) differ by at
most height(t). This means that leaf nodes are to be found
in a strip of width height(t) above the diagonal through the
pre/post plane given by

post = pre − height(t) .

Figure 8 illustrates the resulting query window if this obser-
vation is combined with a shrunk descendant axis window.
This is a query window as narrow as we can hope for if the
context node’s descriptor is all we have in our hands.

6. PERFORMANCE CHARACTERISTICS



Query tshrunk [s] t [s] # Nodes

//open auction//description 0.2 53 120
//open auction//description//listitem 0.32 55.5 126
//open auction//description//listitem//keyword 0.34 124 90

Table 3: XPath traversals with and without shrunk query window sizes.
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Figure 8: XML document leaves below v are to be
found in this strip ( ) of width height(t).

To assess the performance of the XPath accelerator, we
implemented a SAX-based document loader (Section 4). We
fed its output, the node descriptor tables, into two different
setups:

1. A relational database management system, namely IBM
DB2 V7.1. We created the two pre and post B-tree
indices as described in Section 4.3 and additionally
maintained hash indices on the par and tag columns.
During the experiments, the only client connected to
the database server was the XPath accelerator.

2. An implementation of the XPath evaluation scheme
that lives on top of a GiST-based backend (a C++
library providing a number of generalized search tree
variants) [11]. This setup used a 5-dimensional point
R-tree to store the nodes.

Axis query windows were implemented as they are shown
in Table 2 with the optimizations of Section 5 applied.

Both setups were hosted on an Intel i586 PC (clocked at
≈ 1 GHz), using a version 2.4 Linux kernel, and running off a
standard file system (ext2) on an EIDE hard disk. The host
was equipped with 256 MB RAM (no swapping occurred)
and the system load average was near zero (no other pro-
cesses were active besides a small number of sleeping system
daemons).

(For the sake of comparability with related work we also
temporarily moved the R-tree based setup to another host.
Details are given below.)

To ensure the test runs to be reproducible, we used an
easily accessible source of XML documents, namely the XML
generator XMLgen, developed for the Xmark benchmark pro-
ject [16]. For a fixed DTD (modeling an Internet auction

Document size [MB] # Nodes XMLgen factor

0.11 2086 0.001
0.55 10492 0.005
1.1 21051 0.01

11.0 206130 0.1
55.0 1024073 0.5

111.0 2048193 1.0

Table 4: XML document sizes and number of (ele-
ment and attribute) nodes in document trees. En-
tries in the last column were given as a size factor
to XMLgen (switch -f) to control document sizes.

site, see the element hierarchy depicted in Figure 9), this
generator produces instances of controllable size. Table 4
lists the document sizes we were using for our experiments.
All documents were of height 11.

6.1 Relational XPath Evaluation
The first experiments were exclusively run on top of the

relational platform. A wide variety of proposals to map
XML instances onto relational tables exist. Out of these, we
picked the edge mapping to compare its performance with
the XPath accelerator.

The edge mapping, just like our XPath acceleration scheme,
stores the XML document structure in a single relational
table and thus does not flood the database with table defi-
nitions (unlike mapping schemes that introduce a separate
table for each element tag name encountered in an instance).
This mapping scheme has been shown to effectively support
the evaluation of regular path expressions, esp. if these in-
clude selective name tests. We have measured the running
times of such queries and report on the results below.

In a nutshell, the edge mapping maintains a table edge
node par att ord tag in which for each node (id) its

parent par node is listed (each edge in the document tree
is represented by a tuple). The ord attribute keeps track
of a node’s order among the nodes below a common parent.
This is sufficient to restore the overall document order of
nodes although this is an expensive operation. Attributes
att and tag indicate the type of the node and its element tag
(or attribute name), respectively. Element content is main-
tained in a separate node cdata table so that the edge
mapping table represents the document structure without
content overhead. As recommended in the literature, we
created indices on the node and par attributes to speed up
closure computation as well as an index on tag to effectively
support name tests.

The measurements shown in Figure 10 report the timing
results for the XPath query //open_auction//description

against Xmark document instances of increasing size. All
queries were run multiple times (the average timings re-
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Figure 9: Element hierarchy (top-level) of Xmark XML benchmark document instances.
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Figure 10: Performance of the relational implemen-
tation: XPath accelerator vs. edge mapping, log-log
scale. (Query: //open auction//description)

ported here were measured when the database buffer cache
was hot). Query result size grew linearly with the document
size from 12 to up to 12000 nodes.

Note that for the edge mapping, steps along the XPath //-
axis have to be evaluated by a recursive computation of the
closure of the edge table with respect to attributes node and
par . We applied name tests as early as possible to reduce
closure size.

The XPath accelerator turned out to be at least 5 times
faster than the edge mapping alternative. In a multi-step
XPath query, the optimized axis query windows appear to
restrict the node set to be examined for subsequent steps
quite effectively.

The time taken for an XPath accelerated query grows lin-
early with the instance size. We measured this linear scale-
up for queries along other axes as well (with the exception of
the parent and ancestor axes, see below). The performance
figures for following-sibling steps illustrated in Figure 11
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Figure 11: Linear scale-up for the XPath acceler-
ator with respect to document size, log-log scale.
Result sizes grow from 257 up to 271992 nodes.
(Query: //name/following-sibling::*)

are exemplary.

6.2 R-tree Supported
XPath Acceleration

Since our index proposal has been originally designed to
be supported by a multi-dimensional access method, we ex-
pected XPath performance to be significantly better if an R-
tree based backend would be available. Although the R-tree
variant ran off a standard file system without any further
buffering support, we indeed found it to clearly outperform
the B-tree alternative.

Figure 12 repeats the timings we have found for the re-
lational XPath acceleration of the path //open auction//

description and compares these figures with the measure-
ments for the R-tree based implementation. Query response
times once more improved by a factor of 10, approximately.
Just like for the relational implementation, the R-tree based
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Figure 12: Performance comparison of the B-
tree based implementation (inside an RDBMS)
vs. the R-tree based variant (GiST), log-log scale.
(Query: //open auction//description)
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Figure 13: Average time needed to evaluate
following-sibling::* steps for randomly selected
context nodes, log-log scale.

timing results grew linearly with the document size.
This observation was reinforced when we measured the

average traversal times along other axes (Figure 13 contains
the exemplary plot for the following-sibling axis). We
randomly selected context nodes in the documents to ac-
count for the typical situation in which an XQuery imple-
mentation iterates the evaluation of a path traversal, e.g.,

for $v in e
return $v//bidder/../initial

(in general, the elements in forest e are arbitrarily computed
nodes, and thus scattered over the whole document tree).

However, for two axes, namely parent and ancestor, we
observed that the query response time was indifferent to the
document size as well as its height: stepping along these axes
up to the document root required almost no time, regardless
of the level of the context node, i.e., regardless of the length
of the path that was traversed. Figures 14 and 15 display
the corresponding timings (both queries completed in about
6 ms).

0.001

0.01

0.1

0.1 1 10 100

tim
e 

[s
]

�

size [MB]

XPath accel

Figure 14: The performance of traversals along the
ancestor axis is indifferent to the XML document
size, log-log scale. (Query: leaf /ancestor::*)
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Figure 15: Document height does not seriously
affect the performance of ancestor-axis traversals:
stepping from a leaf l with level(l) = height(t) up to
the root. (Query: leaf /ancestor::*)

Figure 16 depicts the query window for a step from leaf l in
the direction of the ancestor axis to provide an intuition for
the situation. Completely unaffected by document size and
regardless of the choice of l, the window will never contain
more than height(t) nodes, i.e., typically one R-tree leaf
access will suffice to answer the query (cf. Figure 16).

We finally moved the R-tree setup to a different system,
namely a Sun Ultra Sparc II, running Solaris 2.6, equipped
with 256 MB RAM. This almost exactly reproduced the ex-
perimental setup of the work recently reported in [14] by
Li and Moon. There, B-tree indices are created to support
regular path queries (i.e., queries along the / and // axes)
against XML documents. Interestingly, this work (1) used
variants of the pre/post ranking to represent document struc-
ture, and (2) was also implemented on top of GiST. All in
all, this provided for a rather unique opportunity to directly
compare the XPath accelerator with the work of [14].

In [14], three separate B-tree indices, the element (tag)
index, the structure index, and the attribute index are cre-
ated to maintain an XML instance. The structure index
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Figure 16: Nodes inside the ancestor query window
(shown for a leaf node l.)

represents the parent–child relationship only, so that for the
//-axis a separate procedure is provided that computes the
closure of this relationship on demand. Two additional join
algorithms, the element–element (EE) and element–attribute
(EA) joins, implement steps along the child and attribute

axes, respectively.
We performed the experiments reported in [14] which were

ran against (1) documents containing XML markup of Shake-
speare’s plays [3], a rather shallow instance (height 5) of
7.3 MB (179619 nodes), and (2) an 8 MB XML document
conforming to the NITF DTD (330860 nodes).

Table 5 displays the timing results for these experiments.
The XPath accelerator comes close for the //-axis traversal
but improves access times for the attribute axis. For the
latter query, it obviously paid off that the XPath acceler-
ator uniformly maintains element and attribute nodes in a
single index (with attributes stored next to their contain-
ing elements, see Section 4). Li and Moon, however, pay
a rather high price to restore the correct document order
when their EA-join assembles elements and attributes from
two separate indices.

We have found these results quite motivating, especially
since the XPath accelerator provides support for all XPath
axes and thus goes beyond regular path expressions. Addi-
tionally, the accelerator relies on a XPath evaluation scheme
simple enough to be implemented relationally (which has not
been investigated in [14]).

7. MORE RELATED WORK
The concept of regular path expressions dominates this

field of research by far [6, 14, 17, 9]: we have not yet learned
about other real XPath-aware index structures until today.
In some sense this comes as a surprise since the XPath 1.0
specification has been around since Winter 1999 and a num-
ber of other XML-related languages (e.g., XSLT, XPointer,
but most notably XQuery) embed XPath expressions in their
syntax. Efficient XPath support will continue to be an im-
portant core building block in XML query processors.

Only recently, [6] presented an index over the prefix-en-
coding of the paths in an XML document tree (in a prefix-
encoding, each leaf l of the document tree is prefixed by the

sequence of element tags that one encounters during a path
traversal from the document root to l). Since tag sequences
obviously share common prefixes in such a scheme, a variant
of the Patricia-tree is used to support lookups. Clearly, the
index structure is tailored to respond to path queries that
originate in the document root. Paths that do not have
the root as the context node need multiple index lookups
or require a post-processing phase (as does a restore of the
document order in the result forest). In [6], so-called re-
fined paths are proposed to remedy this drawback. Refined
paths, however, have to be preselected before index loading
time. Note that the prefix-encoding exclusively represents
the child and descendant axes in a document—it remains
unclear to us if support for other XPath axes blends well
this scheme.

The T-index structure, proposed by Milo and Suciu in
[17], maintains (approximate) equivalence classes of docu-
ment nodes which are indistinguishable with respect to a
given path template. In general, a T-index does not repre-
sent the whole document tree but only those document parts
relevant to a specific path template. The more permissive
and the larger the path template, the larger the resulting
index size. This allows to trade space for generality, how-
ever, a specific T-index supports only those path traversals
matching its path template (as reported in [17], an effective
applicability test for a T-index is known for a restricted class
of queries only).

There is other related work that is not directly targeted
at the construction of index structures for XML. In [18], the
authors discuss relational support for containment queries of
which our XPath axes window queries are instances. Espe-
cially the multi-predicate merge join (MPMGJN) presented
in [18] would provide an almost perfect infrastructure for the
XPath accelerator. MPMGJN join supports multiple equal-
ity and inequality tests (cf. the window(α, v) query win-
dows) and we thus expect it to perform exceptionally well
for the accel table self-joins needed during XPath axes eval-
uation. The authors report an order of magnitude speed-up
in comparison to standard join algorithms.

Another relational storage structure that seems to be well
suited to support the XPath accelerator is the relational
interval tree (RI-tree) [13]. Tailored to efficiently respond
to interval queries of the form [a, b], the RI-tree could be
a promising candidate to index the pre/post plane. This
option seems to be interesting especially if the database host
lacks R-tree support: B-trees suffice to query the RI-tree
efficiently.

8. CONCLUSION AND OUTLOOK
This work has been primarily motivated by the need for

an XPath index structure that would be capable
1. to run on top of a relational backend to leverage its

stability, scalability, and performance,
2. to support the whole family of XPath axes in an ade-

quate manner, as well as
3. to originate XPath traversals in arbitrary context nodes.

The latter requirement, specifically, did arise in the context
of an ongoing project to construct an XQuery runtime.

In the short term, we will assess how much the XPath ac-
celerator could gain from advanced query processing tech-
niques like the RI-tree, in the relational case, or the MP-
MGJN join which we plan to add to our GiST-based imple-
mentation.



XML instance Query taccel [s] tEE/EA [s] # Nodes

Shakespeare //ACT//SPEECH 1.15 ≈ 0.7 30951
NITF //block/attribute::dir 5.41 ≈ 7.0 3003

Table 5: A comparison of query response times for the XPath accelerator and the EE/EA-join based work of
[14].

More on the theoretical side—geared towards the develop-
ment of an optimizing XQuery runtime—we believe that the
XPath accelerator provides the necessary hooks to incorpo-
rate an effective cost estimation for XPath queries: note, for
example, that from Equation (1) and the obvious inequality
level(v) 6 height(t) for any node v and document tree t we
can estimate the size of the subtree below v in rather tight
bounds (since, for real XML documents, height(t) is small).
Observations of this kind, together with cost estimation pro-
cedures developed for packed R-trees [12], could lead to a
rather pragmatic cost model for XPath queries. It will be
interesting to compare this approach to more intricate cost
models for XML queries as presented in [5].
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