
Schema-Driven Evaluation
of Approximate Tree-Pattern Queries

Torsten Schlieder�

Institute of Computer Science
Freie Universität Berlin

schlied@inf.fu-berlin.de

Abstract. We present a simple query language for XML, which sup-
ports hierarchical, Boolean-connected query patterns. The interpretation
of a query is founded on cost-based query transformations: The total
cost of a sequence of transformations measures the similarity between
the query and the data and is used to rank the results. We introduce
two polynomial-time algorithms that efficiently find the best n answers
to the query: The first algorithm finds all approximate results, sorts
them by increasing cost, and prunes the result list after the nth entry.
The second algorithm uses a structural summary –the schema– of the
database to estimate the best k transformed queries, which in turn are
executed against the database. We compare both approaches and show
that the schema-based evaluation outperforms the pruning approach for
small values of n. The pruning strategy is the better choice if n is close
to the total number of approximate results for the query.

1 Introduction

An XML query engine should retrieve the best results possible: If no exactly
matching documents are found, results similar to the query should be retrieved
and ranked according to their similarity.

The problem of similarity between keyword queries and text documents has
been investigated for years in information retrieval [3]. Unfortunately, the most
models (with some recent exceptions, e.g., [15,6,7]) consider unstructured text
only and therefore miss the change to yield a more precise search. Furthermore,
it is not clear whether retrieval models based on term distribution can be used
for data centric documents as considered in this paper.

XML query languages, on the other hand, do incorporate the document struc-
ture. They are well suited for applications that query and transform XML docu-
ments [5]. However, they do not well support user queries because results that do
not fully match the query are not retrieved. Moreover, the user needs substantial
knowledge of the data structure to formulate queries.

� This research was supported by the German Research Society, Berlin-Brandenburg
Graduate School in Distributed Information Systems (DFG grant no. GRK 316).

C.S. Jensen et al. (Eds.): EDBT 2002, LNCS 2287, pp. 514–532, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 515

Consider a catalog with data about sound storage media. A user may be
interested in a CD with piano concertos by Rachmaninov. A keyword query re-
trieves all documents that contain at least one of the terms “piano”, “concerto”,
and “Rachmaninov”. However, the user cannot specify that she prefers CDs
with the title “piano concerto” over CDs having a track title “piano concerto”.
Similarly, the user cannot express her preference for the composer Rachmaninov
over the performer Rachmaninov.

Structured queries yield the contrary result: Only exactly matching docu-
ments are retrieved. The XQL [11] query

/catalog/cd[composer="Rachmaninov" and title="Piano concerto"]

will neither retrieve CDs with a track title “Piano concerto” nor CDs of the cat-
egory “Piano concerto” nor concertos performed by “Rachmaninov”, nor other
sound storage media than CDs with the appropriate information. The query
will also not retrieve CDs where only one of the specified keywords appears in
the title. Of course, the user can pose a query that exactly matches the cases
mentioned – but she must know beforehand that such similar results exist and
how they are represented. Moreover, since all results of the redefined query are
treated equally, the user still cannot express her preferences.

As a first step to bridge the gap between the vagueness of information re-
trieval and the expressiveness of structured queries with respect to data-centric
documents, we introduce the simple pattern-matching language approXQL. The
interpretation of approXQL queries is founded on cost-based query transforma-
tions. The total cost of a sequence of transformations measures the similarity
between a query and the data. The similarity score is used to rank the results.

We present two polynomial-time algorithms that find the best n answers to
the query: The first algorithm finds all approximate results, sorts them by in-
creasing cost, and prunes the result list after the nth entry. The second algorithm
is an extension of the first one. It uses the schema of the database to estimate
the best k transformed queries, sorts them by cost, and executes them against
the database to find the best n results. We discuss the results of experiments,
which show that the schema-based query evaluation outperforms the pruning
approach if n is smaller than the total number of approximate results.

2 Related Work

The semantics of our query language is related to cost-based distance measures
for unordered labeled trees such as the tree-edit distance [14] and the tree-
alignment distance [9]. Our approach is different concerning its semantics and
concerning its computational complexity.

We believe that different nodes of a tree-shaped query pattern should be
treated differently: Leaf nodes specify the information the user is looking for. The
root node defines the scope of the search. The inner nodes determine the context
in which the information should appear. None of the tree-similarity measures we
know has a semantics tailored to XML data.

516 Torsten Schlieder

The problem of finding the minimal edit or alignment distance between un-
ordered trees is MAX SNP-hard [2]. Even the problem of including a query tree
into a data tree is NP-complete [10]. In [16] a restricted variant of the edit dis-
tance and its adaption to tree-pattern matching has been proposed. All matching
subtrees can be found in polynomial time. The proposed algorithm touches every
data node, which is inadequate for large databases.

To our knowledge, our work is the first in the context of approximate tree-
pattern matching that proposes an XML-tailored query interpretation, supports
Boolean operators, evaluates a query using indexes and list operations, and takes
advantage of a schema to find the best n answers.

3 The ApproXQL Query Language

ApproXQL [12] is a simple pattern-matching language for XML. The syntactical
subset of the language that we will use throughout the paper consists of (1)
name selectors, (2) text selectors, (3) the containment operator “[]”, and (4)
the Boolean operators “and”, “or”. The following query selects CDs containing
piano concertos composed by Rachmaninov:

cd[title["piano" and ‘‘concerto"] and composer["rachmaninov"]].

Note that the text selectors match both text data and attribute values. A con-
junctive query can be interpreted as a labeled, typed tree: Text selectors are
mapped to leaf nodes of type text ; name selectors are represented as nodes of
type struct. Each “and” expression is mapped to an inner node of the tree. The
children of an “and” node are the roots of the paths that are conjunctively
connected. Figure 1(a) shows the tree interpretation of the above query.

A query that contains “or”-operators is broken up into a set of conjunctive
queries, which is called separated query representation. The query

cd[title["piano" and ("concerto" or ‘‘sonata")] and
(composer["rachmaninov"] or performer["ashkenazy"])].

consists of two “or”-operators and can be converted into 22 conjunctive queries:

{ cd[title["piano" and ‘‘concerto"] and composer["rachmaninov"]],
cd[title["piano" and ‘‘concerto"] and performer["ashkenazy"]],
cd[title["piano" and ‘‘sonata"] and composer["rachmaninov"]],
cd[title["piano" and ‘‘sonata"] and performer["ashkenazy"]] }.

4 Modeling and Normalization of XML Documents

We model XML documents as labeled trees consisting of two node types: text
nodes represent element text as well as attribute values; nodes of type struct
represent elements and attributes. The name of an element is used as node
label. Text sequences are splitted into words. For each word, a leaf node of the

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 517

title

"piano" "concerto"

tracks

track

length title

"vivace""13:25"

composer

"rachmaninov"

performer

cd

"ashkenazy""rachmaninov"

composer

"concerto"

title

cd

"piano"

catalog
mc

(b) Data tree(a) Conjunctive query

Fig. 1. Embedding of a conjunctive query in a data tree.

document tree is created and labeled with the word. Attributes are mapped to
two nodes in parent-child relationship: The attribute name forms the label of
the parent, and the attribute value forms the label of the child. We add a new
root node with a unique label to the collection of document trees and establish
an edge between this node and the roots of the document trees. The resulting
tree is called data tree. Figure 1(b) shows a part of a data tree.

5 Querying by Approximate Tree Embedding

In this section, we introduce the semantics of approXQL queries. We first de-
fine an embedding function that maps a conjunctive query to a data tree. The
embedding is exact in the sense that all labels of the query occur in the result,
and that the parent-child relationships of the query are preserved. Then, we
introduce our approach to find similar results to a query.

5.1 The Tree-Embedding Formalism

Our definition of tree embedding is inspired by the unordered path inclusion
problem proposed by Kilpeläinen [10]. We discard the injectivity property of the
path inclusion problem in order to get a function that is efficiently computable1:

Definition 1 (Embedding). An embedding of a conjunctive query into a data
tree is a function f that maps the query nodes to data nodes such that f is (1)
label preserving, (2) type preserving, and (3) parent-child preserving.

Let u be a node of a conjunctive query. We call the data node f(u) a match of u.
The match of the query root is the embedding root of f ; the matched data nodes
together with the connecting edges are called embedding image; and the data
subtree anchored at the embedding root is a result. Note, that for a fixed query
1 The injectivity of the embedding function together with the implicit relaxation of the
parent-child-relationship to an ancestor-descendant relationship (Section 5.2) would
lead to the unordered tree inclusion problem, which is NP-complete [10].

518 Torsten Schlieder

and a fixed data tree, several results may exist, and several embeddings may
lead to the same result. Figure 1 shows an embedding of a conjunctive query
into a data tree. The result of this embedding is the subtree rooted at the left
cd node; all nodes with incoming arrows, together with their connecting edges,
form the embedding image.

5.2 Basic Query Transformations

The tree-embedding formalism allows exact embeddings only. To find similar
results to the query, we use basic query transformations. A basic query transfor-
mation is a modification of a conjunctive query by inserting a node, deleting a
node, or renaming the label of a node. In contrast to the tree-edit distance [14],
our model does not allow arbitrary sequences of insert, delete, and rename op-
erations. We restrict the basic transformations in order to generate only queries
that have intuitive semantics. For example, it is not allowed to delete all leaves
of the original query, since every leaf captures information the user is looking
for.

Definition 2 (Insertion). An insertion is the replacement of an edge by a node
that has an incoming edge and an outgoing edge.

Note that this definition does not allow to add a new query root or to append
new leaves. A node insertion creates a query that finds matches in a more spe-
cific context. As an example, consider the insertion of two nodes labeled tracks
and track, respectively, between the nodes cd and title in the query shown in
Figure 1(a). The insertions create a query that searches for subtree matches in
the more specific context of track titles.

Definition 3 (Deletion of inner nodes). A deletion removes an inner node u
(except the root) together with its incoming edge and connects the outgoing edges
of u with the parent of u.

The deletion of inner nodes is based on the observation that the hierarchy of
an XML document typically models a containment relationship. The deeper an
element resides in the data tree the more specific is the information it describes.
Assume that a user searches for CD tracks with the title ”concerto”. The deletion
of the node track creates a query that searches the term ”concerto” in CD titles
instead of track titles.

Definition 4 (Deletion of leaves). A deletion removes a leaf u together with
its incoming edge iff the parent of u has two or more children (including u) that
are leaves of the query.

The deletion of leaves adopts the concept of “coordination level match” [3],
which is a simple querying model that establishes ranking for queries of “and”-
connected search terms.

Definition 5 (Renaming). A renaming changes the label of a node.

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 519

A renaming of a node u changes the search space of the query subtree rooted
at u. For example, the renaming of the query root from cd to mc shifts the search
space from CDs to MCs.

Each basic transformation has a cost, which is specified, for example, by a
domain expert.

Definition 6 (Cost). The cost of a transformation is a non-negative number.

There are several variants to assign costs to transformations. In this paper we
choose the simplest one: We bind the costs to the labels of the involved nodes.

5.3 The Approximate Query-Matching Problem

In this subsection, we define the approximate query-matching problem. We first
define the terms transformed query and embedding cost :

Definition 7 (Transformed query). A transformed query is derived from a
conjunctive query using a sequence of basic transformations such that all dele-
tions precede all renamings and all renamings precede all insertions.

Each conjunctive query in the separated representation of an approXQL query is
also a transformed query, which is derived by an empty transformation sequence.

Definition 8 (Embedding cost). The embedding cost of a transformed query
is the sum of the costs of all applied basic transformations.

To evaluate an approXQL query, the closure of transformed queries is created
from the separated query representation:

Definition 9 (Query closure). The closure of a query Q is the set of all
transformed queries that can be derived from the separated representation of Q.

Every query in the closure of Q is executed against the data tree. Executing a
query means finding a (possibly empty) set of embeddings of the query tree in
the data tree according to Definition 1. All embeddings that have the same root
are collected in an embedding group:

Definition 10 (Embedding group). An embedding group is a set of pairs,
where each pair consists of an embedding and its cost. All embeddings in a group
have the same root.

As an example, consider the query shown in Figure 1 and assume a further query
that has been derived from the depicted query by deleting the node ”concerto”.
Both queries have an embedding in the data subtree rooted at the left cd node.
Therefore, both embeddings belong to the same embedding group. To get a single
score for each group, we choose the embedding with the lowest embedding cost:

Definition 11 (Approximate query-matching problem). Given a data
tree and the closure of a query, locate all embedding groups and represent each
group by a pair (u, c), where u is the root of the embeddings in the group and c
is the lowest cost of all embeddings in the group.

520 Torsten Schlieder

We call the pair (u, c) a root-cost pair. Each root-cost pair represents a result of
the query. An algorithm solving the approximate query-matching problem must
find all results of query. Since a user is typically interested in the best results
only, we define the best-n-pairs problem as follows:

Definition 12 (Best-n-pairs problem). Create a cost-sorted list of the n root-
cost pairs that have the lowest embedding costs among all root-cost pairs for a
query and a data tree.

The following steps summarize the evaluation of an approXQL query:

1. Break up the query into its separated representation.

2. Derive the closure of transformed queries from the separated representation.

3. Find all embeddings of any transformed query in the data tree.

4. Divide the embeddings into embedding groups and create the root-cost pairs.

5. Retrieve the best n root-cost pairs.

In an additional step, the results (subtrees of the data tree) belonging to the
embedding roots are selected and retrieved to the user. The five steps describe
the evaluation of an approXQL query from the theoretical point of view. In the
following sections we give a more practicable approach to evaluate a query.

6 Direct Query Evaluation

The approximate tree-matching model explicitly creates a (possibly infinite) set
of transformed queries from a user-provided query. In this section, we show
that the explicit creation of transformed queries is not necessary. Moreover, we
show that the images of all approximate embeddings of a query can be found
in polynomial time with respect to the number of nodes of the data tree. The
evaluation of a query is based on three ideas: First, we encode all allowed renam-
ings and deletions of query nodes in an expanded representation of the query.
The expanded representation implicitly includes all so-called semi-transformed
queries. Second, we detect all possible insertions of query nodes using a special
numbering of the nodes in the data tree. Third, we simultaneously compute all
embedding images of the semi-transformed query using a bottom-up algorithm.
In the examples used in this section we assume the following costs:

insertion cost deletion cost renaming cost
category 4 composer 7 cd → dvd 6

cd 2 ”concerto” 6 cd → mc 4
composer 5 ”piano” 8 composer → performer 4
performer 5 title 5 ”concerto” → ”sonata” 3

title 3 track 3 title → category 4

All delete and rename costs not listed in the table are infinite; all remaining
insert costs are 1.

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 521

node

leaf

or

7

"rachmaninov"

and

node

leaf 8
"piano"

leaf
"concerto"

("sonata",3)

or

or

node 3

5title
(category,4)

track

6
(performer,4)

composer

and

nodecd
(dvd,6),(mc,4)

(a) Expanded representation

"rachmaninov""sonata"

cd

3

26

0

"rachmaninov"

35dvd

0

track 5

0
"piano" "concerto" "rachmaninov"

4performer

13mc

0 0

dvd

category 15

"sonata"
3

31

0
"rachmaninov"

(b) Four semi-transformed queries

Fig. 2. Expanded representation and semi-transformed queries derived from the query
cd[track[title["piano" and ‘‘concerto"]] and composer["rachmaninov"]].

6.1 The Expanded Representation of a Query

Many transformed queries in the closure of an approXQL query are similar; they
often differ in some inserted nodes only. We call a query that is derived from a
conjunctive query using a sequence of deletions and renamings (but no insertions)
a semi-transformed query. The expanded representation of a query Q encodes
all distinct semi-transformed queries that can be derived from the separated
representation of Q. It consists of nodes belonging to four representation types:

node: A node of representation type “node” represents all nodes of all semi-
transformed queries that are derived from the same inner node of the original
query. Consider Figure 2(a). The top-level node represents the cd node of
the original query and its renamings dvd and mc that have the costs 6 and 4,
respectively.

leaf: A “leaf” represents all leaves of all semi-transformed queries derived from
the same leaf of the original query. The middle leaf of the query in Figure 2(a)
represents the ”concerto” node of the original query. It is labeled with the
original term and its single renaming ”sonata”, which has cost 3. Assigned
to the right side of the leaf is the delete cost 6 of the node.

and: Any “and”-node represents an “and”-operator of the original query.
or: Nodes of type “or” have two applications: First, they represent “or”-opera-

tors of the original query. Second, for each inner node that may be deleted,
an “or” node is inserted in the expanded query representation. The left edge
leads to the node that may be deleted. The right edge bridges the node.
It is annotated with the delete cost of the bridged node. In our example,
every inner node (except the root) may be deleted and has therefore an
“or”-parent.

A semi-transformed query can be derived from the expanded representation by
following a combination of paths from the root to the leaves. The total cost of the

522 Torsten Schlieder

derived query consists of the rename cost of the choosen labels, the costs assigned
to the edges and the costs of the deleted leaves. Figure 2(b) depicts four out of 84
semi-transformed queries included in the expanded query representation shown
in Figure 2(a). The number assigned to each node represents the minimal cost
of approximate embeddings of the subtree rooted at the node. Node insertions
in the subtree may increase the costs.

We define a number of attributes for each node u of an expanded query
representation: reptype(u) is the representation type of u (and, or, node, leaf),
label(u) is the label, and type(u) is the node type of u (struct, text). For each
“node” and “leaf” the set renamings(u) contains all alternative label-cost pairs
for u, and delcost(u) is the cost of deleting u. If u is an “or” node then edgecost(u)
denotes the cost assigned to the edge leading to the right child of u.

6.2 Encoding of the Data Tree

The embedding of a (transformed) conjunctive query into a data tree is defined
as function that preserves labels, types, and parent-child relationships. In order
to construct an embeddable query, nodes must be inserted into the query. This
“blind” insertion of nodes creates many queries that have no embedding at all.
We completely avoid the insertion of nodes into a query. Instead, we use a encod-
ing of the data tree in order to determine the distance between the matches of
two query nodes. More precisely, we change property (3) of the embedding func-
tion (see Definition 1) from “parent-child preserving” to “ancestor-descendant
preserving” and define the distance between two nodes u and v as the sum of
the insert costs of all nodes along the path from u to v (excluding u and v).

We assign four numbers to each data node u: pre(u) is the preorder number
of u; bound(u) is the number of the rightmost leaf of the subtree rooted at u;
inscost(u) is the cost of inserting u into a query; and pathcost(u) is the sum of
the insert costs of all ancestors of u. Given two nodes u and v we can now test
if u is an ancestor of v by ensuring the invariant

pre(u) < pre(v) ∧ bound(u) ≥ pre(v).
If u is an ancestor of v then the distance between u and v is

distance(u, v) = pathcost(v) − pathcost(u) − inscost(u).

An example of an encoded data tree is shown in Figure 3(a). The preorder
number and the bound value are assigned to left side of each node; the pathcost
value and the insert cost are located at the right side. We know that node 15
(”vivace”) is a descendant of node 10 (tracks) because 10 < 15∧15 ≥ 15 evaluates
to true. Using the expression 9 − 3 − 2 = 4 we can determine the sum of the
insert costs of the nodes 11 and 14 and thus, the distance between the nodes 10
and 15.

The indexes Istruct and Itext provide access to the nodes of the data tree by
mapping each label to all nodes that carry the label. The Figures 3(b) and 3(c)
show the indexes of the encoded data tree depicted in Figure 3(a).

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 523

pre,bound

pre pathcost

pathcost,inscost

: 13
: 4
: 9
: 8
: 4
: 15

: 1
: 2
: 5
: 12
: 15
: 3

: 11
: 7,14

: 10

IstructItext

3,4 3,5

4 8
"ashkenazy"

performer

1,? 0,1
catalog

mc

1,2

composer
3,5

86

5,6

"rachmaninov"

10,15 3,2

track

tracks

6,1

13 7
"13:25"

length
14,15

15
"vivace"

6,3
title

9

7,9 3,3
title

68 9 6
"piano" "concerto"

11,15

12,13
13:25
ashkenazy
concerto
piano
rachmaninov
vivace

(a) Encoded data tree

tracks
track
title
performer
mc
length

cd
composer

catalog

(c) Index(b) Index

5,1

2,16 1,2
cd

16,?

Fig. 3. An encoded data tree with its text index and structural index.

6.3 Lists and List Entries

The query-evaluation algorithm computes all approximate embeddings using an
algebra of lists. A list stores information about all nodes of a given label and is
initialized from the corresponding index posting. A list entry e is a tuple

e = (pre, bound, pathcost, inscost, embcost),

where the first four values are copies of the numbers assigned to the correspond-
ing node u. If u is a text node then bound and inscost are set to zero. All
operations on lists are based on these four numbers. In particular, they serve to
test the ancestor-descendant relationship and to compute the distance between
two nodes. The value embcost stores the cost of embedding a query subtree into
the data subtree rooted at u. The value is zero if u is the match of a query leaf.
For convenience, we use the set notation e ∈ L to refer to an entry of L.

6.4 Operations on Lists

We now introduce the basic list operations used by our query-evaluation algo-
rithm. List operations are realized as functions that essentially perform standard
transformations of lists but additionally calculate the embedding costs during
the bottom-up query evaluation. The function join, for example, assumes that
the embedding cost of each descendant eD ∈ LD has already been calculated.
The embedding cost of an ancestor eA ∈ LA of eD is therefore distance(eA, eD)+
embcost(eD). Because eA may have several descendants eD1 , . . . , eDm

, we choose
the one with the smallest sum of embedding cost and distance:

embcost(eA) = min{ distance(eA, eDi
) + embcost(eDi

) | 1 ≤ i ≤ m }.

The cost is increased by the cedge, which represents the cost of a deleted query
node. We use the same principle for the function intersect, which calculates
the sums of the embedding costs of corresponding entries in the operand lists,

524 Torsten Schlieder

for the function union, which chooses the lowest embedding costs of each pair
of entries in the operand lists, and for the function outerjoin, which keeps the
minimum of the cheapest matching leaf and the cost of deleting the leaf.

function fetch(l, t)
Fetches the posting belonging to label l from the index It (t ∈ {struct, text}).
Returns a new list L that is initialized from the nodes the posting entries refer to.

function merge(LL, LR, cren)
Returns a list L consisting of all entries from the distinct lists LL and LR. For each
entry copied from LR (but not LL) the embedding cost is incremented by cren.

function join(LA, LD, cedge)
Returns a new list L that consists of copies of all entries from LA that have
descendants in LD. Let eA ∈ LA be an ancestor and [eD1 , . . . , eDm] be the interval
in LD such that each interval entry is a descendant of eA. The embedding cost of
the copy of eA is set to min{ distance(eA, eDi)+embcost(eDi) | 1 ≤ i ≤ m }+cedge.

function outerjoin(LA, LD, cedge, cdel)
Returns a new list L that consists of copies of all entries from LA. Let eA ∈ LA be an
entry. If eA does not have a descendant in LD then the embedding cost of the copy
of eA is set to cdel + cedge. Otherwise, let [eD1 , . . . , eDm] be the interval in LD such
that each interval entry is a descendant of eA. The embedding cost of the copy of
eA is set to min(cdel,min{ distance(eA, eDi)+ embcost(eDi) | 1 ≤ i ≤ m })+ cedge.

function intersect(LL, LR, cedge)
Returns a new list L. For each pair eL ∈ LL, eR ∈ LR such that pre(eL) =
pre(eR), appends a copy of eL to L. The embedding cost of the new entry is set
to embcost(eL) + embcost(eR) + cedge.

function union(LL, LR, cedge)
Returns a new list L that consists of all entries from the lists LL and LR. If a node
is represented in one list only (say by eL ∈ LL) then the embedding cost of the
new entry is set to embcost(eL) + cedge. Otherwise, if there are entries eL ∈ LL,
eR ∈ LR such that pre(eL) = pre(eR), then the embedding cost of the new entry
is set to min(embcost(eL), embcost(eR)) + cedge.

function sort(n, L)
Sorts L by the embedding cost of its entries. Returns the first n entries of L.

6.5 Finding the Best Root-Cost Pairs

Our general algorithm (see Figure 4) for the approximate query-matching prob-
lem makes use of the ideas presented in the previous subsections: It takes the
expanded representation of an approXQL query as input, uses indexes to access
the nodes of the data tree, and performs operations on lists to compute the
embedding images recursively.

The algorithm expects as input a node u of an expanded query representation,
a cost cedge of the edge leading to u, and a list LA of ancestors. The indexes
Istruct and Itext, used by function fetch, are global parameters. Let u be the
root of the expanded representation of a query and [] be an empty list. Then

sort(n, primary(u, 0, []))

returns a cost-sorted list of the best n root-cost pairs.

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 525

function primary(u, cedge, LA)
case reptype(u) of

leaf: LD ← fetch(label(u), type(u))
foreach (l, cren) ∈ renamings(u) do

LT ← fetch(l, type(u))
LD ← merge(LD, LT , cren)

return outerjoin(LA, LD, cedge, delcost(u))
node: LD ← fetch(label(u), type(u))

LD ← primary(child(u), 0, LD)
foreach (l, cren) ∈ renamings(u) do

LT ← fetch(l, type(u))
LT ← primary(child(u), 0, LT)
LD ← merge(LD, LT , cren)

if u has no parent then return LD

else return join(LA, LD, cedge)
and: LL ← primary(left child(u), 0, LA)

LR ← primary(right child(u), 0, LA)
return intersect(LL, LR, cedge)

or: LL ← primary(left child(u), 0, LA)
LR ← primary(right child(u), edgecost(u), LA)
return union(LL, LR, cedge)

Fig. 4. Algorithm primary finds the images of all approximate embeddings of a query.

The depicted algorithm is simplified. It allows the deletion of all query leaves,
which is forbidden by Definition 4. To keep at least one leaf, the full version of the
algorithm rejects data subtrees that do not contain matches of any query leaf.
Furthermore, the full version uses dynamic programming to avoid the duplicate
evaluation of query subtrees.

Let s be the maximal number of data nodes that have the same label and
let l be the maximal number of repetitions of a label along a path in the data
tree. The join functions need O(s · l) time; all other functions need O(s) time.
If n is the number of query selectors then the expanded representation has O(n)
nodes. The algorithm performs O(n2) node evaluations, each resulting in at most
O(r) function calls, where r is the maximal number of renamings per selector.
The overall time complexity of algorithm primary is O(n2 · r · s · l).

7 Schema-Driven Query Evaluation

The main disadvantage of the direct query evaluation is the fact that we must
compute all approximate results for a query in order to retrieve the best n. To
find only the best n results, we use the schema of the data tree to find the best k
embedding images, which in turn are used as “second-level” queries to retrieve
the results of the query in the data tree. The sorting of the second-level queries
guarantees that the results of these queries are sorted by increasing cost as well.

526 Torsten Schlieder

7.1 On the Relationship between a Data Tree and Its Schema

In a data tree constructed from a collection of XML documents, many subtrees
have a similar structure. A collection of sound storage media may contain several
CDs that all have a title, a composer, or both. Such data regularities can be
captured by a schema. A schema is similar to a DataGuide [8].

Definition 13 (Label-type path). A label-type path (l1, t1).(l2, t2) . . . (ln, tn)
in a tree is a sequence of label-type pairs belonging to the nodes along a node-edge
path that starts at the tree root.

Definition 14 (Schema). The schema of a data tree is a tree that contains
every label-type path of the data tree exactly once.

In practice we use compacted schemata where sequences of text nodes are merged
into a single node and the labels are not stored in the tree but only in the indexes.

Definition 15 (Node class). A schema node u is the class of a data node v,
denoted by u = [v], iff u and v are reachable by the same label-type path.

Node v is called an instance of u. Every data node v has exactly one class. Node
classes preserve the parent-child relationships of their instances. For each triple
u, v, w of data nodes holds:

v is a child of u ⇔ [v] is a child of [u]
v and w are children of u ⇒ [v] and [w] are children of [u]

Note that the last proposition is an implication: There are node classes that have
a common parent in the schema – but no combination of their instances has a
common parent in the data tree.

We have seen that the mapping between node instances and their class is
a function. A node class preserves the labels, the types, and the parent-child
relationships of its instances. The same properties hold for embeddings. We can
therefore establish a simple relationship between a data tree, its schema, and
their included trees (i. e., subgraphs of trees that fulfill the tree properties):

Definition 16 (Tree class). Let T be an included tree of a data tree. The
image of an embedding of T in the schema is called tree class of T .

Every included data tree has exactly one tree class, which follows from Defini-
tion 14. Embeddings are transitive because all three properties of Definition 1
are transitive. The existence of tree classes and the transitivity of embeddings
have an interesting implication: If we have an algorithm that finds the images of
all approximate embeddings of a query in the data tree then we can use the same
algorithm to find all tree classes of embeddings in the schema of the data tree.
We present an adapted version of algorithm primary in the following subsection.

Not every included schema tree T is a tree class. It is a tree class only
if there are “reverse embeddings” from T into the data tree such that each

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 527

embedding result contains an instance of T directly. Each result found this way
is an approximate result of the query. In Section 7.3, we present an algorithm
secondary that uses the embedding images found by algorithm primary as
“second-level” queries to find the results of the original query.

7.2 Finding the Best k Second-Level Queries

The selection of the best k second-level queries using a schema is a straightfor-
ward extension of the direct query-evaluation algorithm introduced in Section 6.
There, we have tracked the best embedding cost per query subtree and per data
subtree. Now we track the images of the best k embeddings (and their costs)
per query subtree and per schema subtree. We extend the list entries by a value
label and a set pointers yielding the following structure:

e = (pre, bound, pathcost, inscost, embcost, label, pointers).

The component label is initialized by the label of the matching query node; the
set pointers contains references to descendants of the schema node represented
by e. If e represents an embedding root then e and the entries reachable from
the pointer set form a second-level query with the embedding cost embcost(e).

To find not only the best second-level query per schema subtree but the
best k ones, we use list segments. Recall that lists are sorted by the preorder
numbers of the list entries. A segment is a sequence of list entries that have
the same preorder number but different embedding costs. All entries of a fixed
segment represent embedding images of the same query subtree in the same
schema subtree. Segments are sorted by embedding cost in ascending order. The
prefix of k entries of a segment represents the best k embeddings of a certain
query subtree in a certain schema subtree. To find the best k second-level queries,
only four functions of algorithm primary must be adapted:

function join(LA, LD, cedge, k)
Returns a new list L. Let eA ∈ LA be an entry. The function calculates the em-
bedding cost of eA with respect to all entries in all segments in LD that represent
descendants of eA. For each entry eD among the k descendants with the lowest
costs, a copy of eA is appended to L. The embedding cost of the copy is set to
distance(eA, eD) + embcost(eD) + cedge and its pointer set is initialized with eD.

function outerjoin(LA, LD, cedge, cdel, k)
Works like the join function but additionally calculates the embedding cost c =
cedge + cdel of each entry eA ∈ LA that does not have a descendant in LD. If c
is among the lowest k embedding costs in the segment generated for eA then a
copy of eA is appended to L such that the segment for eA remains sorted. The
embedding cost of the new entry is set to c and its pointer set remains empty.

function intersect(LL, LR, cedge, k)
Returns a new list L. Let SL and SR be segments in LL and LR, respectively, that
represent the same schema node. The function chooses from both segments the k
pairs with the smallest sum of the embedding costs. For each pair (eL, eR), a copy of
eL is appended to L. Its embedding cost is set to embcost(eL)+embcost(eR)+cedge

and its pointer set is initialized with pointers(eL) ∪ pointers(eR).

528 Torsten Schlieder

function union(LL, LR, cedge, k)
Returns a new list L. Let SL and SR be segments in LL and LR, respectively, that
represent the same schema node. The function merges SL and SR and copies the
prefix of the best k entries to the end of L. If SL (SR) does not have a corresponding
segment then a copy of SL (SR) is appended to L. The embedding cost of each
entry appended to L is increased by cedge.

The algorithm primary also takes an additional parameter k and passes it to
the four modified functions. If u is the root of an expanded query representation
and Itext, Istruct are the indexes of a schema, then

sort(k, primary(u, 0, [], k))

returns the best k second-level queries for the original query.

7.3 Finding the Results of a Second-Level Query

The adapted version of algorithm primary returns a list of second-level queries
sorted by embedding cost. Using an algorithm secondary, each second-level
query must be executed against the data tree in order to find all approximate
results for the original query.

As a slight difference to the theoretical setting in Section 7.1, algorithm
primary does not return embedding images but “skeletons” of embedding im-
ages that do not represent the inserted nodes (because the cost of the nodes to
insert has been derived from the encoding of the schema). Fortunately, it is not
necessary to know the nodes inserted implicitly between two skeleton nodes u
and v since all pairs of instances of u and v have by definition the same distance
as u and v (see Section 7.1).

To find all instances of a schema node, we propose path dependent postings.
A path dependent posting is a sorted list that contains all node instances of
a certain schema node, represented as preorder-bound pairs. A secondary index
Isec maps the nodes of the schema to their postings. A key for Isec is constructed
by concatenating the preorder number of a node of a second-level query (which
represents a schema node) and the label of the query node: pre(u)#label(u).
Figure 5 shows a simple algorithm that finds all exact embeddings of a second-
level query (represented by eA) in a data tree.

7.4 An Incremental Algorithm for the Best-n-Pairs Problem

So far, we have seen how to find the best k second-level queries and how to find all
results for each second-level query. However, we are interested in the best n results
for a query. Unfortunately, there is no strong correlation between k and n; some
second-level queries may retrieve many results, some may not return any result
at all. Therefore, a good intial guess of k is cruical and k must be incremented
by δ if the first k second-level queries do not retrieve enough results. Fortunately,
the increase of k does not invalidate the previous results: The list LP returned by
algorithm primary for a certain k is a prefix of the list L′

P returned for a k′ > k.

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 529

function secondary(eA)
LA ← Isec(pre(eA)#label(eA))
foreach eD in pointers(eA) do

LD ← secondary(eD)
LT ← []
foreach data node u in LA do

if u has a descendant in LD then
add u to LT

LA ← LT

return LA

Fig. 5. The function finds all exact results
for a second-level query.

LR ← []; kprev ← 0
while |LR| < n do

LP ← sort(k, primary(u, 0, [], k))
erase the first kprev entries from LP

kprev ← k; k ← k + δ
foreach eP ∈ LP do

LS ← secondary(eP)
foreach data node u in LS do

if pre(u) is not in LR then
add (pre(u), embcost(eP)) to LR

Fig. 6. An incremental algorithm for the
best-n-pairs problem.

Our incremental algorithm, depicted in Figure 6, erases at each step the prefix
of all second-level queries that have already been evaluated.

Recall from Section 6 that the time complexity of all functions used by algo-
rithm primary is bound by O(s · l), where s is the selectivity and l is recursivity
of the data tree. In the following, we use the letters ss to denote the selectivity
in the schema and sd to denote the maximal number of instances of a node class.
The time complexity of the functions adapted in Section 7.2 rises by the factor
k2 · log k, which is the time needed to compute sorted segments of size k. There-
fore, the time needed to generate k second-level queries is O(n2 ·r ·ss ·l ·k2 · log k).
The evaluation time of k second-level queries is O(sd ·m), where m is the number
of nodes of a second-level query.

8 Experiments

In this section, we present selected (but typical) results of the experiments we
have carried out to evaluate the efficiency of our algorithms.

8.1 Test Settings

In order to have a high level of control over the characteristics of the data used
in our experiments, we employed the XML data generator described in [1]. We
varied several parameters of the generator (e.g., the number of elements per doc-
ument, the total number of terms, and the distribution of terms) and tested our
algorithms using the data created for those parameters. Here, we exemplarily
present the results of a single test series: We use a document collection that
consists of 1,000,000 elements, 100,000 terms, and 10,000,000 term occurrences
(words). There are 100 different element names so that on average 10, 000 ele-
ments share the same name. The words follow a Zipfian frequency distribution.

All queries used in our experiments are produced by a simple generator for
approXQL queries. The generator expects a query pattern that determines the
structure of the query. A query pattern consists of templates and operators.

530 Torsten Schlieder

The query generator produces approXQL queries by filling in the templates with
names and terms randomly selected from the indexes of the data tree. For each
produced query, the generator also creates a file that contains the insert costs,
the delete costs, and the renamings of the query selectors. The labels used for
renamings are selected randomly from the indexes. From the set of tested query
patterns we exemplarily choose three patterns that represent a “simple path
query”, a “small Boolean query”, and a “large Boolean query”, respectively:

query pattern 1 name[name[name[term]]]

query pattern 2 name[name[term and (term or term)]]

query pattern 3 name[name[name[term and term and (term or term)] or
name[name[term and term]]] and name]

For each query pattern and each collection, we created three sets of queries.
The sets differ in the number of renamings (0, 5, 10) per query label. Each set
contains 10 queries.

All tests have been carried out on a 450 MHz Pentium III with 256 MB
of memory, running Linux. Our system is implemented in C++ on top of the
Berkeley DB [4].

8.2 Test Results

Our tests results show that the schema-driven query evaluation is faster than
the direct evaluation if n, the number of results, is small. For some queries the
schema-based algorithm is faster even if all results are requested (n = ∞).

schema, no renaming
direct, no renaming

schema, 5 renamings
direct, 5 renamings

schema, 10 renaming
direct, 10 renamings

0.001

0.01

0.1

1

10

1 5 10 50 100 500

ev
al

ua
tio

n
tim

e
(in

 s
ec

on
ds

)

number of results

(a) Query pattern 1

0.01

0.1

1

10

1 5 10 50 100 500 1000

number of results

(b) Query pattern 2

0.1

1

10

100

1 5 10 50 100 500 1000

number of results

(c) Query pattern 3

Fig. 7. Evaluation times of the three query patterns.

Each diagram depicted in Figure 7 shows the evaluation time of a query pat-
tern with respect to different numbers of renamings per node and with respect to

Schema-Driven Evaluation of Approximate Tree-Pattern Queries 531

the schema-based algorithm (labeled “schema”) and the direct algorithm (“di-
rect”). Any point in the diagrams is the mean of the evaluation time of 10 queries
randomly generated for the same pattern. Note that the y-axis has logarithmic
scale. Figure 7(a) shows the evaluation time of the path query. The schema-
based query evaluation outperforms the direct evaluation in all cases – even if
no renamings are permitted. This is due to the facts that all second-level queries
generated by the algorithm primary have at least one embedding in the data
tree (each second-level query is a label-type path) and that the postings of the
secondary index are much shorter than the postings of Istruct and Itext. Fig-
ure 7(b) displays the evaluation times of the small Boolean query. The diagrams
show that the execution time of the schema-based algorithm rises slightly. The
reason is that some generated queries may find no results and thus, a larger k
must be chosen. However, for small values of n, the schema-based algorithm is
always faster than the algorithm for direct evaluation. The larger size of query
pattern 3 again increases the average execution times of the algorithms, particu-
larly if 10 renamings per node must be tested (see Figure 7(c)). For small values
of n and few renamings, however, the schema-driven algorithm is still fast and
outperforms the direct evaluation.

9 Conclusion

In this paper, we introduced an approach to find approximate results for tree-
pattern queries using cost-based query transformations. By adjusting the costs
of the transformations, our model can be adapted to different types of XML
documents. However, the development of domain-specific rules for choosing basic
transformation costs is a topic of future research.

We presented and compared two polynomial-time algorithms that retrieve
the best n results for a query. We have shown that the schema-driven query-
evaluation outperforms the direct evaluation if n is smaller than the total number
of results. A further advantage of the schema-based approach is the incremental
retrieval: Once the best k second-level queries have been generated, they can be
evaluated successively, and the results can be sent immediately to the user.

More details about the schema-driven evaluation of approXQL queries can be
found in the extended version [13] of this paper.

References

1. A. Aboulnaga, J.F. Naughton, and C. Zhang. Generating synthetic complex-
structured XML data. In Proceedings of WebDB’01, 2001.

2. A. Apostolico and Z. Galil, editors. Pattern Matching Algorithms, Chapter 14:
Approximate Tree Pattern Matching. Oxford University Press, 1997.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley Longman, 1999.

4. The Berkeley DB. Sleepycat Software Inc., 2000. http://www.sleepycat.com.
5. A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. SIG-
MOD Record, 29(1), 2000.

532 Torsten Schlieder

6. T.T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML documents.
In Proceedings of SIGIR, 2001.

7. N. Fuhr and K. Großjohann. XIRQL: A query language for information retrieval
in XML documents. In Proceedings of SIGIR, 2001.

8. R. Goldman and J. Widom. DataGuides: Enabling query formulation and opti-
mization in semistructured data. In Proceedings of VLDB, 1997.

9. T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to tree edit.
In Proceedings of Combinatorial Pattern Matching, 1994.

10. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, University of Helsinki, Finland, 1992.

11. J. Robie, J. Lapp, and D. Schach. XML query language (XQL), 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

12. T. Schlieder. ApproXQL: Design and implementation of an approximate pattern
matching language for XML. Report B 01-02, Freie Universität Berlin, 2001.

13. T. Schlieder. Schema-driven evaluation of ApproXQL queries. Report B 02-01,
Freie Universität Berlin, 2002.

14. K.-C. Tai. The tree-to-tree correction problem. Journal of the ACM, 26(3):422–
433, 1979.

15. A. Theobald and G. Weikum. Adding relevance to XML. In Proceedings of
WebDB’00, 2000.

16. K. Zhang. A new editing based distance between unordered labeled trees. In
Proceedings of Combinatorial Pattern Matching, 1993.

	1 Introduction
	2 Related Work
	3 The ApproXQL Query Language
	4 Modeling and Normalization of XML Documents
	5 Querying by Approximate Tree Embedding
	5.1 The Tree-Embedding Formalism
	5.2 Basic Query Transformations
	5.3 The Approximate Query-Matching Problem

	6 Direct Query Evaluation
	6.1 The Expanded Representation of a Query
	6.2 Encoding of the Data Tree
	6.3 Lists and List Entries
	6.4 Operations on Lists
	6.5 Finding the Best Root-Cost Pairs

	7 Schema-Driven Query Evaluation
	7.1 On the Relationship between a Data Tree and Its Schema
	7.2 Finding the Best k Second-Level Queries
	7.3 Finding the Results of a Second-Level Query
	7.4 An Incremental Algorithm for the Best-n-Pairs Problem

	8 Experiments
	8.1 Test Settings
	8.2 Test Results

	9 Conclusion
	References

