
Isolation in XML Bases

S. Helmer, C.-C. Kanne, G. Moerkotte�

Fakultät für Mathematik und Informatik
D7, 27

Universität Mannheim
68131 Mannheim

Germany
phone: +49 621 181 2582

[helmer�cc�moerkotte]@informatik.uni-mannheim.de

Abstract

The eXtensible Markup Language (XML) is well accepted in many different
application areas. As a consequence, there is an increasing need for persistently
storing XML documents. As soon as many users and applications work concur-
rently on the same collection of XML documents — i.e. an XML base — iso-
lating accesses and modifications of different transactions becomes an important
issue.

We discuss six different core protocols for synchronizing access to and modi-
fications of XML document collections. These core protocols synchronize struc-
ture traversals and modifications. They are meant to be integrated into a na-
tive XML base management System (XBMS). Four of the six core protocols are
based on two phase locking, one uses time stamps, and the last one uses a novel
dynamic commit-ordering approach. The latter two protocols achieve a higher
degree of concurrency by a novel implicit representation of multiple versions.
We also discuss extensions of these core protocols to full-fledged protocols. Fur-
ther, we show how the two phase locking based protocols can achieve a higher
degree of concurrency by exploiting the semantics expressed in Document Type
Definitions (DTDs).

1 Introduction

The eXtentensible Markup Language (XML [4]) is increasingly used in areas as di-
verse as commercial, engineering, financial, medical, and scientific applications. Just
to cite a single milestone of this process consider the XML documents containing the
annotated Drosophila Melanogaster genome1.

The rapid proliferation of XML in many different application areas results in a
rapidly growing number of XML documents. It is our hypothesis that sooner or later
users will work concurrently on collections of XML documents with general purpose
applications like XML editors and stylesheet processors as well as with specialized
tools tailored to the needs of specific application areas. Most tools of this kind work

1www.fruitfly.org

1



on the XML documents using a standardized application programming interface (e.g.
the Document Object Model (DOM) [6]). If our hypothesis holds, isolating different
concurrent applications becomes an important issue.

There are essentially three possibilities of storing XML documents. The first alter-
native is to use a file system which — from an isolation point of view — is a bad
choice. The second alternative is to use an existing relational, object-oriented, or
object-relational database system [3, 5, 7, 12, 16, 18, 19]. Section 2.2 shows that
this is not a good idea either. The third alternative is to implement a new full-fledged
XML base management system (XBMS) [8, 10, 11]. There are many reasons for us
to follow the XBMS approach. One reason is that the XBMS approach allows to in-
corporate synchronization protocols specifically adapted to the manipulation of XML
document collections.

The development of synchronization protocols to isolate different applications has
a long standing and successful history in the database community. Most of the proto-
cols that guarantee serializability already found their way into textbooks more than a
decade ago [2, 9, 14]. During the last decade some researchers concentrated on defin-
ing notions weaker than serializability and developed protocols that allow cooperation
between users. For a recent survey on cooperating transactions and synchronization in
general see [15].

Although cooperation will play a major role in the XML context, we start with
the development of protocols that guarantee serializability. The reason is that in any
case serializability is still the foundation for protocols that allow cooperation. There is
always a lowest level where actions have to be atomic and have to be isolated carefully.

The paper is organized as follows. In Section 2 we briefly describe the main oper-
ations of the DOM interface specification as well as the subset of operations we will
consider for our core protocols. Section 2 also illuminates why storing XML docu-
ments in a relational system is a bad idea from an isolation point of view. Section 3
discusses six different core protocols. The first four core protocols are based on strict
two phase locking and differ only in their locking granularity. Two of these core pro-
tocols use mechanisms developed for synchronizing ADTs [13, 17, 1]. The last two
protocols are based on timestamp ordering and a noveldynamic commit ordering ap-
proach. In order to increase the level of concurrency, both of these protocols exploit a
novel implicit representation of different versions of documents. Section 4 discusses
extensions to the core protocols necessary to support the full DOM interface. This
section also shows how knowledge about the DTD of a document can be exploited to
achieve a higher level of concurrency for two phase locking based protocols. Section 5
concludes the paper.

2 Problem and Motivation

2.1 Document Traversal and Modification

The underlying hypothesis of this paper is that many applications will work with XML
documents using a standard API like DOM [6]. Such an API — DOM or otherwise —
has to provide several operations for traversing a document, modifying the text in the
document, modifying the document’s structure etc. Figure 1 contains some operations

2



observer structure firstChild
lastChild
previousSibling
nextSibling
getNodeById
getElementByTagName

contents getTextContents
nodeName
getAttribute

mutator structure insertBefore
replaceChild
removeChild
appendChild

contents appendData
deleteData
insertData
replaceData
setAttribute

Figure 1: Some DOM Operations

specified in DOM. The problem investigated is how to isolate different applications
working on the same set of documents using DOM or a similar API.

The operations of a typical API for XML documents fall into four categories:
mutators and observers of the contents of a node and mutators and observers of the
structure of a document. The latter are usually called traversal operations. Since we
believe that modifying the string contents of a node can be handled by standard syn-
chronization protocols, we concentrate first on isolating document structure traversals
and modifications. This will yield core protocols. In Section 4 we extend these core
protocols to also isolate content reads and modifications as well as retrieval of nodes
by ID/IDREF attributes. (With an attribute of type ID, an identifier can be given to a
node that is unique among all identifiers contained in the document the node belongs
to. An attribute of type IDREF allows to point to a single node with a given ID. The
IDREFS attribute allows to point to several nodes by giving a list of IDs. For further
details see [4]).

In order not to overburden the discussion, we work with a small representative set
of operations a transaction can execute. We assume that a transaction first selects a
document to work on. This is done via aselect document (sd) operation. The result is
a reference to the root node of the selected document. From there on it traverses and
modifies the document structure using a sequence of the following operations:

nthP retrieves the n-th child in the child list

nthM retrieves the n-th child counting from the end of the child list backwards

insA inserts a new node after a given node

insB inserts a new node before a given node

3



n3 compound

n4 compound n5 molecule n6 compound

n0 molecule

n1 atom n2 atom

EDGES

id ordinal name parent
n0 1 molecule NULL
n1 1 atom n0
n2 2 atom n0
n3 1 compound NULL
n4 1 compound n3
n5 2 molecule n3
n6 3 compound n3

Figure 2: Two document trees and their relational representation

del deletes a given node

The distinction between attribute and element nodes is not important for synchroniza-
tion purposes. We therefore talk about nodes only.

2.2 Why not relational databases

Let us briefly illustrate why storing XML documents in a relational database is not a
convincing idea if isolation is required. Figure 2 shows two simple XML documents
and a simplified relational representation. Assume a node is added to one of the doc-
uments. If serializability is required, the multiple granularity locking protocol which
is employed by most relational DBMSs requires the inserting transaction to hold an
exclusive lock on the whole table. The lock on the whole table is required to guarantee
serializability which could be endangered by phantoms. As a consequence, no other
document can be accessed by any other transaction. The same holds for deleting a
node. In any case,no concurrency is possible.

Of course different translation schemes for XML documents to relations [7, 12, 16,
18, 19] lead to different consequences for synchronization. But as long as elements
from two different documents can share a relation — as is the case in all translation
schemes except for those using CLOBs only — the above problem remains. If each
document is stored in a Character Large Object (CLOB), then locking may take place
at the document level. From an isolation point of view this might not always be the
best solution.

3 Protocols

This section introduces the core protocols to synchronize structure traversals and mod-
ifications of XML documents. We start by introducing several protocols based on
two phase locking. Next, we introduce a core protocol based on timestamp ordering.
Both protocols are well-known and already found their way into several textbooks,
e.g. [2, 14]. A novel feature of our variant of the timestamp ordering protocol is that

4



T M
T + -
M - -

(a)

TL TR TA TZ ML MR MA MZ
TL + + + + - + + +
TR + + + + + - + +
TA + + + + + + - +
TZ + + + + + + + -
ML - + + + - + + +
MR + - + + + - + +
MA + + - + + + - +
MZ + + + - + + + -

(b)

Figure 3: Compatibility matrices

it is based on an implicit representation of multiple versions. In timestamp ordering
every transaction receives a timestamp and transactions must commit in time stamp
order. The latter requirement fits perfectly into our versioning scheme since we must
eliminate older versions first. However, restricting commits to timestamp order im-
poses unnecessary constraints. Therefore we introduce a new protocol calleddynamic
commit ordering. Here, the commit order of transactions is determined dynamically
based on the observed conflicts. As for our timestamp ordering variant, the basis for
the protocol is an implicit representation of multiple versions.

It is important to note that all core protocols require that document access starts
at the root node and traverses documents top down. This requirement is relaxed in
Section 4.

3.1 2PL-based protocols

Lock Modes In standard two phase locking protocols for synchronizing read and write
operations, there are two kinds of locks: shared locks (�) and exclusive (�) locks.
Read operations require a shared lock while write operations require an exclusive lock.
Since we are not yet concerned with modifying the contents of the strings contained
in the document but only with structure traversal and modification, we introduce a
shared lock named� that has to be acquired for traversing document structure and an
exclusive lock named� that has to be acquired for modifying document structure.
We introduce these locks since we will later still need� and� locks (see Section 4).

Compatibility Matrix The compatibility matrix of these two locks is analogous to
the one for� and� locks (see Figure 3 (a)). For all two phase locking protocols, the
standard rules have to be obeyed. Before performing an operation, the corresponding
lock has to be acquired, during lock acquisition a check for conflicting locks is per-
formed, if a conflict exists the lock requiring transaction is blocked, and locks are held
till the end of the transaction. If a transaction is blocked, the wait graph is updated and
if it contains a cycle, the transaction that completes the cycle is aborted.

Doc2PL Our first four protocols only differ in their granularity of locking. The first
and simplest protocolDoc2PL locks at the document level. For applications where
transactions work on different documents, e.g. one author edits one document, this

5



easy to implement low-overhead protocol suffices.
Conceptual Document Model The next protocols lock at the node level. In order

to understand these protocols and their differences, one can think of an XML document
consisting of nodes with pointers connecting them. Figure 4 shows a parent node
and its child nodes together with the pointers. Of course the XBMS does not have to
represent documents with these pointers. For example, one could have embedded child
nodes (as in Natix [11]) or an array of pointers to all children. We use the pointer model
only to explain the protocols and to derive lock names. The protocols themselves are
independent of the actual representation of the XML document structure.

Node2PL and NO2PL Figure 4 also shows on which items the different protocols
acquire locks. The Node2PL protocol acquires locks for parent nodes. If, for example.
we traverse to the nth-child of a given node� , then node� is locked in� mode. If
we insert a child under node� , then node� is locked in� mode.

The protocol NO2PL acquires locks for all nodes whose pointers are — at least
conceptually — traversed or modified. Refer again to Figure 4. If we introduce for
example a new child�� before child��, then we have to acquire two exclusive locks:
one for the parent node� , since its first child pointer is modified and one for the child
node�� since its left sibling pointer is modified. However, we do not have to acquire
a lock for child��, since no other transaction will be able to traverse to this node,
since all ways to it are blocked:�� cannot be reached from the parent node by neither
annthP operation nor annthM operation since� and�� are locked exclusively.

OO2PL Whereas in Node2PL and NO2PL we lock nodes, OO2PL locks pointers.
Since there are four pointers for every node (first child (A), last child (Z), left sibling
(L) and right sibling(R)), we need four shared locks and four exclusive locks. The
locks areTA, TZ, TL, TR, MA, MZ, ML, MR corresponding to the above order. The
compatibility matrix is shown in Figure 3(b). Again, before executing an operation,
locks have to be acquired according to the pointers (conceptually) traversed or modi-
fied. OO2PL can be seen as an application of the framework for synchronizing abstract
data types [17].

Overhead Let us briefly consider the number of locks to be maintained by the
different protocols. Doc2PL has the fewest number of locks: at most one lock per
transaction per document. In Node2PL and NO2PL we have at most one lock per
transaction per node. The difference is that at the leaf level of the documents (where the
most nodes are), Node2PL never acquires any locks. However, NO2PL does acquire
locks for leaf nodes. OO2PL acquires at most four locks per transaction per node and
hence at most four times as many locks as NO2PL.

Node2PL

OO2PL

NO2PL

P

C3C1 C2

A Z

L

R R

L

Figure 4: Conceptual list representation of XML documents

6



Example: Deletion The following two examples illustrate the higher degree of
concurrency allowed by OO2PL compared to the other two phase locking based proto-
cols. Consider the following schedule and the document in Figure 5, which illustrates
the� locks held by��.

�� ��

sd �� ��

nthP(2) �� ��, ��
del delete��

sd �� ��

nthM(1) �� ��

nthP(1) �� ��

Clearly, using Doc2PL the� lock held by��� on the whole document blocks already
the first operation of��. With Node2PL,�� locks�� in exclusive� mode and again
the first operation of�� is blocked. NO2PL requires�� to lock�� and�� in � mode.
�� can acquire a� lock on �� and execute its first operation. Then it has to wait.
Under OO2PL�� acquires�� and�	 locks for�� and�� respectively.�� can still
acquire a�� and a�
 lock on�� and�� respectively, and does not have to wait at
all.

node2PL
no2PL
oo2PL

n 1

n 2 n 4

n 8n 7n 6n 5

n 3

Figure 5: M-Locks held by�� for different 2PL versions (deletion)

Example: Insertion Consider the following schedule and the document in Fig-
ure 6, which illustrates the� locks held by��.

�� ��

sd �� ��

nthP(1) �� ��

insA insert��
sd �� ��

nthP(1) �� ��

nthP(1) �� ��

Again, under Doc2PL and Node2PL�� cannot execute a single operation until��
releases its locks, since both require an exclusive� lock on��. Under NO2PL��
acquires an� lock for �� and��. This still allows�� to traverse��, but then it has to
wait. With OO2PL�� does not have to wait at all, since the� locks acquired by��
(�� for �� and�	 for ��) still allow �� to traverse from�� via �� to ��.

7



n 5 n 6 n 7 n 8

n 4n 3n 2

n 1node2PL
no2PL
oo2PL

Figure 6: M-Locks held by�� for different 2PL versions (insertion)

3.2 Timestamp-based protocol

In the textbook version of timestamp ordering (TO) the transaction manager assigns
every transaction a unique timestamp [2, 14]. These timestamps are inherited by the
operations of a transaction. The scheduler then guarantees that conflicting operations
are executed only in the order of their timestamps. Transactions have to commit in
timestamp order.

Versioning The basic idea of our extension XTO of the timestamp based protocol
for synchronizing traversals and structure modifications on XML documents is to keep
implicitly multiple versions of the documents. In case of a deletion, the node is marked
deleted but left in place and the timestamp of the “deleting” transaction is recorded. An
inserted node is inserted right away and markedinserted. Again the timestamp of the
inserting transaction is remembered. At the end of the inserting/deleting transaction,
the marks are eliminated and the deleted nodes are removed from the document. The
mechanism of marking nodes as inserted or deleted together with recording the time-
stamps allows us to reconstruct the version of a document for any timestamp between
the first and the last not yet committed modification.

Action Table The next step is to fill theaction table for XTO. Based on the implicit
versions we can specify the complete list of actions taken by the scheduler and the
transactions. Consider two operations��� � ��� and��� � ��� such that��� has
already been executed and��� is to be scheduled. Figure 7 indicates what will happen
if there is a node� which ��� either traversed (� ), deleted (
) or inserted (�) and
where��� wants to either traverse, delete or insert node�. Please keep this scenario
in mind since it is used throughout the rest of this section. In the following discussion
��� denotes the timestamp order of transactions.

When both operations are traversal operations, there is no conflict and no special
action is to be taken:��� simply traverses node�. Another simple case is when� is
inserted by���. Then� did not exist when��� was executed. Hence the last three
cases of the action table are not possible.

For the discussion of the DT case, assume that a transaction��� with timestamp
������� deletes a certain node — say�� of Figure 4. Instead of removing this node,
we mark the node as deleted but keep it in place. Additionally, we remember the time-

8



stamp of���. If after the “deletion” of the node another transaction��� wants to
access the second child of node� , we consider two cases. If������� � �������,
then��� is still allowed to traverse the “deleted” node. If������� � �������,
then the “deleted” node is ignored and the result of annthP(2) child operation is node
��. In order to allow the first case, we have to make sure that transactions commit
in timestamp order. Further, if in the second case where�� is ignored by���, ���

aborts, then��� should not have ignored��. Hence we are forced to abort���. As
a consequence, XTO does not avoid cascading aborts.

The IT case is similar to the DT case. A node inserted by��� is marked as
inserted. If transaction��� comes along to access the inserted node, it ignores the
node if it is younger than���. Otherwise it traverses the node.

Consider now the TD case. When transaction��� wants to delete a node that has
been traversed by an older transaction���, this is no problem. If it has been traversed
by a younger transaction���, then��� must abort. Another possibility would be
to abort���. This requires to keep read sets. Since we only keep the maximum
timestamp of all transactions that traversed a node, we have to abort��� since we
cannot track down all transactions younger than��� that accessed node�.

For the DD case let us first consider the case where��� ��� ���. That is,���

has deleted a node and afterward comes transaction��� that is younger than��� and
also wants to delete the node.��� is too late and hence must be aborted. If��� is
older than��� (��� ��� ���), then��� should never be able to see the node�

that��� deleted. This follows from the action table’s entry for the DT case.
In the ID case, since we do not mark a node as both deleted and inserted, we must

block ��� (in the��� ��� ��� case) until after��� committed. Consider now
the case where��� ��� ���. From case IT, it follows that��� has to ignore the
existence of the node� inserted by���. Since a node can only be deleted if it has
been accessed,��� will never be able to delete node�. Refer to the IT case, which
enforces��� to ignore node�.

A case deserving special attention when using XTO is the deletion of a node� by
the same transaction��� that inserted� before. In this case, any reader that accessed
� between the insert and the delete must be aborted. Since our version of XTO does
not require to keep the set of all readers but instead only monitors the maximum time-
stamp of all readers, we are forced to treat this case differently. If some transaction
traversed node�, then the maximum timestamp of all readers of� must be larger than
the stimestamp of��� (refer to the IT case of the action table for XTO). If this is the
case, we abort the transaction���. Using the established abort dependencies, we can
now abort all potential readers (and possibly some more transactions). This variant of
XTO, where we do not keep read sets, leads to at least one more abort than the variant
keeping read sets. However, we feel that this is an unlikely situation that does not
justify the additional overhead of keeping read sets.

Overhead The overhead of the XTO protocol is rather low. We need two time-
stamps and a status field per node. Monitoring read sets increases this overhead but
might lead to fewer aborts. XTO does not avoid cascading abort. Blocking can occur
in the ID case. Further, since transactions must commit in timestamp order, they may
be blocked at commit time to wait for other transactions with smaller timestamps to
complete. If there are no delete operations and no transaction performs a self-abort,
there are no aborts under XTO. XTO must maintain a wait graph and the abort depen-

9



��� ��� ��� ��� ��� ��� ��� ���

T T no conflict no conflict
D T ignore (casc. abort) traverse
I T traverse (casc. abort) ignore
T D mark deleted abort���

D D not possible 1 abort���

I D block ��� then mark del. not possible 2
T I not possible 3 not possible 3
D I not possible 3 not possible 3
I I not possible 3 not possible 3

The cases marked bycasc. abort may lead to cascading aborts. In the ID case where�� � ���

���, we must block��� until ��� commits. When��� commits,��� may continue by
marking the node as deleted. This is necessary, since we cannot mark a node as inserted and
as deleted at the same time. Some cases are not possible:

1 ��� will never see the deleted node.

2 ��� will never see the inserted node.

3 A node cannot be accessed before it exists.

Figure 7: Action Table for XTO

dencies.
Example The following example illustrates a case where XTO is superior to OO2PL.

Consider Figure 8 and the following schedule under the assumption that�� has a
smaller timestamp than��.

�� ��

sd �� ��

sd �� ��

nthP(1) �� ��

nthM(1) �� ��

del delete��
del delete��

sd �� ��

sd �� ��

nthM(1) �� ��

nthP(1) �� ��

nthP(1) �� ��

nthP(1) �� ��

This schedule leads to a deadlock using OO2PL, while under XTO it runs smoothly.

3.3 Dynamic commit ordering

The main disadvantage of XTO is that timestamps prescribe the commit order of trans-
actions. Allowing more flexibility by determining the commit order of transactions
dynamically is the basic idea of thedynamic commit ordering protocol XCO. The idea
of dynamically ordering transactions is also discussed in [1] whererecoverable op-
erations are allowed to execute. The notion of recoverability as used in [1] is more

10



n

n n n

1

2 3 4

n n n5 6 7

Figure 8: Example document for deletion

general than the usually used notion of commutativity. However, our traverse and
modification operations are not recoverable and the protocol of [1] blocks the execu-
tion of non-recoverable operations. In XCO instead of blocking, we use the same idea
of keeping implicitly multiple versions of documents by marking nodes as deleted or
inserted. Different from XTO, XCO does not keep timestamps but instead keeps ref-
erences to the transactions that inserted, deleted or traversed a node. The resulting
overhead of this information is comparable to that of NO2PL.

Dynamic Commit Order Additionally, XCO maintains dynamically a graph rep-
resenting the dynamic commit order����. During the execution of the transactions,
edges are added to and removed from this graph. Adding edges to the graph takes
place whenever two conflicting operations are detected and the order of their transac-
tions is so far undetermined by����. Removal of edges takes place at the end of
a transaction, i.e. when it commits or aborts. Then all edges to and from the ending
transactions are removed from����. Additionally to����, XCO maintains a wait
graph and abort dependencies as it does not avoid cascading aborts.

Action Table The complete list of actions taken by the scheduler and the transac-
tions is given in Figure 9. Apart from the last column, it is almost identical to the action
table of XTO. For the subsequent discussion, we assume the same scenario as for the
discussion of XTO. That is, given are two operations��� � ��� and��� � ���

working on a node� such that��� has already been executed and��� is about to be
scheduled.

When the transactions are not yet ordered, we must choose the action the trans-
action takes (i.e. traversing or ignoring the node) and as a consequence order���
and��� accordingly (see Fig. 10). In case of DT and IT, we have a choice. Hence,
there exist four variants of the XCO protocol. We implemented these variants and their
evaluation convinced us that the variants indicated by a� in the above table are the best
ones. Under XCO transactions are allowed to commit only in���� order. Thus waits
may occur at commit time.

11



��� ��� ��� ���� ��� ��� ���� ��� ��� ����� ���

T T no conflict no conflict no conflict
D T ignore (casc. abort) traverse see Fig. 10
I T traverse (casc. abort) ignore see Fig. 10
T D mark deleted abort��� see Fig. 10
D D not possible 1/abort abort��� not possible 2
I D block ��� then mark del. not possible 3 not possible 4
T I not possible 5 not possible 5 not possible 5
D I not possible 5 not possible 5 not possible 5
I I not possible 5 not possible 5 not possible 5

The last column covers the case that��� and��� are not yet ordered. The possibilities to fill
the gap in the DT, IT, and TD cases are discussed below. Some cases are not possible:

1 Only possible if DT�� case chooses traverse action (see below). In this case��� is
aborted.

2 Not possible since a node has to be traversed before it can be deleted. Hence, the case DT
occurred before and orders��� and���.

3 ��� will not see a node inserted by any later transaction.

4 Not possible since a node has to be traversed before it can be deleted. Hence, the case IT
applies first and orders��� and���.

5 A node cannot be accessed before it has been inserted.

Figure 9: Action table for XCO

As with XTO, the case where a transaction deletes a node it inserted before needs
special attention. Since with XTO we record all transactions that read a node, we can
abort specifically those that read the inserted and then deleted node. However, for both
protocols recovery in this case becomes tricky. Discussing recovery for XTO and XCO
is beyond the scope of this paper.

Overhead XCO must maintain a wait graph, the���� ordering, and abort de-
pendencies. Further timestamps are recorded for each traversal, deletion and insertion.

Example The following example illustrates the superiority of XCO over XTO and
OO2PL. Consider Figure 8 and the following schedule:

��� ��� action add to���� comment
D T ignore� ��� ���� ��� cascading abort

traverse ��� ���� ��� may lead to D D
I T ignore� ��� ���� ���

traverse ��� ���� ��� cascading abort, may lead to I D
T D mark deleted ��� ���� ��� no other choice

Figure 10: Action table for XCO (��� ����� ���)

12



�� ��

sd �� ��

nthP(1) �� ��

sd �� ��

nthM(1) �� ��

del delete��
sd �� ��

nthP(1) �� ��

del delete��
sd �� ��

nthM(1) �� ��

This schedule leads to a deadlock using OO2PL, under XTO either�� or �� has to
abort when�� reaches the second delete operation (�� should not have been able to
traverse node�� as�� (with a lower timestamp) has already deleted this node). Under
XCO the schedule executes smoothly with no problems (when reaching the second
delete operation, we have to order�� and��: �� ���� ��.

4 Extensions

4.1 Full-fledged protocols

4.1.1 Node contents

In order to extend the core protocols to full protocols, we need to isolate content ac-
cesses and modifications. For the 2PL based core protocols, this can easily be done by
adding the traditional� and� locks for contents with their according compatibility
matrix. The compatibility matrix comprising all four locks is:

S X T M
S + - + +
X - - + +
T + + + -
M + + - -

Note that the� and� locks are compatible with the� and� locks. These locks can
be applied at the document and node level. This way, Doc2PL, Node2PL and NO2PL
can easily be extended. To extend OO2PL, we introduce� and� locks. These locks
are compatible with any of the�� and�� locks.

XTO and XCO can be extended by adding two additional timestamps for node
contents. The first registers the latest read while the other registers the current not yet
committed update of contents. We then have to extend the action tables of XTO and
XCO such that in case of a conflict, one of the transactions is either blocked or aborted.

Note that we do not need any special treatment for node attributes since they are
treated as special nodes in DOM. Further, if text is only hold in text nodes — which
is the case in Natix [11] — two lock modes suffice. Hence, we can — for example —
replace the� and� lock modes by the� and� lock modes.

13



4.1.2 ID lookup

So far all protocols require access to a document by starting the traversal at the doc-
ument’s root. XML provides ID attributes with uniquely identify nodes within a doc-
ument. Links to nodes with ID attributes are realized using IDREF and IDREFS at-
tributes. DOM allows to jump to a node with a given ID. This way, there is no guaran-
tee that traversal starts at a root and goes down a non-interrupted path. These ID jumps
may lead to non-serializable schedules for our core protocols.

To remedy this situation, we keep for every document a set of ID locks. We remem-
ber which IDs have been the target of a jump. Assume that some transaction searched
for a node with IDid. We then record the lockIDJ(id) for the according document.
If a node with an ID attribute whose value isid is deleted/inserted, we required the
transaction to hold a lockIDD/IDI(id). We record changes of IDs as delete followed
by an insert. These locks are compatible if their nodes differ or if they both are IDJ
locks. Otherwise they are incompatible.

So far, we required that a transaction moves down a document. More specifically, a
transaction must hold a lock on the parent node in order to acquire a lock for the child
node. This is the typical requirement for tree locking protocols designed for higher
concurrency on B-Tree index structures [2]. The reason we need this requirement is
the following. If a node with children is deleted, we only lock the deleted node without
locking its descendants. If now a jump to a descendant takes place, we are in trouble.
There exist two solutions to the problem. The first solution is that all descendant nodes
of a deleted node have to be locked. This results possibly in many locks. Further, since
we did not lock deleted nodes so far, this approach does not really fit our protocols
nicely — although it is possible. Therefore, we favor another approach. We traverse
the whole deleted subtree for nodes having an ID attribute. For these nodes, IDD locks
are acquired.

To treat ID jumps, XTO and XCO can be extended by adding the same mechanism
of IDx locks. An alternative for the subtree deletion part of the extension is to check the
path from a node a transaction jumped to up to the root of the document containing this
node. This is possible, since we do not delete nodes until after the deleting transaction
committed.

4.2 DTD-based conflict reduction

Knowledge of the DTD can reduce the number of conflicts of the 2PL based protocols
Node2PL, NO2PL and OO2PL. We illustrate the exploitation of DTD knowledge by
means of a simple example. Let a DTD specify a node’s content asA*B*C*. That is,
the first couple of children are of type�, then follow the� and the� nodes. Figure 11
(a) shows an example document adhering to the DTD. Note that the DTD groups the
children of the root node into different blocks.

Assume that there are operationsfirst(t) andlast(t) that retrieve the first/last child
of type� of a given node. Consider the schedule

14



P

A A

B B

C C1 n

1 n

1 n
... ...

...

(a)

A A1 n
... B B1 n

... C C1 n
...

P

A’ C’B’

(b)

Figure 11: DTD illustration

��� ���

first(B)
last(A)

insB(x)
insA(y)

In this schedule, all 2PL based protocols block��� when it is trying to execute
insB(x). Assume that� is of type� and� is of type�. Then — under the given
DTD — there is no conflict sincelast(A) andinsB(x) as well asfirst(B) andinsA(y)
commute.

In general, whenever the DTD groups the children of a node into sets of disjoint
type, then any jump to one of these sets and any modification of it commutes with
any jump to another set and its modification. To see the reason why the operations
commute it is illuminating to consider again our example document in Figure 11 (a).
Since the nodes in each group are of different type, we can introduce artificial dummy
nodes��, �� and� �. Executing for example afirst(B) operation is then equivalent
to jumping to�� — the artificial top node of all� nodes — and then selecting its
first child. Any change taking place under any of the dummy node obviously does not
interfer with any change in another subtree below some other dummy node.

5 Conclusion

We have introduced six different core protocols. Each of them isolates structure traver-
sals and modifications and guarantees serializability for these operations. The core
protocols Doc2PL, Node2PL, NO2PL, and OO2PL are based on two phase locking.

15



Their main difference is the locking granularity. OO2PL is based on ideas for syn-
chronizing abstract data types. The core protocol XCO is based on timestamp ordering
whereas XCO is based on dynamic commit ordering. Both of the latter two protocols
use an implicit representation of multiple versions to enhance their degree of concur-
rency.

We also discussed how the core protocols can be extended to provide support for
all concepts to cover the full DOM standard. We further illustrated that DTD knowl-
edge can improve the degree of concurrency achieved by the two phase locking based
protocols.

References

[1] B. Badrinath and K. Ramamrithan. Semantics-based concurrency control: Be-
yond commutativity.ACM Trans. on Database Systems, 17(1):163–199, 1992.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[3] K. Böhm, K. Aberer, E. Neuhold, and X. Yang. Structured document storage and
refined declarative and naviational access mechanisms in HyperStorM.VLDB
Journal, 6(4):296–311, 1997.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language
(xml) 1.0. Technical report, World Wide Web Consortium, 1998. W3C Recom-
mendation 10-Feb-98.

[5] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. InProc. of the ACM SIGMOD Conf. on Management of Data, 1999.

[6] L. Wood et al. Document object model (dom) level 1 specification (second edi-
tion). Technical report, World Wide Web Consortium, 2000. W3C Working Draft
29-Sept-2000.

[7] D. Florescu and D. Kossmann. Storing and querying XML data using an
RDBMS. IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[8] R. Goldman, J. McHugh, and J. Widom. From semistructured data to XML:
Migrating the Lore data model and query language. InACM SIGMOD Workshop
on the Web and Databases (WebDB), 1999.

[9] P. Gray and A. Reuter.Transaction Processing: Concepts and Technology. Mor-
gan Kaufmann Publishers, San Mateo, Ca, 1993.

[10] C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. Technical Report
08/99, University of Mannheim, Mannheim, Germany, 1999.

[11] C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. InProc. IEEE
Conference on Data Engineering, page 198, 2000.

16



[12] M. Klettke and H. Meyer. XML and object-relational database systems – enhanc-
ing structural mappings based on statistics. InACM SIGMOD Workshop on the
Web and Databases (WebDB), 2000.

[13] H. Korth. Locking primitives in a database system.Journal of the ACM,
30(1):55–79, 1983.

[14] C. H. Papadimitriou.The Theory of Database Concurrency Control. Computer
Science Press, 1986.

[15] K. Ramamrithan and P. Chrysanthis.Advances in Concurrency Control and
Transaction Processing. IEEE Computer Society Press, 1997.

[16] A. Schmidt, M. Kersten, M. Windhouwer, and F. Waas. Efficient relational stor-
age and retrieval of XML documents. InACM SIGMOD Workshop on the Web
and Databases (WebDB), 2000.

[17] P. Schwarz and A. Spector. Synchronizing shared abstract data types.ACM
Trans. Computer Systems, 2(3):223–250, 1984.

[18] J. Shanmugasundaram, H. Gang, K. Tufte, C. Yhang, D. J. DeWitt, and
J. Naughton. Relational databases for querying xml documents: Limitations and
opportunities. InProc. Int. Conf. on Very Large Data Bases (VLDB), pages 302–
314, 1999.

[19] B. Surjanto, N. Ritter, and H. Loeser. XML content management based on object-
relational database technology. InProc. 1st Int. Conf. on Web Information Sys-
tems Engineering (WISE 2000), pages 64–73, 2000.

17


