
Oracle9 i

Application Developer’s Guide - Advanced Queuing

Release 2 (9.2)

March 2002

Part No. A96587-01

Oracle9i Application Developer’s Guide - Advanced Queuing, Release 2 (9.2)

Part No. A96587-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Authors: D.K. Bradshaw, Bhagat Nainani, Kevin MacDowell, Den Raphaely

Contributing Authors: Neerja Bhatt, Brajesh Goyal, Shelley Higgins, Rajit Kambo, Anish Karmarkar,
Krishna Kunchithapadam, Vivek Maganty, Krishnan Meiyyappan, Shengsong Ni, Wei Wang

Contributors: Sashi Chandrasekaran, Dieter Gawlick, Mohan Kamath, Goran Olsson, Hilkka Outinen,
Madhu Reddy, Mary Rhodes, Ashok Saxena, Ekrem Soylemez, Alvin To, Rahim Yaseen

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, PL/SQL, Pro*C/C++, and
SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments .. xxiii

Preface ... xxv

Audience ... xxvi
Organization... xxvi
Related Documentation ... xxviii
Conventions.. xxix
Documentation Accessibility ... xxxiv

What’s New in Advanced Queuing? ... xxxvii

Oracle9i Release 2 (9.2.0) New Features .. xxxviii
Oracle9i (9.0.1) New Features in Advanced Queuing ... xxxviii
Oracle8i New Features in Advanced Queuing... xli

1 Introduction to Oracle Advanced Queuing

What Is Advanced Queuing?.. 1-2
Advanced Queuing in Integrated Application Environments .. 1-2
Interfaces to Advanced Queuing.. 1-3
Queuing System Requirements .. 1-4

General Features of Advanced Queuing .. 1-5
Point-to-Point and Publish-Subscribe Messaging.. 1-6
Oracle Internet Directory... 1-7
Oracle Enterprise Manager Integration... 1-7
Message Format Transformation ... 1-7
iii

SQL Access .. 1-8
Support for Statistics Views .. 1-9
Structured Payloads ... 1-9
Retention and Message History.. 1-9
Tracking and Event Journals... 1-9
Queue-Level Access Control... 1-10
Nonpersistent Queues.. 1-10
Support for Oracle9i Real Application Clusters... 1-10
XMLType Payloads .. 1-11
Internet Integration and Internet Data Access Presentation .. 1-11
Nonrepudiation and the AQ$<QueueTableName> View.. 1-14

Enqueue Features .. 1-14
Correlation Identifiers.. 1-15
Subscription and Recipient Lists .. 1-15
Priority and Ordering of Messages in Enqueuing ... 1-16
Message Grouping.. 1-16
Propagation ... 1-16
Sender Identification .. 1-17
Time Specification and Scheduling .. 1-17
Rule-Based Subscribers .. 1-17
Asynchronous Notification ... 1-17

Dequeue Features ... 1-18
Recipients ... 1-18
Navigation of Messages in Dequeuing.. 1-18
Modes of Dequeuing .. 1-18
Optimization of Waiting for the Arrival of Messages ... 1-18
Retries with Delays... 1-19
Optional Transaction Protection... 1-19
Exception Handling.. 1-19
Listen Capability (Wait on Multiple Queues)... 1-19
Dequeue Message Header with No Payload.. 1-19

Propagation Features .. 1-20
Automated Coordination of Enqueuing and Dequeuing... 1-20
Propagation of Messages with LOBs ... 1-20
Propagation Scheduling... 1-20
iv

Enhanced Propagation Scheduling Capabilities.. 1-20
Third-Party Support... 1-21

Elements of Advanced Queuing .. 1-21
Message.. 1-21
Queue ... 1-22
Queue Table... 1-22
Agent .. 1-22
Recipient .. 1-23
Recipient and Subscription Lists .. 1-23
Rule ... 1-24
Rule-Based Subscribers.. 1-24
Transformation ... 1-24
Queue Monitor.. 1-24

Java Message Service Terminology ... 1-25
Demos ... 1-25

2 Basic Components

Data Structures .. 2-2
Object Name (object_name) .. 2-2
Type Name (type_name) ... 2-2
Agent Type (aq$_agent)... 2-3
AQ Recipient List Type (aq$_recipient_list_t) ... 2-4
AQ Agent List Type (aq$_agent_list_t) ... 2-4
AQ Subscriber List Type (aq$_subscriber_list_t)... 2-4
AQ Registration Info List Type (aq$_reg_info_list)... 2-5
AQ Post Info List Type (aq$_post_info_list)... 2-5
AQ Registration Info Type .. 2-5
AQ Notification Descriptor Type... 2-7
AQ Post Info Type .. 2-8

Enumerated Constants in the Administrative Interface ... 2-8
Enumerated Constants in the Operational Interface ... 2-9
INIT.ORA Parameter File Considerations ... 2-9

AQ_TM_PROCESSES Parameter ... 2-10
JOB_QUEUE_PROCESSES Parameter .. 2-10
v

3 AQ Programmatic Environments

Programmatic Environments for Accessing AQ ... 3-2
Using PL/SQL to Access AQ ... 3-3
Using OCI to Access AQ.. 3-4

Examples .. 3-5
Using Visual Basic (OO4O) to Access AQ ... 3-5

For More Information... 3-6
Using AQ Java (oracle.AQ) Classes to Access AQ.. 3-6

Accessing Java AQ Classes.. 3-6
Advanced Queuing Examples .. 3-7
Managing the Java AQ API ... 3-8

Using Oracle Java Message Service to Access AQ ... 3-8
Standard JMS Features... 3-8
Oracle JMS Extensions ... 3-9
Accessing Standard and Oracle JMS.. 3-9
For More Information... 3-10

Using the AQ XML Servlet to Access AQ .. 3-11
Comparing AQ Programmatic Environments ... 3-12

AQ Administrative Interfaces... 3-12
AQ Operational Interfaces... 3-16

4 Managing AQ

Security 4-2
Administrator Role ... 4-2
User Role .. 4-2
Access to AQ Object Types.. 4-3

Oracle 8.1-Style Queues ... 4-3
Compatibility... 4-3
Security... 4-3
Privileges and Access Control .. 4-4
LNOCI Applications .. 4-5
Security Required for Propagation... 4-5

Queue Table Export-Import .. 4-5
Exporting Queue Table Data... 4-5
Importing Queue Table Data .. 4-7
vi

Creating AQ Administrators and Users ... 4-7
Oracle Enterprise Manager Support ... 4-8
Using Advanced Queuing with XA... 4-9
Restrictions on Queue Management... 4-9

Collection Types in Message Payloads.. 4-10
Synonyms on Queue Tables and Queues ... 4-10
Tablespace Point-in-Time Recovery .. 4-10
Nonpersistent Queues ... 4-10

Propagation Issues.. 4-11
Execute Privileges Required for Propagation... 4-11
The Number of Job Queue Processes .. 4-11
Optimizing Propagation.. 4-12
Propagation from Object Queues... 4-13
Guidelines for Debugging AQ Propagation Problems ... 4-13

Oracle 8.0-Style Queues... 4-14
Migrating To and From 8.0 ... 4-15
Importing and Exporting with 8.0-Style Queues... 4-16
Roles in 8.0 ... 4-16
Security with 8.0-Style Queues... 4-17
Access to AQ Object Types ... 4-17
LNOCI Application Access to 8.0-Style Queues .. 4-17
Pluggable Tablespaces and 8.0-Style Multiconsumer Queues... 4-17
Autocommit Features in the DBMS_AQADM Package ... 4-17

5 Performance and Scalability

Performance Overview .. 5-2
Advanced Queuing in the Oracle Real Application Clusters Environment........................ 5-2
Advanced Queuing in a Shared Server Environment... 5-2

Basic Tuning Tips... . 5-2
Running Enqueue and Dequeue Processes Concurrently—Single Queue Table 5-2
Running Enqueue and Dequeue Processes in Serial—Single Queue Table......................... 5-3

Propagation Tuning Tips ... 5-3

6 Frequently Asked Questions

General Questions .. 6-1
vii

Messaging Gateway Questions .. 6-6
Propagation Questions... 6-11
Transformation Questions... 6-13

JMS Questions ... 6-16
Internet Access Questions ... 6-17
Oracle Internet Directory Questions—Global Agents, Global Events, and Global
Queues .. 6-18
Transformation Questions... 6-19
Performance Questions.. 6-19
Installation Questions.. 6-20

7 Modeling and Design

Modeling Queue Entities .. 7-2
Basic Queuing.. 7-3
Basic Queuing Illustrated .. 7-3
AQ Client-Server Communication... 7-5
Multiconsumer Dequeuing of the Same Message ... 7-7
Dequeuing of Specified Messages by Specified Recipients .. 7-9
AQ Implementation of Workflows .. 7-11
AQ Implementation of Publish/Subscribe ... 7-12
Message Propagation ... 7-14
Propagation and Advanced Queuing.. 7-14

8 A Sample Application Using AQ

A Sample Application .. 8-2
General Features of Advanced Queuing .. 8-2

System-Level Access Control .. 8-2
Queue-Level Access Control... 8-4
Message Format Transformation.. 8-6
Structured Payloads ... 8-11
XMLType Queue Payloads ... 8-14
Nonpersistent Queues.. 8-17
Retention and Message History.. 8-27
Publish-Subscribe Support .. 8-28
Support for Oracle Real Application Clusters.. 8-30
viii

Support for Statistics Views .. 8-35
Internet Access .. 8-35

Enqueue Features.. 8-36
Subscriptions and Recipient Lists .. 8-36
Priority and Ordering of Messages.. 8-38
Time Specification: Delay .. 8-45
Time Specification: Expiration.. 8-48
Message Grouping ... 8-51
Message Transformation During Enqueue... 8-54
Enqueue Using the AQ XML Servlet ... 8-55

 Dequeue Features .. 8-58
Dequeue Methods... 8-58
Multiple Recipients .. 8-63
Local and Remote Recipients.. 8-64
Message Navigation in Dequeue ... 8-65
Modes of Dequeuing.. 8-69
Optimization of Waiting for Arrival of Messages ... 8-75
Retry with Delay Interval .. 8-77
Exception Handling.. 8-80
Rule-Based Subscription.. 8-86
Listen Capability... 8-90
Message Transformation During Dequeue .. 8-95
Dequeue Using the AQ XML Servlet... 8-97

Asynchronous Notifications ... 8-97
Registering for Notifications Using the AQ XML Servlet .. 8-105

Propagation Features.. 8-106
Propagation ... 8-107
Propagation Scheduling .. 8-108
Propagation of Messages with LOB Attributes.. 8-111
Enhanced Propagation Scheduling Capabilities.. 8-114
Exception Handling During Propagation... 8-116
Message Format Transformation During Propagation... 8-117
Propagation Using HTTP .. 8-118
ix

9 Administrative Interface

Use Case Model: Administrative Interface — Basic Operations ... 9-2
Creating a Queue Table ... 9-4
Creating a Queue Table [Set Storage Clause] .. 9-12
Altering a Queue Table .. 9-14
Dropping a Queue Table ... 9-17
Creating a Queue .. 9-20
Creating a Nonpersistent Queue ... 9-26
Altering a Queue ... 9-28
Dropping a Queue .. 9-31
Creating a Transformation .. 9-34
Modifying a Transformation .. 9-37
Applying a Transformation... 9-39
Dropping a Transformation .. 9-40
Starting a Queue.. 9-42
Stopping a Queue ... 9-45
Granting System Privilege .. 9-48
Revoking System Privilege ... 9-51
Granting Queue Privilege ... 9-53
Revoking Queue Privilege .. 9-55
Adding a Subscriber... 9-58
Altering a Subscriber ... 9-64
Removing a Subscriber .. 9-68
Scheduling a Queue Propagation .. 9-71
Unscheduling a Queue Propagation ... 9-75
Verifying a Queue Type ... 9-78
Altering a Propagation Schedule ... 9-81
Enabling a Propagation Schedule.. 9-84
Disabling a Propagation Schedule .. 9-87
Creating an AQ Agent.. 9-90
Altering an AQ Agent .. 9-92
Dropping an AQ Agent ... 9-94
Enabling Database Access... 9-96
Disabling Database Access ... 9-98
Adding an Alias to the LDAP Server .. 9-100
x

Removing an Alias from the LDAP Server.. 9-102

10 Administrative Interface: Views

Use Case Model: Administrative Interface—Views .. 10-2
Selecting All Queue Tables in Database .. 10-3
Selecting User Queue Tables .. 10-5
Selecting All Queues in Database ... 10-7
Selecting All Propagation Schedules .. 10-9
Selecting Queues for Which User Has Any Privilege ... 10-13
Selecting Queues for Which User Has Queue Privilege ... 10-15
Selecting Messages in Queue Table .. 10-17
Selecting Queue Tables in User Schema .. 10-21
Selecting Queues In User Schema... 10-23
Selecting Propagation Schedules in User Schema ... 10-25
Selecting Queue Subscribers.. 10-29
Selecting Queue Subscribers and Their Rules ... 10-31
Selecting the Number of Messages in Different States for the Whole Database 10-33
Selecting the Number of Messages in Different States for Specific Instances 10-35
Selecting the AQ Agents Registered for Internet Access.. 10-37
Selecting User Transformations ... 10-38
Selecting User Transformation Functions.. 10-39
Selecting All Transformations.. 10-39
Selecting All Transformation Functions .. 10-41

11 Operational Interface: Basic Operations

Use Case Model: Operational Interface — Basic Operations... 11-2
Enqueuing a Message .. 11-4
Enqueuing a Message [Specify Options] ... 11-6
Enqueuing a Message [Specify Message Properties] .. 11-9
Enqueuing a Message [Specify Message Properties [Specify Sender ID]] 11-12
Enqueuing a Message [Add Payload] ... 11-14
Listening to One or More Single-Consumer Queues .. 11-23
Listening to One or More Multiconsumer Queues .. 11-35
Dequeuing a Message .. 11-44
Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions] 11-47
xi

Dequeuing a Message from a Multiconsumer Queue [Specify Options] 11-52
Registering for Notification .. 11-55
Registering for Notification [Specifying Subscription Name—Single-Consumer
Queue] ... 11-58
Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]. 11-59
Posting for Subscriber Notification .. 11-66
Adding an Agent to the LDAP Server .. 11-69
Removing an Agent from the LDAP Server .. 11-71

12 Creating Applications Using JMS

A Sample Application Using JMS ... 12-2
General Features of JMS.. 12-2

J2EE Compliance... 12-3
JMS Connection and Session... 12-5
JMS Destinations - Queue and Topic ... 12-12
System-Level Access Control in JMS ... 12-16
Destination-Level Access Control in JMS.. 12-17
Retention and Message History in JMS ... 12-18
Supporting Oracle Real Application Clusters in JMS.. 12-19
Supporting Statistics Views in JMS.. 12-21
Structured Payload/Message Types in JMS ... 12-21
Payload Used by JMS Examples... 12-32

JMS Point-to-Point Model Features .. 12-38
Queues.. 12-38
Queue Sender .. 12-39
Queue Receiver ... 12-39
Queue Browser.. 12-42

JMS Publish-Subscribe Model Features .. 12-43
Topic ... 12-44
Durable Subscriber ... 12-45
Topic Publisher ... 12-48
Recipient Lists ... 12-50
TopicReceiver .. 12-51
Topic Browser.. 12-53

JMS Message Producer Features .. 12-56
xii

Priority and Ordering of Messages.. 12-56
Time Specification - Delay... 12-59
Time Specification - Expiration .. 12-60
Message Grouping ... 12-62

JMS Message Consumer Features ... 12-66
Receiving Messages.. 12-66
Message Navigation in Receive.. 12-69
Modes for Receiving Messages... 12-72
Retry With Delay Interval ... 12-74
Asynchronously Receiving Message Using Message Listener .. 12-76
AQ Exception Handling .. 12-80

JMS Propagation ... 12-83
Remote Subscribers .. 12-84
Scheduling Propagation .. 12-88
Enhanced Propagation Scheduling Capabilities.. 12-90
Exception Handling During Propagation... 12-92

Message Transformation with JMS AQ ... 12-93
Defining Message Transformations ... 12-93
Sending Messages to a Destination Using a Transformation .. 12-95
Receiving Messages from a Destination Using a Transformation 12-96
Specifying Transformations for Topic Subscribers.. 12-97
Specifying Transformations for Remote Subscribers .. 12-98

13 JMS Administrative Interface: Basic Operations

Use Case Model: JMS Administrative Interface — Basic Operations 13-2
Registering a Queue/Topic Connection Factory Through the Database
—with JDBC Connection Parameters ... 13-4
Registering a Queue/Topic Connection Factory Through the Database
—with a JDBC URL .. 13-6
Registering a Queue/Topic Connection Factory Through LDAP
—with JDBC Connection Parameters .. 13-8
Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL 13-11
Unregistering a Queue/Topic Connection Factory in LDAP Through the Database 13-13
Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP..................... 13-15
Getting a Queue Connection Factory with JDBC URL ... 13-17
xiii

Getting a Queue Connection Factory with JDBC Connection Parameters.......................... 13-19
Getting a Topic Connection Factory with JDBC URL ... 13-21
Getting a Topic Connection Factory with JDBC Connection Parameters 13-23
Getting a Queue/Topic Connection Factory in LDAP.. 13-25
Getting a Queue/Topic in LDAP .. 13-27
Creating a Queue Table ... 13-28
Creating a Queue Table [Specify Queue Table Property] ... 13-30
Getting a Queue Table ... 13-31
Specifying Destination Properties .. 13-33
Creating a Queue—Point-to-Point ... 13-35
Creating a Topic—Publish-Subscribe ... 13-37
Granting System Privileges .. 13-39
Revoking System Privileges ... 13-40
Granting Topic Privileges—Publish-Subscribe .. 13-42
Revoking Topic Privileges—Publish-Subscribe... 13-44
Granting Queue Privileges—Point-to-Point.. 13-46
Revoking Queue Privileges—Point-to-Point .. 13-48
Starting a Destination .. 13-50
Stopping a Destination .. 13-52
Altering a Destination.. 13-54
Dropping a Destination ... 13-56
Scheduling a Propagation ... 13-57
Enabling a Propagation Schedule.. 13-59
Altering a Propagation Schedule ... 13-61
Disabling a Propagation Schedule .. 13-63
Unscheduling a Propagation .. 13-64

14 JMS Operational Interface: Basic Operations (Point-to-Point)

Use Case Model: Operational Interface — Basic Operations... 14-2
Creating a Queue Connection with Username/Password ... 14-3
Creating a Queue Connection with an Open JDBC Connection... 14-4
Creating a Queue Connection with Default Connection Factory Parameters 14-6
Creating a Queue Connection with an Open OracleOCIConnection Pool 14-7
Creating a Queue Session ... 14-9
Creating a Queue Sender... 14-10
xiv

Sending a Message Using a Queue Sender with Default Send Options............................. 14-11
Sending Messages Using a Queue Sender by Specifying Send Options 14-13
Creating a Queue Browser for Queues with Text, Stream, Objects,
Bytes or Map Messages.. 14-15
Creating a Queue Browser for Queues with Text, Stream, Objects,
Bytes, Map Messages, Locking Messages .. 14-17
Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages............... 14-19
Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages,
Locking Messages While Browsing .. 14-21
Browsing Messages Using a Queue Browser .. 14-23
Creating a Queue Receiver for Queues of Standard JMS Type Messages 14-25
Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages 14-27
Creating a Queue Connection with an Open OracleOCIConnection Pool 14-29

15 JMS Operational Interface: Basic Operations (Publish-Subscribe)

Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe) 15-2
Creating a Topic Connection with Username/Password... 15-4
Creating a Topic Connection with Open JDBC Connection .. 15-5
Creating a Topic Connection with Default Connection Factory Parameters 15-7
Creating a Topic Connection with an Open OracleOCIConnectionPool 15-8
Creating a Topic Session.. 15-10
Creating a Topic Publisher .. 15-11
Publishing a Message Using a Topic Publisher—with Minimal Specification 15-12
Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay 15-15
Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live 15-18
Publishing a Message Using a Topic Publisher—Specifying a Recipient List
Overriding Topic Subscribers .. 15-21
Creating a Durable Subscriber for a JMS Topic without Selector .. 15-24
Creating a Durable Subscriber for a JMS Topic with Selector .. 15-26
Creating a Durable Subscriber for an ADT Topic without Selector..................................... 15-29
Creating a Durable Subscriber for an ADT Topic with Selector... 15-31
Creating a Remote Subscriber for Topics of JMS Messages .. 15-34
Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages 15-37
Unsubscribing a Durable Subscription for a Local Subscriber... 15-40
Unsubscribing a Durable Subscription for a Remote Subscriber .. 15-42
Creating a Topic Receiver for a Topic of Standard JMS Type Messages 15-44
xv

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages 15-46
Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes
or Map Messages... 15-48
Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes,
Map Messages, Locking Messages While Browsing ... 15-50
Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages 15-52
Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages,
Locking Messages While Browsing .. 15-55
Browsing Messages Using a Topic Browser .. 15-57

16 JMS Operational Interface: Basic Operations (Shared Interfaces)

Use Case Model: JMS Operational Interface — Basic Operations (Shared Interfaces) 16-2
Starting a JMS Connection.. 16-5
Getting the JMS Connection from a Session... 16-6
Committing All Operations in a Session ... 16-7
Rolling Back All Operations in a Session .. 16-8
Getting the Underlying JDBC Connection from a JMS Session ... 16-10
Getting the Underlying OracleOCIConnectionPool from a JMS Connection 16-11
Creating a Bytes Message .. 16-12
Creating a Map Message ... 16-13
Creating a Stream Message ... 16-15
Creating an Object Message ... 16-16
Creating a Text Message .. 16-17
Creating a JMS Message .. 16-19
Creating a JMS Message (Header Only)... 16-20
Creating an ADT Message .. 16-21
Specifying Message Correlation ID .. 16-23
Specifying JMS Message Property .. 16-25
Specifying JMS Message Property as Boolean ... 16-27
Specifying JMS Message Property as String ... 16-29
Specifying JMS Message Property as Int ... 16-31
Specifying JMS Message Property as Double... 16-33
Specifying JMS Message Property as Float ... 16-35
Specifying JMS Message Property as Byte .. 16-37
Specifying JMS Message Property as Long ... 16-39
xvi

Specifying JMS Message Property as Short .. 16-41
Specifying JMS Message Property as Object .. 16-43
Setting Default TimeToLive for All Messages Sent by a Message Producer...................... 16-45
Setting Default Priority for All Messages Sent by a Message Producer 16-46
Creating an AQjms Agent ... 16-48
Receiving a Message Synchronously Using a Message Consumer
by Specifying Timeout... 16-50
Receiving a Message Synchronously Using a Message Consumer Without Waiting 16-52
Specifying the Navigation Mode for Receiving Messages... 16-53
Specifying a Message Listener to Receive a Message Asynchronously
at the Message Consumer.. 16-55
Specifying a Message Listener to Receive a Message Asynchronously at the Session 16-58
Getting the Correlation ID of a Message ... 16-59
Getting the Message ID of a Message as Bytes... 16-60
Getting the Message ID of a Message as a String .. 16-61
Getting the JMS Message Property ... 16-63
Getting the JMS Message Property as a Boolean ... 16-64
Getting the JMS Message Property as a String ... 16-66
Getting the JMS Message Property as Int .. 16-68
Getting the JMS Message Property as Double ... 16-70
Getting the JMS Message Property as Float .. 16-71
Getting the JMS Message Property as Byte ... 16-73
Getting the JMS Message Property as Long .. 16-74
Getting the JMS Message Property as Short ... 16-76
Getting the JMS Message Property as Object ... 16-77
Closing a Message Producer ... 16-79
Closing a Message Consumer .. 16-80
Stopping a JMS Connection ... 16-81
Closing a JMS Session ... 16-82
Closing a JMS Connection .. 16-83
Getting the Error Code for the JMS Exception.. 16-84
Getting the Error Number for the JMS Exception.. 16-85
Getting the Error Message for the JMS Exception ... 16-86
Getting the Exception Linked to the JMS Exception ... 16-88
Printing the Stack Trace for the JMS Exception.. 16-89
Setting the Exception Listener.. 16-90
xvii

Getting the Exception Listener ... 16-91
Setting the Ping Period for the Exception Listener .. 16-93
Getting the Ping Period for the Exception Listener ... 16-94

17 Internet Access to Advanced Queuing

Overview of Advanced Queuing Operations Over the Internet ... 17-2
The Internet Data Access Presentation (IDAP) ... 17-3

SOAP Message Structure... 17-4
SOAP Method Invocation.. 17-5
IDAP Documents .. 17-6

SOAP and AQ XML Schemas... 17-33
The SOAP Schema .. 17-33
IDAP Schema... 17-35

Deploying the AQ XML Servlet... 17-48
Creating the AQ XML Servlet Class... 17-49
Compiling the AQ XML Servlet ... 17-50
User Authentication ... 17-51
User Authorization... 17-52
Using an LDAP Server with an AQ XML Servlet .. 17-54
Setup for Receiving AQ XML Requests Using SMTP (E-mail) .. 17-55

Using HTTP to Access the AQ XML Servlet ... 17-58
User Sessions and Transactions.. 17-62

Using HTTP and HTTPS for Advanced Queuing Propagation ... 17-62
High-Level Architecture .. 17-62

Using SMTP to Access the AQ Servlet ... 17-65
Customizing the AQ Servlet ... 17-65

Setting the Connection Pool Size .. 17-66
Setting the Session Timeout .. 17-66
Setting the Style Sheet for All Responses from the Servlet... 17-67
Callbacks Before and After AQ Operations.. 17-68

18 Messaging Gateway

Messaging Gateway Functionality .. 18-2
Messaging Gateway Architecture .. 18-3

Administration Package .. 18-3
xviii

Gateway Agent ... 18-5
Propagation Processing Overview... 18-5
Setting Up Messaging Gateway... 18-6

Oracle9i Database Prerequisites ... 18-6
Non-Oracle Messaging System Prerequisites... 18-6
Loading and Setup Tasks .. 18-6
Setup Verification ... 18-11
Unloading Messaging Gateway ... 18-12

Working with Messaging Gateway ... 18-12
Managing the Messaging Gateway Agent.. 18-13
Configuring Messaging Gateway Links.. 18-15
Registering Non-Oracle Messaging System Queues... 18-18
Configuring Propagation Jobs .. 18-20
Monitoring the Messaging Gateway Log File .. 18-26

Converting Messages ... 18-27
The Message Conversion Process .. 18-28
Messaging Gateway Canonical Types... 18-29
Message Conversion for Advanced Queuing .. 18-29
Message Conversion for MQSeries .. 18-32
Message Header Conversions .. 18-33
Using Header Properties: Examples .. 18-39
Using XML Message Propagation: Examples .. 18-40

The mgw.ora Initialization File.. 18-44
File Contents.. 18-45
Initialization Parameters.. 18-45
Environment Variables .. 18-46
Java Properties .. 18-48

A Oracle Advanced Queuing by Example

Creating Queue Tables and Queues.. A-4
Creating a Queue Table and Queue of Object Type.. A-4
Creating a Queue Table and Queue of Raw Type ... A-5
Creating a Prioritized Message Queue Table and Queue .. A-5
Creating a Multiconsumer Queue Table and Queue .. A-5
Creating a Queue to Demonstrate Propagation... A-6
xix

Setting Up Java AQ Examples .. A-6
Creating an Java AQ Session... A-7
Creating a Queue Table and Queue Using Java... A-8
Creating a Queue and Start Enqueue/Dequeue Using Java .. A-9
Creating a Multiconsumer Queue and Add Subscribers Using Java.................................... A-9

Enqueuing and Dequeuing Of Messages .. A-11
Enqueuing and Dequeuing of Object Type Messages Using PL/SQL A-11
Enqueuing and Dequeuing of Object Type Messages Using Pro*C/C++ A-12
Enqueuing and Dequeuing of Object Type Messages Using OCI....................................... A-14
Enqueuing and Dequeuing of Object Type Messages (CustomDatum interface)
Using Java A-16
Enqueuing and Dequeuing of Object Type Messages (using SQLData interface)
Using Java A-18
Enqueuing and Dequeuing of RAW Type Messages Using PL/SQL................................. A-21
Enqueuing and Dequeuing of RAW Type Messages Using Pro*C/C++........................... A-22
Enqueuing and Dequeuing of RAW Type Messages Using OCI .. A-25
Enqueue of RAW Messages using Java ... A-26
Dequeue of Messages Using Java... A-27
Dequeue of Messages in Browse Mode Using Java... A-28
Enqueuing and Dequeuing of Messages by Priority Using PL/SQL A-30
Enqueue of Messages with Priority Using Java ... A-32
Dequeue of Messages after Preview by Criterion Using PL/SQL A-33
Enqueuing and Dequeuing of Messages with Time Delay and Expiration
Using PL/SQL... A-37
Enqueuing and Dequeuing of Messages by Correlation and Message ID
Using Pro*C/C++ A-38
Enqueuing and Dequeuing of Messages by Correlation and Message ID Using OCI..... A-42
Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue
Using PL/SQL... A-44
Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue using OCI .. A-47
Enqueuing and Dequeuing of Messages Using Message Grouping Using PL/SQL A-51
Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using PL/SQL... A-53
Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java .. A-56

Propagation .. A-62
xx

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue
and Propagation Scheduling Using PL/SQL ... A-62
Managing Propagation From One Queue To Other Queues In The Same Database
Using PL/SQL... A-64
Manage Propagation From One Queue To Other Queues In Another Database
Using PL/SQL... A-64
Unscheduling Propagation Using PL/SQL.. A-65

Dropping AQ Objects .. A-66
Revoking Roles and Privileges .. A-67
Deploying AQ with XA ... A-68
AQ and Memory Usage ... A-72

Create_types.sql: Create Payload Types and Queues in Scott's Schema............................ A-72
Enqueuing Messages (Free Memory After Every Call) Using OCI A-72
Enqueuing Messages (Reuse Memory) Using OCI ... A-76
Dequeuing Messages (Free Memory After Every Call) Using OCI A-80
Dequeuing Messages (Reuse Memory) Using OCI ... A-84

B Oracle JMS Interfaces, Classes, and Exceptions

Oracle JMSClasses (part 1).. B-5
Oracle JMS Classes (part 2)... B-7
Oracle JMS Classes (part 3)... B-8
Oracle JMS Classes (part 4)... B-9
Oracle JMS Classes (part 5)... B-10
Oracle JMS Classes (part 6)... B-11
Oracle JMS Classes (part 6 continued) ... B-12
Oracle JMS Classes (part 7)... B-14
Oracle JMS Classes (part 8)... B-16
Oracle JMS Classes (part 9)... B-18
Oracle JMS Classes (part 10)... B-20
Oracle JMS Classes (part 10 continued) ... B-21
Interfaces, Classes, and Exceptions ... B-22

C Scripts for Implementing BooksOnLine

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers.......... C-2
tkaqdocd.sql: Examples of Administrative and Operational Interfaces................................ C-16
xxi

tkaqdoce.sql: Operational Examples .. C-21
tkaqdocp.sql: Examples of Operational Interfaces.. C-22
tkaqdocc.sql: Clean-Up Script ... C-37

D JMS and AQ XML Servlet Error Messages

JMS Error Messages.. D-2
AQ XML Servlet Error Messages .. D-15

E Unified Modeling Language Diagrams

Use Case Diagrams ... E-2
State Diagrams... E-7

Index
xxii

Send Us Your Comments

Oracle9 i Application Developer’s Guide - Advanced Queuing, Release 2 (9.2)

Part No. A96587-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

� Electronic mail: infodev_us@oracle.com
� FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
� Postal service:

Oracle Corporation
Server Technologies Documentation
500 Oracle Parkway, Mailstop 4op11
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xxiii

xxiv

Preface

This reference describes features of application development and integration using
Oracle Advanced Queuing. This information applies to versions of the Oracle
database server that run on all platforms, unless otherwise specified.

This preface contains these topics:

� Audience

� Organization

� Related Documentation

� Conventions

� Documentation Accessibility
xxv

Audience
Oracle9i Application Developer’s Guide - Advanced Queuing is intended for
programmers who develop applications that use Advanced Queuing.

Organization
This document contains:

Chapter 1, "Introduction to Oracle Advanced Queuing"
This chapter describes the requirements for optimal messaging systems.

Chapter 2, "Basic Components"
This chapter describes features of Advanced Queuing, including general, enqueue,
and dequeue features.

Chapter 3, "AQ Programmatic Environments"
This chapter describes the elements you need to work with and issues to consider in
preparing your AQ application environment.

Chapter 4, "Managing AQ"
This chapter discusses issues related to managing Advanced Queuing, such as
migrating queue tables (import-export), security, Oracle Enterprise Manager
support, protocols, sample DBA actions to prepare for working with Advanced
Queuing, and current restrictions.

Chapter 5, "Performance and Scalability"
This chapter discusses performance and scalability issues.

Chapter 6, "Frequently Asked Questions"
This chapter answers frequently asked questions.

Chapter 7, "Modeling and Design"
This chapter covers the fundamentals of Advanced Queueing modeling and design.

Chapter 8, "A Sample Application Using AQ"
This chapter considers the features of Advanced Queuing in the context of a sample
application.
xxvi

Chapter 9, "Administrative Interface"
This chapter describes the administrative interface to Advanced Queuing.

Chapter 10, "Administrative Interface: Views"
This chapter depicts views in the administrative interface using use cases and state
diagrams.

Chapter 11, "Operational Interface: Basic Operations"
This chapter describes the operational interface to Advanced Queuing in terms of
use cases.

Chapter 12, "Creating Applications Using JMS"
This chapter discusses the features of the Oracle JMS interface to Advanced
Queuing in the context of a sample application.

Chapter 13, "JMS Administrative Interface: Basic Operations"
This chapter depicts the administrative interface to Advanced Queuing using use
cases.

Chapter 14, "JMS Operational Interface: Basic Operations (Point-to-Point)"
This chapter describes point-to-point operations.

Chapter 15, "JMS Operational Interface: Basic Operations
(Publish-Subscribe)"
This chapter describes publish-subscribe operations.

Chapter 16, "JMS Operational Interface: Basic Operations (Shared Interfaces)"
This chapter describes shared interface operations.

Chapter 17, "Internet Access to Advanced Queuing"
This chapter describes how to perform AQ operations over the Internet by using
Simple Object Access Protocol (SOAP) and Internet Data Access Presentation
(IDAP), and transmitting messages over the Internet using transport protocols such
as HTTP or SMTP.

Chapter 18, "Messaging Gateway"
This chapter describes how AQ-based applications can communicate with
non-Oracle messaging systems using Messaging Gateway.
xxvii

Appendix A, "Oracle Advanced Queuing by Example"
This appendix provides examples of operations using different programmatic
environments.

Appendix B, "Oracle JMS Interfaces, Classes, and Exceptions"
This appendix provides a list of Oracle JMS interfaces, classes, and exceptions.

Appendix C, "Scripts for Implementing BooksOnLine"
This appendix contains scripts used in the BooksOnLine example.

Appendix D, "JMS and AQ XML Servlet Error Messages"
This appendix lists error messages.

Appendix E, "Unified Modeling Language Diagrams"
This appendix provides a brief explanation of use case diagrams and UML notation.

Related Documentation
For more information, see these Oracle resources:

� Oracle9i Application Developer’s Guide - Fundamentals

� PL/SQL User’s Guide and Reference

� Oracle9i Supplied Java Packages Reference

� Oracle9i Supplied PL/SQL Packages and Types Reference

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.
xxviii

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

� Conventions in Text

� Conventions in Code Examples

� Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xxix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xxx

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

� That we have omitted parts of the
code that are not directly related to
the example

� That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

.

.

.

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME =database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;
xxxi

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

Convention Meaning Example
xxxii

Special characters The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/ password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_NAMETNSListener

Convention Meaning Example
xxxiii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

� C:\orant for Windows NT

� C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn , where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example
xxxiv

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.
xxxv

xxxvi

What’s New in Advanced Queuing?

This section describes the new Advanced Queuing features of Oracle9i and
previous releases.

The following sections describe the new features in Oracle Advanced Queuing:

� Oracle9i Release 2 (9.2.0) New Features

� Oracle9i (9.0.1) New Features in Advanced Queuing

� Oracle8i New Features in Advanced Queuing
xxxvii

Oracle9 i Release 2 (9.2.0) New Features
� Oracle Messaging Gateway

The interaction between different messaging systems is a common integration
requirement. Messaging Gateway allows Advanced Queuing to propagate
messages to and from non-Oracle messaging systems. It allows secure,
transactional, and guaranteed one-time-only delivery of messages between
Oracle Advanced Queuing and IBM MQSeries v5.1 and v5.2. See Chapter 18,
"Messaging Gateway" for more information.

� Standard JMS Support

Oracle’s JMS implementation conforms to Sun Microsystems’ JMS 1.0.2b
standard. See "J2EE Compliance" on page 12-3.

� XMLType Payload Support

You no longer need to embed an XMLType attribute in an Oracle object type.
You can directly use an XMLType message as the message payload.

Oracle9 i (9.0.1) New Features in Advanced Queuing
Oracle9i introduces the following new Advanced Queuing features to improve
e-business integration and use standard Internet transport protocols:

� Internet Integration

To perform queuing operations over the Internet, Advanced Queuing takes
advantage of the Internet Data Access Presentation (IDAP), which defines
message structure using XML. Using IDAP, AQ operations such as enqueue,
dequeue, notification, and propagation can be executed using standard Internet
transport protocols—HTTP(S) and SMTP. Third-party clients, including
third-party messaging vendors, can also interoperate with AQ over the Internet
using Messaging Gateway.

IDAP messages can be requests, responses, or an error response. An IDAP
document sent from an AQ client contains an attribute for designating the
remote operation; that is, enqueue, dequeue, or register accompanied by
operational data. The AQ implementation of IDAP can also be used to execute
batched enqueue and dequeue of messages.

The HTTP and SMTP support in AQ is implemented by using the AQ servlet
which is bundled with the Oracle database server. A client invokes the servlet
through an HTTP post request that is sent to the Web server. The Web server
invokes the servlet mentioned in the post method if one is not already invoked.
xxxviii

The servlet parses the content of the IDAP document and uses the AQ Java API
to perform the designated operation. On completion of the call, the servlet
formats either a response or an error response as indicated by IDAP and sends
it back to the client.

IDAP is transport independent and therefore can work with other transport
protocols transparently. Oracle9i supports HTTP and SMTP; other proprietary
protocols can also be supported using the callout mechanism through
transformations.

� Advanced Queuing Security over the Internet

AQ functionality allows only authorized Internet users to perform AQ
operations on AQ queues. An Internet user connects to a Web server, which in
turn connects to the database using an application server. The Internet user
doing the operation is typically not the database user connected to the database.
Also, the AQ queues may not reside in the same schema as the connected
database user. Advanced Queuing uses proxy authentication so that only
authorized Internet users can perform AQ operations on AQ queues.

� LDAP Integration

OID Integration: To leverage LDAP as the single point for managing generic
information, Advanced Queuing is integrated with the Oracle Internet
Directory (OID) server. This addresses the following requirements:

� Global topics (queues): AQ queue information can be stored in an OID
server. OID provides a single point of contact to locate the required topic or
queue. Business applications (users) looking for specific information need
not know in which database the queue is located. Using the industry
standard Java Messaging Service (JMS) API, users can directly connect to
the queue without explicitly specifying the database or the location of the
topic or queue.

� Global events: OID can be used as the repository for event registration.
Clients can register for database events even when the database is down.
This allows clients to register for events such as “Database Open,” which
would not have been possible earlier. Clients can register for events in
multiple databases in a single request.

XML Integration: XML has emerged as a standard for e-business data
representations. The XMLType datatype has been added to the Oracle server to
support operations on XML data. AQ not only supports XMLType data type
payloads, but also allows definitions of subscriptions based on the contents of
an XML message. This is powerful functionality for online market places where
xxxix

multiple vendors can define their subscriptions based on the contents of the
orders.

� Transformation Infrastructure

Applications are designed independent of each other. So, the messages they
understand are different from each other. To integrate these applications,
messages have to be transformed. There are various existing solutions to handle
these transformations. AQ provides a transformation infrastructure that can be
used to plug in transformation functionality from Oracle Application
Interconnect or other third-party solutions such as Mercator without losing AQ
functionality. Transformations can be specified as PL/SQL call back functions,
which are applied at enqueue, dequeue, or propagation of messages. These
PL/SQL callback functions can call third-party functions implemented in C,
Java, or PL/SQL. XSLT transformations can also be specified for XML messages.

� AQ Management

You can use new and enhanced Oracle Enterprise Manager to manage
Advanced Queuing, as follows:

� Improved UI task flow and administration of queues, including a topology
display at the database level and at the queue level, error and propagation
schedules for all the queues in the database, and relevant initialization
parameters (init.ora)

� Ability to view the message queue

Oracle diagnostics and tuning pack supports alerts and monitoring of AQ
queues. Alerts can be sent when the number of messages for a particular
subscriber exceeds a threshold. Alerts can be sent when there is an error in
propagation. In addition, queues can be monitored for the number of messages
in ready state or the number of messages per subscriber.

� Additional Enhancements

PL/SQL notifications and e-mail notifications: Oracle9i allows notifications on
the queues to be PL/SQL functions. Using this functionality, users can register
PL/SQL functions that will be called when a message of interest is enqueued.
Using e-mail notification functionality, an e-mail address can be registered to
provide notifications. E-mail will be sent if the message of interest arrives in the
queue. Presentation of the e-mail message can also be specified while
registering for e-mail notification. Users can also specify an HTTP URL to
which notifications can be sent.
xl

Dequeue enhancements: Using the dequeue with a condition functionality,
subscribers can select messages that satisfy a specified condition from the
messages meant for them.

Overall performance improvements: AQ exhibits overall performance
improvements as a result of code optimization and other changes.

Propagation enhancements: The maximum number of job queue processes has
been increased from 36 to 1000 in Oracle9i. With Internet propagation, you can
set up propagation between queues over HTTP. Overall performance
improvements have been made in propagation due to design changes in the
propagation algorithm.

� JMS Enhancements

All the new Oracle9i features are supported through JMS, as well as the
following:

� Connection pooling: Using this feature, a pool of connection can be
established with the Oracle database server. Later, at the time of
establishing a JMS session, a connection from the pool can be picked up.

� Global topics: This is the result of the integration with Oracle Internet
Directory. AQ Queue information can be stored and looked up from OID.

� Topic browsing: Allows durable subscribers to browse through the
messages in a publish-subscribe (topic) destination, and optionally allows
these subscribers to purge the browsed messages (so that they are no longer
retained by AQ for that subscriber).

� Exception listener support: This allows a client to be asynchronously
notified of a problem. Some connections only consume messages, so they
have no other way to learn that their connection has failed.

Oracle8 i New Features in Advanced Queuing
The Oracle8i release included the following Advanced Queuing features:

� Queue-level access control

� Nonpersistent queues

� Support for Oracle Parallel Server

� Rule-based subscribers for publish-subscribe

� Asynchronous notification
xli

� Sender identification

� Listen capability (wait on multiple queues)

� Propagation of messages with LOBs

� Enhanced propagation scheduling

� Dequeuing message headers only

� Support for statistics views

� Java API (native AQ)

� Java Messaging Service (JMS) API

� Separate storage of history management information
xlii

Introduction to Oracle Advanced Qu
1

Introduction to Oracle Advanced Queuing

In this chapter, Oracle Advanced Queuing (AQ) and the requirements for complex
information handling in an integrated environment are discussed under the
following topics:

� What Is Advanced Queuing?

� General Features of Advanced Queuing

� Enqueue Features

� Dequeue Features

� Propagation Features

� Elements of Advanced Queuing

� Java Message Service Terminology

� Demos
euing 1-1

What Is Advanced Queuing?
What Is Advanced Queuing?
When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages.
Advanced Queuing provides database-integrated message queuing functionality.
Advanced Queuing leverages the functions of the Oracle database so that messages
can be stored persistently, propagated between queues on different machines and
databases, and transmitted using Oracle Net Services, HTTP(S), and SMTP.

Since Oracle Advanced Queuing is implemented in database tables, all the
operational benefits of high availability, scalability, and reliability are applicable to
queue data. Standard database features such as recovery, restart, and security are
supported in Advanced Queuing, and queue tables can be imported and exported.
Refer to Chapter 4, "Managing AQ" for more information. You can also use database
development and management tools such as Oracle Enterprise Manager to monitor
queues. Refer to "Oracle Enterprise Manager Support" on page 4-8.

Advanced Queuing in Integrated Application Environments
Advanced Queuing provides the message management functionality and
asynchronous communication needed for application integration. In an integrated
environment, messages travel between the Oracle database server and the
applications and users, as shown in Figure 1–1. Using Oracle Net Services,
messages are exchanged between a client and the Oracle database server or between
two Oracle databases. Oracle Net Services also propagates messages from one
Oracle queue to another. Or, as shown in Figure 1–1, you can perform Advanced
Queuing operations over the Internet using transport protocols such as HTTP,
HTTPS, or SMTP. In this case, the client, a user or Internet application, produces
structured XML messages. During propagation over the Internet, Oracle servers
communicate using structured XML also. Refer to Chapter 17, "Internet Access to
Advanced Queuing" for more information on Internet integration with Advanced
Queuing.

Application integration also involves the integration of heterogeneous messaging
systems. AQ seamlessly integrates with existing non-Oracle messaging systems like
IBM MQSeries through Messaging Gateway, thus allowing existing MQSeries-based
applications to be integrated into an Oracle AQ environment. Refer to Chapter 18,
"Messaging Gateway" for more information on AQ integration with non-Oracle
messaging systems.
1-2 Oracle9i Application Developer’s Guide - Advanced Queuing

What Is Advanced Queuing?
Figure 1–1 Integrated Application Environment Using Advanced Queuing

Interfaces to Advanced Queuing
You can access Advanced Queuing functionality through the following interfaces:

� PL/SQL using DBMS_AQ, DBMS_AQADM, and DBMS_AQELM. Refer to the
Oracle9i Supplied PL/SQL Packages and Types Reference.

� Visual Basic using Oracle Objects for OLE. Refer to the Online Help for Oracle
Objects for OLE.

� Java using the oracle.AQ Java package. Refer to the Oracle9i Supplied Java
Packages Reference.

� Java Message Service (JMS) using the oracle.jms Java package. Refer to the
Oracle9i Supplied Java Packages Reference.

� Internet access using HTTP, HTTPS, and SMTP

Internet Users

Advanced
queues

Internet Access

XML-Based Internet
Transport

(HTTP(s), SMTP)

Internet
Propagation

Internet
Propagation

(Oracle
Net)

OCI, PL/SQL,
Java clients

Global Agents,
Global Subscriptions,

Global Events

MQ Series

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Advanced
queues

Rules and
Transformations

Oracle
Introduction to Oracle Advanced Queuing 1-3

What Is Advanced Queuing?
Queuing System Requirements
Advanced Queuing meets queuing system requirements for performance,
scalability, and persistence. Refer to Chapter 5, "Performance and Scalability" for
more information.

Performance
Requests for service must be decoupled from supply of services to increase
efficiency and provide the infrastructure for complex scheduling. Advanced
Queuing exhibits high performance characteristics as measured by the following
metrics:

� Number of messages enqueued/dequeued per second

� Time to evaluate a complex query on a message warehouse

� Time to recover/restart the messaging process after a failure

Scalability
Queuing systems must be scalable. Advanced Queuing exhibits high performance
as the number of programs using the application increases, as the number of
messages increases, and as the size of the message warehouse increases.

Persistence for Security
Messages that constitute requests for service must be stored persistently, and
processed exactly once, for deferred execution to work correctly in the presence of
network, machine, and application failures. Advanced Queuing is able to meet
requirements in the following situations:

� Applications that do not have the resources to handle multiple unprocessed
messages arriving simultaneously from external clients or from programs
internal to the application.

� Communication links between databases that are not available all the time or
are reserved for other purposes. If the system falls short in its capacity to deal
with these messages immediately, the application must be able to store the
messages until they can be processed.

� Eternal clients or internal programs that are not ready to receive messages that
have been processed.
1-4 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
Persistence for Scheduling
Queuing systems need message persistence so they can deal with priorities:
messages arriving later may be of higher priority than messages arriving earlier;
messages arriving earlier may have to wait for messages arriving later before
actions are executed; the same message may have to be accessed by different
processes; and so on. Priorities also change. Messages in a specific queue can
become more important, and so need to be processed with less delay or interference
from messages in other queues. Similarly, messages sent to some destinations can
have a higher priority than others.

Persistence for Accessing and Analyzing Metadata
Message persistence is needed to preserve message metadata, which can be as
important as the payload data. For example, the time that a message is received or
dispatched can be a crucial for business and legal reasons. With the persistence
features of Advanced Queuing, you can analyze periods of greatest demand or
evaluate the lag between receiving and completing an order.

General Features of Advanced Queuing
The following general features are discussed:

� Point-to-Point and Publish-Subscribe Messaging

� Oracle Internet Directory

� Oracle Enterprise Manager Integration

� Message Format Transformation

� SQL Access

� Support for Statistics Views

� Structured Payloads

� Retention and Message History

� Tracking and Event Journals

� Queue-Level Access Control

� Nonpersistent Queues

� Support for Oracle9i Real Application Clusters

� XMLType Payloads
Introduction to Oracle Advanced Queuing 1-5

General Features of Advanced Queuing
� Internet Integration and Internet Data Access Presentation

Refer to Chapter 8, "A Sample Application Using AQ" for a hypothetical scenario in
which the messaging system for a hypothetical online bookseller, BooksOnLine, is
described. Many features discussed here are exemplified in the BooksOnLine
example.

Point-to-Point and Publish-Subscribe Messaging
A combination of features allows publish-subscribe messaging between
applications. These features include rule-based subscribers, message propagation,
the listen feature, and notification capabilities.

Advanced Queuing sends and receives messages in the following ways:

� Point-to-Point

� Publish-Subscribe

Point-to-Point
A point-to-point message is aimed at a specific target. Senders and receivers decide
on a common queue in which to exchange messages. Each message is consumed by
only one receiver. Figure 1–2 shows that each application has its own message
queue, known as a single-consumer queue.

Figure 1–2 Point-to-Point Messaging

Publish-Subscribe
A publish-subscribe message can be consumed by multiple receivers, as shown in
Figure 1–3. Publish-subscribe messaging has a wide dissemination
mode—broadcast—and a more narrowly aimed mode—multicast, also called
point-to-multipoint.

Broadcasting is the equivalent of a radio station not knowing exactly who the
audience is for a given program. The dequeuers are subscribers to multiconsumer

Oracle

Advanced
queues

Application Application
Dequeue

Enqueue

Dequeue

Enqueue
1-6 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
queues In contrast, multicast is the same as a magazine publisher who knows who
the subscribers are. Multicast is also referred to as point-to-multipoint because a
single publisher sends messages to multiple receivers, called recipients, who may
or may not be subscribers to the queues that serve as exchange mechanisms.

Figure 1–3 Publish-Subscribe Mode

Oracle Internet Directory
Oracle Internet Directory is a native LDAPv3 directory service built on the Oracle
database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for
many types of networked devices. You can look up enterprise-wide queuing
information—queues, subscriptions, and events—from one location, the Oracle
Internet Directory. Refer to the Oracle Internet Directory Administrator’s Guide for
more information.

Oracle Enterprise Manager Integration
You can use Enterprise Manager to do the following:

� Create and manage queues, queue tables, propagation schedules, and
transformations

� Monitor your AQ environment using the AQ topology at the databse and queue
levels, and by viewing queue errors and queue and session statistics. Refer to
"Oracle Enterprise Manager Support" on page 4-8.

Message Format Transformation
The message format transformation feature supports applications that use data in
different formats. A transformation defines a mapping from one Oracle data type to
another. The transformation is represented by a SQL function that takes the source
data type as input and returns an object of the target data type.

Oracle

Advanced
queues

Application

Application

Application

Application

Publish

Publish

Subscribe

Subscribe

Publish
Introduction to Oracle Advanced Queuing 1-7

General Features of Advanced Queuing
 A transformation can be specified as follows:

� During enqueue, to transform the message to the correct type before inserting it
into the queue.

You can convert a message to the payload type of the queue at enqueue time.
Thus, the type of the message to be enqueued need not match the payload type
of the queue.

� During dequeue, to receive the message in the desired format

A message can be transformed to the desired format before returning it to the
dequeuer.

� By a remote subscriber, who can choose to receive a message in a format
different from the format of the source queue

Before propagating the message to the remote subscriber, the message is
transformed according to the transformation that the remote subscriber
specified when subscribing to the queue.

 As Figure 1–4 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from
the Out queue of a CRM application is routed and transformed in the integration
hub and then propagated to the In queue of the Web application. The
transformation engine maps the message from the format of the Out queue to the
format of the In queue.

Figure 1–4 Transformations in Application Integration

Refer to "Message Format Transformation" on page 8-6 for more information.

SQL Access
Messages are placed in normal rows in a database table, and so can be queried
using standard SQL. This means that you can use SQL to access the message
properties, the message history, and the payload. With SQL access you can also do
auditing and tracking. All available SQL technology, such as indexes, can be used to
optimize access to messages.

Out Queue In QueueRouting and
Transformation

CRM
Application

Web
Application

Spoke Spoke

Propagation

Integration Hub
1-8 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
Support for Statistics Views
Basic statistics about queues are available using the GV$AQ view.

Structured Payloads
You can use object types to structure and manage message payloads. RDBMSs in
general have a richer typing system than messaging systems. Since Oracle is an
object-relational DBMS, it supports both traditional relational types as well as
user-defined types. Many powerful features are enabled as a result of having
strongly typed content, such as content whose format is defined by an external type
system. These include:

� Content-based routing: Advanced Queuing can examine the content and
automatically route the message to another queue based on the content.

� Content-based subscription: a publish and subscribe system is built on top of a
messaging system so that you can create subscriptions based on content.

� Querying: the ability to execute queries on the content of the message enables
message warehousing.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Structured Payloads" on page 8-11.

Retention and Message History
The systems administrator specifies the retention duration to retain messages after
consumption. Advanced Queuing stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and
retention for messages destined for local or remote receivers. The information
contains the enqueue and dequeue times and the identification of the transaction
that executed each request. This allows users to keep a history of relevant messages.
The history can be used for tracking, data warehouse, and data mining operations,
as well as specific auditing functions.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Retention and Message History on page 8-27.

Tracking and Event Journals
If messages are retained, they can be related to each other. For example, if a message
m2 is produced as a result of the consumption of message m1, m1 is related to m2.
This allows users to track sequences of related messages. These sequences represent
Introduction to Oracle Advanced Queuing 1-9

General Features of Advanced Queuing
event journals, which are often constructed by applications. Advanced Queuing is
designed to let applications create event journals automatically.

When an online order is placed, multiple messages are generated by the various
applications involved in processing the order. Advanced Queuing offers features to
track interrelated messages independent of the applications that generated them.
You can determine who enqueued and dequeued messages, who the users are, and
who did what operations.

With Advanced Queuing tracking features, you can use SQL SELECT and JOIN
statements to get order information from AQ$QUETABLENAME and the views ENQ_
TRAN_ID, DEQ_TRAN_ID, USER_DATA (the payload), CORR_ID, and MSG_ID. These
views contain the following data used for tracking:

� Transaction IDs—from ENQ_TRAN_ID and DEQ_TRAN_ID, captured during
enqueuing and dequeuing.

� Correlation IDs—from CORR_ID, part of the message properties

� Message content that can be used for tracking—USER_DATA

Queue-Level Access Control
The owner of an 8.1-style queue can grant or revoke queue-level privileges on the
queue. Database administrators can grant or revoke new AQ system-level privileges
to any database user. Database administrators can also make any database user an
AQ administrator.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Queue-Level Access Control" on page 8-4.

Nonpersistent Queues
Advanced Queuing can deliver nonpersistent messages asynchronously to
subscribers. These messages can be event-driven and do not persist beyond the
failure of the system (or instance). Advanced Queuing supports persistent and
nonpersistent messages with a common API.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Nonpersistent Queues" on page 8-17.

Support for Oracle9 i Real Application Clusters
An application can specify the instance affinity for a queue table. When Advanced
Queuing is used with Real Application Clusters and multiple instances, this
1-10 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
information is used to partition the queue tables between instances for
queue-monitor scheduling. The queue table is monitored by the queue monitors of
the instance specified by the user. If an instance affinity is not specified, the queue
tables is arbitrarily partitioned among the available instances. There can be pinging
between the application accessing the queue table and the queue monitor
monitoring it. Specifying the instance affinity does not prevent the application from
accessing the queue table and its queues from other instances.

This feature prevents pinging between queue monitors and Advanced Queuing
propagation jobs running in different instances. If compatibility is set to Oracle8i,
release 8.1.5 or higher, an instance affinity (primary and secondary) can be specified
for a queue table. When Advanced Queuing is used with Real Application Clusters
and multiple instances, this information is used to partition the queue tables
between instances for queue-monitor scheduling as well as for propagation. At any
time, the queue table is affiliated to one instance. In the absence of an explicitly
specified affinity, any available instance is made the owner of the queue table. If the
owner of the queue table is terminated, the secondary instance or some available
instance takes over the ownership for the queue table.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Support for Oracle Real Application Clusters" on page 8-30.

XMLType Payloads
You can create queues that use the new opaque type, XMLType. These queues can
be used to transmit and store messages that are XML documents. Using XMLType,
you can do the following:

� Store any type of message in a queue

� Store documents internally as CLOBs

� Store more than one type of payload in a queue

� Query XMLType columns using the operators ExistsNode() and
SchemaMatch()

� Specify the operators in subscriber rules or dequeue conditions

Internet Integration and Internet Data Access Presentation
You can access AQ over the Internet by using Simple Object Access Protocol
(SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for AQ
operations. IDAP defines the XML message structure for the body of the SOAP
request. An IDAP-structured message is transmitted over the Internet using
Introduction to Oracle Advanced Queuing 1-11

General Features of Advanced Queuing
transport protocols such as HTTP or SMTP. Refer to "Propagation over the Internet:
HTTP and SMTP" on page 1-12 and Chapter 17, "Internet Access to Advanced
Queuing" for more information.

Propagation over the Internet: HTTP and SMTP
Figure 1–5 shows the architecture for performing AQ operations over HTTP. The
major components are:

� The AQ client program

� The Web server/ServletRunner hosting the AQ servlet

� The Oracle database server

The AQ client program sends XML messages (conforming to IDAP) to the AQ
servlet, which understands the XML message and performs AQ operations. Any
HTTP client, for example Web browsers, can be used. The Web
server/ServletRunner hosting the AQ servlet interprets the incoming XML
messages. Examples include Apache/Jserv or Tomcat. The AQ servlet connects to
the Oracle database server and performs operations on the users’ queues.

Figure 1–5 Architecture for Performing AQ Operations Using HTTP

Figure 1–6 shows additional components in the architecture for sending AQ
messages over SMTP:

� E-mail server

� LDAP server (Oracle Internet Directory)

The e-mail server verifies client signatures using certificates stored in LDAP and
then routes the request to the AQ servlet.

AQ
Queue

Web
Server

AQ Client

Oracle9 i
Server

AQ Servlet

XML Message
over HTTP
1-12 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
Figure 1–6 Architecture for Performing AQ Operations Using SMTP

The Internet Data Access Presentation (IDAP)
The Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml
to specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

� All request and response tags are scoped in the SOAP namespace.

� AQ operations are scoped in the IDAP namespace.

� The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

� The receiver processes IDAP messages that have correct namespaces; for the
requests with incorrect namespaces, the receiver returns an invalid request
error.

� The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

� The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

AQ
Queue

Web
Server

AQ Client

Oracle9 i
Server

AQ Servlet

Oracle
Email
Server

LDAP
Server

XML Message
over SMTP
Introduction to Oracle Advanced Queuing 1-13

Enqueue Features
Refer to Chapter 17, "Internet Access to Advanced Queuing" for more information
about IDAP.

Nonrepudiation and the AQ$<QueueTableName> View
Advanced Queuing maintains the entire history of information about a message
along with the message itself. You can look up history information by using the
AQ$<QueueTableName> view. This information serves as the proof of sending and
receiving of messages and can be used for nonrepudiation of the sender and
nonrepudiation of the receiver. Refer to Chapter 10, "Administrative Interface:
Views" for more information about the AQ$<QueueTableName> view.

The following information is kept at enqueue for nonrepudiation of the enqueuer:

� AQ agent doing the enqueue

� Database user doing the enqueue

� Enqueue time

� Transaction ID of the transaction doing the enqueue

The following information is kept at dequeue for nonrepudiation of the dequeuer:

� AQ agent doing dequeue

� Database user doing dequeue

� Dequeue time

� Transaction ID of the transaction doing dequeue

After propagation, the Original_Msgid field in the destination queue of
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for nonrepudiation of the
dequeuer of propagated messages.

 Stronger nonrepudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature
of the dequeuer at the time of dequeue.

Enqueue Features
The following features apply to enqueuing messages.
1-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
Correlation Identifiers
Users can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Subscription and Recipient Lists
A single message can be designed to be consumed by multiple consumers. A queue
administrator can specify the list of subscribers who can retrieve messages from a
queue. Different queues can have different subscribers, and a consumer program
can be a subscriber to more than one queue. Further, specific messages in a queue
can be directed toward specific recipients who may or may not be subscribers to the
queue, thereby overriding the subscriber list.

You can design a single message for consumption by multiple consumers in a
number of different ways. The consumers who are allowed to retrieve the message
are specified as explicit recipients of the message by the user or application that
enqueues the message. Every explicit recipient is an agent identified by name,
address, and protocol.

A queue administrator may also specify a default list of recipients who can retrieve
all the messages from a specific queue. These implicit recipients become subscribers
to the queue by being specified in the default list. If a message is enqueued without
specifying any explicit recipients, the message is delivered to all the designated
subscribers.

A rule-based subscriber is one that has a rule associated with it in the default
recipient list. A rule-based subscriber will be sent a message with no explicit
recipients specified only if the associated rule evaluated to TRUE for the message.
Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

A recipient may be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It may
be specified by its name and an address with a protocol value of 0. The address
should be the name of another queue in the same database or another Oracle
database (identified by the database link), in which case the message is propagated
to the specified queue and can be dequeued by a consumer with the specified name.
If the recipient’s name is NULL, the message is propagated to the specified queue in
the address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, the name and address are not interpreted
by the system and the message can be dequeued by a special consumer. To see this
Introduction to Oracle Advanced Queuing 1-15

Enqueue Features
feature applied in the context of the BooksOnLine scenario, refer to "Elements of
Advanced Queuing" on page 1-21.

Priority and Ordering of Messages in Enqueuing
It is possible to specify the priority of the enqueued message. An enqueued message
can also have its exact position in the queue specified. This means that users have
three options to specify the order in which messages are consumed: (a) a sort order
specifies which properties are used to order all message in a queue; (b) a priority
can be assigned to each message; (c) a sequence deviation allows you to position a
message in relation to other messages. Further, if several consumers act on the same
queue, a consumer will get the first message that is available for immediate
consumption. A message that is in the process of being consumed by another
consumer will be skipped.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Priority and Ordering of Messages" on page 8-38.

Message Grouping
Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group have
to be created in the same transaction and all messages created in one transaction
belong to the same group. This feature allows users to segment complex messages
into simple messages; for example, messages directed to a queue containing
invoices can be constructed as a group of messages starting with the header
message, followed by messages representing details, followed by the trailer
message.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Message Grouping" on page 8-51.

Propagation
This feature enables applications to communicate with each other without having to
be connected to the same database or the same queue. Messages can be propagated
from one Oracle AQ to another, irrespective of whether the queues are local or
remote. Propagation is done using database links and Oracle Net Services.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Propagation" on page 8-107.
1-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
Sender Identification
Applications can mark the messages they send with a custom identification. Oracle
also automatically identifies the queue from which a message was dequeued. This
allows applications to track the pathway of a propagated message or a string
messages within the same database.

Time Specification and Scheduling
Delay interval or expiration intervals can be specified for an enqueued message,
thereby providing windows of execution. A message can be marked as available for
processing only after a specified time elapses (a delay time) and has to be consumed
before a specified time limit expires.

Rule-Based Subscribers
A message can be delivered to multiple recipients based on message properties or
message content. Users define a rule-based subscription for a given queue as the
mechanism to specify interest in receiving messages of interest. Rules can be
specified based on message properties and message data (for object and raw
payloads). Subscriber rules are then used to evaluate recipients for message
delivery.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Rule-Based Subscription" on page 8-86.

Asynchronous Notification
The asynchronous notification feature allows clients to receive notification of a
message of interest. The client can use it to monitor multiple subscriptions. The
client does not have to be connected to the database to receive notifications
regarding its subscriptions.

Clients can use the OCI function, LNOCISubcriptionRegister , or the PL/SQL
procedure DBMS_AQ.REGISTER to register interest in messages in a queue. Refer to
"Registering for Notification" in Chapter 11, "Operational Interface: Basic
Operations" for more information.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Asynchronous Notifications" on page 8-97.
Introduction to Oracle Advanced Queuing 1-17

Dequeue Features
Dequeue Features
The following features apply to dequeuing messages.

Recipients
A message can be retrieved by multiple recipients without the need for multiple
copies of the same message. To see this feature applied in the context of the
BooksOnLine scenario, refer to "Multiple Recipients" on page 8-63.

Designated recipients can be located locally or at remote sites. To see this feature
applied in the context of the BooksOnLine scenario, refer to "Local and Remote
Recipients" on page 8-64.

Navigation of Messages in Dequeuing
Users have several options to select a message from a queue. They can select the
first message or once they have selected a message and established a position, they
can retrieve the next. The selection is influenced by the ordering or can be limited
by specifying a correlation identifier. Users can also retrieve a specific message
using the message identifier.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Message Navigation in Dequeue" on page 8-65.

Modes of Dequeuing
A DEQUEUE request can either browse or remove a message. If a message is
browsed, it remains available for further processing. If a message is removed, it is
not available more for DEQUEUE requests. Depending on the queue properties, a
removed message may be retained in the queue table.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Modes of Dequeuing" on page 8-69.

Optimization of Waiting for the Arrival of Messages
A DEQUEUE can be issued against an empty queue. To avoid polling for the arrival
of a new message, a user can specify if and for how long the request is allowed to
wait for the arrival of a message.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Optimization of Waiting for Arrival of Messages" on page 8-75.
1-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
Retries with Delays
A message must be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, the message will be made available for
reprocessing after some user-specified delay elapses. Reprocessing will be
attempted up to the user-specified limit.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Retry with Delay Interval" on page 8-77.

Optional Transaction Protection
ENQUEUE and DEQUEUE requests are normally part of a transaction that contains the
requests, thereby providing the desired transactional behavior. You can, however,
specify that a specific request is a transaction by itself, making the result of that
request immediately visible to other transactions. This means that messages can be
made visible to the external world as soon as the ENQUEUE or DEQUEUE statement is
issued or after the transaction is committed.

Exception Handling
A message may not be consumed within given constraints, such as within the
window of execution or within the limits of the retries. If such a condition arises, the
message will be moved to a user-specified exception queue.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Exception Handling" on page 8-80.

Listen Capability (Wait on Multiple Queues)
The listen call is a blocking call that can be used to wait for messages on multiple
queues. It can be used by a gateway application to monitor a set of queues. An
application can also use it to wait for messages on a list of subscriptions. If the listen
returns successfully, a dequeue must be used to retrieve the message.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Listen Capability" on page 8-90.

Dequeue Message Header with No Payload
The dequeue mode REMOVE_NODATA can be used to remove a message from a
queue without retrieving the payload. Use this mode to delete a message with a
large payload whose content is irrelevant.
Introduction to Oracle Advanced Queuing 1-19

Propagation Features
Propagation Features
The following features apply to propagating messages. Refer to "Internet
Integration and Internet Data Access Presentation" on page 1-11 for information on
propagation over the Internet.

Automated Coordination of Enqueuing and Dequeuing
Recipients can be local or remote. Because Oracle does not support distributed
object types, remote enqueuing or dequeuing using a standard database link does
not work. However, you can use AQ message propagation to enqueue to a remote
queue. For example, you can connect to database X and enqueue the message in a
queue, DROPBOX, located in database X. You can configure AQ so that all messages
enqueued in DROPBOX will be automatically propagated to another queue in
database Y, regardless of whether database Y is local or remote. AQ will
automatically check if the type of the remote queue in database Y is structurally
equivalent to the type of the local queue in database X and propagate the message.

Recipients of propagated messages can be applications or queues. If the recipient is
a queue, the actual recipients are determined by the subscription list associated with
the recipient queue. If the queues are remote, messages are propagated using the
specified database link. Only AQ-to-AQ message propagation is supported.

Propagation of Messages with LOBs
Propagation handles payloads with LOB attributes. To see this feature applied in the
context of the BooksOnLine scenario, refer to "Propagation of Messages with LOB
Attributes" on page 8-111.

Propagation Scheduling
Messages can be scheduled to propagate from a queue to local or remote
destinations. Administrators can specify the start time, the propagation window,
and a function to determine the next propagation window (for periodic schedules).

Enhanced Propagation Scheduling Capabilities
Detailed run-time information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULES view for each propagation schedule. This information can
be used by queue designers and administrators to fix problems or tune
performance. For example, available statistics about the total and average number
of message/bytes propagated can be used to tune schedules. Similarly, errors
1-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Elements of Advanced Queuing
reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation, and the process name of the job queue process handling the
propagation.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Enhanced Propagation Scheduling Capabilities" on page 8-114.

Third-Party Support
AQ allows messages to be enqueued in queues that can then be propagated to
different messaging systems by third-party propagators. If the protocol number for
a recipient is in the range 128 - 255, the address of the recipient is not interpreted by
AQ and so the message is not propagated by the AQ system. Instead, a third-party
propagator can then dequeue the message by specifying a reserved consumer name
in the dequeue operation. The reserved consumer names are of the form AQ$_P#,
where # is the protocol number in the range 128–255. For example, the consumer
name AQ$_P128 can be used to dequeue messages for recipients with protocol
number 128. The list of recipients for a message with the specific protocol number is
returned in the recipient_list message property on dequeue.

Another way for Advanced Queuing to propagate messages to and from third-party
messaging systems is through Messaging Gateway, an Enterprise Edition feature of
Advanced Queuing. Messaging Gateway dequeues messages from an AQ queue
and guarantees delivery to a third-party messaging system like MQSeries.
Messaging Gateway can also dequeue messages from third-party messaging
systems and enqueue them to an AQ queue. Refer to Chapter 18, "Messaging
Gateway" for more information.

Elements of Advanced Queuing
By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is possible. This section defines a
number of Advanced Queuing terms.

Message
A message is the smallest unit of information inserted into and retrieved from a
queue. A message consists of the following:

� Control information (metadata)

� Payload (data)
Introduction to Oracle Advanced Queuing 1-21

Elements of Advanced Queuing
The control information represents message properties used by AQ to manage
messages. The payload data is the information stored in the queue and is
transparent to Oracle AQ. A message can reside in only one queue. A message is
created by the enqueue call and consumed by the dequeue call.

Queue
A queue is a repository for messages. There are two types of queues: user queues,
also known as normal queues, and exception queues. The user queue is for normal
message processing. Messages are transferred to an exception queue if they cannot
be retrieved and processed for some reason. Queues can be created, altered, started,
stopped, and dropped by using the Oracle AQ administrative interfaces. Refer to
Chapter 9, "Administrative Interface" for more information.

User queues can be persistent (the default) or nonpersistent queues. Persistent
queues store messages in database tables. These queues provide all the reliability
and availability features of database tables. Nonpersistent queues store messages in
memory. They are generally used to provide an asynchronous mechanism to send
notifications to all users that are currently connected.

Queue Table
Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Each queue table contains a default exception queue.
Figure 7–1, "Basic Queues" on page 7-2 shows the relationship between messages,
queues, and queue tables.

Agent
An agent is a queue user. This can be an end user or an application. There are two
types of agents:

� Producers who place messages in a queue (enqueuing)

� Consumers who retrieve messages (dequeuing)

Any number of producers and consumers may be accessing the queue at a given
time. Agents insert messages into a queue and retrieve messages from the queue by
using the Oracle AQ operational interfaces. Refer to Chapter 11, "Operational
Interface: Basic Operations" for more information.

An agent is identified by its name, address and protocol. Refer to "Agent Type
(aq$_agent)" on page 2-3 in Chapter 2, "Basic Components" for a formal description
of this data structure.
1-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Elements of Advanced Queuing
� The name of the agent may be the name of the application or a name assigned
by the application. A queue may itself be an agent—enqueuing or dequeuing
from another queue.

� The address field is a character field of up to 1024 bytes that is interpreted in the
context of the protocol. For instance, the default value for the protocol is 0,
signifying a database link addressing. In this case, the address for this protocol
is of the form

queue_name@dblink

where queue_name is of the form [schema.]queue and dblink may either
be a fully qualified database link name or the database link name without the
domain name.

Recipient
The recipient of a message may be specified by its name only, in which case the
recipient must dequeue the message from the queue in which the message was
enqueued. The recipient may be specified by name and an address with a protocol
value of 0. The address should be the name of another queue in the same database
or another Oracle database (identified by the database link) in which case the
message is propagated to the specified queue and can be dequeued by a consumer
with the specified name. If the recipient's name is NULL, the message is propagated
to the specified queue in the address and can be dequeued by the subscribers of the
queue specified in the address. If the protocol field is nonzero, the name and
address are not interpreted by the system and the message can be dequeued by a
special consumer (refer to "Third-Party Support" on page 1-21).

Recipient and Subscription Lists
Multiple consumers can consume a single message:

� The enqueuer can explicitly specify the consumers who may retrieve the
message as recipients of the message. A recipient is an agent identified by a
name, address, and protocol.

� A queue administrator can specify a default list of recipients who can
retrieve messages from a queue. The recipients specified in the default list
are known as subscribers. If a message is enqueued without specifying the
recipients, the message is sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
Introduction to Oracle Advanced Queuing 1-23

Elements of Advanced Queuing
directed toward specific recipients who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

Rule
A rule is used to define one or more subscribers’ interest in subscribing to messages
that conform to that rule. The messages that meet the rule criterion are delivered to
the interested subscribers. A rule is specified as a boolean expression (one that
evaluates to true or false) using syntax similar to the WHERE clause of a SQL query.
The boolean expression can include conditions on the following:

� Message properties (currently priority and correlation identifier)

� User data properties (object payloads only)

� Functions (as specified in the WHERE clause of a SQL query)

Rule-Based Subscribers
A rule-based subscriber is a subscriber with associated rules in the default recipient
list. If an associated rule evaluates to TRUE for a message, the message is sent to the
rule-based subscriber even if the message has no specified recipients.

Transformation
A transformation defines a mapping from one Oracle data type to another. The
transformation is represented by a SQL function that takes the source data type as
input and returns an object of the target data type. A transformation can be
specified during enqueue, to transform the message to the correct type before
inserting it into the queue. It can be specified during dequeue to receive the
message in the desired format. If specified with a remote subscriber, the message
will be transformed before propagating it to the destination queue.

Queue Monitor
The queue monitor (QMNn) is a background process that monitors messages in
queues. It provides the mechanism for message delay, expiration, and retry delay.
The QMNn also performs garbage collection for the queue table and its indexes and
index-organized tables (IOTs). For example, the QMNn determines when all
subscribers of multiconsumer queues have received a message and subsequently
removes the message from the queue table and supporting indexes and IOTs.
1-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Demos
You can start a maximum of 10 multiple queue monitors at the same time. You start
the queue monitors by setting the dynamic init.ora parameter aq_tm_
processes . The queue monitor wakes up every minute, or whenever there is work
to do, for instance, if a message is marked expired or ready to be processed.

Java Message Service Terminology
When using the oracle.jms Java package, keep in mind the following:

� The JMS equivalent of enqueue is send.

� The destination of messages is a queue, without any qualification.

� The container of messages is a topic, and each application can publish on or
subscribe to a given topic.

� Topic in JMS maps to a multiconsumer queue in the other AQ interfaces.

� The Java package oracle.jms has classes and interfaces to implement Oracle
extensions to the public JMS standard.

Demos
The following demos can be found in the $ORACLE_HOME/rdbms/demo directory.
Refer to aqxmlreadme.txt and aqjmsreadme.txt in the demo directory for
more information.

Table 1–1 Demos

Demo and Locations Topic

aqjmsdemo01.java Enqueue text messages and dequeue based on
message properties

aqjmsdemo02.java Message Listener demo

aqjmsdemo03.java Message Listener demo

aqjmsdemo04.java Oracle Type Payload - Dequeue on payload
content

aqjmsdemo05.java Example of the queue browser

aqjmsdemo06.java Schedule propagation between queues in the
database

aqjmsdmo.sql Set up AQ JMS demos
Introduction to Oracle Advanced Queuing 1-25

Demos
aqjmsREADME.txt Describe the AQ Java API and JMS demos

aqorademo01.java Enqueue and dequeue RAW messages

aqorademo02.java Enqueue and dequeue object type messages
using the Custom Datum interface

aqoradmo.sql Setup file for AQ java API demos

aqxml01.xml AQXmlSend—Enqueue to ADT single-
consumer queue with piggyback commit

aqxml02.xml AQXmlReceive—Dequeue from ADT
single-consumer queue with piggyback commit

aqxml03.xml AQXmlPublish—Enqueue to ADT (with LOB)
multiconsumer queue

aqxml04.xml AQXmlReceive—Dequeue from ADT multi-
consumer queue

aqxml05.xml AQXmlCommit—Commit previous operation

aqxml06.xml AQXmlSend—Enqueue to JMS Text
single-consumer queue with piggyback commit

aqxml07.xml AQXmlReceive—Dequeue from JMS Text
single-consumer queue with piggyback commit

aqxml08.xml AQXmlPublish—Enqueue JMS MAP message
with recipient into multiconsumer queue

aqxml09.xml AQXmlReceive—Dequeue JMS MAP message
from multiconsumer queue

aqxml10.xml AQXmlRollback—Roll back previous operation

aqxmlhtp.sql HTTP Propagation

AQDemoServlet.java Servlet to post AQ XML files (for Jserv)

AQPropServlet.java Servlet for AQ HTTPpropagation

newaqdemo00.sql Create users, message types, tables, and so on

newaqdemo01.sql Set up queue_tables, queues, subscribers and
set up

newaqdemo02.sql Enqueue messages

newaqdemo03.sql Install dequeue procedures

Table 1–1 Demos

Demo and Locations Topic
1-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Demos
newaqdemo04.sql Perform blocking dequeue

newaqdemo05.sql Perform listen for multiple agents

newaqdemo06.sql Clean up users, queue_tables, queues,
subscribers (cleanup script)

ociaqdemo00.c Enqueue messages

ociaqdemo01.c Perform blocking dequeue

ociaqdemo02.c Perform listen for multiple agents

Table 1–1 Demos

Demo and Locations Topic
Introduction to Oracle Advanced Queuing 1-27

Demos
1-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Basic Compo
2

Basic Components

The following basic components are discussed in this chapter:

� Data Structures

� Enumerated Constants in the Administrative Interface

� Enumerated Constants in the Operational Interface

� INIT.ORA Parameter File Considerations
nents 2-1

Data Structures
Data Structures
The following chapters discuss the Advanced Queuing administrative and
operational interfaces in which data structures are used:

� Chapter 9, "Administrative Interface"

� Chapter 11, "Operational Interface: Basic Operations"

Object Name (object_name)

Purpose
To name database objects. This naming convention applies to queues, queue tables,
and object types.

Syntax
object_name := VARCHAR2
object_name := [<schema_name>.]<name>

Usage
Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, then the current schema is assumed. The name must
follow the reserved character guidelines in the Oracle9i SQL Reference. The schema
name, agent name, and the object type name can each be up to 30 bytes long.
However, queue names and queue table names can be a maximum of 24 bytes.

Type Name (type_name)

Purpose
To define queue types.

Syntax
type_name := VARCHAR2
type_name := <object_type> | "RAW"

Usage
Table 2–1 lists usage information for type_name .
2-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures
Agent Type (aq$_agent)

Purpose
To identify a producer or a consumer of a message.

Syntax
TYPE aq$_agent IS OBJECT (

name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER)

Usage
All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENT parameters. You can add more subscribers by
repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER procedure up to a maximum
of 1024 subscribers for a multiconsumer queue. Two subscribers cannot have the
same values for the NAME, ADDRESS, and PROTOCOL attributes for the AQ$_AGENT
type. At least one of the three attributes must be different for two subscribers.

Table 2–2 lists usage information for aq$_agent .

Table 2–1 Type Name (type_name)

Parameter Description

<object_types> For details on creating object types please refer to Oracle9i Database Concepts. The
maximum number of attributes in the object type is limited to 900.

"RAW" To store payload of type RAW, AQ creates a queue table with a LOB column as the
payload repository. The size of the payload is limited to 32K bytes of data. Because
LOB columns are used for storing RAW payload, the AQ administrator can choose the
LOB tablespace and configure the LOB storage by constructing a LOB storage string
in the storage_clause parameter during queue table creation time.
Basic Components 2-3

Data Structures
AQ Recipient List Type (aq$_recipient_list_t)

Purpose
To identify the list of agents that will receive the message.

Syntax
TYPE aq$_recipient_list_t IS TABLE OF aq$_agent

INDEX BY BINARY_INTEGER;

AQ Agent List Type (aq$_agent_list_t)

Purpose
To identify the list of agents for DBMS_AQ.LISTEN to listen for.

Syntax
TYPE aq$_agent_list_t IS TABLE OF aq$_agent

INDEX BY BINARY INTEGER;

AQ Subscriber List Type (aq$_subscriber_list_t)

Purpose
To identify the list of subscribers that subscribe to this queue.

Table 2–2 Agent (aq$_agent)

Parameter Description

name

(VARCHAR2(30))

Name of a producer or consumer of a message.The name must follow the reserved
character guidelines in the Oracle9i SQL Reference.

address

(VARCHAR2(1024))

Protocol specific address of the recipient. If the protocol is 0 (default), the address is
of the form [schema.]queue[@dblink].

protocol

(NUMBER)

Protocol to interpret the address and propagate the message. The default value is 0.
2-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures
Syntax
TYPE aq$_subscriber_list_t IS TABLE OF aq$_agent

INDEX BY BINARY INTEGER;

AQ Registration Info List Type (aq$_reg_info_list)

Purpose
To identify the list of registrations to a queue.

Syntax
TYPE aq$_reg_info_list AS VARRAY(1024) OF sys.aq$_reg_info

AQ Post Info List Type (aq$_post_info_list)

Purpose
To identify the list of anonymous subscriptions to which messages are posted.

Syntax
TYPE aq$_post_info_list AS VARRAY(1024) OF sys.aq$_post_info

AQ Registration Info Type
The aq$_reg_info data structure identifies a producer or a consumer of a
message.

Syntax
TYPE sys.aq$_reg_info IS OBJECT (

name VARCHAR2(128),
namespace NUMBER,
callback VARCHAR2(4000),
context RAW(2000));
Basic Components 2-5

Data Structures
Attributes

Table 2–4 shows the actions performed when different notification
mechanisms/presentations are specified for nonpersistent queues.

Table 2–3 AQ Registration Info Type Attributes

Attribute Description

name Specifies the name of the subscription.

The subscription name is of the form <schema>.<queue> if
the registration is for a single consumer queue and
<schema>.<queue>:<consumer_name> if the registration is
for a multiconsumer queue.

namespace Specifies the namespace of the subscription.

To receive notifications from AQ queues the namespace must
be DBMS_AQ.NAMESPACE_AQ.

To receive notifications from other applications using DBMS_
AQ.POST or OCISubscriptionPost() , the namespace must
be DBMS_AQ.NAMESPACE_ANONYMOUS.

callback Specifies the action to be performed on message notification.

For e-mail notifications, the form is
mailto://xyz@company.com

For AQ PL/SQL Callback, use
plsql://<schema>.<procedure>?PR=0 for raw message
payload or plsql://<schema>.<procedure>?PR=1 for
ADT message payload converted to XML

context Specifies the context that is to be passed to the callback
function. Default: NULL
2-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures
AQ Notification Descriptor Type
The aq$_descriptor data structure specifies the AQ Descriptor received by the
AQ PL/SQL callbacks upon notification.

Syntax
TYPE sys.aq$_descriptor IS OBJECT (

queue_name VARCHAR2(30),
consumer_name VARCHAR2(30),
msg_id RAW(16),
msg_prop msg_prop_t);

Attributes

Table 2–4 Nonpersistent Queues

Queue
Payloa
d Type

Presentation Specified

RAW XML

Notification Mechanism Notification Mechanism

LNOCI E-mail
PL/SQL
Callback LNOCI E-mail

PL/SQL
Callback

RAW The callback
receives the
RAW data in
the payload.

Not supported The PL/SQL
callback
receives the
RAW data in
the payload.

The callback
receives the
XML data in
the payload.

The XML data
is formatted as
a SOAP
message and
e-mailed to the
registered
e-mail address.

The PL/SQL
callback
receives the
XML data in
the payload.

ADT Not supported. Not supported. Not supported. The callback
receives the
XML data in
the payload.

The XML data
is formatted as
a SOAP
message and
e-mailed to the
registered
e-mail address.

The PL/SQL
callback
receives the
XML data in
the payload.

Table 2–5 AQ Notification Descriptor Type

Attribute Description

queue_name Name of the queue in which the message was enqueued which
resulted in the notification.
Basic Components 2-7

Enumerated Constants in the Administrative Interface
AQ Post Info Type
The aq$_post_info data structure specifies anonymous subscriptions to which
you want to post messages.

Syntax
TYPE sys.aq$_post_info IS OBJECT (

name VARCHAR2(128),
namespace NUMBER,
payload RAW(2000));

Attributes

Enumerated Constants in the Administrative Interface
When enumerated constants such as INFINITE , TRANSACTIONAL, and NORMAL_
QUEUE are selected as values, the symbol must be specified with the scope of the
packages defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADM. For example:

DBMS_AQADM.NORMAL_QUEUE

consumer_name Name of the consumer for the multiconsumer queue

msg_id Id of the message.

msg_prop Message properties.

Table 2–6 AQ Post Info Type Attributes

Attribute Description

name Name of the anonymous subscription to which you want to
post to.

namespace To receive notifications from other applications using DBMS_
AQ.POST or OCISubscriptionPost() , the namespace must
be DBMS_AQ.NAMESPACE_ANONYMOUS.

payload The payload to be posted to the anonymous subscription

Default: NULL

Table 2–5 AQ Notification Descriptor Type

Attribute Description
2-8 Oracle9i Application Developer’s Guide - Advanced Queuing

INIT.ORA Parameter File Considerations
Table 2–7 lists the enumerated constants.

Enumerated Constants in the Operational Interface
When using enumerated constants such as BROWSE, LOCKED, and REMOVE, the
PL/SQL constants must be specified with the scope of the packages defining them.
All types associated with the operational interfaces must be prepended with DBMS_
AQ. For example:

DBMS_AQ.BROWSE

Table 2–8 lists the enumerated constants.

INIT.ORA Parameter File Considerations
You can specify the AQ_TM_PROCESSES and JOB_QUEUE_PROCESSES parameters
in the init.ora parameter file.

Table 2–7 Enumerated Constants in the Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL , NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE,NON_PERSISTENT_QUEUE

Table 2–8 Enumerated Constants in the Operational Interface

Parameter Options

visibility IMMEDIATE , ON_COMMIT

dequeue mode BROWSE, LOCKED, REMOVE, REMOVE_NODATA

navigation FIRST_MESSAGE , NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING , READY, PROCESSED, EXPIRED

sequence_deviation BEFORE , TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS
Basic Components 2-9

INIT.ORA Parameter File Considerations
AQ_TM_PROCESSES Parameter
A parameter called AQ_TM_PROCESSES should be specified in the init .ora
parameter file if you want to perform time monitoring on queue messages. Use this
for messages that have delay and expiration properties specified. This parameter
should be set to at least 1. It can be set in a range from 0 to 10 . Setting it to any
other number will result in an error. If this parameter is set to 1, one queue monitor
process (QMN) will be created as a background process. If the parameter is not
specified, or is set to 0, the queue monitor process is not created.

Table 2–9 lists parameter information.

JOB_QUEUE_PROCESSES Parameter
Propagation is handled by job queue (SNP) processes. The number of job queue
processes started in an instance is controlled by the init.ora parameter JOB_
QUEUE_PROCESSES. The default value of this parameter is 0. For message
propagation to take place, this parameter must be set to at least 2. The database
administrator can set it to higher values if there are many queues from which the
messages have to be propagated, or if there are many destinations to which the
messages have to be propagated, or if there are other jobs in the job queue.

The Java Advanced Queuing API supports both the administrative and operational
features of Advanced Queuing. In developing Java programs for messaging
applications, you will use JDBC to open a connection to the database and then use

Table 2–9 AQ_TM_PROCESSES Parameter

Parameter Options

Parameter Name aq_tm_processes

Parameter Type integer

Parameter Class Dynamic

Allowable Values 0 to 10

Syntax aq_tm_processes = <0 to 10>

Name of process ora_qmn<n>_<oracle sid>

Example aq_tm_processes = 1

See Also: Oracle9i SQL Reference for more information on JOB_
QUEUE_PROCESSES.
2-10 Oracle9i Application Developer’s Guide - Advanced Queuing

INIT.ORA Parameter File Considerations
oracle.AQ , the Java AQ API for message queuing. This means that you will no
longer need to use PL/SQL interfaces.
Basic Components 2-11

INIT.ORA Parameter File Considerations
2-12 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ Programmatic Environm
3

AQ Programmatic Environments

This chapter describes the elements you need to work with and issues to consider in
preparing your AQ application environment. The following topics are discussed:

� Programmatic Environments for Accessing AQ

� Using PL/SQL to Access AQ

� Using OCI to Access AQ

� Using Visual Basic (OO4O) to Access AQ

� Using AQ Java (oracle.AQ) Classes to Access AQ

� Using Oracle Java Message Service to Access AQ

� Using the AQ XML Servlet to Access AQ

� Comparing AQ Programmatic Environments
ents 3-1

Programmatic Environments for Accessing AQ
Programmatic Environments for Accessing AQ
The following programmatic environments are used to access the Advanced
Queuing functions of Oracle:

� Native AQ Interface

� PL/SQL (DBMS_AQADM and DBMS_AQ packages): supports administrative
and operational functions

� C (OCI): supports operational functions

� Visual Basic (OO4O): supports operational functions

� Java (oracle.AQ package using JDBC): supports administrative and
operational functions

� JMS Interface to AQ

� Java (javax.jms and oracle.jms packages using JDBC): supports the
standard JMS administrative and operational functions and Oracle JMS
extensions

� XML Interface to AQ

� The AQ XML servlet supports operational functions using an XML message
format.

Refer to Table 3–1, " AQ Programmatic Environments" for the AQ programmatic
environments and syntax references.

Table 3–1 AQ Programmatic Environments

Language
Precompiler or
Interface Program Syntax Reference In This Chapter See...

PL/SQL DBMS_AQADM and
DBMS_AQ Package

Oracle9i Supplied PL/SQL Packages
and Types Reference

"Using PL/SQL to Access AQ" on
page 3-3

C Oracle Call Interface
(OCI)

Oracle Call Interface Programmer’s
Guide

"Using OCI to Access AQ" on
page 3-4
3-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Using PL/SQL to Access AQ
Using PL/SQL to Access AQ
The PL/SQL packages DBMS_AQADM and DBMS_AQ support access to Oracle
Advanced Queuing administrative and operational functions using the native AQ
interface. These functions include the following:

� Create: queue, queue table, nonpersistent queue, multiconsumer queue/topic,
RAW message, message with structured data

� Get: queue table, queue, multiconsumer queue/topic

� Alter: queue table, queue/topic

� Drop: queue/topic

� Start or stop: queue/topic

Visual Basic Oracle Objects For
OLE (OO4O)

Oracle Objects for OLE (OO4O) is
a Windows-based product
included with Oracle Client for
Windows NT.

There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the Oracle
installation.

"Using AQ Java (oracle.AQ) Classes
to Access AQ" on page 3-6

Java (AQ) oracle.AQ package
using JDBC
Application
Programmatic
Interface (API)

Oracle9i Supplied Java Packages
Reference

"Using AQ Java (oracle.AQ) Classes
to Access AQ" on page 3-6

Java (JMS) oracle.JMS package
using JDBC
Application
Programmatic
Interface (API)

 Oracle9i Supplied Java Packages
Reference

"Using AQ Java (oracle.AQ) Classes
to Access AQ" on page 3-6 and
"Using Oracle Java Message Service
to Access AQ" on page 3-8

AQ XML
Servlet

oracle.AQ.xml.AQ
xmlServlet using
HTTP or SMTP

 Oracle9i Supplied Java Packages
Reference

"Using the AQ XML Servlet to Access
AQ" on page 3-11

Table 3–1 (Cont.) AQ Programmatic Environments

Language
Precompiler or
Interface Program Syntax Reference In This Chapter See...
AQ Programmatic Environments 3-3

Using OCI to Access AQ
� Grant and revoke privileges

� Add, remove, alter subscriber

� Add, remove, alter AQ Internet agents

� Grant or revoke privileges of database users to AQ Internet agents

� Enable, disable, and alter propagation schedule

� Enqueue messages to single consumer queue (point-to-point model)

� Publish messages to multiconsumer queue/topic (publish-subscribe model)

� Subscribing for messages in multiconsumer queue

� Browse messages in a queue

� Receive messages from queue/topic

� Register to receive messages asynchronously

� Listen for messages on multiple queues/topics

� Post messages to anonymous subscriptions

� Bind or unbind agents in a LDAP server

� Add or remove aliases to AQ objects in a LDAP server

Available PL/SQL DBMS_AQADM and DBMS_AQ functions are listed in detail in
Table 3–2 through Table 3–9.

Using OCI to Access AQ
Oracle Call Interface (OCI) provides an interface to Oracle Advanced Queuing
functions using the native AQ interface.

An OCI client can perform the following actions:

� Enqueue messages

� Dequeue messages

� Listen for messages on sets of queues

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed documentation, including parameters, parameter types,
return values, examples, DBMS_AQADM and DBMS_AQ syntax.
3-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Using Visual Basic (OO4O) to Access AQ
� Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in
a queue using OCISubscriptionRegister.

For queues with user-defined payload type, OTT must be used to generate the OCI
mapping for the Oracle type. The OCI client is responsible for freeing the memory
of the AQ descriptors and the message payload.

Examples

LNOCI Interface
See Appendix A, "Oracle Advanced Queuing by Example" under "Enqueuing and
Dequeuing Of Messages" on page A-11 for OCI Advanced Queuing interface
examples.

Managing OCI Descriptor Memory
See Appendix A, "Oracle Advanced Queuing by Example" under "AQ and Memory
Usage" on page A-72 for examples illustrating memory management of OCI
descriptors.

Using Visual Basic (OO4O) to Access AQ
Visual Basic (OO4O) supports access to Oracle Advanced Queuing operational
functions using the native AQ interface.

These functions include the following:

� Create: connection, RAW message, message with structured data

� Enqueue messages to single consumer queue (point-to-point model)

� Publish messages to multiconsumer queue/topic (publish-subscribe model)

� Browse messages in a queue

� Receive messages from queue/topic

� Register to received messages asynchronously

See: Oracle Call Interface Programmer’s Guide: “OCI and Advanced
Queuing” and “Publish-Subscribe Notification” sections, for syntax
details.
AQ Programmatic Environments 3-5

Using AQ Java (oracle.AQ) Classes to Access AQ
For More Information
For more information about OO4O, refer to the following Web site:

� http://technet.oracle.com

Select Products > Internet Tools > Programmer. Scroll down to: Oracle Objects
for OLE. At the bottom of the page is a list of useful articles for using the
interfaces.

� http://www.oracle.com/products

Search for articles on OO4O or Oracle Objects for OLE.

Using AQ Java (oracle.AQ) Classes to Access AQ
The Java AQ API supports both the administrative and operational features of
Advanced Queueing. In developing Java programs for messaging applications, you
use JDBC to open a connection to the database and to oracle.AQ, the Java AQ API
for message queuing.

Oracle9i Supplied Java Packages Reference describes the common interfaces and classes
based on current PL/SQL interfaces.

� Common interfaces are prefixed with “AQ”. These interfaces will have different
implementations in Oracle8i and Oracle Lite.

� In this document we describe the common interfaces and their corresponding
Oracle8i implementations, that are in turn prefixed with “AQOracle”.

Accessing Java AQ Classes
The Java AQ classes are located in $ORACLE_HOME/rdbms /jlib /aqapi* .jar . In
release 9.2, Oracle JMS conforms to Sun Microsystems’ JMS 1.0.2b standard. These
classes can be used with any OracleJDBC driver, version 8i and higher.

� Using OCI8 or Thin JDBC Driver

� For JDK 1.3, include the following in the CLASSPATH:

* $ORACLE_HOME/jdbc/lib/classes12.zip

* $ORACLE_HOME/jlib/jndi.jar

* $ORACLE_HOME/rdbms /jlib /aqapi13 .jar

* $ORACLE_HOME/rdbms/jlib/jmscommon.jar
3-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Using AQ Java (oracle.AQ) Classes to Access AQ
� For JDK 1.2, include the following in the CLASSPATH

* $ORACLE_HOME/jdbc/lib/classes12.zip

* $ORACLE_HOME/jlib/jndi.jar

* $ORACLE_HOME/rdbms /jlib /aqapi12 .jar

* $ORACLE_HOME/rdbms/jlib/jmscommon.jar

� For JDK 1.1, include the following in the CLASSPATH:

* $ORACLE_HOME/jdbc/lib/classes111.zip

* $ORACLE_HOME/jlib/jndi.jar

* $ORACLE_HOME/rdbms /jlib /aqapi 11.jar

* $ORACLE_HOME/rdbms/jlib/jmscommon.jar

� Using Oracle Server Driver in JServer: If the application is using the Oracle
Server driver and accessing the Java AQ API from Java stored procedures, the
Java files are generally automatically preloaded in a Java-enabled database. If
the Java files are not loaded, you must first load the jmscommon.jar and
aqapi .jar files into the database using the loadjava utility.

Advanced Queuing Examples
Appendix A, “Oracle Advanced Queuing by Example” contains the following
examples:

� Enqueue and Dequeue of Object Type Messages (CustomDatum interface)
Using Java

� Enqueue and Dequeue of Object Type Messages (using SQLData interface)
Using Java

� Create a Queue Table and Queue Using Java

� Create a Queue and Start Enqueue/Dequeue Using Java

� Create a Multiconsumer Queue and Add Subscribers Using Java

� Enqueue of RAW Messages using Java

� Dequeue of Messages Using Java

� Dequeue of Messages in Browse Mode Using Java

� Enqueue of Messages with Priority Using Java
AQ Programmatic Environments 3-7

Using Oracle Java Message Service to Access AQ
� Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java

Managing the Java AQ API
The various implementations of the Java AQ API are managed with
AQDriverManager . Both OLite and Oracle9i will have an AQDriver that is
registered with the AQDriverManager . The driver manager is used to create an
AQSession that can be used to perform messaging tasks.

The Oracle8i AQ driver is registered using the Class.forName
(“oracle.AQ.AQOracleDriver”) command.

When the AQDriverManager .createAQSession () method is invoked, it calls the
appropriate AQDriver (among the registered drivers) depending on the parameter
passed to the createAQSession () call.

The Oracle9i AQDriver expects a valid JDBC connection to be passed in as a
parameter to create an AQSession. Users must have the execute privilege on the
DBMS_AQIN package to use the AQ Java interfaces. Users can also acquire these
rights through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE. Users will
also need the appropriate system and queue privileges for 8.1-style queue tables.

Using Oracle Java Message Service to Access AQ
Java Message Service (JMS): JMS is a messaging standard defined by Sun
Microsystems, Oracle, IBM, and other vendors. JMS is a set of interfaces and
associated semantics that define how a JMS client accesses the facilities of an
enterprise messaging product.

Oracle Java Message Service: Oracle Java Message Service provides a Java API for
Oracle Advanced Queuing based on the JMS standard. Oracle JMS supports the
standard JMS interfaces and has extensions to support the AQ administrative
operations and other AQ features that are not a part of the standard.

Standard JMS Features
Standard JMS features include:

� Point-to-point model of communication - using queues

� Publish-subscribe model of communication - using topics
3-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Using Oracle Java Message Service to Access AQ
� Five types of messages - ObjectMessage, StreamMessage, TextMessage,
BytesMessage, MapMessage

� Synchronous and Asynchronous delivery of messages

� Message selection based on message header fields/properties

Oracle JMS Extensions
Oracle JMS extensions include the following:

� Administrative API to create queue tables, queues and topics

� Point-to-multipoint communication using recipient lists for topics

� Message propagation between destinations. Allows the application to define
remote subscribers.

� Supports transacted sessions that enable you to perform JMS as well as SQL
operations in one atomic transaction.

� Message retention after messages have been dequeued

� Message delay - messages can be made visible after a certain delay

� Exception handling - messages are moved to exception queues if they cannot be
processed successfully

� In addition to the standard JMS message types, Oracle supports AdtMessages .
These are stored in the database as Oracle objects and hence the payload of the
message can be queried after it is enqueued. Subscriptions can be defined on
the contents of these messages as opposed to just the message properties.

� Topic browsing - allows durable subscribers to browse through the messages in
a publish-subscribe (topic) destination, and optionally allows these subscribers
to purge the browsed messages (so that they are no longer retained by AQ for
that subscriber).

Accessing Standard and Oracle JMS
Oracle JMS uses JDBC to connect to the database, hence it applications can run as
follows:

� Outside the database using the OCI8 or thin JDBC driver

� Inside Oracle8i JServer using the Oracle Server driver

The standard JMS interfaces are in the javax.jms package.
AQ Programmatic Environments 3-9

Using Oracle Java Message Service to Access AQ
The Oracle JMS interfaces are in the oracle.jms package.

� Using OCI8 or Thin JDBC Driver: To use JMS with clients running outside the
database, you must include the appropriate JDBC driver, JNDI jar files and the
following AQ jar files in your CLASSPATH:

� For JDK 1.1 include the following:

$ORACLE_HOME/rdbms/jlib/jmscommon.jar

$ORACLE_HOME/rdbms/jlib/aqapi11.jar

$ORACLE_HOME/jlib/jndi.jar

$ORACLE_HOME/jdbc/lib/classes111.jar

� For JDK 1.2 include the following:

$ORACLE_HOME/rdbms/jlib/jmscommon.jar

$ORACLE_HOME/rdbms/jlib/aqapi.jar

$ORACLE_HOME/jlib/jndi.jar

$ORACLE_HOME/jdbc/lib/classes12.jar

� Using Oracle Server Driver in JServer: If your application is running inside the
JServer, you should be able to access the Oracle JMS classes that have been
automatically loaded when the JServer was installed. If these classes are not
available, you may have to load jmscommon.jar followed by aqapi.jar
using the $ORACLE_HOME/rdbms/admin/initjms SQL script.

Privileges
Users must have EXECUTE privilege on the DBMS_AQIN and DBMS_AQJMS
packages to use the Oracle JMS interfaces. Users can also acquire these rights
through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE.

Users will also need the appropriate system and queue or topic privileges to send or
receive messages.

For More Information
Oracle JMS interfaces are described in detail in the Oracle9i Supplied Java Packages
Reference.
3-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Using the AQ XML Servlet to Access AQ
Using the AQ XML Servlet to Access AQ
You can use the AQ XML servlet to access Oracle9i AQ over HTTP using Simple
Object Access Protocol (SOAP) and an XML message format called Internet Data
Access Presentation (IDAP).

Using the AQ servlet, a client can perform the following actions:

� Send messages to single-consumer queues

� Publish messages to multiconsumer queues/topics

� Receive messages from queues

� Register to receive message notifications

The servlet can be created by defining a Java class that extends the
oracle.AQ.xml.AQxmlServlet or oracle.AQ.xml.AQxmlServlet20 class.
These classes in turn extend the javax.servlet.http.HttpServlet class.

The servlet can be deployed on any Web server or ServletRunner that implements
Javasoft’s Servlet 2.0 or Servlet 2.2 interfaces.

� To deploy the AQ Servlet with a Web server that implements Javasoft’s
Servlet2.0 interfaces, you must define a class that extends the
oracle.AQ.xml.AQxmlServle20 class.

� To deploy the AQ Servlet with a Web server that implements Javasoft’s
Servlet2.2 interfaces, you must define a class that extends the
oracle.AQ.xml.AQxmlServlet class.

The servlet can be compiled using JDK 1.1.x or JDK 1.2.x libraries.

� For JDK 1.1.x the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classes111.jar
$ORACLE_HOME/jlib/jta.jar
$ORACLE_HOME/jdbc/lib/nls_charset11.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/lib/lclasses11.zip
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE HOME/rdbms/jlib/aqapi11.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqxml.jar
$ORACLE_HOME/rdbms/jlib/xsu111.jar
$ORACLE_HOME/lib/servlet.jar
AQ Programmatic Environments 3-11

Comparing AQ Programmatic Environments
� For JDK 1.2.x the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classes12.jar
$ORACLE_HOME/jlib/jta.jar
$ORACLE_HOME/jdbc/lib/nls_charset12.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/lib/lclasses12.zip
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE_HOME/rdbms/jlib/aqapi.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqxml.jar
$ORACLE_HOME/rdbms/jlib/xsu12.jar
$ORACLE_HOME/lib/servlet.jar

Since the servlet uses JDBC OCI drivers to connect to the Oracle9i database server,
the 9i Oracle client libraries must be installed on the machine that hosts the servlet.
The LD_LIBRARY_PATH must contain $ORACLE_HOME/lib.

Refer to Chapter 17, "Internet Access to Advanced Queuing" for more information
on Internet access to Advanced Queuing.

Comparing AQ Programmatic Environments
Available functions for the AQ programmatic environments are listed by use case in
Table 3–2 through Table 3–9. Use cases are described in Chapter 9 through
Chapter 11 andChapter 13 through Chapter 16. Refer to Chapter E, "Unified
Modeling Language Diagrams" for an explanation of use case diagrams.

AQ Administrative Interfaces
Table 3–2 lists the equivalent AQ administrative functions for three programmatic
environments, PL/SQL, Java (native AQ), and Java (JMS).
3-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–2 Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)

Create a Connection
Factory

N/A N/A AQjmsFactory.getQueueC
onnectionFactory

AQjmsFactory.getTopicCo
nnectionFactory

Register a Connection
Factory in a LDAP server

N/A N/A AQjmsFactory.registerCon
nectionFactory

Create a Queue Table DBMS_AQADM.create_
queue_table

Create
AQQueueTableProperty,
then

AQSession.createQueueTa
ble

AQjmsSession.createQueu
eTable

Get a Queue Table Use <schema>.<queue_
table_name>

AQSession.getQueueTable AQjmsSession.getQueueT
able

Alter a Queue Table DBMS_AQADM.alter_
queue_table

AQQueueTable.alter AQQueueTable.alter

Drop a Queue Table DBMS_AQADM.drop_
queue_table

AQQueueTable.drop AQQueueTable.drop

Create a Queue DBMS_AQADM.create_
queue

AQSession.createQueue AQjmsSession.createQueu
e

Get a Queue Use <schema>.<queue_
name>

AQSession.getQueue AQjmsSession.getQueue

Create a Nonpersistent
Queue

DBMS_AQADM.create_
np_queue

 Not supported Not supported

Create a Multiconsumer
Queue/Topic

DBMS_AQADM.create_
queue

in a queue table with
multiple consumers
enabled

AQSession.createQueue

in a queue table with
multiple consumers
enabled

AQjmsSession.createTopic

in a queue table with
multiple consumers
enabled

Get a Multiconsumer
Queue/Topic

Use <schema>.<queue_
name>

AQSession.getQueue AQjmsSession.getTopic

Alter a Queue/Topic DBMS_AQADM.alter_
queue

AQQueue.alterQueue AQjmsDestination.alter
AQ Programmatic Environments 3-13

Comparing AQ Programmatic Environments
Start a Queue/Topic DBMS_AQADM.start_
queue

AQQueue.start

AQQueue.startEnqueue

AQQueue.startDequeue

AQjmsDestination.start

Stop a Queue/Topic DBMS_AQADM.stop_
queue

AQQueue.stop

AQQueue.stopEnqueue

AQQueue.stopDequeue

AQjmsDestination.stop

Drop a Queue/Topic DBMS_AQADM.drop_
queue

AQQueue.drop

AQQueueTable.dropQueu
e

AQjmsDestination.drop

Grant System Privileges DBMS_AQADM.grant_
system_privilege

Not supported AQjmsSession.grantSyste
mPrivilege

Revoke System Privileges DBMS_AQADM.revoke_
system_privilege

Not supported AQjmsSession.revokeSyst
emPrivilege

Grant a Queue/Topic
Privilege

DBMS_AQADM.grant_
queue_privilege

AQQueue.grantQueuePri
vilege

AQjmsDestination.grantQ
ueuePrivilege

AQjmsDestination.grantT
opicPrivilege

Revoke a Queue/Topic
Privilege

DBMS_AQADM.revoke_
queue_privilege

AQQueue.revokeQueuePr
ivilege

AQjmsDestination.revoke
QueuePrivilege

AQjmsDestination.revoke
TopicPrivilege

Verify a Queue Type DBMS_AQADM.verify_
queue_types

Not supported Not supported

Add a Subscriber DBMS_AQADM.add_
subscriber

AQQueue.addSubscriber See Table 3–6,
" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases"

Table 3–2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)
3-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Alter a Subscriber DBMS_AQADM.alter_
subscriber

AQQueue.alterSubscriber See Table 3–6,
" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases"

Remove a Subscriber DBMS_AQADM.remove_
subscriber

AQQueue.removeSubscri
ber

See Table 3–6,
" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases"

Schedule Propagation DBMS_
AQADM.schedule_
propagation

AQQueue.schedulePropa
gation

AQjmsDestination.schedu
lePropagation

Enable a Propagation
Schedule

DBMS_AQADM.enable_
propagation_schedule

AQQueue.enablePropagat
ionSchedule

AQjmsDestination.enable
PropagationSchedule

Alter a Propagation
Schedule

DBMS_AQADM.alter_
propagation_schedule

AQQueue.alterPropagatio
nSchedule

AQjmsDestination.alterPr
opagationSchedule

Disable a Propagation
Schedule

DBMS_AQADM.disable_
propagation_schedule

AQQueue.disablePropaga
tionSchedule

AQjmsDestination.disable
PropagationSchedule

Unschedule a Propagation DBMS_
AQADM.unschedule_
propagation

AQQueue.unschedulePro
pagation

AQjmsDestination.unsche
dulePropagation

Create an AQ Internet
Agent

DBMS_AQADM.create_
aq_agent

not supported not supported

Alter an AQ Internet
Agent

DBMS_AQADM.alter_aq_
agent

not supported not supported

Table 3–2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)
AQ Programmatic Environments 3-15

Comparing AQ Programmatic Environments
AQ Operational Interfaces
Table 3–3 through Table 3–9 list equivalent AQ operational functions for the
programmatic environments PL/SQL, Java (native AQ), OCI, AQ XML Servlet, and
JMS, for various use cases.

Drop an AQ Internet
Agent

DBMS_AQADM.drop_
aq_agent

not supported not supported

Grant Database User
privileges to an AQ
Internet Agent

DBMS_AQADM.enable_
db_agent

not supported not supported

Revoke Database User
privileges from an AQ
Internet Agent

DBMS_AQADM.disable_
db_agent

not supported not supported

Add alias for queue,
agent, ConnectionFactory
in a LDAP server

DBMS_AQADM.add_
alias_to_ldap

not supported not supported

Delete alias for queue,
agent, ConnectionFactory
in a LDAP server

DBMS_AQADM.del_
alias_from_ldap

not supported not supported

Table 3–2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)
3-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–3 Comparison of AQ Programmatic Environments: Operational Interface—Create Connection,
Session, Message Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Create a Connec-
tion

N/A Create JDBC
connection

OCIServerAttach Open an HTTP
connection after
authenticating
with the Web
server

AQjmsQueue-
ConnectionFac-
tory.createQueue
Connection

AQjmsTopicCon
nectionFactory.cr
eateTopicConnec
ion

Create a Session N/A AQDriverMan-
ager.cre-
ateAQSession

OCISessionBegin An HTTP servlet
session is
automatically
started with the
first SOAP
request

QueueConnec-
tion.create-
QueueSession

TopicConnecion.
createTopicSessi
on
AQ Programmatic Environments 3-17

Comparing AQ Programmatic Environments
Create a RAW
Message

Use SQL RAW
type for message

AQQueue.cre-
ateMessage

Set
AQRawPayload
in message

Use OCIRaw for
Message

Supply the hex
representation of
the message
payload in the
XML message.
E.g.:
<raw>023f452
3</raw>

Not supported

Create a Mes-
sage with Struc-
tured Data

Use SQL ADT
type for message

AQQueue.cre-
ateMessage

Set
AQObjectPayloa
d in message

Use SQL ADT
type for message

For ADT queues
that are not JMS
queues (that is,
they are not type
AQ$_JMS_*), the
XML specified in
<message
payload> must
map to the SQL
type of the
payload for the
queue table.

For JMS queues,
the XML
specified in the
<message_
payload> must
be one of the
following:
<jms_text_
message> ,
<jms_map_
message> ,
<jms_bytes_
message> ,
<jms_object_
message>

Session.create-
TextMessage

Session.cre-
ateObjectMes-
sage

Session.createMa
pMessage

Session.createByt
esMessage

Session.createStr
eamMessage

AQjmsSession.cr
eateAdtMessage

Create a Mes-
sage Producer

N/A N/A N/A N/A QueueSes-
sion.create-
Sender

TopicSession.cre
atePublisher

Table 3–3 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Create
Connection, Session, Message Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS
3-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–4 Comparison of AQ Programmatic Environments: Operational Interface—Enqueue Messages
to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Enqueue a Mes-
sage to a sin-
gle-consumer
queue

DBMS_
AQ.enqueue

AQQueue.enque
ue

LNOCIAQEnq <AQXmlSend> Queue-
Sender.send

Enqueue a Mes-
sage to a queue -
specify visibility
options

DBMS_
AQ.enqueue

Specify visibility
in ENQUEUE_
OPTIONS

AQQueue.enque
ue

Specify visibility
in
AQEnqueueOpti
on

LNOCIAQEnq

Specify OCI_
ATTR_
VISIBILITY in
LNOCIAQEnqO
ptions

<AQXmlSend>
Specify
<visibility>
in <producer_
options>

Not supported

Enqueue a Mes-
sage to a sin-
gle-consumer
queue - specify
message proper-
ties - priority,
expiration

DBMS_
AQ.enqueue

Specify priority,
expiration in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Specify priority,
expiration in
AQMessageProp
erty

LNOCIAQEnq

Specify

LNOCI_ATTR_
PRIORITY,
LNOCI_ATTR_
EXPIRATION in
LNOCIAQMsgP
roperties

<AQXmlSend>
Specify
<priority> ,
<expiration>
in <message_
header>

Specify priority
and TimeToLive
during Queue-
Sender.send OR
MessagePro-
ducer.setTimeTo-
Live &
MessagePro-
ducer.setPriority

followed by
QueueSender.se
nd
AQ Programmatic Environments 3-19

Comparing AQ Programmatic Environments
Enqueue a Mes-
sage to a sin-
gle-consumer
Queue - specify
message proper-
ties - correla-
tionID, delay,
exception queue

DBMS_
AQ.enqueue

Specify
correlation,
delay, exception_
queue in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Specify
correlation,
delay, exception
queue in
AQMessageProp
erty

LNOCIAQEnq

Specify OCI_
ATTR_
CORRELATION,
OCI_ATTR_
DELAY, LNOCI_
ATTR_
EXCEPTION_
QUEUE in
LNOCIAQMsgP
roperties

<AQXmlSend>
Specify
<correlation
_id> , <delay> ,
<exception_
queue> in
<message_
header>

Message.setJM-
SCorrelationID

Delay and
exception queue
specified as
provider specific
message
properties

JMS_
OracleDelay

JMS_
OracleExcpQ

followed by
QueueSender.se
nd

Enqueue a Mes-
sage to a sin-
gle-consumer
Queue - specify
Message Proper-
ties
(user-defined)

Not supported

Properties
should be part of
payload

Not supported

Properties
should be part of
payload

Not supported

Properties
should be part of
payload

<AQXmlSend>
Specify <name>
and <int_
value> ,
<string_
value> ,
<long_
value>, etc. in
<user_
properties>

Message.setInt-
Property

Message.setStrin
gProperty

Message.setBool
eanProperty etc.
followed by

QueueSender.se
nd

Enqueue a Mes-
sage to a sin-
gle-consumer
Queue - specify
Message Trans-
formation

DBMS_
AQ.enqueue

Specify
transformation
in ENQUEUE_
OPTIONS

AQQueue.enque
ue

Specify
transformation
in
AQDequeueOpti
on

LNOCIAQEnq

Specify OCI_
ATTR_
TRANSFORMA
TION in
LNOCIAQEnqO
ptions

<AQXmlSend>
Specify
<transformat
ion> in
<producer_
options>

AQjmsQueueSen
der.setTransform
ation followed
by

QueueSender.se
nd

Table 3–4 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Enqueue
Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS
3-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–5 Comparison of AQ Programmatic Environments: Operational Interface—Publish Messages to
a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Publish a Mes-
sage to a Multi-
consumer
queue/Topic
(using default
subscription list)

DBMS_
AQ.enqueue

Set recipient_list
to NULL in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Set recipient_list
to NULL in
AQMessageProp
erty

LNOCIAQEnq

Set OCI_ATTR_
RECIPIENT_
LIST to NULL in
LNOCIAQMsgP
roperties

<AQXmlPublis
h>

TopicPub-
lisher.publish

Publish a Mes-
sage to a Multi-
consumer
queue/Topic
(using specific
recipient list)

See footnote-1

DBMS_
AQ.enqueue

Specify recipient
list in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Specify
recipient_list in
AQMessageProp
erty

LNOCIAQEnq

Specify OCI_
ATTR_
RECIPIENT_
LIST in
LNOCIAQMsgP
roperties

<AQXmlPublis
h> Specify
<recipient_
list> in
<message_
header>

AQjmsTopicPub-
lisher.pubish

Specify
recipients as an
array of
AQjmsAgent

Publish a Mes-
sage to a multi-
consumer
Queue/Topic -
specify message
properties - pri-
ority, expiration

DBMS_
AQ.enqueue

Specify priority,
expiration in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Specify priority,
expiration in
AQMessageProp
erty

LNOCIAQEnq

Specify OCI_
ATTR_
PRIORITY,
LNOCI_ATTR_
EXPIRATION in
LNOCIAQMsgP
roperties

<AQXmlPublis
h> Specify
<priority> ,
<expiration>
in the
<message_
header>

Specify priority
and TimeToLive
during Topic-
Publisher.pub-
lish OR
MessagePro-
ducer.setTimeTo-
Live &
MessagePro-
ducer.setPriority
followed by

TopicPublisher.p
ublish
AQ Programmatic Environments 3-21

Comparing AQ Programmatic Environments
Publish a Mes-
sage to a multi-
consumer
queue/topic -
specify send
options - correla-
tionID, delay,
exception queue

DBMS_
AQ.enqueue

Specify
correlation,
delay, exception_
queue in
MESSAGE_
PROPERTIES

AQQueue.enque
ue

Specify
correlation,
delay, exception
queue in
AQMessageProp
erty

LNOCIAQEnq

Specify OCI_
ATTR_
CORRELATION,
OCI_ATTR_
DELAY, LNOCI_
ATTR_
EXCEPTION_
QUEUE in
LNOCIAQMsgP
roperties

<AQXmlPublis
h> Specify
<correlation
_id> , <delay> ,
<exception_
queue> in
<message_
header>

Message.setJM-
SCorrelationID

Delay and
exception queue
specified as
provider specific
message
properties

JMS_
OracleDelay

JMS_
OracleExcpQ

followed by
TopicPublisher.p
ublish

Publish a Mes-
sage to a topic-
specify Message
Properties
(user-defined)

Not supported

Properties
should be part of
payload

Not supported

Properties
should be part of
payload

Not supported

Properties
should be part of
payload

<AQXmlPublis
h> Specify
<name> and
<int_value> ,
<string_
value> ,
<long_
value>, etc. in
<user_
properties>

Message.setInt-
Property

Message.setStrin
gProperty

Message.setBool
eanProperty etc.
followed by

TopicPublisher.p
ublish

Publish a Mes-
sage to a topic-
specify Message
Transformation

DBMS_
AQ.enqueue

Specify
transformation
in ENQUEUE_
OPTIONS

AQQueue.enque
ue

Specify
transformation
in
AQDequeueOpti
on

LNOCIAQEnq

Specify OCI_
ATTR_
TRANSFORMA
TION in
LNOCIAQEnqO
ptions

<AQXmlPublis
h> Specify
<transformat
ion> in
<producer_
options>

AQjmsTopicPubl
isher.setTransfor
mation

followed by

TopicPublisher.p
ublish

Table 3–5 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Publish
Messages to a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS
3-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–6 Comparison of AQ Programmatic Environments: Operational Interface—Subscribing for
Messages in a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Add a Subscriber See administra-
tive interfaces

See administra-
tive interfaces

Not supported Not supported TopicSession.cre-
ateDurableSub-
scriber

AQjmsSession.cr
eateDurableSubs
criber

Alter a Sub-
scriber

See administra-
tive interfaces

See administra-
tive interfaces

Not supported Not supported TopicSession.cre-
ateDurableSub-
scriber

AQjmsSession.cr
eateDurableSubs
criber

using the new
selector

Remove a Sub-
scriber

See administra-
tive interfaces

See administra-
tive interfaces

Not supported Not supported AQjmsSes-
sion.unsub-
scriber
AQ Programmatic Environments 3-23

Comparing AQ Programmatic Environments
Table 3–7 Comparison of AQ Programmatic Environments: Operational Interface—Browse Messages in
a Queue Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Browse mes-
sages in a
Queue/Topic

DBMS_
AQ.dequeue

Set dequeue_
mode to
BROWSE in
DEQUEUE_
OPTIONS

AQQueue.deque
ue

Set dequeue_
mode to
BROWSE in
AQDequeueOpti
on

LNOCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
BROWSE in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<dequeue_
mode> BROWSE
in <consumer_
options>

QueueSes-
sion.create-
Browser

QueueBrowser.g
etEnumeration

Not supported
on Topics

oracle.jms.AQjm
sSession.createBr
owser

oracle.jms.Topic
Browser.getEnu
meration

Browse mes-
sages in a
Queue/Topic -
locking mes-
sages while
browsing

DBMS_
AQ.dequeue

Set dequeue_
mode to
LOCKED in
DEQUEUE_
OPTIONS

AQQueue.deque
ue

Set dequeue_
mode to
LOCKED in
AQDequeueOpti
on

LNOCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
LOCKED in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<dequeue_
mode> LOCKED
in <consumer_
options>

AQjmsSes-
sion.create-
Browser - set
locked to TRUE.

QueueBrowser.g
etEnumeration

Not supported
on Topics

oracle.jms.AQjm
sSession.createBr
owser

oracle.jms.Topic
Browser.getEnu
meration
3-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–8 Comparison of AQ Programmatic Environments: Operational Interface—Receive Messages
from a Queue/Topic Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Start a connec-
tion for receiv-
ing messages

N/A N/A N/A N/A Connection.start

Create a Mes-
sage Consumer

N/A N/A N/A N/A QueueSes-
sion.create-
QueueReceiver

TopicSession.cre
ateDurableSubsc
riber

AQjmsSession.cr
eateTopicReceive
r

Dequeue a mes-
sage from a
queue/topic -
specify visibility

DBMS_
AQ.dequeue

Specify visibility
in DEQUEUE_
OPTIONS

AQQueue.deque
ue

Specify visibility
in
AQDequeueOpti
on

LNOCIAQDeq

Specify OCI_
ATTR_
VISIBILITY in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<visibility>
in <consumer_
options>

Not supported

Dequeue a mes-
sage from a
queue/topic -
specify transfor-
mation

DBMS_
AQ.dequeue

Specify
transformation
in DEQUEUE_
OPTIONS

DBMS_
AQ.dequeue

Specify
transformation
in
AQDequeueOpti
on

LNOCIAQDeq

Specify OCI_
ATTR_
TRANSFORMA
TION in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<transformat
ion> in
<consumer_
options>

AQjmsQueueRe-
ceiver.setTrans-
formation

AQjmsTopicSubs
criber.setTransfor
mation

AQjmsTopicRece
iver.setTransfor
mation

Dequeue a mes-
sage from a
queue/topic -
specify naviga-
tion mode

DBMS_
AQ.dequeue

Specify
navigation in
DEQUEUE_
OPTIONS

DBMS_
AQ.dequeue

Specify
navigation in
AQDequeueOpti
on

LNOCIAQDeq

Specify OCI_
ATTR_
NAVIGATION
in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<navigation>
in <consumer_
options>

AQjmsQueueRe-
ceiver.setNaviga-
tionMode

AQjmsTopicSubs
criber.setNavigat
ionMode

AQjmsTopicRece
iver.setNavigatio
nMode
AQ Programmatic Environments 3-25

Comparing AQ Programmatic Environments
Dequeue a mes-
sage from a sin-
gle consumer
queue

DBMS_
AQ.dequeue

Set dequeue_
mode to
REMOVE in
DEQUEUE_
OPTIONS

AQQueue.deque
ue

Set dequeue_
mode to
REMOVE in
AQDequeueOpti
on

LNOCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
REMOVE in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e>

QueueRe-
ceiver.receive or

QueueReceiver.r
eceiveNoWait or

AQjmsQueueRec
eiver.receiveNoD
ata

Dequeue a mes-
sage from a mul-
ticonsumer
Queue/Topic
(using subscrip-
tion name)

DBMS_
AQ.dequeue

Set dequeue_
mode to
REMOVE and
Set consumer_
name to
subscription
name in
DEQUEUE_
OPTIONS

AQQueue.deque
ue

Set dequeue_
mode to
REMOVE and
Set consumer_
name to
subscription
name in
AQDequeueOpti
on

LNOCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
REMOVE and
Set OCI_ATTR_
CONSUMER_
NAME to
subscription
name in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<consumer_
name> in
<consumer_
options>

Create a durable
TopicSubscriber
on the Topic
using the sub-
scription name,
then

TopicSubscriber.r
eceive or

TopicSubscriber.r
eceiveNoWait or

AQjmsTopicSubs
criber.receiveNo
Data

Dequeue a mes-
sage from a mul-
ticonsumer
Queue/Topic
(using recipient
name)

DBMS_
AQ.dequeue

Set dequeue_
mode to
REMOVE and
Set consumer_
name to
recipient name
in DEQUEUE_
OPTIONS

AQQueue.deque
ue

Set dequeue_
mode to
REMOVE and
Set consumer_
name to
recipient name
inAQDequeueO
ption

LNOCIAQDeq

Set OCI_ATTR_
DEQ_MODE to
REMOVE and
Set OCI_ATTR_
CONSUMER_
NAME to
recipient name
in
LNOCIAQDeqO
ptions

<AQXmlReceiv
e> Specify
<consumer_
name> in
<consumer_
options>

Create a
TopicReceiver on
the Topic using
the recipient
name, then

AQjmsSession.cr
eateTopicReceive
r

AQjmsTopicRece
iver.receive or

AQjmsTopicRece
iver.receiveNoW
ait or

AQjmsTopicRece
iver.receiveNoDa
ta

Table 3–8 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Receive
Messages from a Queue/Topic Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS
3-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments
Table 3–9 Comparison of AQ Programmatic Environments: Operational Interface—Register to Receive
Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS

Receive
messages
Asynchronously
from a
single-consumer
queue

Define a
PL/SQL callback
procedure

Register it using
DBMS_
AQ.register

Not supported LNOCISubscript
ionRegister

Specify queue_
name as
subscription
name

LNOCISubscript
ionEnable

<AQXmlRegist
er> Specify
queue name in
<destination
> and
notification
mechanism in
<notify_url>

Create a
QueueReceiver
on the queue,
then

QueueReceiver.s
etMessageListen
er

Receive
messages
Asynchronously
from a
multiconsumer
queue/Topic

Define a
PL/SQL callback
procedure

Register it using
DBMS_
AQ.register

Not supported LNOCISubscript
ionRegister

Specify
queue:OCI_
ATTR_
CONSUMER_
NAME as
subscription
name

LNOCISubscript
ionEnable

<AQXmlRegist
er> Specify
queue name in
<destination
>, consumer in
<consumer_
name> and
notification
mechanism in
<notify_url>

Create a
TopicSubscriber
or TopicReceiver
on the topic,
then

TopicSubscriber.s
etMessageListen
er

TopicReceiver.set
MessageListener
AQ Programmatic Environments 3-27

Comparing AQ Programmatic Environments
Listen for
messages on
multiple
Queues/Topics

- - - - -

Listen for
messages on one
(many)
single-consumer
queues

DBMS_AQ.listen

Use agent_name
as NULL for all
agents in agent_
list

Not supported LNOCIAQListen

Use agent_name
as NULL for all
agents in agent_
list

Not supported Create multiple
QueueReceivers
on a
QueueSession,
then

QueueSession.se
tMessageListene
r

Listen for
messages on
one(many)
multiconsumer
queues/Topics

DBMS_AQ.listen

Specify agent_
name for all
agents in agent_
list

Not supported LNOCIAQListen

Specify agent_
name for all
agents in agent_
list

Not supported Create multiple
TopicSubscribers
or
TopicReceivers
on a
TopicSession,
then

TopicSession.set
MessageListener

Table 3–9 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Register to
Receive Messages Asynchronously from a Queue/Topic Use Cases

Use Case PL/SQL
Java (Native
AQ) OCI AQ XML Servlet JMS
3-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Managin
4

Managing AQ

This chapter discusses the following topics related to managing Advanced
Queuing:

� Security

� Oracle 8.1-Style Queues

� Queue Table Export-Import

� Oracle Enterprise Manager Support

� Using Advanced Queuing with XA

� Restrictions on Queue Management

� Propagation Issues

� Oracle 8.0-Style Queues
g AQ 4-1

Security
Security
Configuration information can be managed through procedures in the DBMS_
AQADM package. Initially, only SYS and SYSTEM have execution privilege for the
procedures in DBMS_AQADM and DBMS_AQ. Users who have been granted EXECUTE
rights to these two packages will be able to create, manage, and use queues in their
own schemas. Users also need the MANAGE ANY QUEUE privilege to create and
manage queues in other schemas.

Users of the JMS or Java AQ APIs will need EXECUTE privileges on DBMS_AQJMS
(also available through AQ_ADMINSTRATOR_ROLE and AQ_USER_ROLE) and
DBMS_AQIN.

Administrator Role
The AQ_ADMINISTRATOR_ROLE has all the required privileges to administer
queues. The privileges granted to the role let the grantee:

� Perform any queue administrative operation, including create queues and
queue tables on any schema in the database

� Perform enqueue and dequeue operations on any queues in the database

� Access statistics views used for monitoring the queue workload

� Create transformations using DBMS_TRANSFORM

� Execute all procedures in DBMS_AQELM

� Execute all procedures in DBMS_AQJMS

User Role
You should avoid granting AQ_USER_ROLE in Oracle9i and 8.1 since this role will
not provide sufficient privileges for enqueuing or dequeuing on Oracle9i or
8.1-compatible queues.

Your database administrator has the option of granting the system privileges
ENQUEUE ANY QUEUE and DEQUEUE ANY QUEUE, exercising DBMS_AQADM.GRANT_
SYSTEM_PRIVILEGE and DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE directly to
a database user, if you want the user to have this level of control. You as the
application developer give rights to a queue by granting and revoking privileges at
the object level by exercising DBMS_AQADM.GRANT_QUEUE_PRIVILEGE and DBMS_
AQADM.REVOKE_QUEUE_PRIVILEGE.
4-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle 8.1-Style Queues
As a database user, you do not need any explicit object-level or system-level
privileges to enqueue or dequeue to queues in your own schema other than the
execute right on DBMS_AQ.

Access to AQ Object Types
All internal AQ objects are now accessible to PUBLIC.

Oracle 8.1-Style Queues

Compatibility
For 8.1-style queues, the compatible parameter of init .ora and the
compatible parameter of the queue table should be set to 8.1 to use the following
features:

� Queue-level access control

� Nonpersistent queues (automatically created when queue table compatible =
8.1)

� Support for Oracle Parallel Server environments

� Rule-based subscribers for publish-subscribe

� Asynchronous notification

� Sender identification

� Separate storage of history management information

Security
AQ administrators of an Oracle9i database can create 8.1-style queues. All 8.1
security features are enabled for 8.1-style queues. Note that AQ 8.1 security features
work only with 8.1-style queues. When you create queues, the default value of the
compatible parameter in DBMS_AQADM.CREATE_QUEUE_TABLE is 8.1 .
Managing AQ 4-3

Oracle 8.1-Style Queues
Table 4–1 lists the AQ security features and privilege equivalences supported with
8.1-style queues.

Privileges and Access Control
You can grant or revoke privileges at the object level on 8.1- style queues. You can
also grant or revoke various system-level privileges. The following table lists all
common AQ operations and the privileges need to perform these operations for an
Oracle9i or 8.1-compatible queue:

Table 4–1 Security with 8.1-Style Queues

Privilege 8.1.x-Style Queues in a 8.1.x Database or Higher

AQ_USER_ROLE Not supported. Equivalent privileges:

� execute right on dbms_aq

� enqueue any queue system privilege

� dequeue any queue system privilege

� execute right on dbms_transform

AQ_ADMINISTRATOR_
ROLE

Supported.

Execute right on
DBMS_AQ

Execute right on DBMS_AQ should be granted to all AQ users.
To enqueue/dequeue on 8.1-compatible queues, the user needs
the following privileges:

� execute right on DBMS_AQ

� enqueue/dequeue privileges on target queues, or
ENQUEUE ANY QUEUE/DEQUEUE ANY QUEUE system
privileges

Table 4–2 Operations and Required Privileges

Operation(s) Privileges Required

CREATE/DROP/MONITOR
own queues

Must be granted execute rights on DBMS_AQADM. No other
privileges needed.

CREATE/DROP/MONITOR
any queues

Must be granted execute rights on DBMS_AQADM and be
granted AQ_ADMINISTRATOR_ROLE by another user who
has been granted this role (SYS and SYSTEM are the first
granters of AQ_ADMINISTRATOR_ROLE)

ENQUEUE/ DEQUEUE to
own queues

Must be granted execute rights on DBMS_AQ. No other
privileges needed.
4-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Queue Table Export-Import
LNOCI Applications
For an OCI application to access an 8.1-style queue, the session user has to be
granted either the object privilege of the queue he intends to access or the ENQUEUE
ANY QUEUE or DEQUEUE ANY QUEUE system privileges. The EXECUTE right of
DBMS_AQ will not be checked against the session user’s rights if the queue he
intends to access is an Oracle9i or 8.1-compatible queue.

Security Required for Propagation
AQ propagates messages through database links. The propagation driver dequeues
from the source queue as owner of the source queue; hence, no explicit access rights
have to be granted on the source queue. At the destination, the login user in the
database link should either be granted ENQUEUE ANY QUEUE privilege or be granted
the rights to enqueue to the destination queue. However, if the login user in the
database link also owns the queue tables at the destination, no explicit AQ
privileges need to be granted.

Queue Table Export-Import
When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported,
the import utility executes these PL/SQL anonymous blocks to write the metadata
to the data dictionary.

Exporting Queue Table Data
The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can only be done at queue-table granularity.

ENQUEUE/ DEQUEUE to
another’s queues

Must be granted execute rights on DBMS_AQ and be granted
privileges by the owner using DBMS_AQADM.GRANT_QUEUE_
PRIVILEGE .

ENQUEUE/ DEQUEUE to
any queues

Must be granted execute rights on DBMS_AQ and be granted
ENQUEUE ANY QUEUE or DEQUEUE ANY QUEUE system
privileges by an AQ administrator using DBMS_
AQADM.GRANT_SYSTEM_PRIVILEGE.

Table 4–2 Operations and Required Privileges

Operation(s) Privileges Required
Managing AQ 4-5

Queue Table Export-Import
Exporting Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following
tables:

� A dequeue index-organized table (IOT)

� A time-management index-organized table

� A subscriber table (for 8.1-compatible queue tables)

� A history index-organized table (for 8.1-compatible queue tables)

These tables are exported automatically during full database mode and user mode
exports, but not during table mode export. See "Export Modes" on page 4-6.

Because the metadata tables contain rowids of some rows in the queue table, the
import process will generate a note about the rowids being obsoleted when
importing the metadata tables. This message can be ignored, since the queuing
system will automatically correct the obsolete rowids as a part of the import
operation. However, if another problem is encountered while doing the import
(such as running out of rollback segment space), you should correct the problem
and repeat the import.

Export Modes
Exporting operates in full database mode, user mode, and table mode, as follows.
Incremental exports on queue tables are not supported.

� Full database mode—Queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

� User mode—Queue tables, all related tables, and primary object grants are
exported automatically.

� Table mode—This mode is not recommended. If you need to export a queue
table in table mode, you must export all related objects that belong to that
queue table. For example, when exporting an 8.1-compatible multiconsumer
queue table MCQ, you must also export the following tables:

AQ$_<queue_table>_I (the dequeue IOT)
AQ$_<queue_table>_T (the time-management IOT)
AQ$_<queue_table>_S (the subscriber table)
AQ$_<queue_table>_H (the history IOT)
4-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating AQ Administrators and Users
Importing Queue Table Data
Similar to exporting queues, importing queues entails importing the underlying
queue tables and related dictionary data. After the queue table data is imported, the
import utility executes the PL/SQL anonymous blocks in the dump file to write the
metadata to the data dictionary.

Importing Queue Tables with Multiple Recipients
A queue table that supports multiple recipients is associated with the following
tables:

� A dequeue IOT

� A time-management IOT

� A subscriber table (for 8.1-compatible queue tables)

� A history IOT (for 8.1-compatible queue tables)

These tables must be imported as well as the queue table itself.

Import IGNORE Parameter
You should not import queue data into a queue table that already contains data. The
IGNORE parameter of the import utility should always be set to NO when importing
queue tables. If the IGNORE parameter is set to YES, and the queue table that
already exists is compatible with the table definition in the dump file, then the rows
will be loaded from the dump file into the existing table. At the same time, the old
queue table definition and the old queue definition will be dropped and re-created.
Hence, queue table and queue definitions prior to the import will be lost, and
duplicate rows will appear in the queue table.

Creating AQ Administrators and Users

Creating a User as an AQ Administrator
To set a user up as an AQ administrator, do the following:

CONNECT system/manager
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT AQ_ADMINISTRATOR_ROLE TO aqadm;
GRANT CONNECT, RESOURCE TO aqadm;

Additionally, you can grant execute privilege on the AQ packages as follows:
Managing AQ 4-7

Oracle Enterprise Manager Support
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT EXECUTE ON DBMS_AQ TO aqadm;

This allows the user to execute the procedures in the AQ packages from within a
user procedure.

Creating Users AQUSER1 and AQUSER2
If you want to create AQ users who create and access queues within their own
schemas, follow the steps outlined in "Creating a User as an AQ Administrator"
except do not grant the AQ_ADMINISTRATOR_ROLE.

CONNECT system/manager
CREATE USER aquser1 IDENTIFIED BY aquser1;
GRANT CONNECT, RESOURCE TO aquser1;

Additionally, you can grant execute privilege on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to aquser1;
GRANT EXECUTE ON DBMS_AQ TO aquser1;

If you wish to create an AQ user who does not create queues but uses a queue in
another schema, first follow the steps outlined in the previous section. In addition,
you must grant object level privileges. However, note that this applies only to
queues defined using 8.1 compatible queue tables.

CONNECT system/manager
CREATE USER aquser2 IDENTIFIED BY aquser2;
GRANT CONNECT, RESOURCE TO aquser2;

Additionally, you can grant execute on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to aquser2;
GRANT EXECUTE ON DBMS_AQ TO aquser2;

For aquser2 to access the queue, aquser1_q1 in aquser1 schema, aquser1
must execute the following statements:

CONNECT aquser1/aquser1
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(

'ENQUEUE','aquser1_q1','aquser2',FALSE);

Oracle Enterprise Manager Support
Oracle Enterprise Manager supports most of the administrative functions of
Advanced Queuing. AQ functions are found under the Distributed node in the nav-
4-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Restrictions on Queue Management
igation tree of the Enterprise Manager console. Functions available through Enter-
prise Manager include:

� Using queues as part of the schema manager to view properties

� Creating, starting, stopping, and dropping queues

� Scheduling and unscheduling propagation

� Adding and removing subscribers

� Viewing propagation schedules for all queues in the database

� Viewing errors for all queues in the database

� Viewing the message queue

� Granting and revoking privileges

� Creating, modifying, or removing transformations

Using Advanced Queuing with XA
You must specify "Objects=T" in the xa_open string if you want to use the AQ OCI
interface. This forces XA to initialize the client-side cache in Objects mode. You do
not need to do this if you plan to use AQ through PL/SQL wrappers from OCI or
Pro*C. The LOB memory management concepts from the Pro* documentation are
not relevant for AQ raw messages because AQ provides a simple RAW buffer
abstraction (although they are stored as LOBs).

When using the AQ navigation option, you must reset the dequeue position by
using the FIRST_MESSAGE if you want to continue dequeuing between services
(such as xa_start and xa_end boundaries). This is because XA cancels the cursor
fetch state after an xa_end . If you do not reset, you will get an error message
stating that the navigation is used out of sequence (ORA-25237).

Restrictions on Queue Management
See the following topics for restrictions on queue management:

� Collection Types in Message Payloads

� Synonyms on Queue Tables and Queues

� Tablespace Point-in-Time Recovery

� Nonpersistent Queues
Managing AQ 4-9

Restrictions on Queue Management
Collection Types in Message Payloads
You cannot construct a message payload using a VARRAY that is not itself
contained within an object. You also cannot currently use a NESTED Table even as
an embedded object within a message payload. However, you can create an object
type that contains one or more VARRAYs, and create a queue table that is founded
on this object type.

For example, the following operations are allowed:

CREATE TYPE number_varray AS VARRAY(32) OF NUMBER;
CREATE TYPE embedded_varray AS OBJECT (col1 number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table => 'QT',
queue_payload_type => 'embedded_varray');

Synonyms on Queue Tables and Queues
All AQ PL/SQL calls do not resolve synonyms on queues and queue tables.
Although you can create a synonyms, you should not apply the synonym to the AQ
interface.

Tablespace Point-in-Time Recovery
AQ currently does not support tablespace point-in-time recovery. Creating a queue
table in a tablespace will disable that particular tablespace for point-in-time
recovery.

Nonpersistent Queues
Currently you can create nonpersistent queues of RAW and ADT type.You are limited
to sending messages only to subscribers and explicitly specified recipients who are
local. Propagation is not supported from nonpersistent queues. When retrieving
messages, you cannot use the dequeue call, but must instead employ the
asynchronous notification mechanism, registering for the notification by mean of
LNOCISubcriptionRegister .

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.
4-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Issues
Propagation Issues
Propagation makes use of the system queue aq$_prop_notify_X , where X is the
instance number of the instance where the source queue of a schedule resides, for
handling propagation run-time events. Messages in this queue are stored in the
system table aq$_prop_table_X, where X is the instance number of the instance
where the source queue of a schedule resides.

Execute Privileges Required for Propagation
Propagation jobs are owned by SYS, but the propagation occurs in the security
context of the queue table owner. Previously propagation jobs were owned by the
user scheduling propagation, and propagation occurred in the security context of
the user setting up the propagation schedule. The queue table owner must be
granted EXECUTE privileges on the DBMS_AQADM package. Otherwise, the Oracle
snapshot processes will not propagate and generate trace files with the error
identifier SYS.DBMS_AQADM not defined. Private database links owned by the queue
table owner can be used for propagation. The user name specified in the connection
string must have EXECUTE access on the DBMS_AQ and DBMS_AQADM packages on
the remote database.

The Number of Job Queue Processes
The scheduling algorithm places the restriction that at least two job queue processes
be available for propagation. If there are nonpropagation-related jobs, then more job
queue processes are needed. If heavily loaded conditions (a large number of active
schedules, all of which have messages to be propagated) are expected, you should
start a larger number of job queue processes and keep in mind the need for
nonpropagation jobs as well. In a system that only has propagation jobs, two job
queue processes can handle all schedules. However, with more job queue processes,
messages are propagated faster. Since one job queue process can propagate
messages from multiple schedules, it is not necessary to have the number of job
queue processes equal to the number of schedules.

Caution: The queue aq$_prop_notify_X should never be
stopped or dropped and the table aq$_prop_table_X should
never be dropped for propagation to work correctly.
Managing AQ 4-11

Propagation Issues
Optimizing Propagation
In setting the number of JOB_QUEUE_PROCESSES, DBAs should be aware that this
number is determined by the number of queues from which the messages have to
be propagated and the number of destinations (rather than queues) to which
messages have to be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
queue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing
near-OLTP behavior. The algorithm can handle an unlimited number of schedules
and various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of nonpropagation-related jobs such as replication jobs.
Hence, it is important to use the following guidelines to get the best results from the
scheduling algorithm.

The scheduling algorithm uses the job queue processes as follows (for this
discussion, an active schedule is one that has a valid current window):

� If the number of active schedules is less than half the number of job queue
processes, the number of job queue processes acquired corresponds to the
number of active schedules.

� If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, multiple
active schedules are assigned to an acquired job queue process.

� If the system is overloaded (all schedules are busy propagating), depending on
availability, additional job queue processes will be acquired up to one less than
the total number of job queue processes.

� If none of the active schedules handled by a process has messages to be
propagated, then that job queue process will be released.

� The algorithm performs automatic load balancing by transferring schedules
from a heavily loaded process to a lightly load process such that no process is
excessively loaded.

Handling Failures in Propagation
The scheduling algorithm also has robust support for handling failures. It may not
be able to propagate messages from a queue due to various types of failures. Some
of the common reasons include failure of the database link, non-availability of the
remote database, non-existence of the remote queue, remote queue not started and
security violation while trying to enqueue messages into the remote queue. Under
4-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Issues
all these circumstances the appropriate error messages will be reported in the DBA_
QUEUE_SCHEDULES view. When an error occurs in a schedule, propagation of
messages in that schedule is attempted periodically using an exponential backoff
algorithm for a maximum of 16 times, after which the schedule is disabled. If the
problem causing the error is fixed and the schedule is enabled, the error fields that
indicate the last error date, time, and message will still continue to show the error
information. These fields are reset only when messages are successfully propagated
in that schedule. During the later stages of the exponential backoff, many hours or
even days can elapse between propagation attempts. This happens when an error
has been neglected for a long time. Under such circumstances it may be better to
unschedule the propagation and schedule it again.

Propagation from Object Queues
Note that AQ does not support propagation from object queues that have BFILE or
REF attributes in the payload.

Guidelines for Debugging AQ Propagation Problems
This discussion assumes that you have created queue tables and queues in source
and target databases and defined a database link for the destination database. The
notation assumes that you will supply the actual name of the entity (without the
brackets).

To begin debugging, do the following:

1. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information will be logged to job queue trace files as propagation
takes place. You can check the trace file for errors and for statements indicating
that messages have been sent.

2. Check the database link to database 2.

You can do this by doing select count(*) from @.

3. Check that the propagation schedule has been created and that a job queue
process has been assigned.

Look for the entry in dba_queue_schedules and aq$_schedules . Check
that it has a 'jobno ' in aq$_schedules , and that there is an entry in job$ or
dbms_jobs with that jobno.

4. Make sure that at least two job queue processes are running.
Managing AQ 4-13

Oracle 8.0-Style Queues
5. Check for messages in the source queue with select count(*) from where
q_name = '<queue_name>';

6. Check for messages in the destination queue with the same kind of select .

7. Check to see who is using job queue processes.

Is it possible that the propagation job is being starved of processing time by
other jobs?

8. Check to see that sys.aq$_prop_table _ exists in dba_queue_tables and
that queue aq$_prop_notify_ exists in dba_queues (used for
communication between job queue processes).

9. Check that the consumer attempting to dequeue a message from the destination
queue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq_txn_id, deq_time, deq_user_id,
propagated_msgid from aq$
where queue = '<queue_name>';

For 8.0-style queues, you can obtain the same information from the history
column of the queue table:

select h.consumer, h.transaction_id, h.deq_time, h.deq_user,
h.propagated_msgid from t, table(t.history) h
where t.q_name = '<queue_name>';

or

select consumer, transaction_id, deq_time, deq_user,
propagated_msgid from
the(select cast(history as sys.aq$_dequeue_history_t)
from where q_name = '<queue_name>');

Oracle 8.0-Style Queues
If you use 8.0-style queues and 8.1 or higher database compatibility, the following
features are not available:

� Support for Oracle Parallel Server environments

� Asynchronous notification

To use these features, you should migrate to 8.1-style or higher queues.
4-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle 8.0-Style Queues
Migrating To and From 8.0
To upgrade a 8.0-style queue table to an 8.1-style queue table or to downgrade a
8.1-style queue table to an 8.0-style queue table, use DBMS_AQADM.MIGRATE_
QUEUE_TABLE. Table 4–3 lists the parameters for DBMS_AQADM.MIGRATE_QUEUE_
TABLE.

Syntax
DBMS_AQADM.MIGRATE_QUEUE_TABLE(

queue_table IN VARCHAR2,
compatible IN VARCHAR2)

Example: Upgrading an 8.0 Queue Table to an 8.1-Compatible Queue
Table

EXECUTE DBMS_AQADM.MIGRATE_QUEUE_TABLE(

For more information, see:

� "Security Required for Propagation" on page 4-5

� Oracle9i Database Migration

Table 4–3 DBMS_AQADM_MIGRATE_QUEUE_TABLE Parameters

Parameter Description

queue_table

(IN VARCHAR2)

Specifies name of the queue table that is to be migrated.

compatible Set to 8.1 to upgrade an 8.0 queue table to 8.1 compatibility. Set to 8.0 to
downgrade an 8.1 queue table to 8.0 compatibility.

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’qtable1’,
multiple_consumers => TRUE,
queue_payload_type => ’aq.message_typ’,
compatible =>’8.0’);
Managing AQ 4-15

Oracle 8.0-Style Queues
queue_table => ’qtable1’,
compatible => ’8.1’);

Importing and Exporting with 8.0-Style Queues
Because the metadata tables contain rowids of some rows in the queue table, the
import and export processes will generate a note about the rowids being obsoleted
when importing the metadata tables. This message can be ignored, since the
queuing system will automatically correct the obsolete rowids as a part of the
import operation. However, if another problem is encountered while doing the
import or export (such as running out of rollback segment space), you should
correct the problem and repeat the import or export.

Roles in 8.0
Access to AQ operations in Oracle 8.0 is granted to users through roles that provide
execution privileges on the AQ procedures. The fact that there is no control at the
database object level when using Oracle 8.0 means that, in Oracle 8.0, a user with
the AQ_USER_ROLE can enqueue and dequeue to any queue in the system. For
finer-grained access control, use 8.1-style queue tables in an 8.1- compatible or
higher database.

AQ administrators of an Oracle9i or 8.1 database can create queues with 8.0
compatibility; 8.0-style queues are protected by the 8.0-compatible security features.

If you want to use 8.1 security features on a queue originally created in an 8.0
database, the queue table must be converted to 8.1 style by running DBMS_
AQADM.MIGRATE_QUEUE_TABLE on the queue table.

If a database downgrade is necessary, all 8.1-style queue tables have to be either
converted back to 8.0 compatibility or dropped before the database downgrade can
be carried out. During the conversion, all Oracle9i or 8.1 security features on the
queues, like the object privileges, will be dropped. When a queue is converted to 8.0
compatibility, the 8.0 security model applies to the queue, and only 8.0 security
features are supported.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information on DBMS_AQADM.MIGRATE_QUEUE_TABLE
4-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle 8.0-Style Queues
Security with 8.0-Style Queues
Table 4–4 lists the AQ security features and privilege equivalences supported with
8.0-style queues.

Access to AQ Object Types
The procedure grant_type_access was made obsolete in release 8.1.5 for
8.0-style queues.

LNOCI Application Access to 8.0-Style Queues
For an OCI application to access an 8.0-style queue, the session user has to be
granted the EXECUTE rights of DBMS_AQ.

Pluggable Tablespaces and 8.0-Style Multiconsumer Queues
A tablespace that contains 8.0-style multiconsumer queue tables should not be
transported using the pluggable tablespace mechanism. The mechanism will work,
however, with tablespaces that contain only single-consumer queues as well as 8.1
compatible multiconsumer queues. Before you can export a tablespace in pluggable
mode, you have to alter the tablespace to read-only mode. If you try to import a
read-only tablespace that contains 8.0-style multiconsumer queues, you will get an
Oracle error indicating that you cannot update the queue table index at import time.

Autocommit Features in the DBMS_AQADM Package
The autocommit parameters in the CREATE_QUEUE_TABLE, DROP_QUEUE_TABLE,
CREATE_QUEUE, DROP_QUEUE, and ALTER_QUEUE calls of the DBMS_AQADM

Table 4–4 Security with 8.0.x-Style Queues

Privilege
8.0.x-Style Queues in an 8.0.x
Database

8.0.x Compatible Queues in a 8.1.x
Database

AQ_USER_ROLE Supported. The grantee is given the
execute right of DBMS_AQ through the
role.

Supported. The grantee is given the
execute right of dbms_aq through the
role.

AQ_ADMINISTRATOR_
ROLE

Supported. Supported.

Execute right on
DBMS_AQ

Execute right on DBMS_AQ should be
granted to developers who write AQ
applications in PL/SQL.

Execute right on DBMS_AQ should be
granted to developers who write AQ
applications in PL/SQL.
Managing AQ 4-17

Oracle 8.0-Style Queues
package are deprecated for 8.1.5 and subsequent releases. Oracle continues to
support this parameter in the interface for backward compatibility.
4-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Performance and Scal
5

Performance and Scalability

This chapter discusses the following topics:

� Performance Overview

� Basic Tuning Tips

� Propagation Tuning Tips
ability 5-1

Performance Overview
Performance Overview
Queues are stored in database tables. The performance characteristics of queue
operations are similar to underlying database operations. The code path of an
enqueue operation is comparable to SELECT and INSERT into a multicolumn queue
table with three IOTs. The code path of a dequeue operation is comparable to
SELECT, DELETE, and UPDATE operations on similar tables.

Advanced Queuing in the Oracle Real Application Clusters Environment
Oracle Real Application Clusters can be used to ensure highly available access to
queue data. The tail and the head of a queue can be extreme hot spots. Since Oracle
Real Application Clusters may not scale well in the presence of hot spots, limit
normal access to a queue from one instance only. If an instance failure occurs,
messages managed by the failed instance can be processed immediately by one of
the surviving instances.

Advanced Queuing in a Shared Server Environment
Queue operation scalability is similar to the underlying database operation
scalability. If a dequeue operation with wait option is issued in a shared server
environment, the shared server process will be dedicated to the dequeue operation
for the duration of the call, including the wait time. The presence of many such
processes can cause severe performance and scalability problems and can result in
deadlocking the shared server processes. For this reason, it is recommended that
dequeue requests with wait option be issued using dedicated server processes. This
restriction is not enforced.

Basic Tuning Tips
Advanced Queuing table layout should be considered similar to a layout with
ordinary database tables and indexes.

Running Enqueue and Dequeue Processes Concurrently—Single Queue Table
Some environments need to process messages in a constant flow, thus requiring that
both enqueue and dequeue processes run concurrently. If the message delivery
system has only one queue table and one queue, all processes must work on the

See Also: Oracle9i Database Performance Tuning Guide and Reference
for tuning recommendations
5-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Tuning Tips
same segment area at the same time, which impedes delivering a high number of
messages at reasonable performance levels.

The best number for concurrent processes must be defined according to available
system resources. For example, on a four-CPU system, it is reasonable to start with
two concurrent enqueue and two concurrent dequeue processes. If the optimal
number of messages that should be delivered through the system has not been
achieved, rather than increasing the number of processes, use several subscribers
for load balancing.

Running Enqueue and Dequeue Processes in Serial—Single Queue Table
When enqueue and dequeue processes are not running concurrently, that is,
messages are first enqueued and then dequeued, contention on the same data
segment is lower than in the case of concurrent processes. In this case, the total time
taken to deliver messages by the system is longer than when they run concurrently.
Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate is higher for enqueuers than for dequeuers when the
number of processes is increased. Normally, the dequeue operations throughput is
much less than the enqueue operation (INSERT) throughput because dequeue
operations perform SELECT, DELETE, and UPDATE.

Propagation Tuning Tips
Propagation can be considered a special kind of dequeue operation with an
additional INSERT at the remote (or local) queue table. Propagation from a single
schedule is not parallelized across multiple job queue processes. Rather, they are
load balanced. For better scalability, configure the number of propagation schedules
according to the available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables
vary to some extent because Oracle determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly
determined by the user application.
Performance and Scalability 5-3

Propagation Tuning Tips
5-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Frequently Asked Que
6

Frequently Asked Questions

This section answers some of the most commonly asked questions about Advanced
Queuing. This chapter discusses questions in the following areas:

� General Questions

� JMS Questions

� Internet Access Questions

� Oracle Internet Directory Questions—Global Agents, Global Events, and Global
Queues

� Transformation Questions

� Performance Questions

� Installation Questions

General Questions

How are messages that have been dequeued but are still retained in the
queue table accessed?
Access messages using SQL. Messages in the queue table (either because they are
being retained or because they have not yet been processed). Each queue has a view
that you can use (see "Selecting the Number of Messages in Different States for the
Whole Database" on page 10-33).
stions 6-1

General Questions

.

Message retention means the messages are there, but how does the
subscriber access these messages?
Typically we expect the subscriber to access the messages using the dequeue
interface. If, however, you would like to see processed or waiting messages, you can
either dequeue by message id or use SQL.

Can the sort order be changed after the queue table is created?
You cannot change the sort order for messages after you have created the queue
table.

How do I dequeue from an exception queue?
The exception queue for a multiconsumer queue must also be a multiconsumer
queue.

Expired messages in multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
once (only once) using a NULL consumer name in dequeue options. Messages can
also be dequeued from an exception queue by specifying the message ID.

Expired messages can be dequeued only by specifying message ID if the
multiconsumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0'

What does the latency parameter mean in scheduling propagation?
If a latency less than 0 was specified in the propagation schedule, the job is
rescheduled to run after the specified latency. The time at which the job actually
runs depends on other factors, such as the number of ready jobs and the number of
job_queue_processes. It may also be affected by the value for job_queue_
interval. Please refer to the MANAGING JOB QUEUES chapter of the Oracle9i
Database Administrator’s Guide for more information on job queues and SNP
background processes.

How can I control the tablespaces in which the queue tables are
created?
You can pick a tablespace for storing the queue table and all its ancillary objects
using the storage_clause parameter in DBMS_AQADM.CREATE_QUEUE_TABLE
However, once you pick the tablespace, all IOTs and indexes created for that queue
table will go to the specified tablespace. Currently, you do not have a choice to split
them between different tablespaces.
6-2 Oracle9i Application Developer’s Guide - Advanced Queuing

General Questions
How do you associate Oracle Parallel Server instance affinities with
queue tables?
In 8.1 you can associate OPS instance affinities with queue tables. If you are using
q1 and q2 in different instances, you can use alter_queue_table (or even create
queue table) on the queue table and set the primary_instance to the appropriate
instance_id.

Can you give me some examples of a subscriber rule containing -
message properties - message data properties.
Yes, here is a simple rule that specifies message properties - rule = 'priority 1';
here are example rules that specify a combination of message properties and data
attributes: rule = 'priority 1 AND tab.userdata.sal 1000' rule =
' ((priority between 0 AND 3) OR correlation = ’BACK_ORDERS') AND
tab.userdata.customer_name like ''JOHN DOE'')'

Note that user data properties or attributes apply only to object payloads and must
be prefixed with tab.userdata in all cases. Check documentation for more examples.

Is registration for notification (OCI) the same as starting a listener?
No. Registration is an OCI client call to be used for asynchronous notifications (that
is, push). It provides a notification from the server to the client when a message is
available for dequeue. A client side function (callback) is invoked by the server
when the message is available. Registration for notification is both nonblocking and
nonpolling.

What is the use of non-persistent queues?
To provide a mechanism for notification to all users that are currently connected.
The non-persistent queue mechanism supports the enqueue of a message to a
non-persistent queue and OCI notifications are used to deliver such messages to
users that are currently registered for notification.

Is there a limit on the length of a recipient list? Or on the number of
subscribers for a particular queue?
Yes, 1024 subscribers or recipients for any queue.

How can I clean out a queue with UNDELIVERABLE messages?
You can dequeue these messages by msgid. You can find the msgid by querying
the queue table view. Eventually the messages are moved to the exception queue
Frequently Asked Questions 6-3

General Questions
(you must have the AQ background process running for this to happen). You can
dequeue these messages from the exception queue with a normal dequeue.

Is it possible to update the message payload after it has been
enqueued?
Only by dequeuing and enqueuing the message again. If you are changing the
message payload, it is a different message.

Can asynchronous notification be used to invoke an executable every
time there is a new message?
Notification is possible only to OCI clients. The client does not have to be connected
to the database to receive notifications. The client specifies a callback function
which will be executed for each message. Asynchronous Notification cannot be
used to invoke an executable, but it is possible for the callback function to invoke a
stored procedure.

Does propagation work from multiconsumer queues to single-consumer
queues and vice versa?
Propagation from a multiconsumer queue to a single consumer queue is possible.
The reverse is not possible (propagation is not possible from a single consumer
queue).

Why do I sometimes get ORA-1555 error on dequeue?
You are probably using the NEXT_MESSAGE navigation option for dequeue. This
uses the snapshot created during the first dequeue call. After that the other dequeue
calls generate more undo which fills up the rollback segment and hence generates
1555.

The workaround is to use the FIRST_MESSAGE option to dequeue the message.
This will reexecute the cursor and get a new snapshot. This might not perform as
well, so we suggest you dequeue them in batches: FIRST_MESSAGE for one, and
NEXT_MESSAGE for the next, say, 1000 messages, and then FIRST_MESSAGE again,
and so on.

What are the different subscriber types recorded on the subscriber
table?
The subscriber_types and their values are:

1 - Current Subscriber. The subscribers name, address and protocol are in the same
row.
6-4 Oracle9i Application Developer’s Guide - Advanced Queuing

General Questions
2 - Ex subscriber - A subscriber that unsubscribed but had agent entries in the
history aq$_queuetable_h IOT.

4 - Address - Used to store addresses of recipients. The name is always NULL. The
address is always non-NULL.

8 - Proxy for Propagation - The name is always NULL.

database proxy to local queues, address=NULL, protocol=0

database proxy to remote queues, address=dblink address, protocol=0

3rd party proxies, address = NULL, protocol = 3rd party protocol.

After a message has been moved to an exception queue, is there a way,
using SQL or otherwise, of identifying which queue the message
resided in before moving to the exception queue?
No, AQ does not provide this information. To get around this, the application could
save this information in the message.

What is the order in which messages are dequeued if many messages
are enqueued in the same second?
When the enq_time is the same for messages, there is another field called step_no
that will be monotonically increasing (for each message that has the same enq_
time). Hence this helps in maintaining the order of the messages. There will be no
situation when both enq_time and step_no are the same for more than one
message enqueued from the same session.

What happened to OMB? When should we use AQ and when should we
use Oracle MessageBroker?
In Oracle9i, OMB functionality is provided in the Oracle database. So, if you are
using the Oracle9i database, use the functionality offered by the database.

You do not need OMB.

With Oracle8i, use OMB in the following scenarios:

� To integrate with MQ Series

� To use HTTP framework

Use JMS functionality directly from the database in other scenarios.
Frequently Asked Questions 6-5

Messaging Gateway Questions
Can I use AQ with Virtual Private Database?
Yes, you can specify a security policy with AQ queue tables. While dequeuing, use
the dequeue condition (deq_cond) or the correlation ID for the policy to be
applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue
condition or correlation ID, the dequeue will result in an error.

How do I clean up my retained messages?
The Advanced Queuing retention feature can be used to automatically clean up
messages after the user-specified duration after consumption.

I have an application in which I inserted the messages for the wrong
subscriber. How do I clean up those messages?
You can do a dequeue with the subscriber name or by message ID. This consumes
the messages, which will be cleaned up after their retention time expires.

I’m running propagation between multiple Oracle databases. For some
reason, one of the destination databases has gone down for an
extended duration. How do I clean up messages for that destination?
To clean up messages for a particular subscriber, you can remove the subscriber and
add the subscriber again. Removing the subscriber removes all the messages for
that subscriber.

Messaging Gateway Questions

Where is the Messaging Gateway log file?
By default, the Messaging Gateway log file is in the $ORACLE_HOME/mgw/log
directory. The location can be overridden by the log_directory parameter of the
mgw.ora file. A new log file is created each time the MGW agent starts. The format
of the log file name is "oramgw-hostname-timestamp-processid.log" .

How do I interpret exception messages in a Messaging Gateway log file?
The exception messages logged to the MGW log file may include one or more
linked exceptions ([Linked-exception]), which are helpful in determining the
problem. A java.sql.SQLException may include an Oracle error message and
possibly a PL/SQL stack trace.

The following example shows entries from a MGW log file when an invalid value
(‘bad_service_name’) was specified for the database parameter of dbms_
6-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions
mgwadm.db_connect_info . This resulted in the MGW agent being unable to
establish database connections.

>>2002-01-15 15:45:12 MGW AdminMgr 0 LOG
Connecting to database using connect string = jdbc:oracle:oci8:@BAD_SERVICE_NAME
>>2002-01-15 15:45:15 MGW Engine 0 3
Agent is shutdown.
oracle.mgw.admin.MgwAdminException: [241] Failed to connect to database. SQL
error: 12154, connect string: jdbc:oracle:oci8:@BAD_SERVICE_NAME
[…Java stack trace here…]

[Linked-exception]
java.sql.SQLException: ORA-12154: TNS:could not resolve service name
[…Java stack trace here…]

How do I know if the Messaging Gateway agent is running?
Use the MGW_GATEWAY view to show gateway status information. The AGENT_
STATUS and AGENT_PING fields indicate the current agent status and whether it is
active and responsive to pings. AGENT_STATUS progresses through the following
values when the MGW agent is started:

1. NOT_STARTED

2. START_SCHEDULED

3. STARTING

4. INITIALIZING

5. RUNNING

Will the Messaging Gateway agent automatically restart if the database
shuts down or crashes while the agent is running?
The MGW agent may or may not automatically restart after a database shutdown or
crash. The MGW agent should always be shut down before shutting down the
database. If the MGW agent is running when a database SHUTDOWN NORMAL is
done, the database will not shut down due to the database connections held by the
MGW agent. For IMMEDIATE or ABORT the agent will not restart if the agent has
time to exit normally; otherwise the agent will restart the next time the database is
started.
Frequently Asked Questions 6-7

Messaging Gateway Questions
Why does the database not shut down when the Messaging Gateway
agent is running?
The MGW agent establishes connections with the database and those connections
prevent the database from shutting down for a SHUTDOWN NORMAL command. Call
dbms_mgwadm.shutdown to shut down the MGW agent before shutting down the
database.

Why does MGW_GATEWAY view always show an AGENT_STATUS of
START_SCHEDULED?
Messaging Gateway uses job queues in the Oracle database to start the MGW agent
process. At least one job queue process must be configured to execute queued jobs
in the background. The gateway job is scheduled to execute immediately, but will
not do so until a job queue process is available. If the gateway status remains
START_SCHEDULED for an extended period of time, it may indicate that the
database instance has been started with no or too few job queue processes. The
Messaging Gateway holds its job queue process for the lifetime of that MGW agent
session.

You should verify that the database instances have been started, with enough job
queue processes so one is available for use by Messaging Gateway. A minimum
value of 2 is recommended.

init.ora parameters:

JOB_QUEUE_PROCESSES specifies the number of job queue processes for each
instance.

Dynamic parameters:

ALTER SYSTEM SET JOB_QUEUE_PROCESSES = <number>;

After starting the Messaging Gateway agent, why does the MGW_
GATEWAY view show an AGENT_STATUS of NOT_STARTED?
The MGW_GATEWAY view provides status information about the gateway agent. A
NOT_STARTED status indicates that the agent is not running. If the MGW agent
encounters a fatal error while starting or running, the LAST_ERROR_MSG field is
nonnull.

Do the following:

1. Check if a MGW log file has been generated and whether it indicates any errors.
If a log file is not present, the gateway agent process was probably not started.

2. Verify that the listener has been started.
6-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions
3. Verify that the values specified in tnsnames.ora and listener.ora are
correct. Incorrect or mismatched values will prevent the listener from starting
the MGW agent. process.

4. Verify that the values specified in mgw.ora are correct. Incorrect values may
cause the MGW agent to terminate due to abnormal error conditions.

5. Correct the problem indicated by the error and start the MGW agent.

What if the MGW_GATEWAY view shows LAST_ERROR_MSG of "ORA-28575:
unable to open RPC connection to external procedure agent?"
� Verify that the listener has been started. If listener.ora has been modified,

the listener must be stopped and restarted before the changes will take effect.

� tnsnames.ora must have a net service name entry named MGW_AGENT. This
entry is not needed for Messaging Gateway on Windows NT.

� The SID value specified for CONNECT_DATA of the MGW_AGENT net service
name in tnsnames.ora must match the SID_NAME value of the SID_DESC
entry in listener.ora .

� If the MGW_AGENT net service name is set up for an IPC connection, the KEY
values for ADDRESS in tnsnames.ora and listener.ora must match.

� Verify that other values in tnsnames.ora or listener.ora are correct.

What if MGW_GATEWAY view shows LAST_ERROR_MSG of
"ORA-32830: result code <value> returned by Messaging Gateway
agent?"
The result code may be one of the following:

-1 ...An error occurred starting the Java Virtual Machine (JVM). Check the MGW log
file for an entry that contains one of the following lines.

� Can’t create Java VM

Verify that the Java version you are using is correct. Verify that your operating
system version and patch level are sufficient for the JDK version. Verify that
you are using a reasonable value for the JVM heap size. The heap size is
specified by the max_memory parameter of dbms_mgwadm.alter_agent .

� Can't find class oracle.mgw.engine.Agent

 Verify that the CLASSPATH set in mgw.ora contains mgw.jar . For example:

 set CLASSPATH=<ORACLE_HOME>/mgw/classes/mgw.jar
Frequently Asked Questions 6-9

Messaging Gateway Questions
-2 ...An error occurred reading mgw.ora . Verify that the file is readable.

-3 ...An error occurred creating the MGW log file. Verify that the log directory is
writeable. The default location is <ORACLE_HOME>/mgw/log.

-100 ...The MGW agent JVM encountered a runtime exception or error on startup.

-101 ...The MGW agent shut down due to a fatal error. Check the MGW log file.

Why does the Messaging Gateway log file show "ORA-01034: ORACLE
not available" when attempting to start Messaging Gateway agent?
This error may indicate that the database has not been started or that the
environment used by the Messaging Gateway agent to connect to the database is
not correct.

Example 1
If the MGW log file shows the following two Oracle errors

� ORA-01034: ORACLE not available

� ORA-27101: shared memory realm does not exist

then the gateway agent is attempting to connect to the database using a local IPC
connection, but the ORACLE_SID value is not correct.

A local connection is used when dbms_mgwadm.db_connect_info is called with
a NULL value for the database parameter. If a local connection is desired, the correct
ORACLE_SID value must be set in the MGW agent process. This can be done by
adding the following line to mgw.ora .

set ORACLE_SID = <sid_value>

Note that ORACLE_SID need not be set if dbms_mgwadm.db_connect_info is
called with a nonnull value for the database parameter. In this case the value should
specify a net service name from tnsnames.ora .

Can I use an AQ single consumer queue as a propagation source?
No, only an AQ multi-consumer queue can be used as a propagation source queue.

When is a Messaging Gateway subscriber flagged as DELETE_PENDING
removed?
An MGW subscriber will be flagged as DELETE_PENDING when dbms_
mgwadm.remove_subscriber is called to remove the subscriber in a nonforced
6-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions
manner and either the MGW agent is not running or the agent is running but
unable to perform all necessary clean up action at that time.

The MGW agent tries to remove a DELETE_PENDING subscriber:

1. Each time dbms_mgwadm.remove_subscriber is called and the agent is
running.

2. Each time the MGW agent is started and it finds a DELETE_PENDING
subscriber.

What is the maximum message size for AQ queues with RAW payload?
For AQ queues with RAW payload, the MGW agent can propagate messages of
32512 bytes or less. If the message size is larger than 32512 bytes, an error occurs
when the agent attempts to enqueue or dequeue the message.

Which instance of Oracle Real Application Clusters is used for the
Messaging Gateway agent?
The DBMS_MGWADM.STARTUP procedure submits a job queue job that starts the
MGW agent external process when the job is executed. The instance and force can
be used to control the job and instance affinity. By default the job is set up so that it
can be run by any instance.

Propagation Questions

How can I control when message propagation occurs?
The MGW agent propagates messages when a propagation subscriber and schedule
are configured for the same source queue, destination queue, and propagation type.
You can control when propagation occurs by using dbms_mgwadm.enable_
propagation_schedule and dbms_mgwadm.disable_propagation_
schedule . By default, the propagation schedule is enabled when it is first created.

To create a propagation job that is initially disabled, call the following APIs in the
indicated order:

1. dbms_mgwadm.schedule_propagation

2. dbms_mgwadm.disable_propagation_schedule

3. dbms_mgwadm.add_subscriber

In release 9.2, the propagation schedule window parameters are not used.
Frequently Asked Questions 6-11

Messaging Gateway Questions
How do I tell if messages are being propagated or moved to the
exception queue?
The PROPAGATED_MSGS field of the MGW_SUBSCRIBERS view indicates how many
messages have been successfully propagated. The EXCEPTIONQ_MSGS field
indicates how many messages have been moved to the exception queue. Both these
fields are reset to zero when the MGW agent is started.

When are messages moved to the propagation job exception queue?
If a MGW subscriber has been configured with an exception queue, the MGW agent
will move messages to that exception queue the first time the MGW agent
encounters a propagation failure due to a message conversion failure. A message
conversion failure is indicated by oracle.mgw.common.MessageException in
the MGW log file.

How do I recover from a message conversion failure? How do I continue
processing when oracle.mgw.common.MessageException occurs?
If a message conversion failure occurs,
oracle.mgw.common.MessageException is be logged to the MGW log file. If
this occurs, the MGW agent probably cannot propagate the message causing the
failure, and the propagation job will eventually be disabled.

If the log file indicates that the failure is due to an exception being raised in a
transformation function used for an AQ dequeue (outbound propagation) or AQ
enqueue (inbound propagation), verify that the transformation function is correct.

The MGW subscriber can be configured with a propagation exception queue. If a
message conversion failure occurs, the MGW agent moves that message to the
exception queue and then continues processing the propagation job.

How do I recover a failed propagation job?
If a propagation job runs into failures during processing, the MGW agent retries up
to 16 times in an exponential backoff scheme before disabling the job.

To recover from a failed propagation job, do the following:

1. Look at the MGW log file to determine the nature of the failure and correct the
problem. For a message conversion failure, the MGW subscriber may need to be
configured with an exception queue.

2. Call dbms_mgwadm.reset_subscriber to reset the subscriber state. The
MGW agent will attempt to recover the failed job and retry the propagation.
6-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions
Why are messages moved to the default AQ exception queue upon
propagation failures for an outbound propagation job?
The MAX_RETRIES parameter of AQ queues controls when AQ moves messages to
an AQ exception queue for a failed dequeue attempt. The default value is NULL,
which resolves to the value 5 in Oracle 9i.

If the parameter value is too small, messages in the queues can be moved into AQ
exception queues if the MGW agent keeps running into failures when processing
MGW subscribers. The AQ messages moved to AQ exception queues cause
unrecoverable failures on the associated MGW subscribers. The MAX_RETRIES
parameter for AQ queues that are used as a propagation source should be set to at
least 16 , and preferably a much larger value.

Transformation Questions

How do I use transformations?
An MGW subscriber can be configured with a transformation to use during an AQ
dequeue for outbound propagation or an AQ enqueue for inbound propagation.

Do the following:

1. Create the transformation function.

2. Grant EXECUTE to the MGW agent user or to PUBLIC on the function and the
object types it references.

3. Call dbms_transform.create_transformation to register the
transformation.

4. Call dbms_mgwadm.add_subscriber to create a MGW subscriber using the
transformation, or dbms_mgwadm.alter_subscriber to alter an existing
subscriber.

The value passed in the transformation parameter for these APIs must be the
registered transformation name and not the function name.

What happens if a transformation raises an exception?
If a transformation function raises an exception, a message conversion failure occurs
and will be indicated by an oracle.mgw.common.MessageException in the MGW
log file.
Frequently Asked Questions 6-13

Messaging Gateway Questions
What transformation exceptions might I see in a Messaging Gateway log
file?
The exception messages logged to the MGW log file often include a linked
exception that provides additional information. If the linked exception is a
java.sql.SQLException, it may include an Oracle error message and possibly
a PL/SQL stack trace.

ORA-25229 is typically thrown by AQ when the transformation function raises a
PL/SQL exception or some other Oracle error occurs when attempting to use the
transformation.

Example 1
Errors occured during processing of subscriber SUB_MQ2AQ_2
oracle.mgw.common.GatewayException: [722] Message transformation failed; queue:
MGWUSER.DESTQ_SIMPLEADT, transform:
MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
oracle.mgw.common.MessageException: [722] Message transformation failed; queue:
MGWUSER.DESTQ_SIMPLEADT, transform:
MGWUSER.MGW_BASIC_MSG_TO_SIMPLEADT
[…Java stack trace here…]
[Linked-exception]
java.sql.SQLException: ORA-25229: error on transformation of message msgid:
9749DB80C85B0BD4E03408002086745E
ORA-00604: error occurred at recursive SQL level 1
ORA-00904: invalid column name
[…Java stack trace here…]

Possible causes of transformation exceptions include:

1. The MGW agent user may not have EXECUTE privilege on the transformation
function. It is not sufficient to grant EXECUTE to MGW_AGENT_ROLE and then
grant MGW_AGENT_ROLE to the agent user. EXECUTE privilege on the
transformation function must be granted directly to the agent user or to
PUBLIC.

2. The transformation function may not exist, even though the registered
transformation does. If the transformation function does not exist, it must be
re-created.

3. The MGW agent user may not have EXECUTE privilege on the payload object
type for the queue indicated in the exception. It is not sufficient to grant
EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to the agent
6-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions
user. EXECUTE privilege on the object type must be granted directly to the agent
user or to PUBLIC.

Example 2
Errors occured during processing of subscriber SUB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]

The transformation indicated in the exception may not exist. Note that the
transformation parameter of dbms_mgwadm.add_subscriber specifies the name
of the registered transformation and not the name of the transformation function.

Example 3
Errors occured during processing of subscriber SUB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]

[Linked-exception]
java.sql.SQLException: "from_type" is null
[…Java stack trace here…]

The MGW agent user may not have EXECUTE privilege on the object type used for
the from_type of the transformation indicated in the exception. It is not sufficient
to grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to the
agent user. EXECUTE privilege on the object type must be granted directly to the
agent user or to PUBLIC.

Example 4
Errors occured during processing of subscriber SUB_AQ2MQ_2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG
[…Java stack trace here…]

[Linked-exception]
java.sql.SQLException: "to_type" is null
[…Java stack trace here…]

The MGW agent user may not have EXECUTE privilege on the object type used for
the to_type of the transformation indicated in the exception. It is not sufficient to
grant EXECUTE to MGW_AGENT_ROLE and then grant MGW_AGENT_ROLE to the
Frequently Asked Questions 6-15

JMS Questions
agent user. EXECUTE privilege on the object type must be granted directly to the
agent user or to PUBLIC.

JMS Questions

Why do the JMS dbms_aqadm.add_subscriber and dbms_
aqadm.remove_subscriber calls sometimes hang when there are
concurrent enqueues or dequeues happening on the same queue to
which these calls are issued?
Add_subscriber and remove_subscriber are administrative operations on a
queue. Though AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. Both add_subscriber
and remove_subscriber will block until pending transactions that have
enqueued or dequeued messages commit and release the resources they hold. It is
expected that adding and removing subscribers will not be a frequent event. It will
mostly be part of the setup for the application. The behavior you observe will be
acceptable in most cases. The solution is to try to isolate the calls to add_
subscriber and remove_subscriber at the setup or cleanup phase when there
are no other operations happening on the queue. That will make sure that they will
not stay blocked waiting for operational calls to release resources.

Why do the TopicSession.createDurableSubscriber and
TopicSession.unubscribe calls raise JMSException with the message
"ORA - 4020 - deadlock detected while trying to lock object"?
CreateDurableSubscriber and unsubscribe calls require exclusive access to the
Topics. If there are pending JMS operations (send/publish/receive) on the same
Topic before these calls are issued, the ORA - 4020 exception is raised.

There are two solutions to the problem:

1. Try to isolate the calls to createDurableSubscriber and unsubscribe at the
setup or cleanup phase when there are no other JMS operations happening on
the Topic. That will make sure that the required resources are not held by other
JMS operational calls. Hence the error ORA - 4020 will not be raised.

2. Issue a TopicSession.commit call before calling
createDurableSubscriber and unsubscribe call.
6-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Internet Access Questions
Why doesn't AQ_ADMINISTRATOR_ROLE or AQ_USER_ROLE always
work for AQ applications using Java/JMS API?
In addition to granting the roles, you would also need to grant execute to the user
on the following packages:

� grant execute on sys.dbms_aqin to <userid>

� grant execute on sys.dbms_aqjms to <userid>

Why do I get java.security.AccessControlException when using JMS
MessageListeners from Java stored procedures inside Oracle8 i
JServer?
 To use MessageListeners inside Oracle8i JServer, you can do one for the following

1. GRANT JAVASYSPRIV to <userid>

Call dbms_java.grant_permission ('JAVASYSPRIV',
'SYS:java.net.SocketPermission', '*',
'accept,connect,listen,resolve');

Internet Access Questions

What is IDAP?
IDAP is Internet Data Access Presentation. IDAP defines the message structure for
the body of a SOAP request. An IDAP message encapsulates the AQ request and
response in XML. IDAP is used to perform AQ operations such as enqueue,
dequeue, send notifications, register for notifications, and propagation over the
Internet standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates
transactions, security, transformation, and the character set ID for requests.

Which Web servers are supported for AQ Internet access functionality?
Do I have to use Apache or can I use any Web server? Which servlet
engines are supported for AQ Internet access? Can I use Tomcat?
Internet access functionality for AQ is supported on Apache. This feature is certified
to work with Apache, along with the Tomcat or Jserv servlet execution engines.
However, the code does not prevent the servlet from working with other Web
server and servlet execution engines that support Java Servlet 2.0 or higher
interfaces.
Frequently Asked Questions 6-17

Oracle Internet Directory Questions—Global Agents, Global Events, and Global Queues
How do I get transactional behavior while using e-mail for AQ
operations?
When you send IDAP messages through SMTP, each request is a separate
transaction. The IDAP request must contain <AQXmlCommit/> as part of the
message request to ensure that the operation is committed.

How does an Internet agent tie to an AQ agent stored in Oracle Internet
Directory?
You can create an alias to an AQ agent in Oracle Internet Directory (OID). You can
use these AQ agent aliases in the IDAP document sent over the Internet to perform
AQ operations. Using aliases prevents exposing the internal name of the AQ agent.

Can I use my own authentication framework for authentication?
Yes, you can use your own authentication framework for authentication. HTTP
POST requests to the AQ Servlet for AQ operations must be authenticated by the
Web server. For example, in Apache, the following can be used to restrict access
(using basic authentication) to servlets installed under aqserv/servlet. In this
example, all users sending POST requests to the servlet are authenticated using the
users file in /apache/htdocs/userdb.

<Location /aqserv/servlet>
<Limit POST>

AuthName "Restrict AQ Servlet Access"
AuthType Basic
AuthUserFile /apache/htdocs/userdb/users
require valid-user

</Limit>
</Location>

Oracle Internet Directory Questions—Global Agents, Global Events, and
Global Queues

Which events can be registered in Oracle Internet Directory (OID)?
All types of events—system events, user events, and notifications on queues—can
be registered with OID. System events are database startup, database shutdown,
and system error events. User events include user log on and user log off, DDL
statements (create, drop, alter), and DML statement triggers. Notifications on
queues include OCI notifications, PL/SQL notifications, and e-mail notifications.
6-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Performance Questions
How do I use agent information stored in an OID?
You can create aliases for an AQ agent in OID. These aliases can be specified while
performing AQ operations-enqueue, dequeue, and notifications. This is specifically
useful while performing AQ operations over the Internet when you do not want to
expose an internal agent name. An alias can be used in an AQ operation (IDAP
request).

Transformation Questions

What happens to enqueue, dequeue, or propagation if the
transformation mapping raises an error?
Enqueue and dequeue of the message will raise the error to the application. If the
error occurs during the dequeue operation, the retry count of the message is
incremented. If the retry count exceeds max_retries, the message is moved to
the exception queue. If the error occurs during propagation, it is handled in a
manner similar to dequeue; propagation of the message will fail. It will be
attempted again and the message will be moved to the exception queue when retry
count exceeds max_retries for the queue.

How do you do transformation of XML data?
Transformation of XML data can be done in one of the following ways:

� Using the extract operator supported on XMLType to return an object of
XMLType after applying the supplied XPath expression.

� Creating a PL/SQL function that transforms the XMLType object by applying an
XSLT transformation to it, using the package XSLPROCESSOR.

Performance Questions

What is the maximum number of queues that a table can have without
affecting performance?
Performance is not affected by the number of queues in a table.

When messages are moved from one queue to another using
propagation, is there any optimization to move the messages in batches,
rather than one at a time?
Yes, if it is optimized, propagation happens in batches.
Frequently Asked Questions 6-19

Installation Questions
If the remote queue is in a different database, we use a sequencing algorithm to
avoid the need for a two-phase commit.

When a message needs to be sent to multiple queues in the same destination, it is
sent multiple times. If the message needs to be sent to multiple consumers in the
same queue at the destination, it is sent only once.

When is it useful to create indexes on a queue table? How do I create
them?
Creating an index on the queue table is useful in the following scenarios:

a. Dequeuing using correlation ID: To expedite dequeue, an index can be
created on the column corr_id of the underlying queue table AQ$_
<QueueTableName>.

b. Dequeue using a condition: Assume this condition to the where-clause for
the SELECT on the underlying queue table. An index on
<QueueTableName> can be created to expedite the performance this
SELECT statement.

What is the performance of Java (JMS) versus the PL/SQL API for AQ?
We do not have a specific performance evaluation of JMS versus the PL/SQL API.
In general, the PL/SQL API is slightly better than the JMS API. The performance of
the JMS and PL/SQL APIs in version 8.1.7 and higher should be comparable.

Installation Questions

How do I set up Internet access for AQ? What components are
required?
See Chapter 17 for a full discussion. The following summarizes the steps required to
set up Internet access for AQ queues:

1. Set up the AQ Servlet: If you are using a servlet execution engine that supports
the Java Servlet 2.2 specification (such as Tomcat), you must create a servlet that
extends the oracle.AQ.xml.AQxmlServlet class. If you are using a servlet
execution engine that supports the Java Servlet 2.0 specification (like Apache
Jserv), you must create a servlet that extends the
oracle.AQ.xml.AQxmlServlet20 class. Implement the init() method in
the servlet to specify database connection parameters.
6-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Installation Questions
2. Set up user authentication: Configure the Web server to authenticate all the
users that send POST requests to the AQ Servlet. Only authenticated users are
allowed to access the AQ Servlet.

3. Set up user authorization: Register the AQ agent name that will be used to
perform AQ operations using DBMS_AQADM.CREATE_AQ_AGENT. Map the AQ
agent to the database users using DBMS_AQADM.ENABLE_DB_ACCESS.

4. Now clients can write SOAP requests and send them to the AQ Servlet using
HTTP POST.

How do I set up e-mail notifications?
Here are the steps for setting up your database for e-mail notifications:

1. Set the SMTP mail host: Invoke DBMS_AQELM.SET_MAILHOST as an AQ
administrator.

2. Set the SMTP mail port: Invoke DBMS_AQELM.SET_MAILPORT as an AQ
administrator. If not explicit, set defaults to 25.

3. Set the SendFrom address: Invoke DBMS_AQELM.SET_SENDFROM.

4. After setup, you can register for e-mail notifications using the OCI or PL/SQL
API.

How do I perform AQ operations using e-mail?
See Chapter 17 for a full discussion. Currently, these operations are supported by
Oracle Email Server 5.5 and higher. In summary, follow the steps for setting up
Internet access for AQ. In addition, do the following:

1. Create an AQ Internet agent to access the servlet using SMTP. This agent’s
digital certificate should be registered in LDAP. The certificate location must be
specified when the agent is registered using the DBMS_AQADM.CREATE_AQ_
AGENT procedure.

2. Set up the Web server: Configure the Web server to receive requests from a user
called ORACLE_SMTP_AGENT. This user will be used to access the AQ Servlet.
Also specify setEmailServerAddr or setEmailServerHost in the
init() method of the AQ Servlet.

3. Set up Oracle Email Server:

a. Run $ORACLE_HOME/admin/emailrule.sql to create an AQ schema on
the e-mail server database.
Frequently Asked Questions 6-21

Installation Questions
b. Create an e-mail account for the destination database in which the AQ
operations are to be performed.

c. Set up an e-mail rule for the destination database, so that it can route the
AQ requests to the AQ Servlet on the web server. This can be done using
the DBMS_AQST.REGISTER_DB procedure.

4. Now clients can write IDAP requests and send to the AQ Servlet using e-mail.

How do I set up AQ propagation over the Internet?
See Chapter 17 for a full discussion. In summary, follow the steps for setting up
Internet access for AQ. The destination databases need to be set up for Internet
access, as follows:

1. At the source database, create the dblink with protocol as http, and host and
port of the Web server running the AQ Servlet with the username password for
authentication with the Web server/servlet runner. For example, if the Web
server is running on machine webdest.oracle.com and listening for
requests on port 8081, then the connect string of the database is
(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.c
om)(PORT=8081)) If SSL is used, specify https as the protocol in the connect
string. The database link is created as follows: create public database
link propdb connect to john identified by welcome using
’(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.
com)(PORT=8081))’; where user John with password Welcome is used to
authenticate with the Web server, and is also known by the term AQ HTTP
agent.

2. If SSL is used, create an Oracle wallet and specify the wallet path at the source
database execute dbms_aqadm.set_aq_
propagationwallet(’/home/myuid/cwallet.sso’, ’welcome’);

3. Deploy the AQ Servlet at the destination database: Create a class
AQPropServlet that extends oracle.AQ.xml.AQxmlServlet20 (if you
are using a Servlet 2.0 execution engine like Apache Jserv) or extends
oracle.AQ.xml.AQxmlServlet (if you are using a Servlet 2.2 execution
engine like Tomcat). This servlet must connect to the destination database. The
servlet must be deployed on the Web server in the path aqserv/servlet.
6-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Installation Questions
4. At the destination database: Set up the authorization and authentication for the
Internet user performing propagation, in this case, John.

5. Start propagation at the source site by calling dbms_aqadm.schedule_
propagation(’src_queue’, ’propdb’).

NOTE: In Oracle9i, the propagation servlet name and deployment
path are fixed, that is, they must be AQPropServlet and the
aqserv/servlet respectively.
Frequently Asked Questions 6-23

Installation Questions
6-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling and D
7

Modeling and Design

This chapter covers the fundamentals of AQ modeling and design in the following
sections:

� Basic Queuing

� Basic Queuing Illustrated

� AQ Client-Server Communication

� Multiconsumer Dequeuing of the Same Message

� Dequeuing of Specified Messages by Specified Recipients

� AQ Implementation of Workflows

� AQ Implementation of Publish/Subscribe

� Message Propagation
esign 7-1

Modeling Queue Entities
Modeling Queue Entities
Figure 7–1 shows a queue table that contains the following queues and messages:

� Queue1—contains 10 messages

� Queue2—contains 7 messages

� ExceptionQueue1—contains 3 messages

Figure 7–1 Basic Queues

Queue 2 Exception Queue 1Queue 1

Queue Table

Que 1 Msg 1

Que 1 Msg 2

Que 1 Msg 3

Que 1 Msg 4

Que 1 Msg 5

Que 1 Msg 6

Que 1 Msg 7

Que 1 Msg 8

Que 1 Msg 9

Que 1 Msg 10

Que 2 Msg 1

Que 2 Msg 2

Que 2 Msg 3

Que 2 Msg 4

Que 2 Msg 5

Que 2 Msg 6

Que 2 Msg 7

ExQue 1 Msg 1

ExQue 1 Msg 2

ExQue 1 Msg 3
7-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
Basic Queuing

Basic Queuing — One Producer, One Consumer
At its most basic, one producer may enqueue different messages into one queue.
Each message will be dequeued and processed once by one of the consumers. A
message will stay in the queue until a consumer dequeues it or the message expires.
A producer may stipulate a delay before the message is available to be consumed,
and a time after which the message expires. Likewise, a consumer may wait when
trying to dequeue a message if no message is available. Note that an agent program,
or application, can act as both a producer and a consumer.

Basic Queuing — Many Producers, One Consumer
At a slightly higher level of complexity, many producers may enqueue messages
into a queue, all of which are processed by one consumer.

Basic Queuing — Many Producers, Many Consumers of Discrete Messages
In this next stage, many producers may enqueue messages, each message being
processed by a different consumer depending on type and correlation identifier. See
Figure 7–2.

Basic Queuing Illustrated
Figure 7–2 portrays a queue table that contains one queue into which messages are
being enqueued and from which messages are being dequeued.
Modeling and Design 7-3

Modeling Queue Entities
Figure 7–2 Modeling Basic Queuing

Producers
The figure indicates that there are 6 producers of messages, although only four are
shown. This assumes that two other producers (P4 and P5) have the right to
enqueue messages even though there are no messages enqueued by them at the
moment portrayed by the figure. The figure shows that:

� A single producer may enqueue one or more messages.

� Producers may enqueue messages in any sequence.

Dequeue
application as
consumers

Enqueue
application as
producers

Queue

Queue Table

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6

C1

C2

C3

P1

P2

P3

P3

P2

P6
7-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
Consumers
According to the figure, there are 3 consumers of messages, representing the total
population of consumers. The figure shows that:

� Messages are not necessarily dequeued in the order in which they are
enqueued.

� Messages may be enqueued without being dequeued.

AQ Client-Server Communication
The figure portrays the enqueuing of multiple messages by a set of producers, and
the dequeuing of messages by a set of consumers. What may not be readily evident
in that sketch is the notion of time and the advantages offered by Oracle AQ.

Client-Server applications normally execute in a synchronous manner, with all the
disadvantages of that tight coupling described earlier. Figure 7–3 demonstrates the
asynchronous alternative using AQ. In this example Application B (a server)
provides service to Application A (a client) using a request/response queue.
Modeling and Design 7-5

Modeling Queue Entities
Figure 7–3 Client-Server Communication Using AQ

1. Application A enqueues a request into the request queue.

2. Application B dequeues the request.

3. Application B processes the request.

4. Application B enqueues the result in the response queue.

5. Application A dequeues the result from the response queue.

In this way the client does not have to wait to establish a connection with the server,
and the server dequeues the message at its own pace. When the server is finished
processing the message, there is no need for the client to be waiting to receive the
result. In this way a process of double-deferral frees both client and server.

Note: The various enqueue and dequeue operations are part of
different transactions.

Application B
consumer & producer

Enqueue
Dequeue

Application A
producer & consumer

Server

Client

Response
Queue

Dequeue
Enqueue

Request
Queue
7-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
Multiconsumer Dequeuing of the Same Message
A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
this would require management of a very large number of queues. Oracle AQ
provides two mechanisms to allow for multiple consumers to dequeue the same
message: queue subscribers and message recipients. The queue must reside in a queue
table that is created with multiple consumer option to allow for subscriber and
recipient lists. Each message remains in the queue until it is consumed by all its
intended consumers.

Queue Subscribers Using this approach, multiple consumer-subscribers are
associated with a queue. This will cause all messages enqueued in the queue to be
made available to be consumed by each of the queue subscribers. The subscribers to
the queue can be changed dynamically without any change to the messages or
message producers. Subscribers to the queue are added and removed by using the
Oracle AQ administrative package. Figure 7–4 shows multiple producers enqueuing
messages into queue, each of which is consumed by multiple consumer-subscribers.

Message Recipients A message producer can submit a list of recipients at the time a
message is enqueued. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients may be selected from among the subscribers.

Figure 7–4 describes the case in which three consumers are all listed as subscribers
of a queue. This is the same as saying that they all subscribe to all the messages that
might ever be enqueued into that queue.
Modeling and Design 7-7

Modeling Queue Entities
Figure 7–4 Multiconsumer Dequeuing of the Same Message

The figure illustrates a number of important points:

� The figure portrays the situation in which the 3 consumers are subscribers to 7
messages that have already been enqueued, and that they might become
subscribers to messages that have not yet been enqueued.

� Every message will eventually be dequeued by every subscriber.

� There is no priority among subscribers. This means that there is no way of
saying which subscriber will dequeue which message first, second, and so on.
Or, put more formally: the order of dequeuing by subscribers is undetermined.

� We have no way of knowing from the figure about messages they might already
have been dequeued, and which were then removed from the queue.

Figure 7–5 illustrates the same technology from a dynamic perspective. This
examples concerns a scenario in which more than one application needs the result

Queue Subscribers

Queue Table
Subscriber list: s1, s2, s3

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6

Msg 7

S1

S2

S3
7-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
produced by an application. Every message enqueued by Application A is dequeued
by Application B and Application C. To make this possible, the multiconsumer queue
is specially configured with Application B and Application C as queue subscribers.
Consequently, they are implicit recipients of every message placed in the queue.

Figure 7–5 Communication Using a Multiconsumer Queue

Dequeuing of Specified Messages by Specified Recipients
Figure 7–6 shows how a message can be specified for one or more recipients. In this
case, Message 5 is specified to be dequeued by Recipient-1 and Recipient-2. Neither of
the recipients is one of the 3 subscribers to the queue.

Note: Queue subscribers can be applications or other queues.

Application B

Dequeue

Application C

Dequeue

Application A

Enqueue

Multiple
Consumer

Queue
Modeling and Design 7-9

Modeling Queue Entities
Figure 7–6 Dequeuing of Specified Messages by Specified Recipients

We earlier referred to subscribers as implicit recipients in that they are able to
dequeue all the messages placed into a specific queue. This is like subscribing to a
magazine and thereby implicitly gaining access to all its articles. The category of
consumers that we have referred to as recipients may also be viewed as explicit
recipients in that they are designated targets of particular messages.

Figure 7–7 shows how Oracle AQ can adjust dynamically to accommodate both
kinds of consumers. In this scenario Application B and Application C are implicit
recipients (subscribers). But messages can also be explicitly directed toward specific
consumers (recipients) who may or may not be subscribers to the queue. The list of
such recipients is specified in the enqueue call for that message and overrides the

Queue Subscribers

Queue Table
Subscriber list: s1, s2, s3
Recipient list: r1, r2

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6

Msg 7

S1

S2

S3

R1

R2
7-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
list of subscribers for that queue. In the figure, Application D is specified as the sole
recipient of a message enqueued by Application A.

Figure 7–7 Explicit and Implicit Recipients of Messages

AQ Implementation of Workflows
Figure 7–8 illustrates the use of AQ for implementing workflows, also knows as
chained application transactions. It shows the steps in the workflow performed by
Applications A, B, C and D. The queues are used to buffer the flow of information

Note: Multiple producers may simultaneously enqueue messages
aimed at different targeted recipients.

Application B
consumer (subscriber)

Dequeue

Application C
consumer (subscriber)

Dequeue

Application A
producer

Enqueue

Application D
consumer (recipient)

Implicit RecipientImplicit Recipient

Explicit Recipient
Modeling and Design 7-11

Modeling Queue Entities
between different processing stages of the business process. By specifying delay
interval and expiration time for a message, a window of execution can be provided
for each of the applications.

Figure 7–8 Implementing Workflows using AQ

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends.

AQ Implementation of Publish/Subscribe
Figure 7–9 illustrates the use of AQ for implementing a publish/subscribe
messaging scheme between applications. Application A is a publisher application
which is publishing messages to a queue. Applications B, C, D are subscriber

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages may contain parts
of the of the contents of previous messages.

Application A
producer

Enqueue
(Message 1)

Enqueue
(Message 3)

Application B
consumer & producer

Enqueue
(Message 2)

Dequeue
(Message 1)

Application C
consumer & producer

Dequeue
(Message 2)

Application D
consumer

Dequeue
(Message 3)
7-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
applications. Application A publishes messages anonymously to a queue. These
messages are then delivered to subscriber applications based on the rules specified
by each application. Subscriber applications can specify interest in messages by
defining a rule on message properties and message data content.

Figure 7–9 Implementing Publish/Subscribe using AQ

In the example shown, application B has subscribed with rule "priority=1",
application C has subscribed with rule "priority > 1", and application D has
subscribed with rule "priority = 3". Application A enqueues 3 messages (priority 3,
1, 2). Application B receives a single message (priority 1), application C receives two
messages (priority 2, 3) and application D receives a single message (priority 3).
Thus, message recipients are computed dynamically based on message properties
and content. The figure also illustrates how application C uses asynchronous

Application B
consumer

(rule-based subscriber)

Dequeue

Application C
consumer

(rule-based subscriber)

Dequeue

Register

Application A
producer

Enqueue

Application D
consumer

(rule-based subscriber)

"priority > 1""priority = 1"

"priority = 3"

priority 3
priority 1
priority 2
Modeling and Design 7-13

Modeling Queue Entities
notification for message delivery. Application C registers for messages on the
queue. When messages arrive, application C is notified and can dequeue the
messages.

Message Propagation

Fanning-Out of Messages
In AQ, message recipients can be either consumers or other queues. If the message
recipient is a queue, the actual recipients are determined by the subscribers to the
queue (which may in turn be other queues). Thus it is possible to fan-out messages
to a large number of recipients without requiring them all to dequeue messages
from a single queue.

For example, a queue, Source, may have as its subscribers queues dispatch1@dest1
and dispatch2@dest2. Queue dispatch1@dest1 may in turn have as its subscribers the
queues outerreach1@dest3 and outerreach2@dest4, while queue dispatch2@dest2 has as
subscribers the queue outerreach3@dest21 and outerreach4@dest4. In this way,
messages enqueued in Source will be propagated to all the subscribers of four
different queues.

Compositing (Funneling)
You can also combine messages from different queues into a single queue,
sometimes described as compositing. For example, if queue composite@endpoint is a
subscriber to both funnel1@source1 and funnel2@source2, then the subscribers to
composite@endpoint can get all messages enqueued in those queues as well as
messages enqueued directly to itself.

Propagation and Advanced Queuing
Figure 7–10 illustrates applications on different databases communicating using
AQ. Each application has an inbox and an outbox for handling incoming and
outgoing messages. An application enqueues a message into its outbox irrespective
of whether the message is sent locally (on the same node) or remotely (on a
different node). An application dequeues messages from its inbox irrespective of
7-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities
whether the message originates locally or remotely. AQ facilitates all interchanges,
treating messages on the same basis.

Figure 7–10 Message Propagation

Application B
consumer & producer

Inbox

Enqueue
Dequeue

Application A
producer & consumer

Dequeue
Enqueue

Database 1

Outbox

Application C
consumer & producer

Inbox

Enqueue
Dequeue

Outbox

Database 2

AQ's
Message

Propagation
Infrastructure

Outbox Inbox
Modeling and Design 7-15

Modeling Queue Entities
7-16 Oracle9i Application Developer’s Guide - Advanced Queuing

A Sample Application Usin
8

A Sample Application Using AQ

In Chapter 1, "Introduction to Oracle Advanced Queuing" a messaging system for a
hypothetical company, BooksOnLine, was described. In this chapter the features of
AQ in the BooksOnLine sample application are discussed under the following
headings:

� A Sample Application

� General Features of Advanced Queuing

� Enqueue Features

� Dequeue Features

� Asynchronous Notifications

� Propagation Features
g AQ 8-1

A Sample Application
A Sample Application
The operations of a large bookseller, BooksOnLine, are based on an online book
ordering system that automates activities across the various departments involved
in the sale. The front end of the system is an order entry application used to enter
new orders. Incoming orders are processed by an order processing application that
validates and records the order. Shipping departments located at regional
warehouses are responsible for ensuring that orders are shipped on time. There are
three regional warehouses: one serving the East Region, one serving the West
Region, and a third warehouse for shipping international orders. After an order is
shipped, the order information is routed to a central billing department that handles
payment processing.The customer service department, located at a separate site, is
responsible for maintaining order status and handling inquiries.

The features of AQ are exemplified within the BooksOnLine scenario to
demonstrate the possibilities of AQ technology. A script for the sample code is
provided in Appendix C, "Scripts for Implementing BooksOnLine").

General Features of Advanced Queuing
In this section, the following topics are discussed:

� System-Level Access Control

� Queue-Level Access Control

� Message Format Transformation

� Structured Payloads

� XMLType Queue Payloads

� Nonpersistent Queues

� Retention and Message History

� Publish-Subscribe Support

� Support for Oracle Real Application Clusters

� Support for Statistics Views

System-Level Access Control
Oracle supports system-level access control for all queuing operations, allowing an
application designer or DBA to designate users as queue administrators. A queue
administrator can invoke AQ administrative and operational interfaces on any
8-2 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
queue in the database. This simplifies the administrative work because all
administrative scripts for the queues in a database can be managed under one
schema. For more information, see "Oracle Enterprise Manager Support" on
page 4-8.

PL/SQL (DBMS_AQADM Package): Scenario and Code
In the BooksOnLine application, the DBA creates BOLADM, the BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADM to create, drop, manage, and monitor queues in the database. If PL/SQL
packages are needed in the BOLADM schema for applications to enqueue and
dequeue, the DBA should grant ENQUEUE_ANY and DEQUEUE_ANY system
privileges to BOLADM:

CREATE USER BOLADM IDENTIFIED BY BOLADM;
GRANT CONNECT, RESOURCE, aq_administrator_role TO BOLADM;
GRANT EXECUTE ON dbms_aq TO BOLADM;
GRANT EXECUTE ON dbms_aqadm TO BOLADM;
EXECUTE dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','BOLADM',FALSE);
EXECUTE dbms_aqadm.grant_system_privilege('DEQUEUE_ANY','BOLADM',FALSE);

If using the Java AQ API, BOLADM must be granted execute privileges on the
DBMS_AQIN package:

GRANT EXECUTE ON DBMS_AQIN to BOLADM;

In the application, AQ propagators populate messages from the Order Entry(OE)
schema to the Western Sales (WS), Eastern Sales (ES) and Worldwide Sales (OS)
schemas. The WS, ES and OS schemas in turn populate messages to the Customer
Billing (CB) and Customer Service (CS) schemas. Hence the OE, WS, ES and OS
schemas all host queues that serve as the source queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you need to grant schemas of the source
queues enqueue privileges to the destination queues.

To simplify administration, all schemas that host a source queue in the
BoooksOnLine application are granted the ENQUEUE_ANY system privilege:

EXECUTE dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','OE',FALSE);
EXECUTE dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','WS',FALSE);
EXECUTE dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','ES',FALSE);
EXECUTE dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','OS',FALSE);
A Sample Application Using AQ 8-3

General Features of Advanced Queuing
To propagate to a remote destination queue, the login user specified in the database
link in the address field of the agent structure should either be granted the
ENQUEUE ANY QUEUE privilege, or be granted the rights to enqueue to the
destination queue. If the login user in the database link also owns the queue tables
at the destination, no explicit privilege grant is needed.

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Queue-Level Access Control
Oracle supports queue-level access control for enqueue and dequeue operations.
This feature allows the application designer to protect queues created in one schema
from applications running in other schemas. The application designer needs to
grant only minimal access privileges to the applications that run outside the queue
schema. The supported access privileges on a queue are ENQUEUE, DEQUEUE and
ALL. For more information, see "Oracle Enterprise Manager Support" on page 4-8.

Scenario
The BooksOnLine application processes customer billings in its CB and CBADM
schemas. CB (Customer Billing) schema hosts the customer billing application, and
the CBADM schema hosts all related billing data stored as queue tables.

To protect the billing data, the billing application and the billing data reside in
different schemas. The billing application is allowed only to dequeue messages
from CBADM_shippedorders_que , the shipped order queue. It processes the
messages, and then enqueues new messages into CBADM_billedorders_que , the
billed order queue.

To protect the queues from other illegal operations from the application, the
following two grant calls are needed:

PL/SQL (DBMS_AQADM Package): Example Code
/* Grant dequeue privilege on the shopped orders queue to the Customer

Billing application. The CB application retrieves orders that are shipped but
not billed from the shipped orders queue. */

EXECUTE dbms_aqadm.grant_queue_privilege(
'DEQUEUE','CBADM_shippedorders_que', 'CB', FALSE);
8-4 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
/* Grant enqueue privilege on the billed orders queue to Customer Billing
application. The CB application is allowed to put billed orders into this
queue after processing the orders. */

EXECUTE dbms_aqadm.grant_queue_privilege(
'ENQUEUE', 'CBADM_billedorders_que', 'CB', FALSE);

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
public static void grantQueuePrivileges(Connection db_conn)
{

AQSession aq_sess;
AQQueue sh_queue;
AQQueue bi_queue;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Grant dequeue privilege on the shipped orders queue to the Customer
Billing application. The CB application retrieves orders that are
shipped but not billed from the shipped orders queue. */

sh_queue = aq_sess.getQueue("CBADM", "CBADM_shippedorders_que");

sh_queue.grantQueuePrivilege("DEQUEUE", "CB", false);

/* Grant enqueue privilege on the billed orders queue to Customer
Billing application.The CB application is allowed to put billed
orders into this queue after processing the orders. */

bi_queue = aq_sess.getQueue("CBADM", "CBADM_billedorders_que");

bi_queue.grantQueuePrivilege("ENQUEUE", "CB", false);
}
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
A Sample Application Using AQ 8-5

General Features of Advanced Queuing
}
}

Message Format Transformation
You can define transformation mappings between different message payload types.
Transformation mappings are defined as SQL expressions that can include PL/SQL
functions (including callouts) and Java stored procedures. Only one-to-one message
transformations are supported. The transformation engine is tightly integrated with
Advanced Queuing to facilitate transformation of messages as they move through
the database messaging system. Figure 8–1 shows how transformations are
integrated with Advanced Queuing.

Figure 8–1 Transformations Integrated with Advanced Queuing

Transformation mappings can be used during enqueue, dequeue, and propagation
operations. To use a transformation at enqueue, the mapping is specified in the
enqueue options. To use a transformation at dequeue, the mapping is specified
either in the dequeue options or when you add a subscriber. A mapping specified in
the dequeue options overrides a mapping specified with ADD_SUBSCRIBER. To use
a transformation at propagation, the mapping is specified when you add a
subscriber.

PL/SQL (DBMS_TRANSFORM Package): Scenario and Code
In the BooksOnLine application, assume that the order type is represented
differently in the order entry and the shipping applications.

Trans1

Enqueue(M)

Queue1

Trans2

Trans3

Dequeue(M'')

Propagate(M''')

M'

M'

M'

M'''

M''

(m, m')
(m', m'')
(m', m'')

Where M, M', M'' and M''' are messages of
types m, m', m'' and m''', respectively.

Trans1
Trans2
Trans3
8-6 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
The order type of the Order Entry application (in schema OE) is as follows:

create or replace type order_typ as object (
orderno number,
status varchar2(30),
ordertype varchar2(30),
orderregion varchar2(30),
custno number,
paymentmethod varchar2(30),
items orderitemlist_vartyp,
ccnumber varchar2(20),
order_date date);

create or replace type customer_typ as object (
custno number,
custid varchar2(20),
name varchar2(100),
street varchar2(100),
city varchar2(30),
state varchar2(2),
zip number,
country varchar2(100));

create or replace type book_typ as object (
title varchar2(100),
authors varchar2(100),
ISBN varchar2(20),
price number);

create or replace type orderitem_typ as object (
quantity number,
item book_typ,
subtotal number);

create or replace type orderitemlist_vartyp as varray (20) of
orderitem_typ;

The order item of the shipping application is defined as follows

create or replace type order_typ_sh as object (
orderno number,
status varchar2(30),
ordertype varchar2(30),
orderregion varchar2(30),
customer customer_typ_sh,
paymentmethod varchar2(30),
A Sample Application Using AQ 8-7

General Features of Advanced Queuing
items orderitemlist_vartyp,
ccnumber varchar2(20),
order_date date);

create or replace type customer_typ_sh as object (
custno number,
name varchar2(100),
street varchar2(100),
city varchar2(30),
state varchar2(2),
zip number);

create or replace type book_typ_sh as object (
title varchar2(100),
authors varchar2(100),
ISBN varchar2(20),
price number);

create or replace type orderitem_typ_sh as object (
quantity number,
item book_typ,
subtotal number);

create or replace type orderitemlist_vartyp_sh as varray (20) of
orderitem_typ_sh;

The Overseas Shipping application uses a sys.XMLType attribute.

Creating Transformations
You can create transformations in the following ways:

� Create a single PL/SQL function that returns an object of the target type or the
constructor of the target type.

This representation is preferable for simple transformations or transformations
that are not easily broken down into independent transformations for each
attribute.

execute dbms_transform.create_transformation(
schema => 'OE', name => 'OE2WS',
from_schema => 'OE', from_type => 'order_typ',
to_schema => 'WS', to_type => 'order_typ_sh',
transformation(

'WS.order_typ_sh(source.user_data.orderno,
source.user_data.status,
8-8 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
source.user_data.ordertype,
source.user_data.orderregion,

WS.get_customer_info(source.user_data.custno),
source.user_data.paymentmethod,
source.user_data.items,
source.user_data.ccnumber,
source.user_data.order_date)');

In the BooksOnline application, assume that the Overseas Shipping site
represents the order as an XMLType payload. The Order Entry site represents
the order as an Oracle object, ORDER_TYP. Since the Overseas Shipping site
subscribes to messages in the OE_BOOKEDORDERS_QUE queue, a transformation
is applied before messages are propagated from the Order Entry site to the
Overseas Shipping site.

The transformation is defined as follows:

CREATE OR REPLACE FUNCTION CONVERT_TO_ORDER_XML(input_order TYPE OE.ORDER_
TYP)
RETURN SYS.XMLType AS

new_order SYS.XMLType;
BEGIN

select SYS_XMLGEN(input_order) into new_order from dual;
RETURN new_order;

END CONVERT_TO_ORDER_XML;

execute dbms_transform.create_transformation(
schema => 'OS',
name => 'OE2XML',
from_schema => 'OE',
from_type => 'ORDER_TYP',
to_schema => 'SYS',
to_type => 'XMLTYPE',
transformation => 'CONVERT_TO_ORDER_XML(source.user_data)');

/* Add a rule-based subscriber for Overseas Shipping to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE

subscriber aq$_agent;
BEGIN

subscriber := aq$_agent('Overseas_Shipping','OS.OS_bookedorders_que',null);

dbms_aqadm.add_subscriber(
queue_name => 'OE.OE_bookedorders_que',
A Sample Application Using AQ 8-9

General Features of Advanced Queuing
subscriber => subscriber,
rule => 'tab.user_data.orderregion = ''INTERNATIONAL'''
transformation => 'OS.OE2XML');

END;

� Create a separate expression specified for each attribute of the target type. This
representation simplifies transformation mapping creation and management for
individual attributes of the destination type. It is useful when the destination
type has many attributes.

/* first create the transformation without any transformation expression*/
execute dbms_transform.create_transformation(

schema => 'OE', name => 'OE2WS',
from_schema => 'OE', from_type => 'order_typ',
to_schema => 'WS', to_type => 'order_typ_sh');

/* specify each attribute of the target type as a function of the source
type*/
execute dbms_transform.modify_transformation(

schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.orderno');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.status');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.ordertype');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.orderregion');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation =>

'WS.get_customer_info(source.user_data.custno)');

execute dbms_transform.modify_transformation(
8-10 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.payment_method');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.orderitemlist_vartyp');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.ccnumber');

execute dbms_transform.modify_transformation(
schema => 'OE', name => 'OE2WS',
attribute_number => 1,
transformation => 'source.user_data.order_date');

Visual Basic (OO4O): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Structured Payloads
With Oracle AQ, you can use object types to structure and manage the payload of
messages. The object-relational capabilities of Oracle provide a rich set of data types
that range from traditional relational data types to user-defined types.

Using strongly typed content, that is, content whose format is defined by an Oracle
object type system, makes the following features available:

� Content-based routing: Advanced Queuing can examine the content and
automatically route messages to another queue based on content.

� Content-based subscription: a publish and subscribe system can be built on top
of a messaging system so that you can create subscriptions based on content.

� XML: Use the flexibility and extensibility of XML with AQ messages. XMLType
has additional operators to simplify the use of XML data. The operators include
XMLType.existsNode() and XMLType.extract().
A Sample Application Using AQ 8-11

General Features of Advanced Queuing
You can also create payloads that contain Oracle objects with XMLType attributes.
These can be used for transmitting and storing messages that contain XML
documents. By defining Oracle objects with XMLType attributes, you can do the
following:

� Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

� Query XMLType attributes using the operators XMLType.existsNode() ,
XMLType.extract() , and so on.

PL/SQL (DBMS_AQADM Package): Scenario and Code
The BooksOnLine application uses a rich set of data types to model book orders as
message content.

� Customers are modeled as an object type called customer_typ .

CREATE OR REPLACE TYPE customer_typ AS OBJECT (
custno NUMBER,
name VARCHAR2(100),
street VARCHAR2(100),
city VARCHAR2(30),
state VARCHAR2(2),
zip NUMBER,
country VARCHAR2(100));

� Books are modeled as an object type called book_typ .

CREATE OR REPLACE TYPE book_typ AS OBJECT (
title VARCHAR2(100),
authors VARCHAR2(100),
ISBN NUMBER,
price NUMBER);

� An order item that represents an order line item is modeled as an object type
called orderitem_typ . An order item is a nested type that includes the book
type.

CREATE OR REPLACE TYPE orderitem_typ AS OBJECT (
quantity NUMBER,
item BOOK_TYP,
subtotal NUMBER);

� An order item list is used to represent a list of order line items and is modeled
as a varray of order items;
8-12 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
CREATE OR REPLACE TYPE orderitemlist_vartyp AS VARRAY (20) OF orderitem_typ;

� An order is modeled as an object type called order_typ . The order type is a
composite type that includes nested object types defined earlier. The order type
captures details of the order, the customer information, and the item list.

CREATE OR REPLACE TYPE order_typ as object (
orderno NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
orderregion VARCHAR2(30),
customer CUSTOMER_TYP,
paymentmethod VARCHAR2(30),
items ORDERITEMLIST_VARTYP,
total NUMBER);

� Some queues in the BooksOnline application model an order using a
SYS.XMLType payload.

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
After creating the types, use JPublisher to generate Java classes that map to the SQL
types.

1. Create an input file "jaqbol.typ" for JPublisher with the following lines:

TYPE boladm.customer_typ as Customer
TYPE boladm.book_typ as Book
TYPE boladm.orderitem_typ AS OrderItem
TYPE boladm.orderitemlist_vartyp AS OrderItemList
TYPE boladm.order_typ AS Order

2. Run JPublisher with the following arguments:

jpub -input=jaqbol.typ -user=boladm/boladm -case=mixed -methods=false
-compatible=CustomDatum

This will create Java classes Customer, Book, OrderItem and OrderItemList that
map to the SQL object types created earlier:

3. Load the Java AQ driver and create a JDBC connection:

public static Connection loadDriver(String user, String passwd)
A Sample Application Using AQ 8-13

General Features of Advanced Queuing
{
Connection db_conn = null;
try
{

Class.forName("oracle.jdbc.driver.OracleDriver");

/* your actual hostname, port number, and SID will
vary from what follows. Here we use 'dlsun736,' '5521,'
and 'test,' respectively: */

db_conn =
DriverManager.getConnection(
"jdbc:oracle:thin:@dlsun736:5521:test",
user, passwd);

System.out.println("JDBC Connection opened ");
db_conn.setAutoCommit(false);

/* Load the Oracle8i AQ driver: */
Class.forName("oracle.AQ.AQOracleDriver");

System.out.println("Successfully loaded AQ driver ");
}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
ex.printStackTrace();

}
return db_conn;

XMLType Queue Payloads
You can create queues with XMLType payloads. These can be used for transmitting
and storing messages that contain XML documents. By defining Oracle objects with
XMLType attributes, you can do the following:

� Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

� Selectively dequeue messages with XMLType attributes using the operators
XMLType.existsNode() , XMLType.extract() , and so on.
8-14 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
For details on XMlType operations refer to Application Developer's guide - XML

� Define transformations to convert Oracle objects to XMLType.

� Define rule-based subscribers that query message content using XMLType
operators such as XMLType.existsNode() and XMLType.extract() .

In the BooksOnline application, assume that the Overseas Shipping site represents
the order as SYS.XMLType. The Order Entry site represents the order as an Oracle
object, ORDER_TYP.

The Overseas queue table and queue are created as follows:

BEGIN
dbms_aqadm.create_queue_table(

queue_table => 'OS_orders_pr_mqtab',
comment => 'Overseas Shipping MultiConsumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'SYS.XMLTtype',
compatible => '8.1');

END;

BEGIN
dbms_aqadm.create_queue (

queue_name => 'OS_bookedorders_que',
queue_table => 'OS_orders_pr_mqtab');

END;

Since the representation of orders at the Overseas Shipping site is different from the
representation of orders at the Order Entry site, a transformation is applied before
messages are propagated from the Order Entry site to the Overseas Shipping site.

/* Add a rule-based subscriber (for Overseas Shipping) to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE

subscriber aq$_agent;
BEGIN

subscriber := aq$_agent('Overseas_Shipping','OS.OS_bookedorders_que',null);

dbms_aqadm.add_subscriber(
queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.orderregion = ''INTERNATIONAL''',
transformation => 'OS.OE2XML');

END;

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for details on XMLType operations
A Sample Application Using AQ 8-15

General Features of Advanced Queuing
For more details on defining transformations that convert the type used by the
Order Entry application to the type used by Overseas shipping, see "Creating
Transformations" on page 8-8.

Assume that an application processes orders for customers in Canada. This
application can dequeue messages using the following procedure:

/* Create procedures to enqueue into single-consumer queues: */
create or replace procedure get_canada_orders() as
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data SYS.XMLTtype;
no_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin
dopt.wait := 1;

/* Specify dequeue condition to select Orders for Canada */
dopt.deq_condition := 'tab.user_data.extract(

''/ORDER_TYP/CUSTOMER/COUNTRY/text()'').getStringVal()=''CANADA''';

dopt.consumer_name : = 'Overseas_Shipping';

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => 'OS.OS_bookedorders_que',
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

commit;

dbms_output.put_line(' Order for Canada - Order: ' ||
deq_order_data.getStringVal());

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (' ---- NO MORE ORDERS ---- ');
new_orders := FALSE;

END;
8-16 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
END LOOP;
end;

Nonpersistent Queues
A message in a nonpersistent queue is not stored in a database table. You create a
nonpersistent queue, which can be either a single-consumer or multiconsumer type.
These queues are created in a system-created queue table (AQ$_MEM_SC for
single-consumer queues and AQ$_MEM_MC for multiconsumer queues) in the
schema specified by the create_np_queue command. Subscribers can be added
to the multiconsumer queues (see "Creating a Nonpersistent Queue" on page 9-26).
Nonpersistent queues can be destinations for propagation.

You use the enqueue interface to enqueue messages into a nonpersistent queue in
the normal way. You can enqueue RAW and Object Type (ADT) messages into a
nonpersistent queue. You retrieve messages from a nonpersistent queue through the
asynchronous notification mechanism, registering for the notification (using
LNOCISubcriptionRegister or DBMS_AQADM.REGISTER) for the queues you
are interested in (see "Registering for Notification" on page 11-55).

When a message is enqueued into a queue, it is delivered to clients with active
registrations for the queue. The messages are published to the interested clients
without incurring the overhead of storing them in the database.

Scenario
Assume that there are three application processes servicing user requests at the
Order Entry system. The connection dispatcher shares out connection requests from
the application processes. It attempts to maintain a count of the number of users
logged on to the Order Entry system and the number of users for each application
process. The application processes are named APP_1, APP_2, APP_3. (Application
process failures are not considered in this example.)

Using nonpersistent queues meets the requirements in this scenario. When a user
logs on to the database, the application process enqueues to the multiconsumer
nonpersistent queue, LOGIN_LOGOUT, with the application name as the consumer
name. The same process occurs when a user logs out. To distinguish between the

See Also: Documentation on DBMS_AQADM.REGISTER in
Oracle9i Supplied PL/SQL Packages and Types Reference and
documentation on LNOCISubscriptionRegister in Oracle Call
Interface Programmer’s Guide.
A Sample Application Using AQ 8-17

General Features of Advanced Queuing
two events, the correlation of the message is LOGIN for logins and LOGOUT for
logouts.

The callback function counts the login/logout events for each application process.
Note that the dispatcher process needs to connect to the database for registering the
subscriptions only. The notifications themselves can be received while the process is
disconnected from the database.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT oe/oe;
/* Create the Object Type/ADT adtmsg */
CREATE OR REPLACE TYPE adtmsg AS OBJECT (id NUMBER, data VARCHAR2(4000));

/* Create the multiconsumer nonpersistent queue in OE schema: */
EXECUTE dbms_aqadm.create_np_queue(queue_name => 'LOGON_LOGOFF',

multiple_consumers => TRUE);

/* Enable the queue for enqueue and dequeue: */
EXECUTE dbms_aqadm.start_queue(queue_name => 'LOGON_LOGOFF');

/* Nonpersistent Queue Scenario - procedure to be executed upon logon: */
CREATE OR REPLACE PROCEDURE User_Logon(app_process IN VARCHAR2)
AS

msgprop dbms_aq.message_properties_t;
enqopt dbms_aq.enqueue_options_t;
enq_msgid RAW(16);
payload RAW(1);

BEGIN
/* visibility must always be immediate for NonPersistent queues */
enqopt.visibility:=dbms_aq.IMMEDIATE;
msgprop.correlation:= 'LOGON';
msgprop.recipient_list(0) := aq$_agent(app_process, NULL, NULL);
/* payload is NULL */
dbms_aq.enqueue(

queue_name => 'LOGON_LOGOFF',
enqueue_options => enqopt,
message_properties => msgprop,
payload => payload,
msgid => enq_msgid);

END;

/* Nonpersistent queue scenario - procedure to be executed upon logoff: */
CREATE OR REPLACE PROCEDURE User_Logoff(app_process IN VARCHAR2)
8-18 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
AS
msgprop dbms_aq.message_properties_t;
enqopt dbms_aq.enqueue_options_t;
enq_msgid RAW(16);
payload adtmsg;

BEGIN
/* Visibility must always be immediate for NonPersistent queues: */
enqopt.visibility:=dbms_aq.IMMEDIATE;
msgprop.correlation:= 'LOGOFF';
msgprop.recipient_list(0) := aq$_agent(app_process, NULL, NULL);
/* Payload is NOT NULL: */

payload := adtmsg(1, 'Logging Off');

dbms_aq.enqueue(
queue_name => 'LOGON_LOGOFF',
enqueue_options => enqopt,
message_properties => msgprop,
payload => payload,
msgid => enq_msgid);

END;
/

/* If there is a login at APP1, enqueue a message into 'login_logoff' with
correlation 'LOGIN': */

EXECUTE User_logon('APP1');

/* If there is a logout at APP3, enqueue a message into 'login_logoff' with
correlation 'LOGOFF' and payload adtmsg(1, 'Logging Off'): */

EXECUTE User_logoff('App3');

/* The OCI program which waits for notifications: */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>
#ifdef WIN32COMMON
#define sleep(x) Sleep(1000*(x))
#endif

/* LOGON / password: */
static text *username = (text *) "OE";
static text *password = (text *) "OE";

/* The correlation strings of messages: */
A Sample Application Using AQ 8-19

General Features of Advanced Queuing
static char *logon = "LOGON";
static char *logoff = "LOGOFF";

/* The possible consumer names of queues: */
static char *applist[] = {"APP1", "APP2","APP3"};

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

static void checkerr(/*_ OCIError *errhp, sword status _*/);

struct process_statistics
{

ub4 logon;
ub4 logoff;

};

typedef struct process_statistics process_statistics;

int main(/*_ int argc, char *argv[] _*/);

/* Notify Callback: */
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
LNOCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{

text *subname; /* subscription name */
ub4 lsub; /* length of subscription name */
text *queue; /* queue name */
ub4 *lqueue; /* queue name */
text *consumer; /* consumer name */
ub4 lconsumer;
text *correlation;
ub4 lcorrelation;
ub4 size;
ub4 appno;
OCIRaw *msgid;
OCIAQMsgProperties *msgprop; /* message properties descriptor */
process_statistics *user_count = (process_statistics *)ctx;
8-20 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
OCIAttrGet((dvoid *)subscrhp, OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &lsub,
OCI_ATTR_SUBSCR_NAME, errhp);

/* Extract the attributes from the AQ descriptor: */
/* Queue name: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,

OCI_ATTR_QUEUE_NAME, errhp);

/* Consumer name: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &lconsumer,

OCI_ATTR_CONSUMER_NAME, errhp);

/* Message properties: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,

OCI_ATTR_MSG_PROP, errhp);

/* Get correlation from message properties: */
checkerr(errhp, OCIAttrGet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,

(dvoid *)&correlation, &lcorrelation,
OCI_ATTR_CORRELATION, errhp));

if (lconsumer == strlen(applist[0]))
{

if (!memcmp((dvoid *)consumer, (dvoid *)applist[0], strlen(applist[0])))
appno = 0;

else if (!memcmp((dvoid *)consumer, (dvoid *)applist[1],
strlen(applist[1])))

appno = 1;
else if (!memcmp((dvoid *)consumer, (dvoid *)applist[2],

strlen(applist[2])))
appno = 2;

else
{

printf("Wrong consumer in notification");
return;

}
}
else
{ /* consumer name must be "APP1", "APP2" or "APP3" */

printf("Wrong consumer in notification");
return;

}

A Sample Application Using AQ 8-21

General Features of Advanced Queuing
if (lcorrelation == strlen(logon) && /* logon event */
!memcmp((dvoid *)correlation, (dvoid *)logon, strlen(logon)))

{
user_count[appno].logon++;

/* increment logon count for the app process */
printf("Logon by APP%d \n", (appno+1));
printf("Logon Payload length = %d \n", pay1);

}
else if (lcorrelation == strlen(logoff) && /* logoff event */

!memcmp((dvoid *)correlation,(dvoid *)logoff, strlen(logoff)))
{

user_count[appno].logoff++;
/* increment logoff count for the app process */

printf("Logoff by APP%d \n", (appno+1));
printf("Logoff Payload length = %d \n", pay1);

}
else /* correlation is "LOGON" or "LOGOFF" */

printf("Wrong correlation in notification");

printf("Total : \n");

printf("App1 : %d \n", user_count[0].logon-user_count[0].logoff);
printf("App2 : %d \n", user_count[1].logon-user_count[1].logoff);
printf("App3 : %d \n", user_count[2].logon-user_count[2].logoff);

}

int main(argc, argv)
int argc;
char *argv[];
{

OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhp[3];
ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;
process_statistics ctx[3] = {{0,0}, {0,0}, {0,0}};
ub4 sleep_time = 0;

printf("Initializing OCI Process\n");

/* Initialize OCI environment with OCI_EVENTS flag set: */
(void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,

(dvoid * (*)(dvoid *, size_t)) 0,
(dvoid * (*)(dvoid *, dvoid *, size_t))0,
(void (*)(dvoid *, dvoid *)) 0);
8-22 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
printf("Initialization successful\n");

printf("Initializing OCI Env\n");
(void) OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0

);
printf("Initialization successful\n");

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
LNOCI_HTYPE_ERROR,

(size_t) 0, (dvoid **) 0));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
LNOCI_HTYPE_SERVER,

(size_t) 0, (dvoid **) 0));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
LNOCI_HTYPE_SVCCTX,

(size_t) 0, (dvoid **) 0));

printf("connecting to server\n");
checkerr(errhp, OCIServerAttach(srvhp, errhp, (text *)"inst1_alias",

strlen("inst1_alias"), (ub4) OCI_DEFAULT));
printf("connect successful\n");

/* Set attribute server context in the service context: */
checkerr(errhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,

(ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0));

/* Set username and password in the session handle: */
checkerr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,

(dvoid *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR_USERNAME, errhp));

checkerr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, errhp));

/* Begin session: */
checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,

(ub4) OCI_DEFAULT));

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
A Sample Application Using AQ 8-23

General Features of Advanced Queuing
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, errhp);

/* Register for notification: */
printf("allocating subscription handle\n");

subscrhp[0] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP1: */
printf("setting subscription name\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) "OE.LOGON_LOGOFF:APP1",
(ub4) strlen("OE.LOGON_LOGOFF:APP1"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callback\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof(ctx),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

printf("setting subscription namespace\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

printf("allocating subscription handle\n");
subscrhp[1] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[1],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP2: */
printf("setting subscription name\n");
(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) "OE.LOGON_LOGOFF:APP2",
(ub4) strlen("OE.LOGON_LOGOFF:APP2"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callback\n");
8-24 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof(ctx),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

printf("setting subscription namespace\n");
(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

printf("allocating subscription handle\n");
subscrhp[2] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

/* For application process APP3: */
printf("setting subscription name\n");
(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) "OE.LOGON_LOGOFF:APP3",
(ub4) strlen("OE.LOGON_LOGOFF:APP3"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callback\n");
(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof(ctx),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

printf("setting subscription namespace\n");
(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

printf("Registering fornotifications \n");
checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 3, errhp,

OCI_DEFAULT));

sleep_time = (ub4)atoi(argv[1]);
A Sample Application Using AQ 8-25

General Features of Advanced Queuing
printf ("waiting for %d s \n", sleep_time);
sleep(sleep_time);

printf("Exiting");
exit(0);

}

void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
sb4 errcode = 0;

switch (status)
{
case OCI_SUCCESS:

break;
case OCI_SUCCESS_WITH_INFO:

(void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED_DATA:
(void) printf("Error - OCI_NEED_DATA\n");
break;

case OCI_NO_DATA:
(void) printf("Error - OCI_NODATA\n");
break;

case OCI_ERROR:
(void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,

errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
(void) printf("Error - %.*s\n", 512, errbuf);
break;

case OCI_INVALID_HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\n");
break;

case OCI_STILL_EXECUTING:
(void) printf("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
(void) printf("Error - OCI_CONTINUE\n");
break;

default:
break;

}
}

8-26 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
/* End of file tkaqdocn.c */

Visual Basic (OO4O): Example Code
This feature is not supported currently.

Java (JDBC): Example Code
This feature is not supported through the Java API.

Retention and Message History
Advanced Queuing allows the retention of the message history after consumption.
The messages and their histories can be queried using SQL. This allows business
analysis of the integrated system. In certain cases, messages need to be tracked. For
example, if a message is produced as a result of the consumption of another
message, the two are related. As the application designer, you may want to keep
track of such relationships. Taken together, retention, message identifiers, and SQL
queries make it possible to build powerful message warehouses.

Scenario
Assume that you need to determine the average order processing time. This
includes the time the order has to wait in the backed_order queue. You want to
know the average wait time in the backed_order queue. SQL queries can
determine the wait time for orders in the shipping application. Specify the retention
as TRUE for the shipping queues and specify the order number in the correlation
field of the message.

For simplicity, only orders that have already been processed are analyzed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_que and the enqueue time in the WS_
shipped_orders_que (see "tkaqdoca.sql: Script to Create Users, Objects, Queue
Tables, Queues & Subscribers" on page C-2 of Appendix C, "Scripts for
Implementing BooksOnLine".
A Sample Application Using AQ 8-27

General Features of Advanced Queuing
PL/SQL (DBMS_AQADM Package): Example Code
SELECT SUM(SO.enq_time - BO.enq_time) / count (*) AVG_PRCS_TIME

FROM WS.AQ$WS_orders_pr_mqtab BO , WS.AQ$WS_orders_mqtab SO
WHERE SO.msg_state = 'PROCESSED' and BO.msg_state = 'PROCESSED'
AND SO.corr_id = BO.corr_id and SO.queue = 'WS_shippedorders_que';

/* Average waiting time in the backed order queue: */
SELECT SUM(BACK.deq_time - BACK.enq_time)/count (*) AVG_BACK_TIME

FROM WS.AQ$WS_orders_mqtab BACK
WHERE BACK.msg_state = 'PROCESSED' AND BACK.queue = 'WS_backorders_que';

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Publish-Subscribe Support
Advanced Queuing supports the publish-subscribe model of application
integration. In the model, publishing applications put the message in the queue.
The subscribing applications subscribe to the message in the queue. More
publishing and subscribing applications can be dynamically added without
changing the existing publishing and subscribing applications. Advanced Queuing
also supports content-based subscriptions. The subscriber can subscribe to a subset
of messages in the queue based on the message properties and the contents of the
messages. A subscriber to a queue can also be another queue or a consumer on
another queue.

You can implement a publish-subscribe model of communication using Advanced
Queuing as follows:

� Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

� Set up a set of rule-based subscribers. Each subscriber may specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

� Publisher applications publish messages to the queue by invoking an enqueue
call.
8-28 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
� Subscriber applications may receive messages in the following manner:

� A dequeue call retrieves messages that match the subscription criteria.

� A listen call may be used to monitor multiple queues for subscriptions on
different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

� Use the OCI notification mechanism. This allows a push mode of message
delivery. The subscriber application registers the queues (and subscriptions
specified as subscribing agent) from which to receive messages. This
registers a callback to be invoked when messages matching the
subscriptions arrive.

Scenario
The BooksOnLine application illustrates the use of a publish-subscribe model for
communicating between applications. The following subsections give some
examples.

Defining queues The Order Entry application defines a queue (OE_booked_
orders_que) to communicate orders that are booked to various applications. The
Order Entry application is not aware of the various subscriber applications and
thus, a new subscriber application can be added without disrupting any setup or
logic in the Order Entry (publisher) application.

Setting Up Subscriptions The various shipping applications and the customer service
application (that is, Eastern region shipping, Western region shipping, Overseas
shipping and Customer Service) are defined as subscribers to the booked_orders
queue of the Order Entry application. Rules are used to route messages of interest to
the various subscribers. Thus, Eastern Region shipping, which handles shipment of
all orders for the East coast and all rush U.S. orders, expresses the subscription rule
as follows:

rule => 'tab.user_data.orderregion = ''EASTERN'' OR
(tab.user_data.ordertype = ''RUSH'' AND
tab.user_data.customer.country = ''USA'') '

Each subscriber can specify a local queue where messages are to be delivered. The
Eastern region shipping application specifies a local queue (ES_booked_orders_
que) for message delivery by specifying the subscriber address as follows:

subscriber := aq$_agent('East_Shipping', 'ES.ES_bookedorders_que', null);
A Sample Application Using AQ 8-29

General Features of Advanced Queuing
Setting Up Propagation Enable propagation from each publisher application queue.
To allow subscribed messages to be delivered to remote queues, the Order Entry
application enables propagation by means of the following statement:

execute dbms_aqadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que');

Publishing Messages Booked orders are published by the Order Entry application
when it enqueues orders (into the OE_booked_order_que) that have been
validated and are ready for shipping. These messages are then routed to each of the
subscribing applications. Messages are delivered to local queues (if specified) at
each of the subscriber applications.

Receiving Messages Each of the shipping applications and the Customer Service
application will then receive these messages in their local queues. For example,
Eastern Region Shipping only receives booked orders that are for East Coast
addresses or any U.S. order that is marked RUSH. This application then dequeues
messages and processes its orders for shipping.

Support for Oracle Real Application Clusters
Real Application Clusters can be used to improve AQ performance by allowing
different queues to be managed by different instances. You do this by specifying
different instance affinities (preferences) for the queue tables that store the queues.
This allows queue operations (enqueue and dequeue) on different queues to occur
in parallel.

The AQ queue monitor process continuously monitors the instance affinities of the
queue tables. The queue monitor assigns ownership of a queue table to the specified
primary instance if it is available, failing which it assigns it to the specified
secondary instance.

If the owner instance of a queue table terminates, the queue monitor changes
ownership to a suitable instance such as the secondary instance.

AQ propagation is able to make use of Real Application Clusters, although it is
transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus a job_queue_process associated with the owner
instance of a queue table will be handling the propagation from queues stored in
that queue table, thereby minimizing pinging. Additional discussion on this topic
can be found under AQ propagation scheduling (see "Scheduling a Queue
Propagation" on page 9-71 in Chapter 9, "Administrative Interface").
8-30 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

Scenario
In the BooksOnLine example, operations on the new_orders_queue and
booked_order_queue at the order entry (OE) site can be made faster if the two
queues are associated with different instances. This is done by creating the queues
in different queue tables and specifying different affinities for the queue tables in
the create_queue_table() command.

In the example, the queue table OE_orders_sqtab stores queue new_orders_
queue and the primary and secondary are instances 1 and 2 respectively. Queue
table OE_orders_mqtab stores queue booked_order_queue and the primary
and secondary are instances 2 and 1 respectively. The objective is to let instances 1
and 2 manage the two queues in parallel. By default, only one instance is available,
in which case the owner instances of both queue tables will be set to instance 1.
However, if Real Application Clusters are set up correctly and both instances 1 and
2 are available, then queue table OE_orders_sqtab will be owned by instance 1
and the other queue table will be owned by instance 2. The primary and secondary
instance specification of a queue table can be changed dynamically using the
alter_queue_table () command as shown in the following example. Information
about the primary, secondary and owner instance of a queue table can be obtained
by querying the view USER_QUEUE_TABLES (see "Selecting Queue Tables in User
Schema" on page 10-21 in "Administrative Interface: Views").

PL/SQL (DBMS_AQADM Package): Example Code
/* Create queue tables, queues for OE */
CONNECT OE/OE;
EXECUTE dbms_aqadm.create_queue_table(\

queue_table => ’OE_orders_sqtab’,\
comment => ’Order Entry Single-Consumer Orders queue table’,\
queue_payload_type => ’BOLADM.order_typ’,\
compatible => ’8.1’,\
primary_instance => 1,\
secondary_instance => 2);

See also: Oracle9i Real Application Clusters Setup and Configuration

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.
A Sample Application Using AQ 8-31

General Features of Advanced Queuing
EXECUTE dbms_aqadm.create_queue_table(\
queue_table => ’OE_orders_mqtab’,\
comment => ’Order Entry Multi Consumer Orders queue table’,\
multiple_consumers => TRUE,\
queue_payload_type => ’BOLADM.order_typ’,\
compatible => ’8.1’,\
primary_instance => 2,\
secondary_instance => 1);

EXECUTE dbms_aqadm.create_queue (\
queue_name => ’OE_neworders_que’,\
queue_table => ’OE_orders_sqtab’);

EXECUTE dbms_aqadm.create_queue (\
queue_name => ’OE_bookedorders_que’,\
queue_table => ’OE_orders_mqtab’);

/* Check instance affinity of OE queue tables from AQ administrative view: */
SELECT queue_table, primary_instance, secondary_instance, owner_instance
FROM user_queue_tables;

/* Alter instance affinity of OE queue tables: */
EXECUTE dbms_aqadm.alter_queue_table(\

queue_table => ’OE.OE_orders_sqtab’,\
primary_instance => 2,\
secondary_instance => 1);

EXECUTE dbms_aqadm.alter_queue_table(\
queue_table => ’OE.OE_orders_mqtab’, \
primary_instance => 1,\
secondary_instance => 2);

/* Check instance affinity of OE queue tables from AQ administrative view: */
SELECT queue_table, primary_instance, secondary_instance, owner_instance
FROM user_queue_tables;

Visual Basic (OO4O): Example Code
This feature currently not supported.

Java (JDBC): Example Code
public static void createQueueTablesAndQueues(Connection db_conn)
{

AQSession aq_sess;
AQQueueTableProperty sqt_prop;
8-32 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
AQQueueTableProperty mqt_prop;
AQQueueTable sq_table;
AQQueueTable mq_table;
AQQueueProperty q_prop;
AQQueue neworders_q;
AQQueue bookedorders_q;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Create a single-consumer orders queue table */
sqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
sqt_prop.setComment("Order Entry Single-Consumer Orders queue table");
sqt_prop.setCompatible("8.1");
sqt_prop.setPrimaryInstance(1);
sqt_prop.setSecondaryInstance(2);

sq_table = aq_sess.createQueueTable("OE", "OE_orders_sqtab", sqt_prop);

/* Create a multiconsumer orders queue table */
mqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
mqt_prop.setComment("Order Entry Multi Consumer Orders queue table");
mqt_prop.setCompatible("8.1");
mqt_prop.setMultiConsumer(true);
mqt_prop.setPrimaryInstance(2);
mqt_prop.setSecondaryInstance(1);

mq_table = aq_sess.createQueueTable("OE", "OE_orders_mqtab", mqt_prop);

/* Create Queues in these queue tables */
q_prop = new AQQueueProperty();

neworders_q = aq_sess.createQueue(sq_table, "OE_neworders_que",
q_prop);

bookedorders_q = aq_sess.createQueue(mq_table, "OE_bookedorders_que",
q_prop);

}
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
A Sample Application Using AQ 8-33

General Features of Advanced Queuing
}
}

public static void alterInstanceAffinity(Connection db_conn)
{

AQSession aq_sess;
AQQueueTableProperty sqt_prop;
AQQueueTableProperty mqt_prop;
AQQueueTable sq_table;
AQQueueTable mq_table;
AQQueueProperty q_prop;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Check instance affinities */
sq_table = aq_sess.getQueueTable("OE", "OE_orders_sqtab");

sqt_prop = sq_table.getProperty();
System.out.println("Current primary instance for OE_orders_sqtab: " +

sqt_prop.getPrimaryInstance());

mq_table = aq_sess.getQueueTable("OE", "OE_orders_mqtab");
mqt_prop = mq_table.getProperty();
System.out.println("Current primary instance for OE_orders_mqtab: " +

mqt_prop.getPrimaryInstance());

/* Alter queue table affinities */
sq_table.alter(null, 2, 1);

mq_table.alter(null, 1, 2);

sqt_prop = sq_table.getProperty();
System.out.println("Current primary instance for OE_orders_sqtab: " +

sqt_prop.getPrimaryInstance());

mq_table = aq_sess.getQueueTable("OE", "OE_orders_mqtab");
mqt_prop = mq_table.getProperty();
System.out.println("Current primary instance for OE_orders_mqtab: " +

mqt_prop.getPrimaryInstance());

}

8-34 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
}

}

Support for Statistics Views
Each instance keeps its own AQ statistics information in its own SGA, and does not
have knowledge of the statistics gathered by other instances. When a GV$AQ view
is queried by an instance, all other instances funnel their AQ statistics information
to the instance issuing the query.

Scenario
The gv$ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed. The order processing application can
use this to dynamically tune the number of order processing processes (see
"Selecting the Number of Messages in Different States for the Whole Database" on
page 10-33 in Chapter 10, "Administrative Interface: Views").

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT oe/oe

/* Count the number as messages and the average time for which the messages have
been waiting: */

SELECT READY, AVERAGE_WAIT FROM gv$aq Stats, user_queues Qs
WHERE Stats.qid = Qs.qid and Qs.Name = 'OE_neworders_que';

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Internet Access
See Chapter 17, "Internet Access to Advanced Queuing" for information on Internet
access to Advanced Queuing features.
A Sample Application Using AQ 8-35

Enqueue Features
Enqueue Features
In this section, the following topics are discussed:

� Subscriptions and Recipient Lists

� Priority and Ordering of Messages

� Time Specification: Delay

� Time Specification: Expiration

� Message Grouping

� Retry with Delay Interval

� Message Transformation During Enqueue

� Enqueue Using the AQ XML Servlet

Subscriptions and Recipient Lists
After consumption by dequeue, messages are retained for the time specified in
retention_time . When retention_time expires, messages are removed by the
time manager process.

After processing, the message is removed if the retention_time of the queue is 0,
or retained for the specified retention time. While the message is retained the
message can either be queried using SQL on the queue table view or by dequeuing
using the BROWSE mode and specifying the message ID of the processed message.

Advanced Queuing allows a single message to be processed and consumed by more
than one consumer. To use this feature, you must create multiconsumer queues and
enqueue the messages into these multiconsumer queues. Advanced Queuing allows
two methods of identifying the list of consumers for a message: subscriptions and
recipient lists.

Subscriptions
You can add a subscription to a queue by using the DBMS_AQADM.ADD_
SUBSCRIBER PL/SQL procedure (see "Adding a Subscriber" on page 9-58 in
Chapter 9, "Administrative Interface"). This lets you specify a consumer by means
of the AQ$_AGENT parameter for enqueued messages. You can add more
subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBER procedure up
to a maximum of 1024 subscribers for a multiconsumer queue.

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENT parameter. This means that two subscribers
8-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
cannot have the same values for the NAME, ADDRESS and PROTOCOL attributes for
the AQ$_AGENT type. At least one of the three attributes must be different for two
subscribers (see "Agent Type (aq$_agent)" on page 2-3 for formal description of this
data structure).

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue will only be able to dequeue
messages that are enqueued after the DBMS_AQADM.ADD_SUBSCRIBER procedure
is completed. In other words, messages that had been enqueued before this
procedure is executed will not be available for dequeue by this consumer.

You can remove a subscription by using the DBMS_AQADM.REMOVE_SUBSCRIBER
procedure (see "Removing a Subscriber" in Chapter 9, "Administrative Interface").
AQ will automatically remove from the queue all data corresponding to the
consumer identified by the AQ$_AGENT parameter. In other words, it is not an error
to execute the REMOVE_SUBSCRIBER procedure even when there are pending
messages that are available for dequeue by the consumer. These messages will be
automatically made unavailable for dequeue after the REMOVE_SUBSCRIBER
procedure is executed. In a queue table that is created with the compatible
parameter set to '8.1' or higher, such messages that were not dequeued by the
consumer will be shown as "UNDELIVERABLE" in the AQ$<queue_table> view.
Note that a multiconsumer queue table created without the compatible parameter,
or with the compatible parameter set to '8.0', does not display the state of a message
on a consumer basis, but only displays the global state of the message.

Recipient Lists
You do not need to specify subscriptions for a multiconsumer queue if the
producers of messages for enqueue supply a recipient list of consumers. In some
situations it may be desirable to enqueue a message that is targeted to a specific set
of consumers rather than the default list of subscribers. You accomplish this by
specifying a recipient list at the time of enqueuing the message.

� In PL/SQL you specify the recipient list by adding elements to the
recipient_list field of the message_properties record.

� In OCI the recipient list is specified by using the LNOCISetAttr procedure to
specify an array of LNOCI_DTYPE_AQAGENT descriptors as the recipient list
(LNOCI_ATTR_RECIPIENT_LIST attribute) of an LNOCI_DTYPE_AQMSG_
PROPERTIES message properties descriptor.

If a recipient list is specified during enqueue, it overrides the subscription list. In
other words, messages that have a specified recipient list will not be available for
dequeue by the subscribers of the queue. The consumers specified in the recipient
A Sample Application Using AQ 8-37

Enqueue Features
list may or may not be subscribers for the queue. It is an error if the queue does not
have any subscribers and the enqueue does not specify a recipient list (see
"Enqueuing a Message" on page 11-4 in Chapter 11, "Operational Interface: Basic
Operations").

Priority and Ordering of Messages
The message ordering dictates the order that messages are dequeued from a queue.
The ordering method for a queue is specified when a queue table is created (see
"Creating a Queue Table" on page 9-4 in Chapter 9, "Administrative Interface").

Priority ordering of messages is achieved by specifying priority, enqueue time as
the sort order for the message. If priority ordering is chosen, each message will be
assigned a priority at enqueue time by the enqueuer. At dequeue time, the messages
will be dequeued in the order of the priorities assigned. If two messages have the
same priority, the order in which they are dequeued is determined by the enqueue
time. A first-in, first-out (FIFO) priority queue can also be created by specifying the
enqueue time, priority as the sort order of the messages.

Scenario
In the BooksOnLine application, a customer can request:

� FedEx shipping (priority 1),

� Priority air shipping (priority 2). or

� Regular ground shipping (priority 3).

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

PL/SQL (DBMS_AQADM Package): Example Code
/* Create a priority queue table for OE: */
EXECUTE dbms_aqadm.create_queue_table(\

queue_table => 'OE_orders_pr_mqtab', \
sort_list =>'priority,enq_time', \
comment => 'Order Entry Priority \

MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
8-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
compatible => '8.1', \
primary_instance => 2, \
secondary_instance => 1);

EXECUTE dbms_aqadm.create_queue (\
queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr_mqtab');

/* When an order arrives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order: */

CREATE OR REPLACE procedure order_enq(book_title IN VARCHAR2,
book_qty IN NUMBER,
order_num IN NUMBER,
shipping_priority IN NUMBER,
cust_state IN VARCHAR2,
cust_country IN VARCHAR2,
cust_region IN VARCHAR2,
cust_ord_typ IN VARCHAR2) AS

OE_enq_order_data BOLADM.order_typ;
OE_enq_cust_data BOLADM.customer_typ;
OE_enq_book_data BOLADM.book_typ;
OE_enq_item_data BOLADM.orderitem_typ;
OE_enq_item_list BOLADM.orderitemlist_vartyp;
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid RAW(16);

BEGIN
msgprop.correlation := cust_ord_typ;
OE_enq_cust_data := BOLADM.customer_typ(NULL, NULL, NULL, NULL,

cust_state, NULL, cust_country);
OE_enq_book_data := BOLADM.book_typ(book_title, NULL, NULL, NULL);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,

OE_enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(

BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE_enq_order_data := BOLADM.order_typ(order_num, NULL,
cust_ord_typ, cust_region,
OE_enq_cust_data, NULL,
OE_enq_item_list, NULL);

/*Put the shipping priority into message property before enqueuing
A Sample Application Using AQ 8-39

Enqueue Features
the message: */
msgprop.priority := shipping_priority;
dbms_aq.enqueue('OE.OE_bookedorders_que', enqopt, msgprop,

OE_enq_order_data, enq_msgid);
COMMIT;

END;
/

/* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the regional
booked order queues.For example, at the western region, the booked orders
queue is created.
Create a priority queue table for WS shipping: */

EXECUTE dbms_aqadm.create_queue_table(\
queue_table => 'WS_orders_pr_mqtab',
sort_list =>' priority,enq_time', \
comment => 'West Shipping Priority \

MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
compatible => '8.1');

/* Booked orders are stored in the priority queue table: */
EXECUTE dbms_aqadm.create_queue (\

queue_name => 'WS_bookedorders_que', \
queue_table => 'WS_orders_pr_mqtab');

/* At each region, the shipping application dequeues orders from the regional
booked order queue according to the orders' shipping priorities, processes
the orders, and enqueues the processed orders into the shipped orders queues
or the back orders queues. */

Visual Basic (OO4O): Example Code
Dim OraSession as object
Dim OraDatabase as object
Dim OraAq as object
Dim OraMsg as Object
Dim OraOrder,OraCust,OraBook,OraItem,OraItemList as Object
Dim Msgid as String

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.DbOpenDatabase("dbname", "user/pwd", 0&)
8-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
set oraaq = OraDatabase.CreateAQ("OE.OE_bookedorders_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraOrder = OraDatabase.CreateOraObject("BOLADM.order_typ")
Set OraCust = OraDatabase.CreateOraObject("BOLADM.Customer_typ")
Set OraBook = OraDatabase.CreateOraObject("BOLADM.book_typ")
Set OraItem = OraDatabase.CreateOraObject("BOLADM.orderitem_typ")
Set OraItemList = OraDatabase.CreateOraObject("BOLADM.orderitemlist_vartyp")

' Get the values of cust_state,cust_country etc from user(form_based
' input) and then a cmd_click event for Enqueue
' will execute the subroutine order_enq.
Private Sub Order_enq()

OraMsg.correlation = txt_correlation
'Initialize the customer details

OraCust("state") = txt_cust_state
OraCust("country") = txt_cust_country

OraBook("title") = txt_book_title
OraItem("quantity") = txt_book_qty
OraItem("item") = OraBook
OraItemList(1) = OraItem
OraOrder("orderno") = txt_order_num
OraOrder("ordertype") = txt_cust_order_typ
OraOrder("orderregion") = cust_region
OraOrder("customer") = OraCust
OraOrder("items") = OraItemList

'Put the shipping priority into message property before enqueuing
' the message:
OraMsg.priority = priority
OraMsg = OraOrder
Msgid = OraAq.enqueue

'Release all allocations
End Sub

Java (JDBC): Example Code
public static void createPriorityQueueTable(Connection db_conn)
{

AQSession aq_sess;
AQQueueTableProperty mqt_prop;
AQQueueTable pr_mq_table;
AQQueueProperty q_prop;
AQQueue bookedorders_q;
A Sample Application Using AQ 8-41

Enqueue Features
try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Create a priority queue table for OE */
mqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
mqt_prop.setComment("Order Entry Priority " +

"MultiConsumer Orders queue table");
mqt_prop.setCompatible("8.1");
mqt_prop.setMultiConsumer(true);

mqt_prop.setSortOrder("priority,enq_time");

pr_mq_table = aq_sess.createQueueTable("OE", "OE_orders_pr_mqtab",
mqt_prop);

/* Create a Queue in this queue table */
q_prop = new AQQueueProperty();

bookedorders_q = aq_sess.createQueue(pr_mq_table,
"OE_bookedorders_que", q_prop);

/* Enable enqueue and dequeue on the queue */
bookedorders_q.start(true, true);

}
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
}

}

/* When an order arrives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order

*/
public static void order_enqueue(Connection db_conn, String book_title,

double book_qty, double order_num,
int ship_priority, String cust_state,
String cust_country, String cust_region,
String cust_order_type)
8-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
{
AQSession aq_sess;
AQQueue bookedorders_q;
Order enq_order;
Customer cust_data;
Book book_data;
OrderItem item_data;
OrderItem[] items;
OrderItemList item_list;
AQEnqueueOption enq_option;
AQMessageProperty m_property;
AQMessage message;
AQObjectPayload obj_payload;
byte[] enq_msg_id;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

cust_data = new Customer();
cust_data.setCountry(cust_country);
cust_data.setState(cust_state);

book_data = new Book();
book_data.setTitle(book_title);

item_data = new OrderItem();
item_data.setQuantity(new BigDecimal(book_qty));
item_data.setItem(book_data);

items = new OrderItem[1];
items[0] = item_data;

item_list = new OrderItemList(items);

enq_order = new Order();
enq_order.setCustomer(cust_data);
enq_order.setItems(item_list);
enq_order.setOrderno(new BigDecimal(order_num));
enq_order.setOrdertype(cust_order_type);

bookedorders_q = aq_sess.getQueue("OE", "OE_bookedorders_que");
A Sample Application Using AQ 8-43

Enqueue Features
message = bookedorders_q.createMessage();

/* Put the shipping priority into message property before enqueuing */
m_property = message.getMessageProperty();

m_property.setPriority(ship_priority);

obj_payload = message.getObjectPayload();

obj_payload.setPayloadData(enq_order);

enq_option = new AQEnqueueOption();

/* Enqueue the message */
enq_msg_id = bookedorders_q.enqueue(enq_option, message);

db_conn.commit();

}
catch (AQException aq_ex)
{

System.out.println("AQ Exception: " + aq_ex);
}
catch (SQLException sql_ex)
{

System.out.println("SQL Exception: " + sql_ex);
}

}

/* At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the
regional booked order queues.
For example, at the western region, the booked orders queue is created.
Create a priority queue table for WS shipping

*/
public static void createWesternShippingQueueTable(Connection db_conn)
{

AQSession aq_sess;
AQQueueTableProperty mqt_prop;
AQQueueTable mq_table;
AQQueueProperty q_prop;
AQQueue bookedorders_q;

try
8-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Create a priority queue table for WS */
mqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
mqt_prop.setComment("Western Shipping Priority " +

"MultiConsumer Orders queue table");
mqt_prop.setCompatible("8.1");
mqt_prop.setMultiConsumer(true);
mqt_prop.setSortOrder("priority,enq_time");

mq_table = aq_sess.createQueueTable("WS", "WS_orders_pr_mqtab",
mqt_prop);

/* Booked orders are stored in the priority queue table: */
q_prop = new AQQueueProperty();

bookedorders_q = aq_sess.createQueue(mq_table, "WS_bookedorders_que",
q_prop);

/* Start the queue */
bookedorders_q.start(true, true);

}
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
}

/* At each region, the shipping application dequeues orders from the
regional booked order queue according to the orders' shipping priorities,
processes the orders, and enqueues the processed orders into the shipped
orders queues or the back orders queues.

*/
}

Time Specification: Delay
AQ supports delay delivery of messages by letting the enqueuer specify a delay
interval on a message when enqueuing the message, that is, the time before that a
message cannot be retrieved by a dequeue call. (see "Enqueuing a Message [Specify
A Sample Application Using AQ 8-45

Enqueue Features
Message Properties]" on page 11-9 in Chapter 11, "Operational Interface: Basic
Operations"). The delay interval determines when an enqueued message is marked
as available to the dequeuers after the message is enqueued.

When a message is enqueued with a delay time set, the message is marked in a
WAIT state. Messages in WAIT state are masked from the default dequeue calls. A
background time-manager daemon wakes up periodically, scans an internal index
for all WAIT state messages, and marks messages as READY if their delay time has
passed. The time-manager will then post to all foreground processes that are
waiting on queues for messages that have just been made available.

Scenario
In the BooksOnLine application, delay can be used to implement deferred billing. A
billing application can define a queue where shipped orders that are not billed
immediately can be placed in a deferred billing queue with a delay. For example, a
certain class of customer accounts, such as those of corporate customers, may not be
billed for 15 days. The billing application dequeues incoming shipped order
messages (from the shippedorders queue) and if the order is for a corporate
customer, this order is enqueued into a deferred billing queue with a delay.

PL/SQL (DBMS_AQADM Package): Example Code
/* Enqueue an order to implement deferred billing so that the order is not made

visible again until delay has expired: */
CREATE OR REPLACE PROCEDURE defer_billing(deferred_billing_order order_typ)
AS

defer_bill_queue_name VARCHAR2(62);
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid RAW(16);

BEGIN

/* Enqueue the order into the deferred billing queue with a delay of 15 days: */
defer_bill_queue_name := 'CBADM.deferbilling_que';
msgprop.delay := 15*60*60*24;
dbms_aq.enqueue(defer_bill_queue_name, enqopt, msgprop,

deferred_billing_order, enq_msgid);
END;
/

Visual Basic (OO4O): Example Code
set oraaq = OraDatabase.CreateAQ("CBADM.deferbilling_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
8-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
Set OraOrder = OraDatabase.CreateOraObject("BOLADM.order_typ")

Private Sub defer_billing

OraMsg = OraOrder
OraMsg.delay = 15*60*60*24
OraMsg = OraOrder 'OraOrder contains the order details
Msgid = OraAq.enqueue

End Sub

Java (JDBC): Example Code
public static void defer_billing(Connection db_conn, Order deferred_order)
{

AQSession aq_sess;
AQQueue def_bill_q;
AQEnqueueOption enq_option;
AQMessageProperty m_property;
AQMessage message;
AQObjectPayload obj_payload;
byte[] enq_msg_id;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

def_bill_q = aq_sess.getQueue("CBADM", "deferbilling_que");

message = def_bill_q.createMessage();

/* Enqueue the order into the deferred billing queue with a delay
of 15 days */

m_property = message.getMessageProperty();
m_property.setDelay(15*60*60*24);

obj_payload = message.getObjectPayload();
obj_payload.setPayloadData(deferred_order);

enq_option = new AQEnqueueOption();

/* Enqueue the message */
enq_msg_id = def_bill_q.enqueue(enq_option, message);
A Sample Application Using AQ 8-47

Enqueue Features
db_conn.commit();
}
catch (Exception ex)
{

System.out.println("Exception " + ex);
}

}

Time Specification: Expiration
Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. Note that expiration processing requires that
the queue monitor be running. The producer can also specify the time when a
message expires, at which time the message is moved to an exception queue.

Scenario
In the BooksOnLine application, expiration can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available on a back order queue. If the shipping policy is that
all back orders must be shipped within a week, then messages can be enqueued into
the back order queue with an expiration of 1 week. In this case, any back orders that
are not processed within one week are moved to the exception queue with the
message state set to EXPIRED. This can be used to flag any orders that have not
been shipped according to the back order shipping policy.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT BOLADM/BOLADM
/* Req-enqueue a back order into a back order queue and set a delay of 7 days;

all back orders must be processed in 7 days or they are moved to the
exception queue: */

CREATE OR REPLACE PROCEDURE requeue_back_order(sale_region varchar2,
backorder order_typ)

AS
back_order_queue_name VARCHAR2(62);
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid RAW(16);

BEGIN
/* Look up a back order queue based the the region by means of a directory

service: */
IF sale_region = 'WEST' THEN
8-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
back_order_queue_name := 'WS.WS_backorders_que';
ELSIF sale_region = 'EAST' THEN

back_order_queue_name := 'ES.ES_backorders_que';
ELSE

back_order_queue_name := 'OS.OS_backorders_que';
END IF;

/* Enqueue the order with expiration set to 7 days: */
msgprop.expiration := 7*60*60*24;
dbms_aq.enqueue(back_order_queue_name, enqopt, msgprop,

backorder, enq_msgid);
END;
/

Visual Basic (OO4O): Example Code
set oraaq1 = OraDatabase.CreateAQ("WS.WS_backorders_que")
set oraaq2 = OraDatabase.CreateAQ("ES.ES_backorders_que")
set oraaq3 = OraDatabase.CreateAQ("CBADM.deferbilling_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraBackOrder = OraDatabase.CreateOraObject("BOLADM.order_typ")

Private Sub Requeue_backorder
Dim q as oraobject
If sale_region = WEST then

q = oraaq1
else if sale_region = EAST then

q = oraaq2
else

q = oraaq3
end if

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder 'OraOrder contains the order details
Msgid = q.enqueue

End Sub

Java (JDBC): Example Code
/* Re-enqueue a back order into a back order queue and set a delay of 7 days;

all back orders must be processed in 7 days or they are moved to the
exception queue */

public static void requeue_back_order(Connection db_conn,
A Sample Application Using AQ 8-49

Enqueue Features
String sale_region, Order back_order)
{

AQSession aq_sess;
AQQueue back_order_q;
AQEnqueueOption enq_option;
AQMessageProperty m_property;
AQMessage message;
AQObjectPayload obj_payload;
byte[] enq_msg_id;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Look up a back order queue based on the region */
if(sale_region.equals("WEST"))
{

back_order_q = aq_sess.getQueue("WS", "WS_backorders_que");
}
else if(sale_region.equals("EAST"))
{

back_order_q = aq_sess.getQueue("ES", "ES_backorders_que");
}
else
{

back_order_q = aq_sess.getQueue("OS", "OS_backorders_que");
}

message = back_order_q.createMessage();

m_property = message.getMessageProperty();

/* Enqueue the order with expiration set to 7 days: */
m_property.setExpiration(7*60*60*24);

obj_payload = message.getObjectPayload();
obj_payload.setPayloadData(back_order);

enq_option = new AQEnqueueOption();

/* Enqueue the message */
enq_msg_id = back_order_q.enqueue(enq_option, message);

db_conn.commit();
8-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
}
catch (Exception ex)
{

System.out.println("Exception :" + ex);
}

}

Message Grouping
Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for transactional message grouping (see "Creating a Queue
Table" on page 9-4 in Chapter 9, "Administrative Interface"). All messages belonging
to a group have to be created in the same transaction and all messages created in
one transaction belong to the same group. With this feature, you can segment
complex messages into simple messages.

For example, messages directed to a queue containing invoices can be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group, irrespective of which properties are specified for
subsequent messages in the group.

The message grouping property is preserved across propagation. However, it is
important to note that the destination queue where messages have to be propagated
must also be enabled for transactional grouping. There are also some restrictions
you need to keep in mind if the message grouping property is to be preserved while
dequeuing messages from a queue enabled for transactional grouping (see
"Dequeue Methods" on page 8-58 and "Modes of Dequeuing" on page 8-69 for
additional information).

Scenario
In the BooksOnLine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar behavior.

In the following example, each enqueue corresponds to an individual book that is
part of an order and the group/transaction represents a complete order. Only the
A Sample Application Using AQ 8-51

Enqueue Features
first enqueue contains customer information. Note that the OE_neworders_que is
stored in the table OE_orders_sqtab, which has been enabled for transactional
grouping. Refer to the example code for descriptions of procedures new_order_
enq () and same_order_enq ().

PL/SQL (DBMS_AQADM Package): Example Code
connect OE/OE;

/* Create queue table for OE: */
EXECUTE dbms_aqadm.create_queue_table(\

queue_table => ’OE_orders_sqtab’,\
comment => ’Order Entry Single-Consumer Orders queue table’,\
queue_payload_type => ’BOLADM.order_typ’,\
message_grouping => DBMS_AQADM.TRANSACTIONAL, \
compatible => ’8.1’, \
primary_instance => 1,\
secondary_instance => 2);

/* Create neworders queue for OE: */
EXECUTE dbms_aqadm.create_queue (\

queue_name => ’OE_neworders_que’,
queue_table => ’OE_orders_sqtab’);

/* Login into OE account :*/
CONNECT OE/OE;
SET serveroutput on;
/* Enqueue some orders using message grouping into OE_neworders_que,

First Order Group: */
EXECUTE BOLADM.new_order_enq(’My First Book’, 1, 1001, ’CA’);
EXECUTE BOLADM.same_order_enq(’My Second Book’, 2);
COMMIT;
/
/* Second Order Group: */
EXECUTE BOLADM.new_order_enq(’My Third Book’, 1, 1002, ’WA’);
COMMIT;
/
/* Third Order Group: */
EXECUTE BOLADM.new_order_enq(’My Fourth Book’, 1, 1003, ’NV’);
EXECUTE BOLADM.same_order_enq(’My Fifth Book’, 3);

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.
8-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
EXECUTE BOLADM.same_order_enq(’My Sixth Book’, 2);
COMMIT;
/
/* Fourth Order Group: */
EXECUTE BOLADM.new_order_enq(’My Seventh Book’, 1, 1004, ’MA’);
EXECUTE BOLADM.same_order_enq(’My Eighth Book’, 3);
EXECUTE BOLADM.same_order_enq(’My Ninth Book’, 2);
COMMIT;
/

Visual Basic (OO4O): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
public static void createMsgGroupQueueTable(Connection db_conn)
{

AQSession aq_sess;
AQQueueTableProperty sqt_prop;
AQQueueTable sq_table;
AQQueueProperty q_prop;
AQQueue neworders_q;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Create a single-consumer orders queue table */
sqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
sqt_prop.setComment("Order Entry Single-Consumer Orders queue table");
sqt_prop.setCompatible("8.1");
sqt_prop.setMessageGrouping(AQQueueTableProperty.TRANSACTIONAL);

sq_table = aq_sess.createQueueTable("OE", "OE_orders_sqtab", sqt_prop);

/* Create new orders queue for OE */
q_prop = new AQQueueProperty();

neworders_q = aq_sess.createQueue(sq_table, "OE_neworders_que",
q_prop);

}

A Sample Application Using AQ 8-53

Enqueue Features
catch (AQException ex)
{

System.out.println("AQ Exception: " + ex);
}

}

Message Transformation During Enqueue
Continuing the scenario introduced in "Message Format Transformation" on
page 8-6, the Order Entry and Shipping applications have different representations
for the order item. The order entry application represents the order item in the form
of the ADT OE.order_typ . The Western shipping application represents the order
item in the form of the ADT WS.order_typ_sh . Therefore, the queues in the OE
schema are of payload type OE.orders_typ and those in the WS schema are of
payload type WS.orders_typ_sh .

Message transformation can be used during enqueue. This is especially useful for
verification and transformation of messages during enqueue. An application can
generate a message based on its own data model. The message can be transformed
to the data type of the queue before it is enqueued using the transformation
mapping.

Scenario
At enqueue time, assume that instead of propagating messages from the OE_
booked_orders_topic , an application dequeues the order, and, if it is meant for
Western Shipping, publishes it to the WS_booked_orders_topic .

PL/SQL (DBMS_AQ Package): Example Code
The application can use transformations at enqueue time as follows:

CREATE OR REPLACE FUNCTION
fwd_message_to_ws_shipping(booked_order OE.order_typ)

RETURNS boolean AS

enq_opt dbms_aq.enqueue_options_t;
msg_prp dbms_aq.message_properties_t;

BEGIN

IF (booked_order.order_region = 'WESTERN' and
booked_order.order_type != 'RUSH') THEN

enq_opt.transformation := 'OE.OE2WS';
msg_prp.recipient_list(0) := aq$_agent('West_shipping', null, null);
8-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
dbms_aq.enqueue('WS.ws_bookedorders_topic',
enq_opt, msg_prp, booked_order);

RETURN true;
ELSE

RETURN false;
END IF;

END;

Visual Basic (OO4O): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Enqueue Using the AQ XML Servlet
You can perform enqueue requests over the Internet using IDAP. See Chapter 17,
"Internet Access to Advanced Queuing" for more information on sending AQ
requests using IDAP.

Scenario
In the BooksOnLine application, a customer can request:

� FedEx shipping (priority 1),

� Priority air shipping (priority 2). or

� Regular ground shipping (priority 3).

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

PL/SQL (DBMS_AQADM Package): Example Code
/* Create a priority queue table for OE: */
EXECUTE dbms_aqadm.create_queue_table(\

queue_table => 'OE_orders_pr_mqtab', \
sort_list =>'priority,enq_time', \
comment => 'Order Entry Priority \
A Sample Application Using AQ 8-55

Enqueue Features
MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
compatible => '8.1', \
primary_instance => 2, \
secondary_instance => 1);

EXECUTE dbms_aqadm.create_queue (\
queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr_mqtab');

Assume that a customer, John, wants to send an enqueue request using SOAP. The
XML message will have the following format.

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">

<producer_options>
<destination>OE.OE_bookedorders_que</destination>

</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>
<message_header>

<correlation>ORDER1</correlation>
<priority>1</priority>

<sender_id>
<agent_name>john</agent_name>

</sender_id>
</message_header>

<message_payload>

<ORDER_TYP>
<ORDERNO>100</ORDERNO>
<STATUS>NEW</STATUS>
<ORDERTYPE>URGENT</ORDERTYPE>
<ORDERREGION>EAST</ORDERREGION>
<CUSTOMER>

<CUSTNO>1001233</CUSTNO>
<CUSTID>JOHN</CUSTID>
8-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features
<NAME>JOHN DASH</NAME>
<STREET>100 EXPRESS STREET</STREET>
<CITY>REDWOOD CITY</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
<COUNTRY>USA</COUNTRY>

</CUSTOMER>
<PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
<ITEMS>

<ITEMS_ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>

<TITLE>Perl handbook</TITLE>
<AUTHORS>Randal</AUTHORS>
<ISBN>345620200</ISBN>
<PRICE>19</PRICE>

</ITEM>
<SUBTOTAL>190</SUBTOTAL>

</ITEMS_ITEM>
<ITEMS_ITEM>

<QUANTITY>10</QUANTITY>
<ITEM>

<TITLE>JDBC guide</TITLE>
<AUTHORS>Taylor</AUTHORS>
<ISBN>123420212</ISBN>
<PRICE>59</PRICE>

</ITEM>
<SUBTOTAL>590</SUBTOTAL>

</ITEMS_ITEM>
</ITEMS>
<CCNUMBER>NUMBER01</CCNUMBER>
<ORDER_DATE>08/23/2000 12:45:00</ORDER_DATE>

</ORDER_TYP>
</message_payload>

</message>
</message_set>

<AQXmlCommit/>
</AQXmlSend>

</Body>
</Envelope>
A Sample Application Using AQ 8-57

Dequeue Features
 Dequeue Features
When there are multiple processes dequeuing from a single consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes
skip the messages that are being worked on by a concurrent process. This allows
multiple processes to work concurrently on different messages for the same
consumer.

In this section, the following topics are discussed:

� Dequeue Methods

� Multiple Recipients

� Local and Remote Recipients

� Message Navigation in Dequeue

� Modes of Dequeuing

� Optimization of Waiting for Arrival of Messages

� Retry with Delay Interval

� Exception Handling

� Rule-Based Subscription

� Listen Capability

� Message Transformation During Dequeue

� Dequeue Using the AQ XML Servlet

Dequeue Methods
A message can be dequeued using one of the following dequeue methods:

� Correlation identifier

� Message identifier

� Dequeue condition

� Default dequeue

A correlation identifier is a user-defined message property (of VARCHAR2 datatype)
while a message identifier is a system-assigned value (of RAW datatype). Multiple
messages with the same correlation identifier can be present in a queue, while only
one message with a given message identifier can be present. If there are multiple
8-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
messages with the same correlation identifier, the ordering (enqueue order)
between messages may not be preserved on dequeue calls. The correlation identifier
cannot be changed between successive dequeue calls without specifying the first
message navigation option.

A dequeue condition is an expression that is similar in syntax to the WHERE clause
of a SQL query. Dequeue conditions are expressed in terms of the attributes that
represent message properties or message content. The messages in the queue are
evaluated against the conditions and a message that satisfies the given condition is
returned.

A default dequeue means that the first available message for the consumer of a
multiconsumer queue or the first available message in a single-consumer queue is
dequeued.

Note that dequeuing with correlation identifier, message identifier, or dequeue
condition will not preserve the message grouping property (see "Message
Grouping" on page 8-51 and "Message Navigation in Dequeue" on page 8-65 for
more information).

Scenario
In the BooksOnLine example, rush orders received by the East shipping site are
processed first. This is achieved by dequeuing the message using the correlation
identifier, which has been defined to contain the order type (rush/normal). For an
illustration of dequeuing using a message identifier, refer to the get_
northamerican_orders procedure discussed in the example under "Modes of
Dequeuing" on page 8-69.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

/* Create procedures to dequeue RUSH orders */
create or replace procedure get_rushtitles(consumer in varchar2) as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
qname varchar2(30);
no_messages exception;
A Sample Application Using AQ 8-59

Dequeue Features
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin

dopt.consumer_name := consumer;
dopt.wait := 1;
dopt.correlation := ’RUSH’;

IF (consumer = ’West_Shipping’) THEN
qname := ’WS.WS_bookedorders_que’;

ELSIF (consumer = ’East_Shipping’) THEN
qname := ’ES.ES_bookedorders_que’;

ELSE
qname := ’OS.OS_bookedorders_que’;

END IF;

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

commit;

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;

dbms_output.put_line(’ rushorder book_title: ’ ||
deq_book_data.title ||

’ quantity: ’ || deq_item_data.quantity);
EXCEPTION

WHEN no_messages THEN
dbms_output.put_line (’ ---- NO MORE RUSH TITLES ---- ’);
new_orders := FALSE;

END;
END LOOP;

end;
/

CONNECT EXECUTE on get_rushtitles to ES;
8-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
/* Dequeue the orders: */
CONNECT ES/ES;

/* Dequeue all rush order titles for East_Shipping: */
EXECUTE BOLADM.get_rushtitles(’East_Shipping’);

Visual Basic (OO4O): Example Code
set oraaq1 = OraDatabase.CreateAQ("WS.WS_backorders_que")
set oraaq2 = OraDatabase.CreateAQ("ES.ES_backorders_que")
set oraaq3 = OraDatabase.CreateAQ("CBADM.deferbilling_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraBackOrder = OraDatabase.CreateOraObject("BOLADM.order_typ")

Private Sub Requeue_backorder
Dim q as oraobject
If sale_region = WEST then

q = oraaq1
else if sale_region = EAST then

q = oraaq2
else

q = oraaq3
end if

OraMsg.delay = 7*60*60*24
OraMsg = OraBackOrder 'OraOrder contains the order details
Msgid = q.enqueue

End Sub

Java (JDBC): Example Code
public static void getRushTitles(Connection db_conn, String consumer)
{

AQSession aq_sess;
Order deq_order;
byte[] deq_msgid;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_q;
AQMessage message;
AQObjectPayload obj_payload;
boolean new_orders = true;

try
{

A Sample Application Using AQ 8-61

Dequeue Features
/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

deq_option = new AQDequeueOption();

deq_option.setConsumerName(consumer);
deq_option.setWaitTime(1);
deq_option.setCorrelation("RUSH");

if(consumer.equals("West_Shipping"))
{

bookedorders_q = aq_sess.getQueue("WS", "WS_bookedorders_que");
}
else if(consumer.equals("East_Shipping"))
{

bookedorders_q = aq_sess.getQueue("ES", "ES_bookedorders_que");
}
else
{

bookedorders_q = aq_sess.getQueue("OS", "OS_bookedorders_que");
}

while(new_orders)
{

try
{

/* Dequeue the message */
message = bookedorders_q.dequeue(deq_option, Order.getFactory());

obj_payload = message.getObjectPayload();

deq_order = (Order)(obj_payload.getPayloadData());

System.out.println("Order number " + deq_order.getOrderno() +
" is a rush order");

}
catch (AQException aqex)
{

new_orders = false;
System.out.println("No more rush titles");
System.out.println("Exception-1: " + aqex);

}
}

}

8-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
catch (Exception ex)
{

System.out.println("Exception-2: " + ex);
}

}

Multiple Recipients
A consumer can dequeue a message from a multiconsumer, normal queue by
supplying the name that was used in the AQ$_AGENT type of the DBMS_
AQADM.ADD_SUBSCRIBER procedure or the recipient list of the message properties.
(See "Adding a Subscriber" on page 9-58 or "Enqueuing a Message [Specify Message
Properties]" on page 11-9 for more information).

� In PL/SQL the consumer name is supplied using the consumer_name field of
the dequeue_options_t record.

� In OCI the consumer name is supplied using the LNOCISetAttr procedure to
specify a text string as the LNOCI_ATTR_CONSUMER_NAME of an LNOCI_
DTYPE_AQDEQ_OPTIONS descriptor.

� In OO4O, the consumer name is supplied by setting the consumer property of
the OraAQ object.

Multiple processes or operating system threads can use the same consumer_name
to dequeue concurrently from a queue. In that case AQ will provide the first
unlocked message that is at the head of the queue and is intended for the consumer.
Unless the message ID of a specific message is specified during dequeue, the
consumers can dequeue messages that are in the READY state.

A message is considered PROCESSED only when all intended consumers have
successfully dequeued the message. A message is considered EXPIRED if one or
more consumers did not dequeue the message before the EXPIRATION time. When
a message has expired, it is moved to an exception queue.

The exception queue must also be a multiconsumer queue. Expired messages from
multiconsumer queues cannot be dequeued by the intended recipients of the
message. However, they can be dequeued in the REMOVE mode exactly once by
specifying a NULL consumer name in the dequeue options. Hence, from a dequeue
perspective, multiconsumer exception queues behave like single-consumer queues
because each expired message can be dequeued only once using a NULL consumer
name. Note that expired messages can be dequeued only by specifying a message
ID if the multiconsumer exception queue was created in a queue table with the
compatible parameter set to '8.0'.
A Sample Application Using AQ 8-63

Dequeue Features
Beginning with release 8.1.6, only the queue monitor removes messages from
multiconsumer queues. This allows dequeuers to complete the dequeue operation
by not locking the message in the queue table. Since the queue monitor removes
messages that have been processed by all consumers from multiconsumer queues
approximately once every minute, users may see a delay when the messages have
been completely processed and when they are physically removed from the queue.

Local and Remote Recipients
Consumers of a message in multiconsumer queues (either by virtue of being a
subscriber to the queue or because the consumer was a recipient in the enqueuer's
recipient list) can be local or remote.

� A local consumer dequeues the message from the same queue into which the
producer enqueued the message. Local consumers have a non-NULL NAME and
NULL ADDRESS and PROTOCOL field in the AQ$_AGENT type (see "Agent Type
(aq$_agent)" on page 2-3 in Chapter 2, "Basic Components").

� A remote consumer dequeues from a queue that is different from the queue
where the message was enqueued. As such, users need to be familiar with and
use the AQ propagation feature to use remote consumers. Remote consumers
can fall into one of three categories:

a. The ADDRESS field refers to a queue in the same database. In this case the
consumer will dequeue the message from a different queue in the same
database. These addresses will be of the form [schema] .queue_name
where queue_name (optionally qualified by the schema name) is the target
queue. If the schema is not specified, the schema of the current user
executing the ADD_SUBSCRIBER procedure or the enqueue is used (see
"Adding a Subscriber" on page 9-58, or "Enqueuing a Message" on page 11-4
in Chapter 11, "Operational Interface: Basic Operations"). Use the DBMS_
AQADM.SCHEDULE_PROPAGATION command with a NULL destination
(which is the default) to schedule propagation to such remote consumers
(see "Scheduling a Queue Propagation" on page 9-71 in Chapter 9,
"Administrative Interface").

b. The ADDRESS field refers to a queue in a different database. In this case the
database must be reachable using database links and the PROTOCOL must
be either NULL or 0. These addresses will be of the form [schema] .queue_
name@dblink . If the schema is not specified, the schema of the current
user executing the ADD_SUBSCRIBER procedure or the enqueue is used. If
the database link is not a fully qualified name (does not have a domain
name specified), the default domain as specified by the db_domain
8-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
init .ora parameter will be used. Use the DBMS_AQADM.SCHEDULE_
PROPAGATION procedure with the database link as the destination to
schedule the propagation. AQ does not support the use of synonyms to
refer to queues or database links.

c. The ADDRESS field refers to a destination that can be reached by a third
party protocol. You will need to refer to the documentation of the third
party software to determine how to specify the ADDRESS and the
PROTOCOL database link, and on how to schedule propagation.

When a consumer is remote, a message will be marked as PROCESSED in the source
queue immediately after the message has been propagated, even though the
consumer may not have dequeued the message at the remote queue. Similarly,
when a propagated message expires at the remote queue, the message is moved to
the DEFAULT exception queue of the remote queue's queue table, and not to the
exception queue of the local queue. As can be seen in both cases, AQ does not
currently propagate the exceptions to the source queue. You can use the MSGID and
the ORIGINAL_MSGID columns in the queue table view (AQ$<queue_table>) to
chain the propagated messages. When a message with message ID m1 is
propagated to a remote queue, m1 is stored in the ORIGINAL_MSGID column of the
remote queue.

The DELAY, EXPIRATION and PRIORITY parameters apply identically to both local
and remote consumers. AQ accounts for any delay in propagation by adjusting the
DELAY and EXPIRATION parameters accordingly. For example, if the EXPIRATION
is set to one hour, and the message is propagated after 15 minutes, the expiration at
the remote queue will be set to 45 minutes.

Since the database handles message propagation, OO4O does not differentiate
between remote and local recipients. The same sequence of calls/steps are required
to dequeue a message for local and remote recipients.

Message Navigation in Dequeue
You have several options for selecting a message from a queue. You can select the
"first message". Alternatively, once you have selected a message and established its
position in the queue (for example, as the fourth message), you can then retrieve the
"next message".

The first message navigation perfoms a SELECT on the queue. The next message
navigation fetches from the results of the SELECT run in the first message
navigation. Thus performance is optimized because subsequent dequeues need not
run the entire SELECT again.
A Sample Application Using AQ 8-65

Dequeue Features
These selections work in a slightly different way if the queue is enabled for
transactional grouping.

� If the "first message" is requested, the dequeue position is reset to the beginning
of the queue.

� If the "next message" is requested, the position is set to the next message of the
same transaction

� If the "next transaction" is requested, the position is set to the first message of
the next transaction.

Note that the transaction grouping property is negated if a dequeue is performed in
one of the following ways: dequeue by specifying a correlation identifier, dequeue
by specifying a message identifier, or dequeuing some of the messages of a
transaction and committing (see "Dequeue Methods" on page 8-58).

In navigating through the queue, if the program reaches the end of the queue while
using the "next message" or "next transaction" option, and you have specified a
nonzero wait time, then the navigating position is automatically changed to the
beginning of the queue. If a zero wait time is specified, you may get an exception
when the end of the queue is reached.

Scenario
The following scenario in the BooksOnLine example continues the message
grouping example already discussed with regard to enqueuing (see "Dequeue
Methods" on page 8-58).

The get_orders () procedure dequeues orders from the OE_neworders_que .
Recall that each transaction refers to an order and each message corresponds to an
individual book in the order. The get_orders () procedure loops through the
messages to dequeue the book orders. It resets the position to the beginning of the
queue using the first message option before the first dequeues. It then uses the next
message navigation option to retrieve the next book (message) of an order
(transaction). If it gets an error message indicating all message in the current
group/transaction have been fetched, it changes the navigation option to next
transaction and gets the first book of the next order. It then changes the navigation
option back to next message for fetching subsequent messages in the same
transaction. This is repeated until all orders (transactions) have been fetched.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

create or replace procedure get_new_orders as
8-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
qname VARCHAR2(30);
no_messages exception;
end_of_group exception;
pragma exception_init (no_messages, -25228);
pragma exception_init (end_of_group, -25235);
new_orders BOOLEAN := TRUE;

BEGIN

dopt.wait := 1;
dopt.navigation := DBMS_AQ.FIRST_MESSAGE;
qname := ’OE.OE_neworders_que’;
WHILE (new_orders) LOOP

BEGIN
LOOP

BEGIN
dbms_aq.dequeue(

queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;
deq_cust_data := deq_order_data.customer;

IF (deq_cust_data IS NOT NULL) THEN
dbms_output.put_line(’ **** NEXT ORDER **** ’);
dbms_output.put_line(’order_num: ’ ||

deq_order_data.orderno);
dbms_output.put_line(’ship_state: ’ ||

deq_cust_data.state);
END IF;
dbms_output.put_line(’ ---- next book ---- ’);
dbms_output.put_line(’ book_title: ’ ||

deq_book_data.title ||
A Sample Application Using AQ 8-67

Dequeue Features
’ quantity: ’ || deq_item_data.quantity);
EXCEPTION

WHEN end_of_group THEN
dbms_output.put_line (’*** END OF ORDER ***’);
commit;
dopt.navigation := DBMS_AQ.NEXT_TRANSACTION;

END;
END LOOP;

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (’ ---- NO MORE NEW ORDERS ---- ’);
new_orders := FALSE;

END;
END LOOP;

END;
/

CONNECT EXECUTE ON get_new_orders to OE;

/* Dequeue the orders: */
CONNECT OE/OE;
EXECUTE BOLADM.get_new_orders;

Visual Basic (OO4O): Example Code
Dim OraSession as object
Dim OraDatabase as object
Dim OraAq as object
Dim OraMsg as Object
Dim OraOrder,OraItemList,OraItem,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.DbOpenDatabase("", "boladm/boladm", 0&)
set oraaq = OraDatabase.CreateAQ("OE.OE_neworders_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")

OraAq.wait = 1
OraAq.Navigation = ORAAQ_DQ_FIRST_MESSAGE

private sub get_new_orders
Dim MsgIsDequeued as Boolean
On Error goto ErrHandler
MsgIsDequeued = TRUE

msgid = q.Dequeue
8-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
if MsgIsDequeued then
set OraOrder = OraMsg
OraItemList = OraOrder("items")
OraItem = OraItemList(1)
OraBook = OraItem("item")
OraCustomer = OraOrder("customer")

' Populate the textboxes with the values
if(OraCustomer) then

if OraAq.Navigation <> ORAAQ_DQ_NEXT_MESSAGE then
MsgBox " ********* NEXT ORDER *******"

end if
txt_book_orderno = OraOrder("orderno")
txt_book_shipstate = OraCustomer("state")

End if
OraAq.Navigation = ORAAQ_DQ_NEXT_MESSAGE
txt_book_title = OraBook("title")
txt_book_qty = OraItem("quantity")

Else
MsgBox " ********* END OF ORDER *******"

End if

ErrHandler :
'Handle error case, like no message etc
If OraDatabase.LastServerErr = 25228 then

OraAq.Navigation = ORAAQ_DQ_NEXT_TRANSACTION
MsgIsDequeued = FALSE
Resume Next

End If
'Process other errors

end sub

Java (JDBC): Example Code
No example is provided with this release.

Modes of Dequeuing
A dequeue request can either view a message or delete a message (see "Dequeuing a
Message" on page 11-44 in Chapter 11, "Operational Interface: Basic Operations").

� To view a message, you can use the browse mode or locked mode.

� To consume a message, you can use either the remove mode or remove with no
data mode.
A Sample Application Using AQ 8-69

Dequeue Features
If a message is browsed, it remains available for further processing. Similarly if a
message is locked, it remains available for further processing after the lock is
released by performing a transaction commit or rollback. After a message is
consumed, using either of the remove modes, it is no longer available for dequeue
requests.

When a message is dequeued using REMOVE_NODATA mode, the payload of the
message is not retrieved. This mode can be useful when the user has already
examined the message payload, possibly by means of a previous BROWSE dequeue.
In this way, you can avoid the overhead of payload retrieval that can be substantial
for large payloads

A message is retained in the queue table after it has been consumed only if a
retention time is specified for a queue. Messages cannot be retained in exception
queues (refer to the section on exceptions for further information). Removing a
message with no data is generally used if the payload is known (from a previous
browse/locked mode dequeue call), or the message will not be used.

Note that after a message has been browsed, there is no guarantee that the message
can be dequeued again since a dequeue call from a concurrent user might have
removed the message. To prevent a viewed message from being dequeued by a
concurrent user, you should view the message in the locked mode.

In general, use care while using the browse mode. The dequeue position is
automatically changed to the beginning of the queue if a nonzero wait time is
specified and the navigating position reaches the end of the queue. Hence repeating
a dequeue call in the browse mode with the "next message" navigation option and a
nonzero wait time can dequeue the same message over and over again. We
recommend that you use a nonzero wait time for the first dequeue call on a queue
in a session, and then use a zero wait time with the next message navigation option
for subsequent dequeue calls. If a dequeue call gets an "end of queue" error
message, the dequeue position can be explicitly set by the dequeue call to the
beginning of the queue using the "first message" navigation option, following which
the messages in the queue can be browsed again.

Scenario
In the following scenario from the BooksOnLine example, international orders
destined to Mexico and Canada are to be processed separately due to trade policies
and carrier discounts. Hence, a message is viewed in the locked mode (so no other
concurrent user removes the message) and the customer country (message payload)
is checked. If the customer country is Mexico or Canada, the message is consumed
(deleted from the queue) using REMOVE_NODATA (since the payload is already
known). Otherwise, the lock on the message is released by the commit call. Note
8-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
that the remove dequeue call uses the message identifier obtained from the locked
mode dequeue call. The shipping_bookedorder_deq (refer to the example code
for the description of this procedure) call illustrates the use of the browse mode.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

create or replace procedure get_northamerican_orders as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
deq_order_nodata BOLADM.order_typ;
qname VARCHAR2(30);
no_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin

dopt.consumer_name := consumer;
dopt.wait := DBMS_AQ.NO_WAIT;
dopt.navigation := dbms_aq.FIRST_MESSAGE;
dopt.dequeue_mode := DBMS_AQ.LOCKED;

qname := ’OS.OS_bookedorders_que’;

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;
deq_cust_data := deq_order_data.customer;
A Sample Application Using AQ 8-71

Dequeue Features
IF (deq_cust_data.country = ’Canada’ OR
deq_cust_data.country = ’Mexico’) THEN

dopt.dequeue_mode := dbms_aq.REMOVE_NODATA;
dopt.msgid := deq_msgid;
dbms_aq.dequeue(

queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_nodata,
msgid => deq_msgid);

commit;

dbms_output.put_line(’ **** next booked order **** ’);
dbms_output.put_line(’order_no: ’ || deq_order_data.orderno ||

’ book_title: ’ || deq_book_data.title ||
’ quantity: ’ || deq_item_data.quantity);

dbms_output.put_line(’ship_state: ’ || deq_cust_data.state ||
’ ship_country: ’ || deq_cust_data.country ||
’ ship_order_type: ’ || deq_order_data.ordertype);

END IF;

commit;
dopt.dequeue_mode := DBMS_AQ.LOCKED;
dopt.msgid := NULL;
dopt.navigation := dbms_aq.NEXT_MESSAGE;

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (’ ---- NO MORE BOOKED ORDERS ---- ’);
new_orders := FALSE;

END;
END LOOP;

end;
/

CONNECT EXECUTE on get_northamerican_orders to OS;

CONNECT ES/ES;

/* Browse all booked orders for East_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(’East_Shipping’, DBMS_AQ.BROWSE);

CONNECT OS/OS;
8-72 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
/* Dequeue all international North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders;

Visual Basic (OO4O): Example Code
OO4O supports all the modes of dequeuing described earlier. Possible values
include:

� ORAAQ_DQ_BROWSE (1) - Do not lock when dequeuing

� ORAAQ_DQ_LOCKED (2) - Read and obtain a write lock on the message

� ORAAQ_DQ_REMOVE (3)(Default) -Read the message and update or delete it.

Dim OraSession as object
Dim OraDatabase as object
Dim OraAq as object
Dim OraMsg as Object
Dim OraOrder,OraItemList,OraItem,OraBook,OraCustomer as Object
Dim Msgid as String

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.DbOpenDatabase("", "boladm/boladm", 0&)
set oraaq = OraDatabase.CreateAQ("OE.OE_neworders_que")

OraAq.DequeueMode = ORAAQ_DQ_BROWSE

Java (JDBC): Example Code
public static void get_northamerican_orders(Connection db_conn)
{

AQSession aq_sess;
Order deq_order;
Customer deq_cust;
String cust_country;
byte[] deq_msgid;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_q;
AQMessage message;
AQObjectPayload obj_payload;
boolean new_orders = true;

try
{

A Sample Application Using AQ 8-73

Dequeue Features
/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

deq_option = new AQDequeueOption();

deq_option.setConsumerName("Overseas_Shipping");
deq_option.setWaitTime(AQDequeueOption.WAIT_NONE);
deq_option.setNavigationMode(AQDequeueOption.NAVIGATION_FIRST_MESSAGE);
deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_LOCKED);

bookedorders_q = aq_sess.getQueue("OS", "OS_bookedorders_que");

while(new_orders)
{

try
{

/* Dequeue the message - browse with lock */
message = bookedorders_q.dequeue(deq_option, Order.getFactory());

obj_payload = message.getObjectPayload();

deq_msgid = message.getMessageId();
deq_order = (Order)(obj_payload.getPayloadData());

deq_cust = deq_order.getCustomer();

cust_country = deq_cust.getCountry();

if(cust_country.equals("Canada") ||
cust_country.equals("Mexico"))

{
deq_option.setDequeueMode(

AQDequeueOption.DEQUEUE_REMOVE_NODATA);
deq_option.setMessageId(deq_msgid);

/* Delete the message */
bookedorders_q.dequeue(deq_option, Order.getFactory());

System.out.println("---- next booked order ------");
System.out.println("Order no: " + deq_order.getOrderno());
System.out.println("Ship state: " + deq_cust.getState());
System.out.println("Ship country: " + deq_cust.getCountry());
System.out.println("Order type: " + deq_order.getOrdertype());
8-74 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
}

db_conn.commit();

deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_LOCKED);
deq_option.setMessageId(null);
deq_option.setNavigationMode(

AQDequeueOption.NAVIGATION_NEXT_MESSAGE);
}
catch (AQException aqex)
{

new_orders = false;
System.out.println("--- No more booked orders ----");
System.out.println("Exception-1: " + aqex);

}
}

}
catch (Exception ex)
{

System.out.println("Exception-2: " + ex);
}

}

Optimization of Waiting for Arrival of Messages
AQ allows applications to block on one or more queues waiting for the arrival of
either a newly enqueued message or for a message that becomes ready. You can use
the DEQUEUE operation to wait for the arrival of a message in a queue (see
"Dequeuing a Message" on page 11-44) or the LISTEN operation to wait for the
arrival of a message in more than one queue (see "Listening to One or More
Single-Consumer Queues" on page 11-23.

When the blocking DEQUEUE call returns, it returns the message properties and the
message payload. By contrast, when the blocking LISTEN call returns, it discloses
only the name of the queue where a message has arrived. A subsequent DEQUEUE
operation is needed to dequeue the message.

Applications can optionally specify a timeout of zero or more seconds to indicate
the time that AQ must wait for the arrival of a message. The default is to wait
forever until a message arrives in the queue. This optimization is important in two
ways. It removes the burden of continually polling for messages from the
application. And it saves CPU and network resource because the application
A Sample Application Using AQ 8-75

Dequeue Features
remains blocked until a new message is enqueued or becomes READY after its
DELAY time. Applications can also perform a blocking dequeue on exception
queues to wait for arrival of EXPIRED messages.

A process or thread that is blocked on a dequeue is either awakened directly by the
enqueuer if the new message has no DELAY or is awakened by the queue monitor
process when the DELAY or EXPIRATION time has passed. Applications cannot
only wait for the arrival of a message in the queue that an enqueuer enqueues a
message, but also on a remote queue, if propagation has been scheduled to the
remote queue using DBMS_AQADM.SCHEDULE_PROPAGATION. In this case, the AQ
propagator will wake up the blocked dequeuer after a message has been
propagated.

Scenario
In the BooksOnLine example, the get_rushtitles procedure discussed under
dequeue methods specifies a wait time of 1 second in the dequeue_options
argument for the dequeue call. Wait time can be specified in different ways as
illustrated in the following code.

� If the wait time is specified as 10 seconds, the dequeue call is blocked with a
time out of 10 seconds until a message is available in the queue. This means that
if there are no messages in the queue after 10 seconds, the dequeue call returns
without a message. Predefined constants can also be assigned for the wait time.

� If the wait time is specified as DBMS_AQ.NO_WAIT, a wait time of 0 seconds is
implemented. The dequeue call in this case will return immediately even if
there are no messages in the queue.

� If the wait time is specified as DBMS_AQ.FOREVER, the dequeue call is blocked
without a time out until a message is available in the queue.

PL/SQL (DBMS_AQADM Package): Example Code
/* dopt is a variable of type dbms_aq.dequeue_options_t.

Set the dequeue wait time to 10 seconds: */
dopt.wait := 10;

/* Set the dequeue wait time to 0 seconds: */
dopt.wait := DBMS_AQ.NO_WAIT;

/* Set the dequeue wait time to infinite (forever): */
dopt.wait := DBMS_AQ.FOREVER;
8-76 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
Visual Basic (OO4O): Example Code
OO4O supports asynchronous dequeuing of messages. First, the monitor is started
for a particular queue. When messages that fulfil the user criteria are dequeued, the
user's callback object is notified.

Java (JDBC): Example Code
AQDequeueOption deq-opt;

deq-opt = new AQDequeueOption ();

Retry with Delay Interval
If the transaction dequeuing the message from a queue fails, it is regarded as an
unsuccessful attempt to consume the message. AQ records the number of failed
attempts to consume the message in the message history. Applications can query
the retry_count column of the queue table view to find out the number of
unsuccessful attempts on a message. In addition, AQ allows the application to
specify, at the queue level, the maximum number of retries for messages in the
queue. If the number of failed attempts to remove a message exceeds this number,
the message is moved to the exception queue and is no longer available to
applications.

Retry Delay
A bad condition can cause the transaction receiving a message to end. AQ allows
users to hide the bad message for a prespecified interval. A retry_delay can be
specified along with maximum retries. This means that a message that has had a
failed attempt will be visible in the queue for dequeue after the retry_delay interval.
Until then it will be in the WAITING state. In the AQ background process, the time
manager enforces the retry delay property. The default value for maximum retries is
5. The default value for retry delay is 0. Note that maximum retries and retry delay
are not available with 8.0-compatible multiconsumer queues.

PL/SQL (DBMS_AQADM Package): Example Code
/* Create a package that enqueue with delay set to one day: /*

CONNECT BOLADM/BOLADM
>

/* queue has max retries = 4 and retry delay = 12 hours */
execute dbms_aqadm.alter_queue(queue_name = 'WS.WS_BOOKED_ORDERS_QUE',
max_retr
ies = 4,

retry_delay = 3600*12);
A Sample Application Using AQ 8-77

Dequeue Features
>
/* processes the next order available in the booked_order_queue */
CREATE OR REPLACE PROCEDURE process_next_order()
AS

dqqopt dbms_aq.dequeue_options_t;
msgprop dbms_aq.message_properties_t;
deq_msgid RAW(16);
book BOLADM.book_typ;
item BOLADM.orderitem_typ;
BOLADM.order_typ order;

BEGIN
>

dqqopt.dequeue_option := DBMS_AQ.FIRST_MESSAGE;
dbms_aq.dequeue('WS.WS_BOOKED_ORDERS_QUEUE', dqqopt, msgprop, order,

deq_msgid
);

>
/* for simplicity, assume order has a single item */

item = order.items(1);
book = the_orders.item;

>
/* assume search_inventory searches inventory for the book */
/* if we don't find the book in the warehouse, abort transaction */
IF (search_inventory(book) != TRUE)

rollback;
ELSE

process_order(order);
END IF;

>
END;
/

Visual Basic (OO4O): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
public static void setup_queue(Connection db_conn)
{

AQSession aq_sess;
AQQueue bookedorders_q;
AQQueueProperty q_prop;

try
{

8-78 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

bookedorders_q = aq_sess.getQueue("WS", "WS_bookedorders_que");

/* Alter queue - set max retries = 4 and retry delay = 12 hours */
q_prop = new AQQueueProperty();
q_prop.setMaxRetries(4);

q_prop.setRetryInterval(3600*12); // specified in seconds

bookedorders_q.alterQueue(q_prop);

}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}
public static void process_next_order(Connection db_conn)
{

AQSession aq_sess;
Order deq_order;
OrderItem order_item;
Book book;
AQDequeueOption deq_option;
AQMessageProperty msg_prop;
AQQueue bookedorders_q;
AQMessage message;
AQObjectPayload obj_payload;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

deq_option = new AQDequeueOption();

deq_option.setNavigationMode(AQDequeueOption.NAVIGATION_FIRST_MESSAGE);

bookedorders_q = aq_sess.getQueue("WS", "WS_bookedorders_que");
A Sample Application Using AQ 8-79

Dequeue Features
/* Dequeue the message */
message = bookedorders_q.dequeue(deq_option, Order.getFactory());

obj_payload = message.getObjectPayload();

deq_order = (Order)(obj_payload.getPayloadData());

/* for simplicity, assume order has a single item */
order_item = deq_order.getItems().getElement(0);
book = order_item.getItem();

/* assume search_inventory searches inventory for the book
* if we don't find the book in the warehouse, abort transaction
*/

if(search_inventory(book) != true)
db_conn.rollback();

else
process_order(deq_order);

}
catch (AQException aqex)
{

System.out.println("Exception-1: " + aqex);
}
catch (Exception ex)
{

System.out.println("Exception-2: " + ex);
}

}

Exception Handling
AQ provides four integrated mechanisms to support exception handling in
applications: EXCEPTION_QUEUES, EXPIRATION, MAX_RETRIES and RETRY_
DELAY.

An exception_queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. Also, a multiconsumer
exception queue cannot have subscribers associated with it. However, an
application that intends to handle these expired or unserviceable messages can
dequeue from the exception queue. The exception queue created for messages
intended for a multiconsumer queue must itself be a multiconsumer queue. Like
any other queue, the exception queue must be enabled for dequeue using the
8-80 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
DBMS_AQADM.START_QUEUE procedure. You will get an Oracle error if you try to
enable an exception queue for enqueue.

When a message has expired, it is moved to an exception queue. The exception
queue for a message in multiconsumer queue must also be a multiconsumer queue.
Expired messages from multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
exactly once by specifying a NULL consumer name in the dequeue options. Hence,
from a dequeue perspective multiconsumer exception queues behave like
single-consumer queues because each expired message can be dequeued only once
using a NULL consumer name. Messages can also be dequeued from the exception
queue by specifying the message ID.

The exception queue is a message property that can be specified during enqueue
time (see "Enqueuing a Message [Specify Message Properties]" on page 11-9 in
Chapter 11, "Operational Interface: Basic Operations"). In PL/SQL users can use the
exception_queue attribute of the DBMS_AQ.MESSAGE_PROPERTIES_T record to
specify the exception queue. In OCI users can use the LNOCISetAttr procedure to
set the LNOCI_ATTR_EXCEPTION_QUEUE attribute of the
LNOCIAQMsgProperties descriptor.

If an exception queue is not specified, the default exception queue is used. If the
queue is created in a queue table, for example, QTAB, the default exception queue
will be called AQ$_QTAB_E. The default exception queue is automatically created
when the queue table is created. Messages are moved to the exception queues by
AQ under the following conditions:

� The message is not being dequeued within the specified expiration interval. For
messages intended for more than one recipient, the message will be moved to
the exception queue if one or more of the intended recipients was not able to
dequeue the message within the specified expiration interval. The default
expiration interval is DBMS_AQ.NEVER, meaning the messages will not expire.

� The message is being dequeued successfully. However, because of an error that
arises while processing the message, the application that dequeues the message
chooses to roll back the transaction. In this case, the message is returned to the
queue and will be available for any applications that are waiting to dequeue
from the same queue. A dequeue is considered rolled back or undone if the
application rolls back the entire transaction, or if it rolls back to a save point that
was taken before the dequeue. If the message has been dequeued but rolled
back more than the number of times specified by the retry limit, the message
will be moved to the exception queue.
A Sample Application Using AQ 8-81

Dequeue Features
For messages intended for multiple recipients, each message keeps a separate
retry count for each recipient. The message is moved to the exception queue
only when retry counts for all recipients of the message have exceeded the
specified retry limit. The default retry limit is 5 for single-consumer queues and
8.1-compatible multiconsumer queues. No retry limit is not supported for 8.0-
compatible multiconsumer queues.

� The statement executed by the client contains a dequeue that succeeded but the
statement itself was undone later due to an exception. To understand this case,
consider a PL/SQL procedure that contains a call to DBMS_AQ.DEQUEUE. If the
dequeue procedure succeeds but the PL/SQL procedure raises an exception,
AQ will attempt to increment the RETRY_COUNT of the message returned by the
dequeue procedure.

� The client program successfully dequeued a message but terminated before
committing the transaction.

Messages intended for 8.1-compatible multiconsumer queues cannot be dequeued
by the intended recipients once the messages have been moved to an exception
queue. These messages should instead be dequeued in the REMOVE or BROWSE
mode exactly once by specifying a NULL consumer name in the dequeue options.
The messages can also be dequeued by their message IDs.

Messages intended for single consumer queues, or for 8.0-compatible
multiconsumer queues, can only be dequeued by their message IDs once the
messages have been moved to an exception queue.

Users can associate a RETRY_DELAY with a queue. The default value for this
parameter is 0, meaning that the message will be available for dequeue immediately
after the RETRY_COUNT is incremented. Otherwise the message will be unavailable
for RETRY_DELAY seconds. After RETRY_DELAY seconds, the queue monitor marks
the message as READY.

For a multiconsumer queue, RETRY_DELAY is for each subscriber.

Scenario
In the BooksOnLine application, the business rule for each shipping region is that
an order will be placed in a back order queue if the order cannot be filled
immediately. The back order application will try to fill the order once a day. If the
order cannot be filled within 5 days, it is placed in an exception queue for special
processing. You can implement this process by making use of the retry and
exception handling features in AQ.
8-82 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
The following example shows how you can create a queue with specific maximum
retry and retry delay interval.

PL/SQL (DBMS_AQADM Package): Example Code
/* Example for creating a back order queue in Western Region which allows a

maximum of 5 retries and 1 day delay between each retry. */
CONNECT BOLADM/BOLADM
BEGIN

dbms_aqadm.create_queue (
queue_name => 'WS.WS_backorders_que',
queue_table => 'WS.WS_orders_mqtab',
max_retries => 5,
retry_delay => 60*60*24);

END;
/

/* Create an exception queue for the back order queue for Western Region. */
CONNECT BOLADM/BOLADM
BEGIN

dbms_aqadm.create_queue (
queue_name => 'WS.WS_backorders_excpt_que',
queue_table => 'WS.WS_orders_mqtab',
queue_type => DBMS_AQADM.EXCEPTION_QUEUE);

end;
/

/* Enqueue a message to WS_backorders_que and specify WS_backorders_excpt_que as
the exception queue for the message: */
CONNECT BOLADM/BOLADM
CREATE OR REPLACE PROCEDURE enqueue_WS_unfilled_order(backorder order_typ)

AS
back_order_queue_name varchar2(62);
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid raw(16);

BEGIN

/* Set back order queue name for this message: */
back_order_queue_name := 'WS.WS_backorders_que';

/* Set exception queue name for this message: */
msgprop.exception_queue := 'WS.WS_backorders_excpt_que';

dbms_aq.enqueue(back_order_queue_name, enqopt, msgprop,
A Sample Application Using AQ 8-83

Dequeue Features
backorder, enq_msgid);
END;
/

Visual Basic (OO4O): Example Code
The exception queue is a message property that can be provided at the time of
enqueuing a message. If this property is not set, the default exception queue of the
queue will be used for any error conditions.

set oraaq = OraDatabase.CreateAQ("CBADM.deferbilling_que")
Set OraMsg = OraAq.AQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")
Set OraOrder = OraDatabase.CreateOraObject("BOLADM.order_typ")
OraMsg = OraOrder

OraMsg.delay = 15*60*60*24
OraMsg.ExceptionQueue = "WS.WS_backorders_que"
'Fill up the order values
OraMsg = OraOrder 'OraOrder contains the order details
Msgid = OraAq.enqueue

Java (JDBC): Example Code
public static void createBackOrderQueues(Connection db_conn)
{

AQSession aq_sess;
AQQueue backorders_q;
AQQueue backorders_excp_q;
AQQueueProperty q_prop;
AQQueueProperty q_prop2;
AQQueueTable mq_table;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

mq_table = aq_sess.getQueueTable("WS", "WS_orders_mqtab");

/* Create a back order queue in Western Region which allows a
maximum of 5 retries and 1 day delay between each retry. */

q_prop = new AQQueueProperty();
q_prop.setMaxRetries(5);
q_prop.setRetryInterval(60*24*24);
8-84 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
backorders_q = aq_sess.createQueue(mq_table, "WS_backorders_que",
q_prop);

backorders_q.start(true, true);

/* Create an exception queue for the back order queue for
Western Region. */

q_prop2 = new AQQueueProperty();
q_prop2.setQueueType(AQQueueProperty.EXCEPTION_QUEUE);

backorders_excp_q = aq_sess.createQueue(mq_table,
"WS_backorders_excpt_que", q_prop2);

}
catch (Exception ex)
{

System.out.println("Exception " + ex);
}

}

/* Enqueue a message to WS_backorders_que and specify WS_backorders_excpt_que
as the exception queue for the message: */

public static void enqueue_WS_unfilled_order(Connection db_conn,
Order back_order)

{
AQSession aq_sess;
AQQueue back_order_q;
AQEnqueueOption enq_option;
AQMessageProperty m_property;
AQMessage message;
AQObjectPayload obj_payload;
byte[] enq_msg_id;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

back_order_q = aq_sess.getQueue("WS", "WS_backorders_que");

message = back_order_q.createMessage();

/* Set exception queue name for this message: */
m_property = message.getMessageProperty();
A Sample Application Using AQ 8-85

Dequeue Features
m_property.setExceptionQueue("WS.WS_backorders_excpt_que");

obj_payload = message.getObjectPayload();
obj_payload.setPayloadData(back_order);

enq_option = new AQEnqueueOption();

/* Enqueue the message */
enq_msg_id = back_order_q.enqueue(enq_option, message);

db_conn.commit();
}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}

Rule-Based Subscription
Messages can be routed to various recipients based on message properties or
message content. Users define a rule-based subscription for a given queue to specify
interest in receiving messages that meet particular conditions.

Rules are Boolean expressions that evaluate to TRUE or FALSE. Similar in syntax to
the WHERE clause of a SQL query, rules are expressed in terms of the attributes that
represent message properties or message content. These subscriber rules are
evaluated against incoming messages and those rules that match are used to
determine message recipients. This feature thus supports the notions of
content-based subscriptions and content-based routing of messages.

Subscription rules can also be defined on an attribute of type XMLType using XML
operators such as ExistsNode .

Scenario
For the BooksOnLine application, we illustrate how rule-based subscriptions are
used to implement a publish-subscribe paradigm utilizing content-based
subscription and content-based routing of messages. The interaction between the
Order Entry application and each of the Shipping Applications is modeled as
follows:

� Western Region Shipping handles orders for the Western region of the U.S.
8-86 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
� Eastern Region Shipping handles orders for the Eastern region of the U.S.

� Overseas Shipping handles all non-U.S. orders.

� Overseas Shipping checks for the XMLType attribute to identify special
handling.

� Eastern Region Shipping also handles all U.S. rush orders.

Each shipping application subscribes to the OE booked orders queue. The following
rule-based subscriptions are defined by the Order Entry user to handle the routing
of booked orders from the Order Entry application to each of the Shipping
applications.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT OE/OE;
Western Region Shipping defines an agent called 'West_Shipping ' with the WS
booked orders queue as the agent address (destination queue where messages must
be delivered). This agent subscribes to the OE booked orders queue using a rule
specified on order region and ordertype attributes.

/* Add a rule-based subscriber for West Shipping -
West Shipping handles Western region U.S. orders,
Rush Western region orders are handled by East Shipping: */

DECLARE
subscriber aq$_agent;

BEGIN
subscriber := aq$_agent('West_Shipping', 'WS.WS_bookedorders_que', null);
dbms_aqadm.add_subscriber(

queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.orderregion =

''WESTERN'' AND tab.user_data.ordertype != ''RUSH''');
END;
/
Eastern Region Shipping defines an agent called East_Shipping with the ES
booked orders queue as the agent address (the destination queue where messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on orderregion , ordertype and customer attributes.

/* Add a rule-based subscriber for East Shipping -
East shipping handles all Eastern region orders,
East shipping also handles all U.S. rush orders: */

DECLARE
subscriber aq$_agent;
A Sample Application Using AQ 8-87

Dequeue Features
BEGIN
subscriber := aq$_agent('East_Shipping', 'ES.ES_bookedorders_que', null);
dbms_aqadm.add_subscriber(

queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.orderregion = ''EASTERN'' OR

(tab.user_data.ordertype = ''RUSH'' AND
tab.user_data.customer.country = ''USA'') ');

END;

Overseas Shipping defines an agent called Overseas_Shipping with the OS
booked orders queue as the agent address (destination queue to which messages
must be delivered). This agent subscribes to the OE booked orders queue using a
rule specified on the orderregion attribute. Since the representation of orders at
the Overseas Shipping site is different from the representation of orders at the Order
Entry site, a transformation is applied before messages are propagated from the
Order Entry site to the Overseas Shipping site.

/* Add a rule-based subscriber (for Overseas Shipping) to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: */
DECLARE

subscriber aq$_agent;
BEGIN

subscriber := aq$_agent('Overseas_Shipping','OS.OS_bookedorders_que',null);

dbms_aqadm.add_subscriber(
queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.orderregion = ''INTERNATIONAL''',
transformation => 'OS.OE2XML');

END;

See "Message Format Transformation" on page 8-6 for more details on defining
transformations.

Assume that the Overseas Shipping site has a subscriber, Overseas_DHL , for
handling RUSH orders. Since OS_bookedorders_que has the order details
represented as an XMLType, the rule uses XPath syntax.

DECLARE
subscriber aq$_agent;

BEGIN
subscriber := aq$_agent('Overseas_DHL', null, null);

dbms_aqadm.add_subscriber(
8-88 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
queue_name => 'OS.OS_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.extract(''/ORDER_TYP/ORDERTYPE/

text()'').getStringVal()=''RUSH''');

END;

Visual Basic (OO4O): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
public static void addRuleBasedSubscribers(Connection db_conn)
{

AQSession aq_sess;
AQQueue bookedorders_q;
String rule;
AQAgent agt1, agt2, agt3;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

bookedorders_q = aq_sess.getQueue("OE", "OE_booked_orders_que");

/* Add a rule-based subscriber for West Shipping -
West Shipping handles Western region U.S. orders,
Rush Western region orders are handled by East Shipping: */

agt1 = new AQAgent("West_Shipping", "WS.WS_bookedorders_que");

rule = "tab.user_data.orderregion = 'WESTERN' AND " +
"tab.user_data.ordertype != 'RUSH'";

bookedorders_q.addSubscriber(agt1, rule);

/* Add a rule-based subscriber for East Shipping -
East shipping handles all Eastern region orders,
East shipping also handles all U.S. rush orders: */

agt2 = new AQAgent("East_Shipping", "ES.ES_bookedorders_que");
rule = "tab.user_data.orderregion = 'EASTERN' OR " +
A Sample Application Using AQ 8-89

Dequeue Features
"(tab.user_data.ordertype = 'RUSH' AND " +
"tab.user_data.customer.country = 'USA')";

bookedorders_q.addSubscriber(agt2, rule);

/* Add a rule-based subscriber for Overseas Shipping
Intl Shipping handles all non-U.S. orders: */

agt3 = new AQAgent("Overseas_Shipping", "OS.OS_bookedorders_que");
rule = "tab.user_data.orderregion = 'INTERNATIONAL'";

bookedorders_q.addSubscriber(agt3, rule);
}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}

Listen Capability
Advanced Queuing can monitor multiple queues for messages with a single call,
LISTEN . An application can use LISTEN to wait for messages for multiple
subscriptions. It can also be used by gateway applications to monitor multiple
queues. If the LISTEN call returns successfully, a dequeue must be used to retrieve
the message (see "Listening to One or More Single-Consumer Queues" on
page 11-23.

Without the LISTEN call, an application which sought to dequeue from a set of
queues would have to continuously poll the queues to determine if there were a
message. Alternatively, you could design your application to have a separate
dequeue process for each queue. However, if there are long periods with no traffic
in any of the queues, these approaches will create unacceptable overhead. The
LISTEN call is well suited for such applications.

Note that when there are messages for multiple agents in the agent list, LISTEN
returns with the first agent for whom there is a message. In that sense LISTEN is not
'fair' in monitoring the queues. The application designer must keep this in mind
when using the call. To prevent one agent from 'starving' other agents for messages,
the application can change the order of the agents in the agent list.
8-90 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
Scenario
In the customer service component of the BooksOnLine example, messages from
different databases arrive in the customer service queues, indicating the state of the
message. The customer service application monitors the queues and whenever there
is a message about a customer order, it updates the order status in the order_
status_table . The application uses the listen call to monitor the different
queues. Whenever there is a message in any of the queues, it dequeues the message
and updates the order status accordingly.

PL/SQL (DBMS_AQADM Package): Example Code
CODE (in tkaqdocd.sql)

/* Update the status of the order in the order status table: */
CREATE OR REPLACE PROCEDURE update_status(

new_status IN VARCHAR2,
order_msg IN BOLADM.ORDER_TYP)

IS
old_status VARCHAR2(30);
dummy NUMBER;

BEGIN

BEGIN
/* Query old status from the table: */
SELECT st.status INTO old_status FROM order_status_table st

WHERE st.customer_order.orderno = order_msg.orderno;

/* Status can be 'BOOKED_ORDER', 'SHIPPED_ORDER', 'BACK_ORDER'
and 'BILLED_ORDER': */

IF new_status = 'SHIPPED_ORDER' THEN
IF old_status = 'BILLED_ORDER' THEN

return; /* message about a previous state */
END IF;

ELSIF new_status = 'BACK_ORDER' THEN
IF old_status = 'SHIPPED_ORDER' OR old_status = 'BILLED_ORDER' THEN

return; /* message about a previous state */
END IF;

END IF;

/* Update the order status: */
UPDATE order_status_table st

SET st.customer_order = order_msg, st.status = new_status;
A Sample Application Using AQ 8-91

Dequeue Features
COMMIT;

EXCEPTION
WHEN OTHERS THEN /* change to no data found */

/* First update for the order: */
INSERT INTO order_status_table(customer_order, status)
VALUES (order_msg, new_status);
COMMIT;

END;
END;
/

/* Dequeues message from 'QUEUE' for 'CONSUMER': */
CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(

queue IN VARCHAR2,
consumer IN VARCHAR2,
message OUT BOLADM.order_typ)

IS

dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_msgid RAW(16);
BEGIN

dopt.dequeue_mode := dbms_aq.REMOVE;
dopt.navigation := dbms_aq.FIRST_MESSAGE;
dopt.consumer_name := consumer;

dbms_aq.dequeue(
queue_name => queue,
dequeue_options => dopt,
message_properties => mprop,
payload => message,
msgid => deq_msgid);

commit;
END;
/

/* Monitor the queues in the customer service databse for 'time' seconds: */
CREATE OR REPLACE PROCEDURE MONITOR_STATUS_QUEUE(time IN NUMBER)

IS
agent_w_message aq$_agent;
agent_list dbms_aq.agent_list_t;
wait_time INTEGER := 120;
8-92 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
no_message EXCEPTION;
pragma EXCEPTION_INIT(no_message, -25254);
order_msg boladm.order_typ;
new_status VARCHAR2(30);
monitor BOOLEAN := TRUE;
begin_time NUMBER;
end_time NUMBER;

BEGIN

begin_time := dbms_utility.get_time;
WHILE (monitor)
LOOP
BEGIN

/* Construct the waiters list: */
agent_list(1) := aq$_agent('BILLED_ORDER', 'CS_billedorders_que', NULL);
agent_list(2) := aq$_agent('SHIPPED_ORDER', 'CS_shippedorders_que',

NULL);
agent_list(3) := aq$_agent('BACK_ORDER', 'CS_backorders_que', NULL);
agent_list(4) := aq$_agent('Booked_ORDER', 'CS_bookedorders_que', NULL);

/* Wait for order status messages: */
dbms_aq.listen(agent_list, wait_time, agent_w_message);

dbms_output.put_line('Agent' || agent_w_message.name || ' Address '||
agent_w_message.address);

/* Dequeue the message from the queue: */
dequeue_message(agent_w_message.address, agent_w_message.name, order_msg);

/* Update the status of the order depending on the type of the message,
* the name of the agent contains the new state: */

update_status(agent_w_message.name, order_msg);

/* Exit if we have been working long enough: */
end_time := dbms_utility.get_time;
IF (end_time - begin_time > time) THEN

EXIT;
END IF;

EXCEPTION
WHEN no_message THEN

dbms_output.put_line('No messages in the past 2 minutes');
end_time := dbms_utility.get_time;

/* Exit if we have done enough work: */
IF (end_time - begin_time > time) THEN
A Sample Application Using AQ 8-93

Dequeue Features
EXIT;
END IF;

END;

END LOOP;
END;
/

Visual Basic (OO4O): Example Code
Feature not currently available.

Java (JDBC): Example Code
public static void monitor_status_queue(Connection db_conn)
{

AQSession aq_sess;
AQAgent[] agt_list = null;
AQAgent ret_agt = null;
Order deq_order;
AQDequeueOption deq_option;
AQQueue orders_q;
AQMessage message;
AQObjectPayload obj_payload;
String owner = null;
String queue_name = null;
int idx = 0;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Construct the waiters list: */
agt_list = new AQAgent[4];

agt_list[0] = new AQAgent("BILLED_ORDER", "CS_billedorders_que", 0);
agt_list[1] = new AQAgent("SHIPPED_ORDER", "CS_shippedorders_que", 0);
agt_list[2] = new AQAgent("BACK_ORDER", "CS_backorders_que", 0);
agt_list[3] = new AQAgent("BOOKED_ORDER", "CS_bookedorders_que", 0);

/* Wait for order status messages for 120 seconds: */
ret_agt = aq_sess.listen(agt_list, 120);

System.out.println("Message available for agent: " +
ret_agt.getName() + " " + ret_agt.getAddress());
8-94 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeue Features
/* Get owner, queue where message is available */
idx = ret_agt.getAddress().indexOf(".");

if(idx != -1)
{

owner = ret_agt.getAddress().substring(0, idx);
queue_name = ret_agt.getAddress().substring(idx + 1);

/* Dequeue the message */
deq_option = new AQDequeueOption();

deq_option.setConsumerName(ret_agt.getName());
deq_option.setWaitTime(1);

orders_q = aq_sess.getQueue(owner, queue_name);

/* Dequeue the message */
message = orders_q.dequeue(deq_option, Order.getFactory());

obj_payload = message.getObjectPayload();

deq_order = (Order)(obj_payload.getPayloadData());

System.out.println("Order number " + deq_order.getOrderno() + " retrieved");

}
catch (AQException aqex)
{
System.out.println("Exception-1: " + aqex);
}
catch (Exception ex)
{

System.out.println("Exception-2: " + ex);
}

}

Message Transformation During Dequeue
Continuing the scenario introduced in "Message Format Transformation" on
page 8-6 and "Message Transformation During Enqueue" on page 8-54, the queues
in the OE schema are of payload type OE.orders_typ and the queues in the WS
schema are of payload type WS.orders_typ_sh .
A Sample Application Using AQ 8-95

Dequeue Features
Scenario
At dequeue time, an application can move messages from OE_booked_orders_
topic to the WS_booked_orders_topi c by using a selection criteria on dequeue
to dequeue only orders with order_region "WESTERN" and order_type not
equal to "RUSH." At the same time, the transformation is applied and the order in
the ws.order_typ_sh type is retrieved. Then the message is enqueued into the
WS.ws_booked_orders queue.

PL/SQL (DBMS_AQ Package): Example Code
CREATE OR REPLACE PROCEDURE fwd_message_to_ws_shipping AS

enq_opt dbms_aq.enqueue_options_t;
deq_opt dbms_aq.dequeue_options_t;
msg_prp dbms_aq.message_properties_t;
booked_order WS.order_typ_sh;

BEGIN

/* First dequeue the message from OE booked orders topic */
deq_opt.transformation := 'OE.OE2WS';
deq_opt.condition := 'tab.user_data.order_region = ''WESTERN'' and tab.user_

data.order_type != ''RUSH''';

dbms_aq.dequeue('OE.oe_bookedorders_topic', deq_opt,
msg_prp, booked_order);

/* enqueue the message in the WS booked orders topic */
msg_prp.recipient_list(0) := aq$_agent('West_shipping', null, null);

dbms_aq.enqueue('WS.ws_bookedorders_topic',
enq_opt, msg_prp, booked_order);

END;

Visual Basic (OO4O): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.
8-96 Oracle9i Application Developer’s Guide - Advanced Queuing

Asynchronous Notifications
Dequeue Using the AQ XML Servlet
You can perform dequeue requests over the Internet using SOAP. See Chapter 17,
"Internet Access to Advanced Queuing" for more information on receiving AQ
messages using SOAP.

In the BooksOnline scenario, assume that the East shipping application receives AQ
messages with a correlation identifier 'RUSH' over the Internet. The dequeue
request will have the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">

<consumer_options>
<destination>ES_ES_bookedorders_que</destination>
<consumer_name>East_Shipping</consumer_name>
<wait_time>0</wait_time>
<selector>

<correlation>RUSH</correlation>
</selector>

</consumer_options>

<AQXmlCommit/>

</AQXmlReceive>
</Body>

</Envelope>

Asynchronous Notifications
This feature allows clients to receive notifications for messages of interest. It
supports multiple mechanisms to receive notifications. Clients can receive
notifications procedurally using PL/SQL, JMS, or OCI callback functions, or clients
can receive notifications through e-mail or HTTP post.

For persistent queues, notifications contain only the message properties, except for
JMS notifications. Clients have to explicitly dequeue to receive the message. In JMS,
the dequeue is done as part of the notifications and hence explicit dequeue is not
required. For nonpersistent queues, the message is delivered as part of the
notification.

Clients can also specify the presentation for notifications as either RAW or XML.
A Sample Application Using AQ 8-97

Asynchronous Notifications
Scenario
In the BooksOnLine application, a customer can request Fed-Ex shipping (priority
1), priority air shipping (priority 2), or regular ground shipping (priority 3).

The shipping application then ships the orders according to the user's request. It is
of interest to BooksOnLine to find out how many requests of each shipping type
come in each day. The application uses asynchronous notification facility for this
purpose. It registers for notification on the WS.WS_bookedorders_que . When it
is notified of new message in the queue, it updates the count for the appropriate
shipping type depending on the priority of the message.

Visual Basic (OO4O): Example Code
Refer to the Visual Basic online help, "Monitoring Messages".

Java (JDBC): Example Code
This feature is not supported by the Java API.

C (OCI): Example Code
This example illustrates the use of OCIRegister. At the shipping site, an OCI client
program keeps track of how many orders were made for each of the shipping types,
FEDEX, AIR and GROUND. The priority field of the message enables us to
determine the type of shipping desired.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>
#ifdef WIN32COMMON
#define sleep(x) Sleep(1000*(x))
#endif
static text *username = (text *) "WS";
static text *password = (text *) "WS";

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

static void checkerr(/*_ OCIError *errhp, sword status _*/);

struct ship_data
{

8-98 Oracle9i Application Developer’s Guide - Advanced Queuing

Asynchronous Notifications
ub4 fedex;
ub4 air;
ub4 ground;

};

typedef struct ship_data ship_data;

int main(/*_ int argc, char *argv[] _*/);

/* Notify callback: */
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
LNOCISubscription *subscrhp;
dvoid *pay;
ub4 payl;
dvoid *desc;
ub4 mode;
{

text *subname;
ub4 size;
ship_data *ship_stats = (ship_data *)ctx;
text *queue;
text *consumer;
OCIRaw *msgid;
ub4 priority;
OCIAQMsgProperties *msgprop;

OCIAttrGet((dvoid *)subscrhp, OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &size,
OCI_ATTR_SUBSCR_NAME, errhp);

/* Extract the attributes from the AQ descriptor.
Queue name: */

OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ATTR_QUEUE_NAME, errhp);

/* Consumer name: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &size,

OCI_ATTR_CONSUMER_NAME, errhp);

/* Msgid: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgid, &size,

OCI_ATTR_NFY_MSGID, errhp);
A Sample Application Using AQ 8-99

Asynchronous Notifications
/* Message properties: */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,

OCI_ATTR_MSG_PROP, errhp);

/* Get priority from message properties: */
checkerr(errhp, OCIAttrGet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,

(dvoid *)&priority, 0,
OCI_ATTR_PRIORITY, errhp));

switch (priority)
{
case 1: ship_stats->fedex++;

break;
case 2 : ship_stats->air++;

break;
case 3: ship_stats->ground++;

break;
default:

printf(" Error priority %d", priority);
}

}

int main(argc, argv)
int argc;
char *argv[];
{

OCISession *authp = (OCISession *) 0;
OCISubscription *subscrhp[8];
ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;
ship_data ctx = {0,0,0};
ub4 sleep_time = 0;

printf("Initializing OCI Process\n");

/* Initialize OCI environment with OCI_EVENTS flag set: */
(void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,

(dvoid * (*)(dvoid *, size_t)) 0,
(dvoid * (*)(dvoid *, dvoid *, size_t))0,
(void (*)(dvoid *, dvoid *)) 0);

printf("Initialization successful\n");

printf("Initializing OCI Env\n");
(void) OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0, (dvoid **) 0
8-100 Oracle9i Application Developer’s Guide - Advanced Queuing

Asynchronous Notifications
);
printf("Initialization successful\n");

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_
ERROR,

(size_t) 0, (dvoid **) 0));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_
SERVER,

(size_t) 0, (dvoid **) 0));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_
SVCCTX,

(size_t) 0, (dvoid **) 0));

printf("connecting to server\n");
checkerr(errhp, OCIServerAttach(srvhp, errhp, (text *)"inst1_alias",

strlen("inst1_alias"), (ub4) OCI_DEFAULT));
printf("connect successful\n");

/* Set attribute server context in the service context: */
checkerr(errhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,

(ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp));

checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0));

/* Set username and password in the session handle: */
checkerr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,

(dvoid *) username, (ub4) strlen((char *)username),
(ub4) OCI_ATTR_USERNAME, errhp));

checkerr(errhp, OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) password, (ub4) strlen((char *)password),
(ub4) OCI_ATTR_PASSWORD, errhp));

/* Begin session: */
checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,

(ub4) OCI_DEFAULT));

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, errhp);
A Sample Application Using AQ 8-101

Asynchronous Notifications
/* Register for notification: */
printf("allocating subscription handle\n");
subscrhp[0] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

printf("setting subscription name\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) "WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS",
(ub4) strlen("WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callback\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx, (ub4)sizeof(ctx),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

printf("setting subscription namespace\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

printf("Registering \n");
checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 1, errhp,

OCI_DEFAULT));

sleep_time = (ub4)atoi(argv[1]);
printf ("waiting for %d s", sleep_time);
sleep(sleep_time);

printf("Exiting");
exit(0);

}

void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
8-102 Oracle9i Application Developer’s Guide - Advanced Queuing

Asynchronous Notifications
sb4 errcode = 0;

switch (status)
{
case OCI_SUCCESS:

break;
case OCI_SUCCESS_WITH_INFO:

(void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED_DATA:
(void) printf("Error - OCI_NEED_DATA\n");
break;

case OCI_NO_DATA:
(void) printf("Error - OCI_NODATA\n");
break;

case OCI_ERROR:
(void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,

errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
(void) printf("Error - %.*s\n", 512, errbuf);
break;

case OCI_INVALID_HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\n");
break;

case OCI_STILL_EXECUTING:
(void) printf("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
(void) printf("Error - OCI_CONTINUE\n");
break;

default:
break;

}
}

PL/SQL (DBMS_AQ package): Example Code
This example illustrates the use of the DBMS_AQ.REGISTER procedure.

In the BooksOnline scenario, assume that we want a PL/SQL callback
WS.notifyCB() to be invoked when the subscriber BOOKED_ORDER receives a
message in the WS.WS_BOOKED_ORDERS_QUE queue. In addition, we want to send
an e-mail to john@company.com when an order is enqueued in the queue for
subscriber BOOKED_ORDERS. Also assume that we want to invoke the servlet
http://xyz.company.com/servlets/NofifyServlet . This can be done as
follows:
A Sample Application Using AQ 8-103

Asynchronous Notifications
First define a PL/SQL procedure that will be invoked on notification.

connect ws/ws;
set echo on;
set serveroutput on;

-- notifyCB callback
create or replace procedure notifyCB(

context raw, reginfo sys.aq$_reg_info, descr sys.aq$_descriptor,
payload raw, payloadl number)

AS
dequeue_options DBMS_AQ.dequeue_options_t;
message_properies DBMS_AQ.message_properties_t;
message_handle RAW(16);
message BOLADM.order_typ;

BEGIN
-- get the consumer name and msg_id from the descriptor
dequeue_options.msgid := descr.msg_id;
dequeue_options.consumer_name := descr.consumer_name;

-- Dequeue the message
DBMS_AQ.DEQUEUE(queue_name => descr.queue_name,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

commit;

DBMS_OUTPUT.PUTLINE(’Received Order: ’ || message.orderno);

END;
/

The PL/SQL procedure, e-mail address, and HTTP URL can be registered as
follows:

connect ws/ws;
set echo on;
set serveroutput on;

DECLARE
reginfo1 sys.aq$_reg_info;
reginfo2 sys.aq$_reg_info;
reginfo3 sys.aq$_reg_info;
reginfolist sys.aq$_reg_info_list;
8-104 Oracle9i Application Developer’s Guide - Advanced Queuing

Asynchronous Notifications
BEGIN
-- register for the pl/sql procedure notifyCB to be called on notification

reginfo1 := sys.aq$_reg_info('WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS',
DBMS_AQ.NAMESPACE_AQ, 'plsql://WS.notifyCB',
HEXTORAW('FF'));

-- register for an e-mail to be sent to john@company.com on notification
reginfo2 := sys.aq$_reg_info('WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS',

DBMS_AQ.NAMESPACE_AQ, 'mailto://john@company.com ',
HEXTORAW('FF'));

-- register for an HTTP servlet to be invoked for notification
reginfo3 := sys.aq$_reg_info('WS.WS_BOOKEDORDERS_QUE:BOOKED_ORDERS',

DBMS_AQ.NAMESPACE_AQ,
' http://xyz.oracle.com/servlets/NotifyServlet ',

HEXTORAW('FF'));

-- Create the registration info list
reginfolist := sys.aq$_reg_info_list(reginfo1);
reginfolist.EXTEND;
reginfolist(2) := reginfo2;

reginfolist.EXTEND;
reginfolist(3) := reginfo3;

-- do the registration
sys.dbms_aq.register(reginfolist, 3);

END;

Registering for Notifications Using the AQ XML Servlet
Clients can register for AQ notifications over the Internet. See Chapter 17, "Internet
Access to Advanced Queuing" for more information on registering for AQ
notifications using SOAP.

The register request has the following format:

?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>

<AQXmlRegister xmlns = "http://ns.oracle.com/AQ/schemas/access">
A Sample Application Using AQ 8-105

Propagation Features
<register_options>
<destination>WS.WS_BOOKEDORDERS_QUE</destination>
<consumer_name>BOOKED_ORDERS</consumer_name>
<notify_url>mailto://john@company.com</notify_url>

</register_options>

<AQXmlCommit/>
</AQXmlRegister>

</Body>
</Envelope>

The e-mail notification sent to john@company.com will have the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://www.oracle.com/schemas/IDAP/envelope">

<Body>
<AQXmlNotification xmlns="http://www.oracle.com/schemas/AQ/access">

<notification_options>
<destination>WS.WS_BOOKEDORDERS_QUE</destination>

</notification_options>
<message_set>

<message>
<message_header>

<message_id>81128B6AC46D4B15E03408002092AA15</message_id>
<correlation>RUSH</correlation>
<priority>1</priority>
<delivery_count>0</delivery_count>
<sender_id>

<agent_name>john</agent_name>
</sender_id>
<message_state>0</message_state>

</message_header>
</message>

</message_set>
</AQXmlNotification>

</Body>
</Envelope>

Propagation Features
In this section, the following topics are discussed:

� Propagation

� Propagation Scheduling
8-106 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
� Scenario

� Enhanced Propagation Scheduling Capabilities

� Exception Handling During Propagation

� Message Format Transformation During Propagation

Propagation
This feature allows applications to communicate with each other without being
connected to the same database or to the same queue. Messages can be propagated
from one queue to another. The destination queue can be located in the same
database or in a remote database. Propagation is performed by job queue
background processes. Propagation to the remote queue uses database links over
Oracle Net Services or HTTP(S).

The propagation feature is used as follows. First one or more subscribers are
defined for the queue from which messages are to be propagated (see
"Subscriptions and Recipient Lists" on page 8-36). Second, a schedule is defined for
each destination where messages are to be propagated from the queue. Enqueued
messages will be propagated and automatically available for dequeuing at the
destination queues.

For propagation over the Internet, you must specify the remote Internet user in the
database link. The remote Internet user must have privileges to enqueue in the
destination queue.

Note that two or more job_queue background processes must be running to use
propagation. This is in addition to the number of job_queue background
processes needed for handling non-propagation related jobs. Also, if you want to
deploy remote propagation, you must ensure that the database link specified for the
schedule is valid and have proper privileges for enqueuing into the destination
queue. For more information about the administrative commands for managing
propagation schedules, see "Propagation Scheduling" on page 8-108.

Propagation also has mechanisms for handling failure. For example, if the database
link specified is invalid, then the appropriate error message is reported.

Finally, propagation provides detailed statistics about the messages propagated and
the schedule itself. This information can be used to properly tune the schedules for
best performance. See "Enhanced Propagation Scheduling Capabilities" for a
discussion of the failure handling and error reporting facilities of propagation and
propagation statistics.
A Sample Application Using AQ 8-107

Propagation Features
Propagation Scheduling
A propagation schedule is defined for a pair of source and destination queues. If a
queue has messages to be propagated to several queues, a schedule has to be
defined for each of the destination queues. A schedule indicates the time frame
during which messages can be propagated from the source queue. This time frame
may depend on a number of factors such as network traffic, load at source database,
load at destination database, and so on. The schedule therefore has to be tailored for
the specific source and destination. When a schedule is created, a job is
automatically submitted to the job_queue facility to handle propagation.

The administrative calls for propagation scheduling provide flexibility for
managing the schedules (see "Scheduling a Queue Propagation" in Chapter 9,
"Administrative Interface"). The duration or propagation window parameter of a
schedule specifies the time frame during which propagation has to take place. If the
duration is unspecified, the time frame is an infinite single window. If a window
has to be repeated periodically, a finite duration is specified along with a next_
time function that defines the periodic interval between successive windows.

The latency parameter for a schedule is relevant only when a queue does not have
any messages to be propagated. This parameter specifies the time interval within
which a queue has to be rechecked for messages. Note that if the latency is less than
5 seconds, then the job_queue_interval parameter for the job queue processes
should be less than or equal to the latency parameter.

The propagation schedules defined for a queue can be changed or dropped at
anytime during the life of the queue. In addition there are calls for temporarily
disabling a schedule (instead of dropping the schedule) and enabling a disabled
schedule. A schedule is active when messages are being propagated in that
schedule. All the administrative calls can be made irrespective of whether the
schedule is active or not. If a schedule is active, it will take a few seconds for the
calls to be executed.

Scenario
In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. The following example code illustrates the
various administrative calls available for specifying and managing schedules. It also
shows the calls for enqueuing messages into the source queue and for dequeuing
the messages at the destination site. The catalog view USER_QUEUE_SCHEDULES
provides all information relevant to a schedule (see "Selecting Propagation
Schedules in User Schema" in Chapter 10, "Administrative Interface: Views").
8-108 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
PL/SQL (DBMS_AQADM Package): Example Code
CONNECT OE/OE;

/* Schedule Propagation from bookedorders_que to shipping: */
EXECUTE dbms_aqadm.schedule_propagation(\

queue_name => ’OE.OE_bookedorders_que’);

/* Check if a schedule has been created: */
SELECT * FROM user_queue_schedules;

/* Enqueue some orders into OE_bookedorders_que: */
EXECUTE BOLADM.order_enq(’My First Book’, 1, 1001, ’CA’, ’USA’, \

’WESTERN’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Second Book’, 2, 1002, ’NY’, ’USA’, \

’EASTERN’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Third Book’, 3, 1003, ’’, ’Canada’, \

’INTERNATIONAL’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Fourth Book’, 4, 1004, ’NV’, ’USA’, \

’WESTERN’, ’RUSH’);
EXECUTE BOLADM.order_enq(’My Fifth Book’, 5, 1005, ’MA’, ’USA’, \

’EASTERN’, ’RUSH’);
EXECUTE BOLADM.order_enq(’My Sixth Book’, 6, 1006, ’’ , ’UK’, \

’INTERNATIONAL’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Seventh Book’, 7, 1007, ’’, ’Canada’, \

’INTERNATIONAL’, ’RUSH’);
EXECUTE BOLADM.order_enq(’My Eighth Book’, 8, 1008, ’’, ’Mexico’, \

’INTERNATIONAL’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Ninth Book’, 9, 1009, ’CA’, ’USA’, \

’WESTERN’, ’RUSH’);
EXECUTE BOLADM.order_enq(’My Tenth Book’, 8, 1010, ’’ , ’UK’, \

’INTERNATIONAL’, ’NORMAL’);
EXECUTE BOLADM.order_enq(’My Last Book’, 7, 1011, ’’ , ’Mexico’, \

’INTERNATIONAL’, ’NORMAL’);

/* Wait for propagation to happen: */
EXECUTE dbms_lock.sleep(100);

/* Connect to shipping sites and check propagated messages: */
CONNECT WS/WS;
set serveroutput on;

/* Dequeue all booked orders for West_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(’West_Shipping’, DBMS_AQ.REMOVE);
A Sample Application Using AQ 8-109

Propagation Features
CONNECT ES/ES;
SET SERVEROUTPUT ON;

/* Dequeue all remaining booked orders (normal order) for East_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(’East_Shipping’, DBMS_AQ.REMOVE);

CONNECT OS/OS;
SET SERVEROUTPUT ON;

/* Dequeue all international North American orders for Overseas_Shipping: */
EXECUTE BOLADM.get_northamerican_orders(’Overseas_Shipping’);

/* Dequeue rest of the booked orders for Overseas_Shipping: */
EXECUTE BOLADM.shipping_bookedorder_deq(’Overseas_Shipping’, DBMS_AQ.REMOVE);

/* Disable propagation schedule for booked orders
EXECUTE dbms_aqadm.disable_propagation_schedule(\

queue_name => ’OE_bookedorders_que’);

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule has been disabled: */
SELECT schedule_disabled FROM user_queue_schedules;

/* Alter propagation schedule for booked orders to execute every
15 mins (900 seconds) for a window duration of 300 seconds: */

EXECUTE dbms_aqadm.alter_propagation_schedule(\
queue_name => ’OE_bookedorders_que’, \
duration => 300, \
next_time => ’SYSDATE + 900/86400’,\
latency => 25);

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule parameters have changed: */
SELECT next_time, latency, propagation_window FROM user_queue_schedules;

/* Enable propagation schedule for booked orders:
EXECUTE dbms_aqadm.enable_propagation_schedule(\

queue_name => ’OE_bookedorders_que’);

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);
8-110 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
/* Check if the schedule has been enabled: */
SELECT schedule_disabled FROM user_queue_schedules;

/* Unschedule propagation for booked orders: */
EXECUTE dbms_aqadm.unschedule_propagation(\

queue_name => ’OE.OE_bookedorders_que’);

/* Wait for some time for call to be effected: */
EXECUTE dbms_lock.sleep(30);

/* Check if the schedule has been dropped
SELECT * FROM user_queue_schedules;

Visual Basic (OO4O): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
No example is provided with this release.

Propagation of Messages with LOB Attributes
Large Objects can be propagated using AQ using two methods:

� Propagation from RAW queues. In RAW queues the message payload is stored
as a Binary Large Object (BLOB). This allows users to store up to 32KB of data
when using the PL/SQL interface and as much data as can be contiguously
allocated by the client when using OCI. This method is supported by all
releases after 8.0.4 inclusive.

� Propagation from Object queues with LOB attributes. The user can populate the
LOB and read from the LOB using Oracle's LOB handling routines. The LOB
attributes can be BLOBs or CLOBs (not NCLOBs). If the attribute is a CLOB AQ
will automatically perform any necessary characterset conversion between the
source queue and the destination queue. This method is supported by all
releases from 8.1.3 inclusive.

See Also: Oracle9i Application Developer’s Guide - Large Objects
(LOBs)
A Sample Application Using AQ 8-111

Propagation Features
Note that AQ does not support propagation from Object queues that have BFILE or
REF attributes in the payload.

Scenario
In the BooksOnLine application, the company may wish to send promotional
coupons along with the book orders. These coupons are generated depending on
the content of the order, and other customer preferences. The coupons are images
generated from some multimedia database, and are stored as LOBs.

When the order information is sent to the shipping warehouses, the coupon
contents are also sent to the warehouses. In the following code, order_typ is
enhanced to contain a coupon attribute of LOB type. The code demonstrates how
the LOB contents are inserted into the message that is enqueued into OE_
bookedorders_que when an order is placed. The message payload is first
constructed with an empty LOB. The place holder (LOB locator) information is
obtained from the queue table and is then used in conjunction with the LOB
manipulation routines, such as DBMS_LOB.WRITE(), to fill the LOB contents. The
example has additional examples regarding for enqueue and dequeue of messages
with LOBs as part the payload.

A COMMIT is issued only after the LOB contents are filled in with the appropriate
image data. Propagation automatically takes care of moving the LOB contents along
with the rest of the message contents. The following code also shows a dequeue at
the destination queue for reading the LOB contents from the propagated message.
The LOB contents are read into a buffer that can be sent to a printer for printing the
coupon.

PL/SQL (DBMS_AQADM Package): Example Code
/* Enhance the type order_typ to contain coupon field (lob field): */
CREATE OR REPLACE TYPE order_typ AS OBJECT (

orderno NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
orderregion VARCHAR2(30),
customer customer_typ,
paymentmethod VARCHAR2(30),
items orderitemlist_vartyp,
total NUMBER,
coupon BLOB);

/

/* lob_loc is a variable of type BLOB,
buffer is a variable of type RAW,
8-112 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
length is a variable of type NUMBER.*/

/* Complete the order data and perform the enqueue using the order_enq()
procedure: */

dbms_aq.enqueue('OE.OE_bookedorders_que', enqopt, msgprop,
OE_enq_order_data, enq_msgid);

/* Get the lob locator in the queue table after enqueue: */
SELECT t.user_data.coupon INTO lob_loc
FROM OE.OE_orders_pr_mqtab t
WHERE t.msgid = enq_msgid;

/* Generate a sample LOB of 100 bytes: */
buffer := hextoraw(rpad('FF',100,'FF'));

/* Fill in the lob using LOB routines in the dbms_lob package: */
dbms_lob.write(lob_loc, 90, 1, buffer);

/* Issue a commit only after filling in lob contents: */
COMMIT;

/* Sleep until propagation is complete: */

/* Perform dequeue at the Western Shipping warehouse: */
dbms_aq.dequeue(

queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

/* Get the LOB locator after dequeue: */
lob_loc := deq_order_data.coupon;

/* Get the length of the LOB: */
length := dbms_lob.getlength(lob_loc);

/* Read the LOB contents into the buffer: */
dbms_lob.read(lob_loc, length, 1, buffer);

Visual Basic (OO4O): Example Code
This functionality is not available currently.
A Sample Application Using AQ 8-113

Propagation Features
Java (JDBC): Example Code
No example is provided with this release.

Enhanced Propagation Scheduling Capabilities
Detailed information about the schedules can be obtained from the catalog views
defined for propagation. Information about active schedules—such as the name of
the background process handling that schedule, the SID (session, serial number) for
the session handling the propagation and the Oracle instance handling a schedule
(relevant if Real Application Clusters are being used)—can be obtained from the
catalog views. The same catalog views also provide information about the previous
successful execution of a schedule (last successful propagation of message) and the
next execution of the schedule.

For each schedule, detailed propagation statistics are maintained:

� The total number of messages propagated in a schedule

� Total number of bytes propagated in a schedule

� Maximum number of messages propagated in a window

� Maximum number of bytes propagated in a window

� Average number of messages propagated in a window

� Average size of propagated messages

� Average time to propagated a message

This includes the total number of messages propagated in a schedule, total number
of bytes propagated in a schedule, maximum number of messages propagated in a
window, maximum number of bytes propagated in a window, average number of
messages propagated in a window, average size of propagated messages and the
average time to propagated a message. These statistics have been designed to
provide useful information to the queue administrators for tuning the schedules
such that maximum efficiency can be achieved.

Propagation has built-in support for handling failures and reporting errors. For
example, if the specified database link is invalid, the remote database is unavailable,
or if the remote queue is not enabled for enqueuing, then the appropriate error
message is reported. Propagation uses an exponential backoff scheme for retrying
propagation from a schedule that encountered a failure.

If a schedule continuously encounters failures, the first retry happens after 30
seconds, the second after 60 seconds, the third after 120 seconds and so forth. If the
8-114 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
retry time is beyond the expiration time of the current window, the next retry is
attempted at the start time of the next window. A maximum of 16 retry attempts is
made, after which the schedule is automatically disabled. When a schedule is
disabled automatically due to failures, the relevant information is written into the
alert log.

A check for scheduling failures indicates:

� How many successive failures were encountered

� The error message indicating the cause for the failure

� The time at which the last failure was encountered

By examining this information, a queue administrator can fix the failure and enable
the schedule. During a retry, if propagation is successful, the number of failures is
reset to 0.

Propagation has support built-in for Oracle Real Application Clusters and is
transparent to the user and the queue administrator. The job that handles
propagation is submitted to the same instance as the owner of the queue table
where the queue resides.

If there is a failure at an instance and the queue table that stores the queue is
migrated to a different instance, the propagation job is also migrated to the new
instance. This will minimize pinging between instances and thus offer better
performance. Propagation has been designed to handle any number of concurrent
schedules. Note that the number of job queue processes is limited to a maximum of
1000, and some of these may be used to handle nonpropagation-related jobs. Hence,
propagation has built-in support for multitasking and load balancing.

The propagation algorithms are designed such that multiple schedules can be
handled by a single snapshot (job_queue) process. The propagation load on a job_
queue process can be skewed based on the arrival rate of messages in the different
source queues.

If one process is overburdened with several active schedules while another is less
loaded with many passive schedules, propagation automatically re-distributes the
schedules so they are loaded uniformly.

Scenario
In the BooksOnLine example, the OE_bookedorders_que is a busy queue since
messages in it are propagated to different shipping sites. The following example
code illustrates the calls supported by enhanced propagation scheduling for error
checking and schedule monitoring.
A Sample Application Using AQ 8-115

Propagation Features
PL/SQL (DBMS_AQADM Package): Example Code
CONNECT OE/OE;

/* get averages
select avg_time, avg_number, avg_size from user_queue_schedules;

/* get totals
select total_time, total_number, total_bytes from user_queue_schedules;

/* get maximums for a window
select max_number, max_bytes from user_queue_schedules;

/* get current status information of schedule
select process_name, session_id, instance, schedule_disabled

from user_queue_schedules;

/* get information about last and next execution
select last_run_date, last_run_time, next_run_date, next_run_time

from user_queue_schedules;

/* get last error information if any
select failures, last_error_msg, last_error_date, last_error_time

from user_queue_schedules;

Visual Basic (OO4O): Example Code
This functionality is currently not available.

Java (JDBC): Example Code
No example is provided with this release.

Exception Handling During Propagation
When system errors such as a network failure occur, Advanced Queuing continues
to attempt to propagate messages using an exponential backoff algorithm. In some
situations that indicate application errors, AQ will mark messages as
UNDELIVERABLE if there is an error in propagating the message.

Examples of such errors are when the remote queue does not exist or when there is
a type mismatch between the source queue and the remote queue. In such situations
users must query the DBA_SCHEDULES view to determine the last error that
occurred during propagation to a particular destination. The trace files in the
$ORACLE_HOME/log directory can provide additional information about the error.
8-116 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
Scenario
In the BooksOnLine example, the ES_bookedorders_que in the Eastern Shipping
region is stopped intentionally using the stop_queue() call. After a short while the
propagation schedule for OE_bookedorders_que will display an error indicating
that the remote queue ES_bookedorders_que is disabled for enqueuing. When the
ES_bookedorders_que is started using the start_queue () call, propagation to
that queue resumes and there is no error message associated with schedule for OE_
bookedorders_que .

PL/SQL (DBMS_AQADM Package): Example Code
/* Intentionally stop the eastern shipping queue : */
connect BOLADM/BOLADM
EXECUTE dbms_aqadm.stop_queue(queue_name => 'ES.ES_bookedorders_que');

/* Wait for some time before error shows up in dba_queue_schedules: */
EXECUTE dbms_lock.sleep(100);

/* This query will return an ORA-25207 enqueue failed error: */
SELECT qname, last_error_msg from dba_queue_schedules;

/* Start the eastern shipping queue: */
EXECUTE dbms_aqadm.start_queue(queue_name => 'ES.ES_bookedorders_que');

/* Wait for Propagation to resume for eastern shipping queue: */
EXECUTE dbms_lock.sleep(100);

/* This query will indicate that there are no errors with propagation:
SELECT qname, last_error_msg from dba_queue_schedules;

Visual Basic (OO4O): Example Code
This functionality is handled by the database.

Java (JDBC): Example Code
No example is provided with this release.

Message Format Transformation During Propagation
At propagation time, a transformation can be specified when adding a rule-based
subscriber to OE_bookedorders_topic for Western shipping orders. The
transformation is applied to the orders, transforming them to the WS.order_typ_
sh type before propagating them to WS_bookedorders_topic .
A Sample Application Using AQ 8-117

Propagation Features
PL/SQL (DBMS_AQADM Package): Example Code
declare
subscriber sys.aq$_agent;
begin

subscriber :=sys.aq$_agent('West_Shipping','WS.WS_bookedorders_topic',null);
dbms_aqadm.add_subscriber(queue_name => 'OE.OE_bookedorders_topic',

subscriber => subscriber,
rule => 'tab.user_data.orderregion =''WESTERN''

AND tab.user_data.ordertype != ''RUSH''',
transformation => 'OE.OE2WS');

end;

Visual Basic (OO4O): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Propagation Using HTTP
In Oracle9i, you can set up Advanced Queuing propagation over HTTP and HTTPS
(HTTP over SSL). HTTP propagation uses the Internet access infrastructure and
requires that the AQ servlet that connects to the destination database be deployed.
The database link must be created with the connect string indicating the Web server
address and port and indicating HTTP as the protocol. The source database must be
created for running Java and XML. Otherwise, the setup for HTTP propagation is
more or less the same as Oracle Net Services (formerly Net8) propagation.

Scenario
In the BooksOnLine example, messages in the OE_bookedorders_que are
propagated to different shipping sites. For the purpose of this scenario, the Western
Shipping application is running on another database, 'dest-db' and we will
propagate to WS_bookedorders_que .

Propagation Setup
1. Deploy the AQ Servlet.

HTTP propagation depends on Internet access to the destination database.
Create a class AQPropServlet that extends the AQxmlServlet.

import java.io.*;
8-118 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
import javax.servlet.*;
import javax.servlet.http.*;
import oracle.AQ.*;
import oracle.AQ.xml.*;
import java.sql.*;
import oracle.jms.*;
import javax.jms.*;
import java.io.*;
import oracle.jdbc.pool.*;

/* This is an AQ Propagation Servlet. */
public class AQPropServlet extends oracle.AQ.xml.AQxmlServlet

/* getDBDrv - specify the database to which the servlet will connect */
public AQxmlDataSource createAQDataSource() throws AQxmlException
{

AQxmlDataSource db_drv = null;
db_drv = new AQxmlDataSource("aqadm", "aqadm", "dest-db", "dest-host",

5521);
return db_drv;

}

public void init()
{

try {
AQxmlDataSource axds = this.createAQDataSource();
setAQDataSource(axds) ;
setSessionMaxInactiveTime(180) ;

} catch (Exception e) {
System.err.println("Error in init : " +e) ;

}
}

}

This servlet must connect to the destination database. The servlet must be
deployed on the Web server in the path aqserv/servlet . In Oracle9i, the
propagation servlet name and deployment path are fixed; that is, they must be
AQPropServlet and aqserv/servlet , respectively.

Assume that the Web server host and port are webdest.oracle.com and
8081 , respectively.

2. Create the database link dba.
A Sample Application Using AQ 8-119

Propagation Features
� Specify HTTP as the protocol.

� Specify the username and password that will be used for authentication
with the Web server/servlet runner as the host and port of the Web server
running the AQ servlet.

For this example, the connect string of the database link should be as follows:

(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.com)(PORT=8081))

If SSL is used, then specify HTTPS as the protocol in the connect string.

Create the database link as follows:

create public database link dba connect to john identified by welcome
using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.com)(PORT=8081))'
;

If SSL is used, then specify HTTPS as the protocol in the connect string.

Create the database link as follows:

create public database link dba connect to john identified by welcome
using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.com)(PORT=8081))'
;

Here john is the AQ HTTP agent used to access the AQ (propagation) servlet.
Welcome is the password used to authenticate with the Web server.

3. Make sure that the AQ HTTP agent, John, is authorized to perform AQ
operations. Do the following at the destination database.

a. Register the AQ agent.

dbms_aqadm.create_aq_agent(agent_name => 'John', enable_http => true);

b. Map the AQ agent to a database user.

dbms_aqadm.enable_db_access(agent_name =>'John', db_username =>'CBADM')'

4. Set up the remote subscription to OE.OE_bookedorders_que .

execute dbms_aqadm.add_subscriber('OE.OE_bookedorders_que',
aq$_agent(null, 'WS.WS_bookedorders_que', null));

5. Start propagation by calling dbms_aqdm.schedule_propagation at the
source database.
8-120 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Features
dbms_aqadm.schedule_propagation('OE.OE_bookedorders_que', 'dba');

All other propagation administration APIs work the same for HTTP propagation.
Use the propagation view, DBA_QUEUE_SCHEDULES, to check the propagation
statistics for propagation schedules using HTTP.
A Sample Application Using AQ 8-121

Propagation Features
8-122 Oracle9i Application Developer’s Guide - Advanced Queuing

Administrative Inte
9

Administrative Interface

This chapter describes the administrative interface to Oracle Advanced Queuing.
We discuss each operation (such as "Creating a Queue Table") in terms of a use case
by that name. Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment which illustrate the
use case.
rface 9-1

Use Case Model: Administrative Interface — Basic Operations
Use Case Model: Administrative Interface — Basic Operations
Table 9–1, "Use Case Model: Administrative Interface — Basic Operations" indicates
with a + where examples are provided for specific use cases and in which
programmatic environment.

The table refers to programmatic environments with the following abbreviations:

� P — PL/SQL using the DBMS_AQADM and DBMS_AQ packages

� V — Visual Basic using OO4O (Oracle Objects for OLE)

� J — Java (native AQ) using JDBC (Java Database Connectivity)

� JMS — Java (JMS standard) using JDBC (Java Database Connectivity)

Table 9–1 Use Case Model: Administrative Interface — Basic Operations

Use Case P V J JMS

Creating a Queue Table on page 9-4 + + + -

Creating a Queue Table [Set Storage Clause] on page 9-12 + - + -

Altering a Queue Table on page 9-14 + - + -

Dropping a Queue Table on page 9-17 + - + -

Creating a Queue on page 9-20 + - + -

Creating a Nonpersistent Queue on page 9-26 + - - -

Altering a Queue on page 9-28 + - + -

Dropping a Queue on page 9-31 + - + -

Creating a Transformation on page 9-34 + - - -

Modifying a Transformation on page 9-37 + - - -

Applying a Transformation on page 9-39 + - - -

Dropping a Transformation on page 9-40 + - - -

Starting a Queue on page 9-42 + - + -

Stopping a Queue on page 9-45 + - + -

Granting System Privilege on page 9-48 + - + -

Revoking System Privilege on page 9-51 + - - -

Granting Queue Privilege on page 9-53 + - + -

Revoking Queue Privilege on page 9-55 + - + -
9-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Model: Administrative Interface — Basic Operations
Adding a Subscriber on page 9-58 + - + -

Altering a Subscriber on page 9-64 + - + -

Removing a Subscriber on page 9-68 + - + -

Scheduling a Queue Propagation on page 9-71 + - + -

Unscheduling a Queue Propagation on page 9-75 + - + -

Verifying a Queue Type on page 9-78 + - - -

Altering a Propagation Schedule on page 9-81 + - + -

Enabling a Propagation Schedule on page 9-84 + - + -

Disabling a Propagation Schedule on page 9-87 + - + -

Creating an AQ Agent on page 9-90 + - - -

Altering an AQ Agent on page 9-92 + - - -

Dropping an AQ Agent on page 9-94 + - - -

Enabling Database Access on page 9-96 + - - -

Disabling Database Access on page 9-98 + - - -

Adding an Alias to the LDAP Server on page 9-100 + - - -

Removing an Alias from the LDAP Server on page 9-102 + - - -

Table 9–1 Use Case Model: Administrative Interface — Basic Operations

Use Case P V J JMS
Administrative Interface 9-3

Creating a Queue Table
Creating a Queue Table

Figure 9–1 Creating a Queue Table

AQ Administrative Interface : Creating a Queue Table

User/
Program

specify
payload type

as RAW

specify
storage
clause

specify
message

grouping as
none

sort by
priority

define
object type

specify
multi-consumer

queue

sort by
enqueue time

by priority

sort by
priority by

enqueue time

OR

OR

OR

specify
message

grouping as
transactional

OR

OR

name
queue table

OR

specify
payload type

as object
type

default
for sort
list

sort by
enqueue

time

default
for multi-
consumers

specify
single-

consumer
queue

default

specify only if you do not
wish to use the default
tablespace

CREATE
queue table

continued on next page
9-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table
Purpose
Create a queue table for messages of a predefined type.

Usage Notes
� Queue names and queue table names are converted to upper case. Mixed case

(upper and lower case together) is not supported.

� The sort keys for dequeue ordering, if any, need to be defined at table creation
time. The following objects are created at this time:

� The default exception queue associated with the queue table called aq$_
<queue_table_name>_e.

See Also:

� Table 9–1 for a list of adminstrative interface basic operations

� "Creating a Queue Table [Set Storage Clause]" on page 9-12

specify
secondary
instance

specify
primary
instance

add
table

description

set
auto-commit

= false

optional
information default

set
auto-commit

= true

WARNING:
deprecatedOR
Administrative Interface 9-5

Creating a Queue Table
� A read-only view which is used by AQ applications for querying queue
data called aq$<queue_table_name>.

� An index for the queue monitor operations called aq$_<queue_table_
name>_t .

� An index or an index organized table (IOT) in the case of multiple
consumer queues for dequeue operations called aq$_<queue_table_
name>_i.

� For 8.1-compatible multiconsumer queue tables, the following additional
objects are created:

� A table called aq$_<queue_table_name>_s. This table stores
information about the subscribers.

� A table called aq$_<queue_table_name>_r. This table stores
information about rules on subscriptions.

� An index organized table (IOT) called aq$_<queue_table_name>_
h. This table stores the dequeue history data.

� CLOB, BLOB, or BFILE objects are valid in an AQ message. You can propagate
these object types using AQ propagation with Oracle since release 8.1.x. To
enqueue an object type that has an LOB, you must first set the LOB_attribute
to EMPTY_BLOB() and perform the enqueue. You can then select the LOB locator
that was generated from the queue table’s view and use the standard LOB
operations. See the Oracle9i Application Developer’s Guide - Large Objects (LOBs)
for more information.

� You can specify and modify the primary_instance and secondary_instance only
in 8.1 compatible mode.

� You cannot specify a secondary instance unless there is a primary instance.

� When a queue, queue table, or subscriber is created, modified, or dropped, and
if GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also
created.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.CREATE_QUEUE_TABLE
9-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table
� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ createQueueTable

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.:

� PL/SQL (DBMS_AQADM Package): Creating a Queue Table on page 9-7

� VB (OO4O): Creating a Queue Table on page 9-9

� Java (JDBC): Creating a Queue Table on page 9-9

PL/SQL (DBMS_AQADM Package): Creating a Queue Table

Creating a queue table for queues containing messages of object type
CREATE type aq.Message_typ as object (

Subject VARCHAR2(30),
Text VARCHAR2(80));

/ * Note: if you do not stipulate a schema, you default to the user’s schema. */
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.ObjMsgs_qtab’,
Queue_payload_type => ’aq.Message_typ’);

Creating a queue table for queues containing messages of RAW type
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.RawMsgs_qtab’,

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager;
DROP USER aqadm CASCADE;
GRANT CONNECT, RESOURCE TO aqadm;
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT Aq_administrator_role TO aqadm;
DROP USER aq CASCADE;
CREATE USER aq IDENTIFIED BY aq;
GRANT CONNECT, RESOURCE TO aq;
GRANT EXECUTE ON dbms_aq TO aq;
Administrative Interface 9-7

Creating a Queue Table
Queue_payload_type => ’RAW’);

Creating a queue table for queues containing messages of XMLType

execute dbms_aqadm.create_queue_table(
queue_table => 'OS_orders_pr_mqtab',
comment => 'Overseas Shipping MultiConsumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'SYS.XMLType',
compatible => '8.1');

Creating a queue table for prioritized messages
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.PriorityMsgs_qtab’,
Sort_list => ’PRIORITY,ENQ_TIME’,
Queue_payload_type => ’aq.Message_typ’);

Creating a queue table for multiple consumers
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.MultiConsumerMsgs_qtab’,
Multiple_consumers => TRUE,
Queue_payload_type => ’aq.Message_typ’);

Creating a queue table for multiple consumers compatible with 8.1
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.Multiconsumermsgs8_1qtab’,
Multiple_consumers => TRUE,
Compatible => ’8.1’,
Queue_payload_type => ’aq.Message_typ’);

Creating a queue table in a specified tablespace
EXECUTE dbms_aqadm.create_queue_table(

queue_table => 'aq.aq_tbsMsg_qtab',
queue_payload_type => 'aq.Message_typ',
storage_clause => 'tablespace aq_tbs');

Creating a queue table with freelists or freelist groups
BEGIN
9-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table
dbms_aqadm.create_queue_table (
queue_table=> 'AQ_ADMIN.TEST',
queue_payload_type=> 'RAW',
storage_clause=> 'STORAGE (FREELISTS 4 FREELIST GROUPS 2)',
compatible => '8.1');
COMMIT;
END;

VB (OO4O): Creating a Queue Table
OOO4O uses database functionality for this operation.

Java (JDBC): Creating a Queue Table
Examples depicting how to create a queue table using Java follow.

Creating a queue table for queues containing messages of object type
public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

/* Create a AQQueueTableProperty object (payload type Message_typ): */
qtable_prop = new AQQueueTableProperty("AQ.MESSAGE_TYP");

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager;
DROP USER aqadm CASCADE;
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT CONNECT, RESOURCE TO aqadm;
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT Aq_administrator_role TO aqadm;
DROP USER aq CASCADE;
CREATE USER aq IDENTIFIED BY aq;
GRANT CONNECT, RESOURCE TO aq;
GRANT EXECUTE ON dbms_aq TO aq;

CREATE type aq.Message_typ as object (
Subject VARCHAR2(30),
Text VARCHAR2(80));
Administrative Interface 9-9

Creating a Queue Table
/* Create a queue table in aq schema */
q_table = aq_sess.createQueueTable ("aq", "ObjMsgs_qtab", qtable_prop);

System.out.println("Successfully created ObjMsgs_qtab in aq schema");
}

Creating a queue table for queues containing messages of RAW type
public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

/* Create a AQQueueTableProperty object (payload type RAW): */
qtable_prop = new AQQueueTableProperty("RAW");

/* Create a queue table in aq schema */
q_table = aq_sess.createQueueTable ("aq", "RawMsgs_qtab", qtable_prop);

System.out.println("Successfully created RawMsgs_qtab in aq schema");
}

3. Create a queue table for multiple consumers and prioritized messages

public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

qtable_prop = new AQQueueTableProperty("RAW");

/* Enable multiple consumers */
qtable_prop.setMultiConsumer(true);
qtable_prop.setCompatible("8.1");

/* Specify sort order as priority,enqueue_time */
qtable_prop.setSortOrder("PRIORITY,ENQ_TIME");

/* Create a queue table in aq schema */
9-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table
q_table = aq_sess.createQueueTable ("aq", "PriorityMsgs_qtab",
qtable_prop);

System.out.println("Successfully created PriorityMsgs_qtab in aq schema");
}

Creating a queue table in specified tablespace
public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

/* Create a AQQueueTableProperty object (payload type Message_typ): */
qtable_prop = new AQQueueTableProperty("AQ.MESSAGE_TYP");

/* Specify tablespace for queue table */
qtable_prop.setStorageClause("tablespace aq_tbs");

/* Create a queue table in aq schema */
q_table = aq_sess.createQueueTable ("aq", "aq_tbsMsg_qtab", qtable_prop);

}

Administrative Interface 9-11

Creating a Queue Table [Set Storage Clause]
Creating a Queue Table [Set Storage Clause]

Figure 9–2 Creating a Queue Table [Set Storage Clause]

See Also: Table 9–1 for a list of adminstrative interface basic
operations

specify
PCTFREE

specify
PCTUSED

specify
INITRANS

specify
MAXTRANS

specify
TABLESPACE

specify
LOB storage

specify
INITIAL

specify
NEXT

specify
MINEXTENTS

CREATE
Queue Table

See SQL Reference

specify
MAXEXTENTS

specify
storage
clause

AQ Administrative Interface : Creating a Queue Table
9-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table [Set Storage Clause]
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.CREATE_QUEUE_TABLE

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ createQueueTable
Administrative Interface 9-13

Altering a Queue Table
Altering a Queue Table

Figure 9–3 Altering a Queue Table

Purpose
Alter the existing properties of a queue table.

Usage Notes
When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

add
comment

name
queue table

optional
information

optional
information

optional
information

specify
secondary
instance

specify
primary
instance

ALTER
Queue Table

AQ Administrative Interface : ALTERING a Queue Table
9-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Queue Table
� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ALTER_QUEUE_TABLE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,alterQueue

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

� PL/SQL (DBMS_AQADM Package): Altering a Queue Table on page 9-15

� VB (OO4O): Example not provided.

� Java (JDBC): Altering a Queue Table on page 9-15

PL/SQL (DBMS_AQADM Package): Altering a Queue Table
/* Altering the table to change the primary, secondary instances for queue owner
(only applies to Real Application Clusters environments). The primary instance
is the instance number of the primary owner of the queue table. The secondary
instance is the instance number of the secondary owner of the queue table. */

EXECUTE dbms_aqadm.alter_queue_table (
Queue_table => ’aq.ObjMsgs_qtab’,
Primary_instance => 3,
Secondary_instance => 2);

/* Altering the table to change the comment for a queue table: */
EXECUTE dbms_aqadm.alter_queue_table (

Queue_table => ’aq.ObjMsgs_qtab’,
Comment => ’revised usage for queue table’);

/* Altering the table to change the comment for a queue table and use
nonrepudiation: */
EXECUTE dbms_aqadm.alter_queue_table (

Queue_table => ’aq.ObjMsgs_qtab’,
Comment => ’revised usage for queue table’,

Java (JDBC): Altering a Queue Table
/* Alter a queue table */
public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
Administrative Interface 9-15

Altering a Queue Table
AQQueueTable q_table;

q_table = aq_sess.getQueueTable ("aq", "ObjMsgs_qtab");

/* Get queue table properties: */
qtable_prop = q_table.getProperty();

/* Alter the queue table comment and instance affinity */
q_table.alter("altered queue table", 3, 2);

}

9-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping a Queue Table
Dropping a Queue Table

Figure 9–4 Dropping a Queue Table

Purpose
Drop an existing queue table. Note that you must stop and drop all the queues in a
queue tables before the queue table can be dropped. You must do this explicitly
unless the force option is used in which case this done automatically.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

set
force = false

set
force = true

OR

default

set
auto-commit

= true

set
auto-commit

= false

OR

default

WARNING: Dropping a queue table
requires a decision regarding stopping
and dropping the queues it contains

name
queue
table

DROP
Queue
Table

WARNING:
deprecated

AQ Administrative Interface : DROPPING Queue Table
Administrative Interface 9-17

Dropping a Queue Table
Usage Notes
When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created or
dropped.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DROP_QUEUE_TABLE procedure.

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ
AQQueueTable.drop

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

� PL/SQL (DBMS_AQADM Package): Dropping a Queue Table on page 9-18

� VB (OO4O): Example not provided.

� Java (JDBC): Dropping a Queue Table on page 9-19

PL/SQL (DBMS_AQADM Package): Dropping a Queue Table
/* Drop the queue table (for which all queues have been previously dropped by

the user) */
EXECUTE dbms_aqadm.drop_queue_table (

queue_table => ’aq.Objmsgs_qtab’);

/* Drop the queue table and force all queues to be stopped and dropped by the
system */

EXECUTE dbms_aqadm.drop_queue_table (
queue_table => ’aq.Objmsgs_qtab’,

Caution: You may need to set up or drop data structures for
certain examples to work.
9-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping a Queue Table
force => TRUE);

Java (JDBC): Dropping a Queue Table
/* Drop a queue table - for which all queues have already been dropped by

the user */
public static void example(AQSession aq_sess) throws AQException
{

AQQueueTable q_table;

q_table = aq_sess.getQueueTable ("aq", "ObjMsgs_qtab");

/* Drop the queue table*/
q_table.drop(false);
System.out.println("Successful drop");

}

/* Drop the queue table (and force all queues to be stopped and dropped by
the user */

public static void example(AQSession aq_sess) throws AQException
{

AQQueueTable q_table;

q_table = aq_sess.getQueueTable ("aq", "ObjMsgs_qtab");

/* Drop the queue table (and automatically drop all queues inside it */
q_table.drop(true);
System.out.println("Successful drop");

}

Administrative Interface 9-19

Creating a Queue
Creating a Queue

Figure 9–5 Creating a Queue

User/
Program

specify
queue type
as normal

name
queue table

specify
queue type

as exception

OR

default

specify
maximum retry

= 5

specify
maximum

retrys

OR

default

specify
no retry
delay

specify
retry delay
(seconds)

OR

default

name
queue

CREATE
a Queue

continued on next page

AQ Administrative Interface : CREATING a Queue
9-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue
Purpose
Create a queue in the specified queue table.

Usage Notes
� Queue names and queue table names are converted to upper case. Mixed case

(upper and lower case together) is not supported.

� All queue names must be unique within a schema. Once a queue is created with
CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the
queue is created with both enqueue and dequeue disabled.

� To view retained messages, you can either dequeue by message ID or use SQL.

� When a queue, queue table, or subscriber is created and if GLOBAL_TOPIC_
ENABLED = TRUE, a corresponding LDAP entry is also created.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

retain
indefinitely

OR

specify
no retention

specify
retention
(seconds)

set
autocommit

= true

OR

default

add
comment

optional
information

OR

WARNING:
deprecated

default

set
autocommit

= false
Administrative Interface 9-21

Creating a Queue
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.CREATE_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ, CreateQueue

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

� PL/SQL (DBMS_AQADM Package): Dropping a Queue Table on page 9-18

� VB (OO4O): Example not provided.

� Java (JDBC): Dropping a Queue Table on page 9-19

PL/SQL (DBMS_AQADM): Creating a Queue

Creating a queue within a queue table for messages of object type
/* Create a message type: */
CREATE type aq.Message_typ as object (

Subject VARCHAR2(30),
Text VARCHAR2(80));

/ * Create a object type queue table and queue: */
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.ObjMsgs_qtab’,
Queue_payload_type => ’aq.Message_typ’);

EXECUTE dbms_aqadm.create_queue (
Queue_name => ’msg_queue’,
Queue_table => ’aq.ObjMsgs_qtab’);

Caution: You may need to set up or drop data structures for
certain examples to work.
9-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue
Creating a queue within a queue table for messages of RAW type
/* Create a RAW type queue table and queue: */
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.RawMsgs_qtab’,
Queue_payload_type => ’RAW’);

/* Create queue: */
EXECUTE dbms_aqadm.create_queue (

Queue_name => ’raw_msg_queue’,
Queue_table => ’aq.RawMsgs_qtab’);

Create a prioritized message queue table and queue

/* Create a queue table for priortized messages: */
EXECUTE dbms_aqadm.create_queue_table (

Queue_table => ’aq.PriorityMsgs_qtab’,
Sort_list => ’PRIORITY,ENQ_TIME’,
Queue_payload_type => ’aq.Message_typ’);

/* Create queue: */
EXECUTE dbms_aqadm.create_queue (

Queue_name => ’priority_msg_queue’,
Queue_table => ’aq.PriorityMsgs_qtab’);

Creating a queue table and queue for multiple consumers
/* Create a queue table for multi-consumers: */
EXECUTE dbms_aqadm.create_queue_table (

queue_table => ’aq.MultiConsumerMsgs_qtab’,
Multiple_consumers => TRUE,
Queue_payload_type => ’aq.Message_typ’);

/* Create queue: */
EXECUTE dbms_aqadm.create_queue (

Queue_name => ’MultiConsumerMsg_queue’,
Queue_table => ’aq.MultiConsumerMsgs_qtab’);

Creating a queue table and queue to demonstrate propagation
/* Create queue: */
EXECUTE dbms_aqadm.create_queue (

Queue_name => ’AnotherMsg_queue’,
queue_table => ’aq.MultiConsumerMsgs_qtab’);

Creating a queue table and queue for multiple consumers compatible with 8.1
/* Create a queue table for multi-consumers compatible with Release 8.1: */
Administrative Interface 9-23

Creating a Queue
EXECUTE dbms_aqadm.create_queue_table (
Queue_table => ’aq.MultiConsumerMsgs81_qtab’,
Multiple_consumers => TRUE,
Compatible => ’8.1’,
Queue_payload_type => ’aq.Message_typ’);

EXECUTE dbms_aqadm.create_queue (
Queue_name => ’MultiConsumerMsg81_queue’,
Queue_table => ’aq.MultiConsumerMsgs81_qtab’);

Java (JDBC): Creating a Queue

Creating a queue within a queue table for messages of object type
public static void example(AQSession aq_sess) throws AQException
{

AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

q_table = aq_sess.getQueueTable ("aq", "ObjMsgs_qtab");

/* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

queue = aq_sess.createQueue (q_table, "msg_queue", queue_prop);
System.out.println("Successful createQueue");

}

Creating a queue within a queue table for messages of raw type
public static void example(AQSession aq_sess) throws AQException
{

AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

q_table = aq_sess.getQueueTable ("aq", "RawMsgs_qtab");

/* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

queue = aq_sess.createQueue (q_table, "msg_queue", queue_prop);
System.out.println("Successful createQueue");
9-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue
}

Creating a multiconsumer queue with prioritized messages

public static void example(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;
AQAgent agent;

qtable_prop = new AQQueueTableProperty("RAW");
qtable_prop.setMultiConsumer(true);

qtable_prop.setSortOrder("priority,enq_time");
q_table = aq_sess.createQueueTable ("aq", "PriorityMsgs_qtab",

qtable_prop);

queue_prop = new AQQueueProperty();
queue = aq_sess.createQueue (q_table, "priority_msg_queue", queue_prop);

}

Administrative Interface 9-25

Creating a Nonpersistent Queue
Creating a Nonpersistent Queue

Figure 9–6 Creating a Nonpersistent Queue

Purpose
Create a nonpersistent queue.

Usage Notes
The queue may be either single-consumer or multiconsumer queue. All queue
names must be unique within a schema. The queues are created in a 8.1 compatible
system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in the same schema as
that specified by the queue name. If the queue name does not specify a schema
name, the queue is created in the login user’s schema. Once a queue is created with
CREATE_NP_QUEUE, it can be enabled by calling START_QUEUE. By default, the
queue is created with both enqueue and dequeue disabled.

You can enqueue RAW and Object Type (ADT) messages into a nonpersistent
queue. You cannot dequeue from a nonpersistent queue. The only way to retrieve a

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

add
comment

specify
multiconsumer

queue

OR

name
queue

default
for multi-
consumers

optional
information

specify
single-

consumer
queue

CREATE
a Nonpersistent

Queue

AQ Administrative Interface : CREATING a Nonpersistent Queue
9-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Nonpersistent Queue
message from a nonpersistent queue is by using the OCI notification mechanism
(see Registering for Notification on page 11-55).

You cannot invoke the listen call on a nonpersistent queue (see "Listening to One
or More Single-Consumer Queues" on page 11-23).

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.CREATE_NP_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): There is no applicable syntax reference for this use case

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

� PL/SQL (DBMS_AQADM Package): Dropping a Queue Table on page 9-18

� VB (OO4O): Example not provided.

� Java (JDBC): Dropping a Queue Table on page 9-19

PL/SQL (DBMS_AQADM): Creating a Nonpersistent Queue
/* Create a nonpersistent single-consumer queue (Note: this is not preceded by

creation of a queue table) */
EXECUTE dbms_aqadm.create_np_queue(

Queue_name => ’Singleconsumersmsg_npque’,
Multiple_consumers => FALSE);

/* Create a nonpersistent multi-consumer queue (Note: this is not preceded by
creation of a queue table) */

EXECUTE dbms_aqadm.create_np_queue(
Queue_name => ’Multiconsumersmsg_npque’,
Multiple_consumers => TRUE);

Java (JDBC): Creating a Nonpersistent Queue
Feature not available through Java API.
Administrative Interface 9-27

Altering a Queue
Altering a Queue

Figure 9–7 Altering a Queue

User/
Program

specify
maximum
retrys = 5

specify
maximum

retrys

OR

default

specify
no retry
delay

specify
retry delay
(seconds)

OR

default

specify
no retention

specify
retention
(seconds)

retain
indefinitely

OR

OR

default

set
autocommit

= true

set
autocommit

= false

OR

default

name
queue

ALTER
a Queue

optional
information

WARNING:
deprecated

add
queue

description

AQ Administrative Interface : ALTERING a Queue
9-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Queue
Purpose
Alter existing properties of a queue. Only max_retries, comment, retry_delay, and
retention_time can be altered.

Usage Notes
To view retained messages, you can either dequeue by message ID or use SQL.

When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ALTER_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ, alter

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Altering a Queue on page 9-29

� VB (OO4O): Example not provided.

� Java (JDBC): Altering a Queue on page 9-30

PL/SQL (DBMS_AQADM): Altering a Queue
/* Alter queue to change retention time, saving messages for 1 day after

dequeueing: */
EXECUTE dbms_aqadm.alter_queue (

queue_name => ’aq.Anothermsg_queue’,
retention_time => 86400);

See Also: Table 9–1 for a list of adminstrative interface basic
operations
Administrative Interface 9-29

Altering a Queue
Java (JDBC): Altering a Queue
/* Alter a queue to change retention time, saving messages for 1 day

after dequeuing */
public static void example(AQSession aq_sess) throws AQException
{

AQQueueProperty queue_prop;
AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "Anothermsg_queue");

/* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

/* Change retention time to 1 day */
queue_prop.setRetentionTime(new Double(86400));

/* Alter the queue */
queue.alterQueue(queue_prop);

}

9-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping a Queue
Dropping a Queue

Figure 9–8 Dropping a Queue

Purpose
Drops an existing queue. DROP_QUEUE is not allowed unless STOP_QUEUE has been
called to disable the queue for both enqueuing and dequeuing. All the queue data is
deleted as part of the drop operation.

Usage Notes
When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

name
queue

set
auto-commit

= true

set
auto-commit

= false

OR

WARNING:
deprecated

WARNING: You must stop
a queue before you drop it

DROP
a Queue

default

AQ Administrative Interface : DROPPING a Queue
Administrative Interface 9-31

Dropping a Queue
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DROP_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ, dropQueue

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Dropping a Queue on page 9-32

� VB (OO4O): Example not provided.

� Java (JDBC): Dropping a Queue on page 9-33

PL/SQL (DBMS_AQADM): Dropping a Queue

Dropping a Standard Queue
/* Stop the queue preparatory to dropping it (a queue may be dropped only after

it has been succesfully stopped for enqueing and dequeing): */
EXECUTE dbms_aqadm.stop_queue (

Queue_name => ’aq.Msg_queue’);

/* Drop queue: */
EXECUTE dbms_aqadm.drop_queue (

Queue_name => ’aq.Msg_queue’);

Dropping a Nonpersistent Queue
EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name => 'Nonpersistent_singleconsumerq1');
EXECUTE DBMS_AQADM.DROP_QUEUE(queue_name => 'Nonpersistent_multiconsumerq1');
9-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping a Queue
Java (JDBC): Dropping a Queue
/* Drop a queue */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "Msg_queue");

/* Stop the queue first */
queue.stop(true);

/* Drop the queue */
queue.drop();

}

Administrative Interface 9-33

Creating a Transformation
Creating a Transformation

Figure 9–9 Creating a Transformation

Purpose
Creates a message format transformation. The transformation must be a SQL
function with input type from_type , returning an object of type to_type . It can
also be a SQL expression of type to_type , referring to from_type . All references
to from_type must be of the form source.user_data .

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

name
(transformation

name)

schema
(transformation

schema)

from_schema
(source type

owner)

from_type
(source type

name)

to_schema
(target type

owner)

to_type
(target type

name)

specify
transformation

expression

CREATE
a

Transformation

AQ Administrative Interface : Creating a Transformation
9-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Transformation
Usage Notes
To use this feature, you must be granted execute privileges on dbms_transform .
You must also have execute privileges on the user-defined types that are the source
and destination types of the transformation, and have execute privileges on any
PL/SQL function being used in the transformation function. The transformation
cannot write the database state (that is, perform DML) or commit or rollback the
current transaction.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_TRANSFORM.CREATE_TRANSFORMATION procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Creating a Transformation on page 9-35

� VB (OO4O): Example not provided.

� Java (JDBC): none

PL/SQL (DBMS_AQADM): Creating a Transformation
dbms_transform.create_transformation(schema => 'scott',

name => 'test_transf', from_schema => 'scott',
from_type => 'type1', to_schema => 'scott',
to_type => 'type2',
transformation => 'scott.trans_func(source.user_data)');

Or you can do the following:

dbms_transform.create_transformation(schema => 'scott',
name => 'test_transf',
from_schema => 'scott',
from_type => 'type1,
Administrative Interface 9-35

Creating a Transformation
to_schema => 'scott',
to_type => 'type2',
transformation => 'scott.type2(source.user_data.attr2,

source.user_data.attr1)');

Java (JDBC)
No example is provided with this release.
9-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Modifying a Transformation
Modifying a Transformation

Figure 9–10 Modifying a Transformation

Purpose
This feature is used to change the transformation function and to specify
transformations for each attribute of the target type. If the attribute number 0 is
specified, then the transformation expression singularly defines the transformation
from the source to target types. All references to from_type must be of the form

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

schema
(transformation

schema)

name
(transformation

name)

attribute
_number

(attribute number
of target type)

specify
transformation

expression

MODIFY
a

Transformation

AQ Administrative Interface : Modifying a Transformation
Administrative Interface 9-37

Modifying a Transformation
source.user_data . All references to the attributes of the source type must be
prefixed by source.user_data .

Usage Notes
To use this feature, you must be granted execute privileges on dbms_transform .
You must also have execute privileges on the user-defined types that are the source
and destination types of the transformation, and have execute privileges on any
PL/SQL function being used in the transformation function.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_TRANSFORM.MODIFY procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference
9-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Applying a Transformation
Applying a Transformation

Figure 9–11 Applying a Transformation

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

message
to be

transformed

transformation
_name

transformed
_message

COMPUTE
Transformation

transformation
_schema

schema of transformation
to be applied

name of transformation
to be applied

AQ Administrative Interface : Applying a Transformation to a Message
Administrative Interface 9-39

Dropping a Transformation
Dropping a Transformation

Figure 9–12 Dropping a Transformation

Purpose
To drop a transformation.

Usage Notes
To use this feature, you must be granted execute privileges on dbms_transform .
You must also have execute privileges on the user-defined types that are the source
and destination types of the transformation, and have execute privileges on any
PL/SQL function being used in the transformation function.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

name
(transformation

name)

schema
(transformation

schema)

DROP
a

Transformation

AQ Adminstrative Interface : Dropping a Transformation
9-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping a Transformation
� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_TRANSFORM.DROP procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference
Administrative Interface 9-41

Starting a Queue
Starting a Queue

Figure 9–13 Starting a Queue

Purpose
Enables the specified queue for enqueuing or dequeueing.

Usage Notes
After creating a queue the administrator must use START_QUEUE to enable the
queue. The default is to enable it for both ENQUEUE and DEQUEUE. Only dequeue
operations are allowed on an exception queue. This operation takes effect when the
call completes and does not have any transactional characteristics.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

name
queue

User/
Program

set
start

for enqueue
= true

set
start

for enqueue
= false

OR

default
keeps
current
setting

keeps
current
setting

set
start

for dequeue
= true

set
start

for dequeue
= false

OR

default

START
a Queue

AQ Administrative Interface : STARTING a Queue
9-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Starting a Queue
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.START_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
AQQueueAdmin.start

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM Package): Starting a Queue on page 9-43

� VB (OO4O): Example not provided.

� Java (JDBC): Starting a Queue on page 9-44

PL/SQL (DBMS_AQADM Package): Starting a Queue
/* Start a queue and enable both enqueue and dequeue: */
EXECUTE dbms_aqadm.start_queue (

queue_name => ’Msg_queue’);

/* Start a previously stopped queue for dequeue only */
EXECUTE dbms_aqadm.start_queue (

queue_name => ’aq.msg_queue’,
dequeue => TRUE,
enqueue => FALSE);
Administrative Interface 9-43

Starting a Queue
Java (JDBC): Starting a Queue
/* Start a queue - enable both enqueue and dequeue */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "Msg_queue");

/* Enable enqueue and dequeue */
queue.start();

}

/* Start a previously stopped queue for dequeue only */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "Msg_queue");

/* Enable enqueue and dequeue */
queue.start(false, true);

}

9-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Stopping a Queue
Stopping a Queue

Figure 9–14 Stopping a Queue

Purpose
Disables enqueuing or dequeuing on the specified queue.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

set
stop for

enqueue
= true

set
stop for

enqueue
= false

OR

default
keeps
current
setting

keeps
current
setting

stop if there is
no ongoing
transaction

wait for ongoing
transactions to
complete and do
not allow new
transactions

set
stop for

dequeue
= true

set
stop for

dequeue
= false

OR

default

set
wait = true

set
wait = false

OR

name
queue

STOP
a Queue

AQ Administrative Interface : STOPPING a Queue
Administrative Interface 9-45

Stopping a Queue
Usage Notes
By default, this call disables both ENQUEUEs or DEQUEUEs. A queue cannot be
stopped if there are outstanding transactions against the queue. This operation
takes effect when the call completes and does not have any transactional
characteristics.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.STOP_QUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ)
AQQueueAdmin.stop

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Stopping a Queue on page 9-46

� VB (OO4O): Example not provided.

� Java (JDBC): Stopping a Queue on page 9-47

PL/SQL (DBMS_AQADM): Stopping a Queue
/* Stop the queue: */
EXECUTE dbms_aqadm.stop_queue (

queue_name => ’aq.Msg_queue’);
9-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Stopping a Queue
Java (JDBC): Stopping a Queue
/* Stop a queue - wait for oustanding transactions */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "Msg_queue");

/* Enable enqueue and dequeue */
queue.stop(true);

}

Administrative Interface 9-47

Granting System Privilege
Granting System Privilege

Figure 9–15 Granting System Privilege

Purpose
To grant AQ system privileges to users and roles. The privileges are ENQUEUE_ANY,
DEQUEUE_ANY, MANAGE_ANY. Initially, only SYS and SYSTEM can use this
procedure successfully.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

grant
enqueue any

grant
dequeue any

OR

OR

default
= false

name
grantee

set
administrative

option

grant
manage any

GRANT
System
Privilege

May perform any
administrative
operation

AQ Administrative Interface : GRANTING System Privilege
9-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Granting System Privilege
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): There is no applicable syntax reference for this use case

Usage Notes
Not applicable.

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Granting System Privilege on page 9-49

� VB (OO4O): Example not provided.

� Java (JDBC): Granting System Privilege on page 9-50

PL/SQL (DBMS_AQADM): Granting System Privilege
/* User AQADM grants the rights to enqueue and dequeue to ANY queues: */

CONNECT aqadm/aqadm;
EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(

privilege => ’ENQUEUE_ANY’,
grantee => ’Jones’,
admin_option => FALSE);

EXECUTE DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE(

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager;
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT CONNECT, RESOURCE TO aqadm;
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT Aq_administrator_role TO aqadm;
Administrative Interface 9-49

Granting System Privilege
privilege => ’DEQUEUE_ANY’,
grantee => ’Jones’,
admin_option => FALSE);

Java (JDBC): Granting System Privilege
Feature not available through Java API
9-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking System Privilege
Revoking System Privilege

Figure 9–16 Revoking System Privilege

Purpose
To revoke AQ system privileges from users and roles. The privileges are ENQUEUE_
ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN option for a system privilege
cannot be selectively revoked.

Usage Notes
Not applicable.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

revoke
right to

enqueue to any
queue

revoke
right to dequeue

from any
queue

OR
OR

name
grantee

revoke
right to

manage any
queue

REVOKE
System
Privilege

AQ Administrative Interface : REVOKING System Privilege
Administrative Interface 9-51

Revoking System Privilege
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): There is no applicable syntax reference for this use case

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� Using PL/SQL (DBMS_AQADM): Revoking System Privilege on page 9-52

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.

Using PL/SQL (DBMS_AQADM): Revoking System Privilege
/* To revoke the DEQUEUE_ANY system privilege from Jones. */
CONNECT system/manager;

execute DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE(privilege=>’DEQUEUE_ANY’,
grantee=>’Jones’);
9-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Granting Queue Privilege
Granting Queue Privilege

Figure 9–17 Granting Queue Privilege

Purpose
To grant privileges on a queue to users and roles. The privileges are ENQUEUE or
DEQUEUE. Initially, only the queue table owner can use this procedure to grant
privileges on the queues.

Usage Notes
Not applicable.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

grant
enqueue

grant
dequeue

OR

name
grantee

grant
all

GRANT
Queue

Privilege

May enqueue
and dequeue

name
queue

AQ Administrative Interface : GRANTING Queue Privilege
Administrative Interface 9-53

Granting Queue Privilege
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.GRANT_QUEUE_PRIVILEGE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
grantQueuePrivilege

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Granting Queue Privilege on page 9-54

� VB (OO4O): Example not provided.

� Java (JDBC): Granting Queue Privilege on page 9-54

PL/SQL (DBMS_AQADM): Granting Queue Privilege
/* User grants the access right for both enqueue and dequeue rights using

DBMS_AQADM.GRANT. */
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (

privilege => ’ALL’,
queue_name => ’aq.multiconsumermsg81_queue’,
grantee => ’Jones’,
grant_option => TRUE);

Java (JDBC): Granting Queue Privilege
/* Grant enqueue and dequeue privileges on queue to user ’Jones’ */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "multiconsumermsg81_queue");
/* Enable enqueue and dequeue */
queue.grantQueuePrivilege("ALL", "Jones", true);

}

9-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking Queue Privilege
Revoking Queue Privilege

Figure 9–18 Revoking Queue Privilege

Purpose
To revoke privileges on a queue from users and roles. The privileges are ENQUEUE
or DEQUEUE.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

revoke
enqueue

revoke
dequeue

OR

OR

name
grantee

name
queue

revoke
all

May not enqueue
and dequeue

REVOKE
Queue

Privilege

AQ Administrative Interface : REVOKING Queue Privilege
Administrative Interface 9-55

Revoking Queue Privilege
Usage Notes
To revoke a privilege, the revoker must be the original grantor of the privilege. The
privileges propagated through the GRANT option are revoked if the grantor’s
privileges are revoked.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
revokeQueuePrivledge

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Revoking Queue Privilege on page 9-56

� VB (OO4O): Example not provided.

� Java (JDBC): Revoking Queue Privilege on page 9-56

PL/SQL (DBMS_AQADM): Revoking Queue Privilege
/* User can revoke the dequeue right of a grantee on a specific queue

leaving the grantee with only the enqueue right: */
CONNECT scott/tiger;
EXECUTE DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE(

privilege => ’DEQUEUE’,
queue_name => ’scott.ScottMsgs_queue’,
grantee => ’Jones’);

Java (JDBC): Revoking Queue Privilege
/* User can revoke the dequeue right of a grantee on a specific

queue, leaving only the enqueue right */
public static void example(AQSession aq_sess) throws AQException
{

9-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking Queue Privilege
AQQueue queue;

/* Get the queue object */
queue = aq_sess.getQueue("SCOTT", "ScottMsgs_queue");

/* Enable enqueue and dequeue */
queue.revokeQueuePrivilege("DEQUEUE", "Jones");

}

Administrative Interface 9-57

Adding a Subscriber
Adding a Subscriber

Figure 9–19 Adding a Subscribe

User/
Program

specify
address

name
queue

specify
name

If you do
not name a
subscriber
you must
specify an
address

specify
name as
NULL

do not
specify name

OR

OR

do not
specify
address

specify
rule

specify
protocol
(number)

OR

do not
specify
protocol

specify
agent

(subscriber)

default to
NULL

specify
address
as NULL

specify
protocol
as NULL/0

specify
transformation

ADD
a Subscriber

AQ Administrative Interface : ADDING a Subscriber
9-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Adding a Subscriber
Purpose
Adds a default subscriber to a queue.

Usage Note
� A program can enqueue messages to a specific list of recipients or to the default

list of subscribers. This operation will only succeed on queues that allow
multiple consumers. This operation takes effect immediately and the containing
transaction is committed. Enqueue requests that are executed after the
completion of this call will reflect the new behavior.

� Note that any string within the rule has to be quoted as follows:

rule => ’PRIORITY <= 3 AND CORRID = ’’FROM JAPAN’’’

Note that these are all single quotation marks.

� When a queue, queue table, or subscriber is created and if GLOBAL_TOPIC_
ENABLED = TRUE, a corresponding LDAP entry is also created.

� Specify the name of the transformation to be applied during dequeue or
propagation. The transformation must be created using the DBMS_TRANSFORM
package. (See theOracle9i Supplied PL/SQL Packages and Types Reference for more
information.)

� For queues that contain payloads with XMLType attributes, you can specify
rules that contain operators such as XMLType.existsNode() and
XMLType.extract() .

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ADD_SUBSCRIBER procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ, addSubscriber

See Also: Table 9–1 for a list of adminstrative interface basic
operations
Administrative Interface 9-59

Adding a Subscriber
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Adding Subscriber on page 9-60

� VB (OO4O): Example not provided.

� Java (JDBC): Adding a Subscriber on page 9-60

PL/SQL (DBMS_AQADM): Adding Subscriber
/* Anonymous PL/SQL block for adding a subscriber at a designated queue in a
designated schema at a database link: */
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent (’subscriber1’, ’aq2.msg_queue2@london’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

queue_name => ’aq.multi_queue’,
subscriber => subscriber);

END;

/* Add a subscriber with a rule: */
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent(’subscriber2’, ’aq2.msg_queue2@london’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

queue_name => ’aq.multi_queue’,
subscriber => subscriber,
rule => ’priority < 2’);

END;

Add a Subscriber and Specify a Transformation
/* Add a subscriber with a rule and specify a transformation */
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent(’subscriber2’, ’aq2.msg_queue2@london’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

queue_name => ’aq.multi_queue’,
subscriber => subscriber,
transformation => ’AQ.msg_map’);
9-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Adding a Subscriber
/* Where the transformation was created as */
EXECUTE DBMS_TRANSFORM.CREATE_TRANSFORMATION

(schema => ’AQ’,
name => ’msg_map’,
from_schema => ’AQ’,
from_type => ’purchase_order1’,
to_schema => ’AQ’,
to_type => ’purchase_order2’,
transformation => ’AQ.transform_PO(source.user_data)’);

END;

PL/SQL (DBMS_AQADM): Adding a Rule-Based Subscriber
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent('East_Shipping','ES.ES_bookedorders_que',null);
DBMS_AQADM.ADD_SUBSCRIBER(

queue_name => 'OE.OE_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.orderregion = ''EASTERN'' OR

(tab.user_data.ordertype = ''RUSH'' AND
tab.user_data.customer.country = ''USA'') ');

END;

/* Add a rule-based subscriber for Overseas Shipping */
DECLARE

subscriber aq$_agent;
BEGIN

subscriber := aq$_agent('Overseas_DHL', null, null);

dbms_aqadm.add_subscriber(
queue_name => 'OS.OS_bookedorders_que',
subscriber => subscriber,
rule => 'tab.user_data.xdata.extract(''/ORDER_

TYP/ORDERTYPE/text()'').getStringVal()=''RUSH''');

END;

Java (JDBC): Adding a Subscriber
/* Setup */
public static void setup(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
Administrative Interface 9-61

Adding a Subscriber
AQQueueTable q_table;
AQQueue queue;

/* Create a AQQueueTable property object */
qtable_prop = new AQQueueTableProperty("AQ.MESSAGE_TYP");
qtable_prop.setMultiConsumer(true);

q_table = aq_sess.createQueueTable ("aq", "multi_qtab", qtable_prop);

/* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();
queue = aq_sess.createQueue (q_table, "multi_queue", queue_prop);

}

/* Add subscribers to a queue */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "multi_queue");

/* add a subscriber */
agent1 = new AQAgent("subscriber1", "aq2.msg_queue2@london");
queue.addSubscriber(agent1, null);

/* add a subscriber with a rule */
agent2 = new AQAgent("subscriber2", "aq2.msg_queue2@london");

queue.addSubscriber(agent2, "priority < 2");
}

/* Add a subscriber with a rule */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;

/* Get the queue object */
queue = aq_sess.getQueue("OE", "OE_bookedorders_que");

/* add a subscriber */
9-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Adding a Subscriber
agent1 = new AQAgent("East_Shipping", "ES.ES_bookedorders_que");

queue.addSubscriber(agent1,
"tab.user_data.orderregion=’EASTERN’ OR " +
"(tab.user_data.ordertype=’RUSH’ AND " +
"tab.user_data.customer.country=’USA’)");

}

Administrative Interface 9-63

Altering a Subscriber
Altering a Subscriber

Figure 9–20 Altering a Subscriber

specify
name as
NULL

specify
address
as NULL

specify
protocol
as NULL/0

User/
Program

specify
address

name
queue

specify
name

If you do
not name a
subscriber
you must
specify an
address

do not
specify name

OR

OR

do not
specify
address

specify
rule

specify
protocol
(number)

OR

do not
specify
protocol

specify
agent

(subscriber)

specify
transformation

ALTER
a Subscriber

AQ Administrative Interface : ALTERING a Subscriber
9-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Subscriber
Purpose
Alter existing properties of a subscriber to a specified queue. Only the rule can be
altered.

Usage Notes
The rule, the transformation, or both can be altered. If you only alter one of the
attributes, the rule, or the transformation of the subscriber, specify the existing
value of the other attribute to the alter call.

When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ALTER_SUBSCRIBER procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ, alterSubscriber

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Altering Subscriber on page 9-66

� VB (OO4O): Example not provided.

� Java (JDBC): Altering a Subscriber on page 9-67

See Also: Table 9–1 for a list of adminstrative interface basic
operations
Administrative Interface 9-65

Altering a Subscriber
PL/SQL (DBMS_AQADM): Altering Subscriber

/* Add a subscriber with a rule: */
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent(’SUBSCRIBER1’, ’aq2.msg_queue2@london’, null);
DBMS_AQADM.ADD_SUBSCRIBER(

queue_name => ’aq.msg_queue’,
subscriber => subscriber,
rule => ’priority < 2’);

END;
/* Change rule for subscriber: */
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent(’SUBSCRIBER1’, ’aq2.msg_queue2@london’, null);
DBMS_AQADM.ALTER_SUBSCRIBER(

queue_name => ’aq.msg_queue’,
subscriber => subscriber,
rule => ’priority = 1’);

END;

Add a Subscriber with a Transformation
/* Add a subscriber with transformation */
EXECUTE DBMS_AQADM.ADD_SUBSCRIBER

(’aq.msg_queue’,
aq$_agent(’subscriber1’,

’aq2.msg_queue2@london’,
null),

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.multi_qtab’,
multiple_consumers => TRUE,
queue_payload_type => ’aq.message_typ’,
compatible => ’8.1.5’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’multi_queue’,
queue_table => ’aq.multi_qtab’);
9-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Subscriber
’AQ.MSG_MAP1’);
/* Alter the subscriber*/
EXECUTE DBMS_AQADM.ALTER_SUBSCRIBER

(’aq.msg_queue’,
aq$_agent (’subscriber1’,

’aq2.msg_queue2@london’,
null),

’AQ.MSG.MAP2’);

Java (JDBC): Altering a Subscriber
/* Alter the rule for a subscriber */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "multi_queue");

/* add a subscriber */
agent1 = new AQAgent("subscriber1", "aq2.msg_queue2@london");

queue.alterSubscriber(agent1, "priority=1");
}

Administrative Interface 9-67

Removing a Subscriber
Removing a Subscriber

Figure 9–21 Removing a Subscriber

See Also: Table 9–1 for a list of adminstrative interface basic
operations

specify
name as
NULL

specify
address
as NULL

specify
protocol
as NULL/0

User/
Program

specify
address

name
queue

specify
name

If you do
not name a
subscriber
you must
specify an
address

do not
specify name

OR

OR

do not
specify
address

specify
protocol
(number)

OR

do not
specify
protocol

REMOVE
a Subscriber

name
agent

(subscriber)

AQ Administrative Interface : REMOVING a Subscriber
9-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Removing a Subscriber
Purpose
Remove a default subscriber from a queue.

Usage Notes
This operation takes effect immediately and the containing transaction is
committed. All references to the subscriber in existing messages are removed as
part of the operation.

When a queue, queue table, or subscriber is created, modified, or dropped, and if
GLOBAL_TOPIC_ENABLED = TRUE, a corresponding LDAP entry is also created.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.REMOVE_SUBSCRIBER procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ)
removeSubscriber

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments.

Examples in the following programmatic environments are provided:

� PL/SQL (DBMS_AQADM): Removing Subscriber on page 9-69

� VB (OO4O): Example not provided.

� Java (JDBC): Removing a Subscriber on page 9-70

PL/SQL (DBMS_AQADM): Removing Subscriber
DECLARE

subscriber sys.aq$_agent;
BEGIN

subscriber := sys.aq$_agent(’subscriber1’,’aq2.msg_queue2’, NULL);
DBMS_AQADM.REMOVE_SUBSCRIBER(

queue_name => ’aq.multi_queue’,
Administrative Interface 9-69

Removing a Subscriber
subscriber => subscriber);
END;

Java (JDBC): Removing a Subscriber
/* Remove a subscriber */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "multi_queue");

/* add a subscriber */
agent1 = new AQAgent("subscriber1", "aq2.msg_queue2@london");

queue.removeSubscriber(agent1);
}

9-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Scheduling a Queue Propagation
Scheduling a Queue Propagation

Figure 9–22 Scheduling a Queue Propagation

User/
Program

OR

specify
start time now

(sysdate)

specify
start time later

(date)

OR

default
for start
time

continue
until

unschedule

specify
duration

(seconds)

OR

default
for
duration

don't
repeat

repeat
as

specified

OR

default for
next time
= null

recheck
every 60
seconds

specify
recheck
interval

OR

default
for
latency

name
source
queue

SCHEDULE
a Queue

Propagation

name
destination

as local
database

name
destination as

remote
database

default
(null)

AQ Administrative Interface : SCHEDULING a Queue
Propagation
Administrative Interface 9-71

Scheduling a Queue Propagation
Purpose
Schedule propagation of messages from a queue to a destination identified by a
specific dblink.

Usage Notes
Messages may also be propagated to other queues in the same database by
specifying a NULL destination. If a message has multiple recipients at the same
destination in either the same or different queues the message will be propagated to
all of them at the same time.

See Chapter 17, "Internet Access to Advanced Queuing" for information on
propagating messages over HTTP or HTTPS.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.SCHEDULE_PROPAGATION procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
schedulePropagation

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Scheduling a Queue Propagation on page 9-73

� VB (OO4O): Example not provided.

� Java (JDBC): Scheduling a Queue Propagation on page 9-73

See Also: Table 9–1 for a list of adminstrative interface basic
operations
9-72 Oracle9i Application Developer’s Guide - Advanced Queuing

Scheduling a Queue Propagation
PL/SQL (DBMS_AQADM): Scheduling a Queue Propagation

Scheduling a Propagation from a Queue to other Queues in the Same Database
/* Schedule propagation from queue aq.q1def to other queues in the same

database */
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

Queue_name => ’aq.q1def’);

Scheduling a Propagation from a Queue to other Queues in Another Database
/* Schedule a propagation from queue aq.q1def to other queues in another

database */
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

Queue_name => ’aq.q1def’,
Destination => ’another_db.world’);

Java (JDBC): Scheduling a Queue Propagation
/* Setup */
public static void setup(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

qtable_prop = new AQQueueTableProperty("AQ.MESSAGE_TYP");
qtable_prop.setMultiConsumer(true);

q_table = aq_sess.createQueueTable ("aq", "objmsgs_qtab", qtable_prop);

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.objmsgs_qtab’,
queue_payload_type => ’aq.message_typ’,
multiple_consumers => TRUE);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’aq.q1def’,
queue_table => ’aq.objmsgs_qtab’);
Administrative Interface 9-73

Scheduling a Queue Propagation
/* Create a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();
queue = aq_sess.createQueue (q_table, "q1def", queue_prop);

}

/* Schedule propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.schedulePropagation(null, null, null, null, null);
}

/* Schedule propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.schedulePropagation("another_db.world", null, null, null, null);
}

9-74 Oracle9i Application Developer’s Guide - Advanced Queuing

Unscheduling a Queue Propagation
Unscheduling a Queue Propagation

Figure 9–23 Unscheduling a Queue Propagation

Purpose
Unscheduled previously scheduled propagation of messages from a queue to a
destination identified by a specific dblink .

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.UNSCHEDULE_PROPAGATION procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ)
schedulePropagation

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

OR

name
source
queue

UNSCHEDULE
a Queue

Propagation

name
destination

as local
database

name
destination as

remote
database

default
(null)

AQ Administrative Interface : UNSCHEDULING a
Queue Propagation
Administrative Interface 9-75

Unscheduling a Queue Propagation
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Unscheduling a Propagation on page 9-76

� VB (OO4O): Example not provided.

� Java (JDBC): Unscheduling a Queue propagation on page 9-76

PL/SQL (DBMS_AQADM): Unscheduling a Propagation

Unscheduling Propagation from Queue To Other Queues in the Same Database
/* Unschedule propagation from queue aq.q1def to other queues in the same

database */
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(queue_name => ’aq.q1def’);

 Unscheduling Propagation from a Queue to other Queues in Another Database
/* Unschedule propagation from queue aq.q1def to other queues in another

database reached by the database link another_db.world */
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(

Queue_name => ’aq.q1def’,
Destination => ’another_db.world’);

Java (JDBC): Unscheduling a Queue propagation
/* Unschedule propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.unschedulePropagation(null);
}

/* Unschedule propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
9-76 Oracle9i Application Developer’s Guide - Advanced Queuing

Unscheduling a Queue Propagation
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.unschedulePropagation("another_db.world");
}

Administrative Interface 9-77

Verifying a Queue Type
Verifying a Queue Type

Figure 9–24 Verifying a Queue Type

Purpose
Verify that the source and destination queues have identical types. The result of the
verification is stored in sys.aq$_Message_types tables , overwriting all
previous output of this command.

Usage Notes
If the source and destination queues do not have identical types and a
transformation was specified, the transformation must map the source queue type
to the destination queue type.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

specify
source queue

name

specify
destination

queue
name

specify
destination

(dblink)

VERIFY
a Queue

Type

default to
NULL

specify
transformation

AQ Administrative Interface : VERIFYING a Queue Type
9-78 Oracle9i Application Developer’s Guide - Advanced Queuing

Verifying a Queue Type
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.VERIFY_QUEUE_TYPES procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): There is no applicable syntax reference for this use case

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Verifying a Queue Type on page 9-79

� VB (OO4O): Example not provided.

� Java (JDBC): none

PL/SQL (DBMS_AQADM): Verifying a Queue Type

/* Verify if the source and destination queues have the same type. The
function has the side effect of inserting/updating the entry for the source
and destination queues in the dictionary table AQ$_MESSAGE_TYPES */

DECLARE
rc BINARY_INTEGER;

Note: The sys.aq$_message_types table can have multiple
entries for the same source queue, destination queue, and dblink,
but with different transformations.

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’aq.q2def’,
queue_table => ’aq.objmsgs_qtab’);
Administrative Interface 9-79

Verifying a Queue Type
BEGIN
/* Verify if the queues aquser.q1def and aquser.q2def in the local database

have the same payload type */
DBMS_AQADM.VERIFY_QUEUE_TYPES(

src_queue_name => ’aq.q1def’,
dest_queue_name => ’aq.q2def ’,
rc => rc);

DBMS_OUTPUT.PUT_LINE(rc);
END;

Java (JDBC): Verifying a Queue type
Feature not available through Java API
9-80 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Propagation Schedule
Altering a Propagation Schedule

Figure 9–25 Altering a Propagation Schedule

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

OR

continue
until

unschedule

specify
duration

(seconds)

OR

default
for
duration

don't
repeat

repeat
as

specified

OR

default for
next time
= null

recheck
every 60
seconds

specify
recheck
interval

OR

default
for
latency

name
source
queue

ALTER
a Propagation

Schedule

name
destination

as local
database

name
destination as

remote
database

default
(null)

AQ Administrative Interface : ALTERING a
Propagation Schedule
Administrative Interface 9-81

Altering a Propagation Schedule
Purpose
To alter parameters for a propagation schedule.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ)
alterPropagationSchedule

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Altering a Propagation Schedule on page 9-82

� VB (OO4O): Example not provided.

� PL/SQL (DBMS_AQADM): Altering a Propagation Schedule on page 9-83

PL/SQL (DBMS_AQADM): Altering a Propagation Schedule

Altering a Schedule from a Queue to Other Queues in the Same Database
/* Alter schedule from queue aq.q1def to other queues in the same database */
EXECUTE DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’,
Duration => ’2000’,
Next_time => ’SYSDATE + 3600/86400’,
Latency => ’32’);

Altering a Schedule from a Queue to Other Queues in Another Database
/* Alter schedule from queue aq.q1def to other queues in another database
9-82 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Propagation Schedule
reached by the database link another_db.world */
EXECUTE DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’,
Destination => ’another_db.world’,
Duration => ’2000’,
Next_time => ’SYSDATE + 3600/86400’,
Latency => ’32’);

Java (JDBC): Altering a Propagation Schedule
/* Alter propagation schedule from a queue to other queues

in the same database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.alterPropagationSchedule(null, new Double(2000),
"SYSDATE + 3600/86400", new Double(32));

}

/* Unschedule propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.alterPropagationSchedule("another_db.world", new Double(2000),
"SYSDATE + 3600/86400", new Double(32));

}

Administrative Interface 9-83

Enabling a Propagation Schedule
Enabling a Propagation Schedule

Figure 9–26 Enabling a Propagation Schedule

Purpose
To enable a previously disabled propagation schedule.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
enablePropagationSchedule

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

OR

name
source
queue

ENABLE
a Propagation

Schedule

name
destination

as local
database

name
destination as

remote
database

default
(null)

AQ Administrative Interface : ENABLING a Propagation
Schedule
9-84 Oracle9i Application Developer’s Guide - Advanced Queuing

Enabling a Propagation Schedule
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Enabling a Propagation on page 9-85

� VB (OO4O): Example not provided.

� Java (JDBC): Enabling a Propagation Schedule on page 9-85

PL/SQL (DBMS_AQADM): Enabling a Propagation

Enabling Propagation from a Queue to Other Queues in the Same Database
/* Enable propagation from queue aq.q1def to other queues in the same

database */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’);

Enabling Propagation from a Queue to Queues in Another Database
/* Enable propagation from queue aq.q1def to other queues in another

database reached by the database link another_db.world */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’,
Destination => ’another_db.world’);

Java (JDBC): Enabling a Propagation Schedule
/* Enable propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.enablePropagationSchedule(null);
}

/* Enable propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQException
Administrative Interface 9-85

Enabling a Propagation Schedule
{
AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.enablePropagationSchedule("another_db.world");
}

9-86 Oracle9i Application Developer’s Guide - Advanced Queuing

Disabling a Propagation Schedule
Disabling a Propagation Schedule

Figure 9–27 Disabling a Propagation Schedule

Purpose
To disable a previously enabled propagation schedule.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ)
disablePropagationSchedule

See Also: Table 9–1 for a list of adminstrative interface basic
operations

User/
Program

OR

name
source
queue

DISABLE
a propagation

schedule

name
destination

as local
database

name
destination as

remote
database

default
(null)

AQ Administrative Interface : DISABLING a Propagation
Schedule
Administrative Interface 9-87

Disabling a Propagation Schedule
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL (DBMS_AQADM): Enabling a Propagation on page 9-85

� VB (OO4O): Example not provided.

� Java (JDBC): Enabling a Propagation Schedule on page 9-85

PL/SQL (DBMS_AQADM): Disabling a Propagation

Enabling Propagation from a Queue to Other Queues in the Same Database
/* Disable a propagation from queue aq.q1def to other queues in the same

database */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’);

Enabling Propagation from a Queue to Queues in Another Database
/* Disable a propagation from queue aq.q1def to other queues in another

database reached by the database link another_db.world */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

Queue_name => ’aq.q1def’,
Destination => ’another_db.world’);

Java (JDBC): Disabling a Propagation Schedule
/* Disable propagation from a queue to other queues in the same database */
public static void example(AQSession aq_sess) throws AQException
{

AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.disablePropagationSchedule(null);
}

/* Disable propagation from a queue to other queues in another database */
public static void example(AQSession aq_sess) throws AQException
{

9-88 Oracle9i Application Developer’s Guide - Advanced Queuing

Disabling a Propagation Schedule
AQQueue queue;
AQAgent agent1;
AQAgent agent2;

/* Get the queue object */
queue = aq_sess.getQueue("AQ", "q1def");

queue.disablePropagationSchedule("another_db.world");
}

Administrative Interface 9-89

Creating an AQ Agent
Creating an AQ Agent

Figure 9–28 Creating an AQ Agent

See Also: Table 9–1 for a list of adminstrative interface basic
operations

AQ Operational Interface : CREATING an AQ Agent

enable
HTTP access

specify
certificate
location

enable
SMTP access

disable
HTTP access

disable
SMTP access

OR

OR

specify
agent name

default

default

Required if SMTP
access enabled

enable
any protocol

access

disable
any protocol

access

OR

defaultIf TRUE
enable-http
and
enable-smtp
parameters
ignored

User/
Program

CREATE
an AQ
Agent
9-90 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating an AQ Agent
Purpose
Registers an agent for AQ Internet access using HTTP/SMTP protocols.

Usage Notes
The SYS.AQ$INTERNET_USERS view has a list of all AQ Internet agents.

When an AQ agent is created, altered, or dropped, an LDAP entry is created for the
agent if the following are true:

� GLOBAL_TOPIC_ENABLED = TRUE

� certificate_location is specified

� The user is registered for SMTP access

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.CREATE_AQ_AGENT procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-91

Altering an AQ Agent
Altering an AQ Agent

Figure 9–29 Altering an AQ Agent

See Also: Table 9–1 for a list of adminstrative interface basic
operations

AQ Operational Interface : ALTERING an AQ Agent

enable
HTTP access

specify
certificate
location

enable
SMTP access

disable
HTTP access

disable
SMTP access

OR

OR

specify
agent name

default

default

Required if SMTP
access enabled

enable
any protocol

access

disable
any protocol

access

OR

defaultIf TRUE
enable-http
and
enable-smtp
parameters
ignored

User/
Program

ALTER
an AQ
Agent
9-92 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering an AQ Agent
Purpose
Alters an agent registered for AQ Internet access.

Usage Notes
When an AQ agent is created, altered, or dropped, an LDAP entry is created for the
agent if the following are true:

� GLOBAL_TOPIC_ENABLED = TRUE

� certificate_location is specified

� The user is registered for SMTP access

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ALTER_AQ_AGENT Procedure

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-93

Dropping an AQ Agent
Dropping an AQ Agent

Figure 9–30 Dropping an AQ Agent

Purpose
Drops an agent that was previously registered for AQ Internet access.

Usage Notes
When an AQ agent is created, altered, or dropped, an LDAP entry is created for the
agent if the following are true:

� GLOBAL_TOPIC_ENABLED = TRUE

� certificate_location is specified

� The user is registered for SMTP access

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DROP_AQ_AGENT Procedure

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

See Also: Table 9–1 for a list of adminstrative interface basic
operations

AQ Operational Interface : DROPPING an AQ Agent

specify
agent name

User/
Program

DROP
an AQ
Agent
9-94 Oracle9i Application Developer’s Guide - Advanced Queuing

Dropping an AQ Agent
� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-95

Enabling Database Access
Enabling Database Access

Figure 9–31 Enabling Database Access

Purpose
Grants an AQ Internet agent the privileges of a specific database user. The AQ
Internet agent should have been previously created using the CREATE_AQ_AGENT
procedure.

Usage Notes
The SYS.AQ$INTERNET_USERS view has a list of all AQ Internet agents and the
names of the database users whose privileges are granted to them.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ENABLE_DB_ACCESS Procedure

See Also: Table 9–1 for a list of adminstrative interface basic
operations

AQ Operational Interface : ENABLING Database Access

specify
database user

name

specify
agent name

User/
Program access to AQ

internet agent

ENABLE
database
access
9-96 Oracle9i Application Developer’s Guide - Advanced Queuing

Enabling Database Access
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-97

Disabling Database Access
Disabling Database Access

Figure 9–32 Disabling Database Access

Purpose
Revokes the privileges of a specific database user from an AQ Internet agent. The
AQ Internet agent should have been previously granted those privileges using the
ENABLE_DB_ACCESS procedure.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DISABLE_DB_ACCESS Procedure

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

See Also: Table 9–1 for a list of adminstrative interface basic
operations

AQ Operational Interface : DISABLING Database Access

specify
database user

name

specify
agent name

User/
Program access to AQ

internet agent

DISABLE
database
access
9-98 Oracle9i Application Developer’s Guide - Advanced Queuing

Disabling Database Access
� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-99

Adding an Alias to the LDAP Server
Adding an Alias to the LDAP Server

Figure 9–33 Adding an Alias to the LDAP Server

Purpose
To add an alias to the LDAP server.

Usage Notes
This call takes the name of an alias and the distinguished name of an AQ object in
LDAP, and creates the alias that points to the AQ object. The alias is placed
immediately under the distinguished name of the database server. The object to
which the alias points can be a queue, an agent, or a connection factory.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.ADD_ALIAS_TO_LDAP Procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

See Also: Table 9–1 for a list of adminstrative interface basic
operations

The distinguished name
of the object that the
alias points to

specify
object
nameUser/

Program

specify
alias name

ADD
alias to LDAP

AQ Administrative Interface : Adding an Alias to the LDAP Server
9-100 Oracle9i Application Developer’s Guide - Advanced Queuing

Adding an Alias to the LDAP Server
� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-101

Removing an Alias from the LDAP Server
Removing an Alias from the LDAP Server

Figure 9–34 Removing an Alias from the LDAP Server

Purpose
To remove an alias from the LDAP server.

Usage Notes
This call takes the name of an alias as the argument, and removes the alias entry in
the LDAP server. It is assumed that the alias is placed immediately under the
database server in the LDAP directory.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQADM Package): Oracle9i Supplied PL/SQL Packages and
Types Reference, DBMS_AQADM.DEL_ALIAS_FROM_LDAP Procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ

See Also: Table 9–1 for a list of adminstrative interface basic
operations

specify
alias
nameUser/

Program

REMOVE
alias from

LDAP

AQ Administrative Interface : Removing an Alias from the LDAP Server
9-102 Oracle9i Application Developer’s Guide - Advanced Queuing

Removing an Alias from the LDAP Server
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples are provided in the following
programmatic environments:

� PL/SQL: Example not provided.

� VB (OO4O): Example not provided.

� Java (JDBC): Example not provided.
Administrative Interface 9-103

Removing an Alias from the LDAP Server
9-104 Oracle9i Application Developer’s Guide - Advanced Queuing

Administrative Interface
10

Administrative Interface: Views

In this chapter we discuss each operation (such as "Selecting All Queue Tables in
Database") in terms of a use case by that name. Table 10–1 summarizes the use
cases.

Use cases are laid out as follows:

� Use case figure. We describe the administrative interface with respect to views
in terms of a hybrid of use cases and state diagrams. That is, we describe each
view as a use case in terms of the operations that represents it (such as
"Selecting All Queue Tables in Database"). We describe each view as a state
diagram in that each attribute of the view is represented as a possible state of
the view, the implication being that any attribute (column) can be visible or
invisible.

� Syntax. The syntax used to perform this activity.
: Views 10-1

Use Case Model: Administrative Interface—Views
Use Case Model: Administrative Interface—Views

Table 10–1 Use Case Model: Administrative Interface—Views

Use Case Name of View

Selecting All Queue Tables in Database on page 10-3 DBA_QUEUE_TABLES

Selecting User Queue Tables on page 10-5 ALL_QUEUE_TABLES

Selecting All Queues in Database on page 10-7 DBA_QUEUES

Selecting All Propagation Schedules on page 10-9 DBA_QUEUE_SCHEDULES

Selecting Queues for Which User Has Any Privilege on page 10-13 ALL_QUEUES

Selecting Queues for Which User Has Queue Privilege on
page 10-15

QUEUE_PRIVILEGES

Selecting Messages in Queue Table on page 10-17 AQ$<name of queue table>

Selecting Queue Tables in User Schema on page 10-21 USER_QUEUE_TABLES

Selecting Queues In User Schema on page 10-23 USER_QUEUES

Selecting Propagation Schedules in User Schema on page 10-25 USER_QUEUE_SCHEDULES

Selecting Queue Subscribers on page 10-29 AQ$<name of queue table>_S

Selecting Queue Subscribers and Their Rules on page 10-31 AQ$<name of queue table>_R

Selecting the Number of Messages in Different States for the Whole
Database on page 10-33

GV$AQ

Selecting the Number of Messages in Different States for Specific
Instances on page 10-35

V$AQ

Selecting the AQ Agents Registered for Internet Access on
page 10-37

AQ$INTERNET_USERS

Selecting User Transformations on page 10-38 USER_TRANSFORMATIONS

Selecting User Transformation Functions on page 10-39 USER_ATTRIBUTE_TRANSFORMATIONS

Selecting All Transformations on page 10-39 DBA_TRANSFORMATIONS

Selecting All Transformation Functions on page 10-41 DBA_ATTRIBUTE_TRANSFORMATIONS
10-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Queue Tables in Database
Selecting All Queue Tables in Database

Figure 10–1 Selecting All Queue Tables in Database

User/
Program

OR

list
all queue

table attributes
List at
least one
attribute

USER view
ALL_QUEUE_TABLES

SELECT
Queue Tables

Accessible
by User

list
attribute
names

OWNER
QUEUE_
TABLE
name

queue table
TYPE

payload
OBJECT_TYPE SORT_ORDER

message
RECIPIENTS
as single or

multiconsumer

MESSAGE_
GROUPING COMPATIBLE

PRIMARY_
INSTANCE

SECONDARY_
INSTANCE

OWNER_
INSTANCE

USER_
COMMENT

AQ Administrative Interface : SELECTING Queue Tables Accessible by User
Administrative Interface: Views 10-3

Selecting All Queue Tables in Database
Name of View
DBA_QUEUE_TABLES

Purpose
This view describes the names and types of all queue tables created in the database.

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–2 DBA_QUEUE_TABLES

Column Name & Description Null? Type

OWNER—queue table schema - VARCHAR2(30)

QUEUE_TABLE—queue table name - VARCHAR2(30)

TYPE—payload type - VARCHAR2(7)

OBJECT_TYPE—name of object type, if any - VARCHAR2(61)

SORT_ORDER—user specified sort order - VARCHAR2(22)

RECIPIENTS—SINGLE or MULTIPLE - VARCHAR2(8)

MESSAGE_GROUPING—NONEorTRANSACTIONAL - VARCHAR2(13)

COMPATIBLE—indicates the lowest version with
which the queue table is compatible

- VARCHAR2(5)

PRIMARY_INSTANCE—indicates which instance is
the primary owner of the queue table; a value of 0
indicates that there is no primary owner

- NUMBER

SECONDARY_INSTANCE—indicates which owner
is the secondary owner of the queue table; this
instance becomes the owner of the queue table if
the primary owner is not up; a value of 0 indicates
that there is no secondary owner

- NUMBER

OWNER_INSTANCE—indicates which instance
currently owns the queue table

- NUMBER

USER_COMMENT—user comment for the queue
table

- VARCHAR2(50)
10-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting User Queue Tables
Selecting User Queue Tables

Figure 10–2 Selecting User Queue Tables

User/
Program

OR

list
all queue

table attributes
List at
least one
attribute

DBA view
DBA_QUEUE_TABLES

SELECT
all Queue
Tables in
Database

list
attribute
names

OWNER
QUEUE_
TABLE
name

queue table
TYPE

payload
OBJECT_TYPE SORT_ORDER

message
RECIPIENTS
as single or

mulitconsumer

MESSAGE_
GROUPING COMPATIBLE

PRIMARY_
INSTANCE

SECONDARY_
INSTANCE

OWNER_
INSTANCE

USER_
COMMENT

AQ Administrative Interface : SELECTING all Queue Tables in Database
Administrative Interface: Views 10-5

Selecting User Queue Tables
Name of View
ALL_QUEUE_TABLES

Purpose
This view describes queue tables accessible to a user.

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–3 DBA_QUEUE_TABLES

Column Name & Description Null? Type

OWNER—owner of the queue table - VARCHAR2(30)

QUEUE_TABLE—queue table name - VARCHAR2(30)

TYPE—payload type - VARCHAR2(7)

OBJECT_TYPE—object type, if any - VARCHAR2(61)

SORT_ORDER—user-specified sort order - VARCHAR2(22)

RECIPIENTS—SINGLE or MULTIPLE recipient
queue

- VARCHAR2(8)

MESSAGE_GROUPING—NONE or TRANSACTIONAL - VARCHAR2(13)

COMPATIBLE—indicates the lowest version with
which the queue table is compatible

- VARCHAR2(5)

PRIMARY_INSTANCE—indicates which instance is
the primary owner of the queue table; a value of 0
indicates that there is no primary owner

- NUMBER

SECONDARY_INSTANCE—indicates which owner
is the secondary owner of the queue table; this
instance becomes the owner of the queue table if
the primary owner is not up; a value of 0 indicates
that there is no secondary owner

- NUMBER

OWNER_INSTANCE—indicates which instance
currently owns the queue table

- NUMBER

USER_COMMENT—user comment for the queue
table

- VARCHAR2(50)
10-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Queues in Database
Selecting All Queues in Database

Figure 10–3 Selecting All Queues in Database

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
attributes

List at
least one
attribute

list
attribute
names

DBA view:
DBA_QUEUES

SELECT
all Queues

 in Database

OWNER
Queue
NAME QUEUE_TABLE

name
QID

MAX_RETRYS
of dequeue

attempts
QUEUE_TYPE RETRY_DELAY

USER_
COMMENT

ENQUEUE_
ENABLED
(true/false)

DEQUEUE_
ENABLED
(true/false)

RETENTION
time (seconds)

AQ Administrative Interface : SELECTING all Queues in Database
Administrative Interface: Views 10-7

Selecting All Queues in Database
Name of View
DBA_QUEUES

Purpose
Users can specify operational characteristics for individual queues. DBA_QUEUES
contains the view which contains relevant information for every queue in a
database.

Table 10–4 DBA_QUEUES

Column Name & Description Null? Type

OWNER—queue schema name NOT NULL VARCHAR2(30)

NAME—queue name NOT NULL VARCHAR2(30)

QUEUE_TABLE—queue table where this queue resides NOT NULL VARCHAR2(30)

QID—unique queue identifier NOT NULL NUMBER

QUEUE_TYPE—queue type - VARCHAR2(15)

MAX_RETRIES—number of dequeue attempts allowed - NUMBER

RETRY_DELAY—number of seconds before retry can be
attempted

- NUMBER

ENQUEUE_ENABLED—YES/NO - VARCHAR2(7)

DEQUEUE_ENABLED—YES/NO - VARCHAR2(7)

RETENTION—number of seconds message is retained
after dequeue

- VARCHAR2(40)

USER_COMMENT—user comment for the queue - VARCHAR2(50)
10-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Propagation Schedules
Selecting All Propagation Schedules

Figure 10–4 Selecting All Propagation Schedules

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

DBA view:
DBA_QUEUE_
SCHEDULES

SELECT
all Propagation

Schedules

list
attribute
names

continued on next page

AQ Administrative Interface : SELECTING all Propagation Schedules
Administrative Interface: Views 10-9

Selecting All Propagation Schedules
Name of View
DBA_QUEUE_SCHEDULES

See Also: Table 10–1 for a list of views in the adminstrative
interface

Only applicable in
Real Application
Clusters
environ ment

SCHEMA
name of owner

of source
queue

QNAME
of the

source queue

DESTINATION
db link for
destination

queues

original
START_TIME

PROPAGATION_
WINDOW
(seconds)

function
to compute

NEXT_TIME

SCHEDULE_
DISABLED

(N = enabled,
Y = disabled)

PROCESS_
NAME

executing
sched.

SESSION_ID
of the job
executing

sched.

LAST_RUN_
DATE of

successful sched.
execution

original
START_DATE

LATENCY wait
(seconds)

INSTANCE
number

executing
sched.

LAST_RUN_
TIME of

successful sched.
execution

CURRENT_
START_DATE
of current sched.

execution

CURRENT_
START_TIME
of current sched.

execution

NEXT_RUN_
DATE of next

sched.
exeution

NEXT_RUN_
TIME of next

sched.
execution

TOTAL_TIME
executing

sched.
(seconds)

TOTAL_NUMBER
of messages
propagated in

executing sched.

TOTAL_BYTES
propagated in

executing sched.

AVG_NUMBER
of messages
propagated
in window

MAX_BYTES
of bytes

propagated
in window

AVG_SIZE of
a propagated

message
(bytes)

LAST_ERROR
_MSG (error

number and error
message text)

AVG_TIME to
propagate a

message
(seconds)

FAILURES
number of times
execution failed

LAST_ERROR
_TIME of last
unsuccessful

execution

MAX_NUMBER
of messages
propagated
in window

LAST_ERROR
_DATE of

unsucessful
execution

Schedule is
disabled on
16th failure

Returns NULL
if currently
executing

Returns NULL
if not currently
executing
10-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Propagation Schedules
Purpose
This view describes the current schedules for propagating messages.

Table 10–5 DBA_QUEUE_SCHEDULES

Column Name & Description Null? Type

SCHEMA—schema name for the source queue NOT NULL VARCHAR2(30)

QNAME—source queue name NOT NULL VARCHAR2(30)

DESTINATION—destination name, currently
limited to be a DBLINK name

NOT NULL VARCHAR2(128)

START_DATE—date to start propagation in the
default date format

- DATE

START_TIME—time of day at which to start
propagation in HH:MI:SS format

- VARCHAR2(8)

PROPAGATION_WINDOW—duration in seconds
for the propagation window

- NUMBER

NEXT_TIME—function to compute the start of
the next propagation window

- VARCHAR2(200)

LATENCY—maximum wait time to propagate a
message during the propagation window.

- NUMBER

SCHEDULE_DISABLED—N if enabled Y if
disabled and schedule will not be executed

- VARCHAR(1)

PROCESS_NAME—The name of the SNP
background process executing this schedule.
NULL if not currently executing

- VARCHAR2(8)

SESSION_ID—The session ID (SID, SERIAL#)
of the job executing this schedule. NULL if not
currently executing

- NUMBER

INSTANCE—The Real Application Clusters
instance number executing this schedule

- NUMBER

LAST_RUN_DATE—The date on the last
successful execution

- DATE

LAST_RUN_TIME—The time of the last
successful execution in HH:MI:SS format

- VARCHAR2(8)

CURRENT_START_DATE—Date at which the
current window of this schedule was started

- DATE
Administrative Interface: Views 10-11

Selecting All Propagation Schedules
CURRENT_START_TIME—Time of day at which
the current window of this schedule was started
in HH:MI:SS format

- VARCHAR2(8)

NEXT_RUN_DATE—Date at which the next
window of this schedule will be started

- DATE

NEXT_RUN_TIME—Time of day at which the
next window of this schedule will be started in
HH:MI:SS format

- VARCHAR2(8)

TOTAL_TIME—Total time in seconds spent in
propagating messages from the schedule

- NUMBER

TOTAL_NUMBER—Total number of
messages propagated in this
schedule

- NUMBER

TOTAL_BYTES—Total number of bytes
propagated in this schedule

- NUMBER

MAX_NUMBER—The maximum number of
messages propagated in a propagation window

- NUMBER

MAX_BYTES—The maximum number of bytes
propagated in a propagation window

- NUMBER

AVG_NUMBER—The average number of
messages propagated in a propagation window

- NUMBER

AVG_SIZE—The average size of a propagated
message in bytes

- NUMBER

AVG_TIME—The average time, in seconds, to
propagate a message

- NUMBER

FAILURES—The number of times the execution
failed. If 16, the schedule will be disabled

- NUMBER

LAST_ERROR_DATE—The date of the last
unsuccessful execution

- DATE

LAST_ERROR_TIME—The time of the last
unsuccessful execution

- VARCHAR2(8)

LAST_ERROR_MSG—The error number and
error message text of the last unsuccessful
execution

- VARCHAR2(4000)

Table 10–5 (Cont.) DBA_QUEUE_SCHEDULES

Column Name & Description Null? Type
10-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queues for Which User Has Any Privilege
Selecting Queues for Which User Has Any Privilege

Figure 10–5 Selecting Queues for Which the User Has Any Privilege

Name of View
ALL_QUEUES

See Also: Table 10–1 for a list of views in the adminstrative
interface

User view:
ALL_QUEUES

User/
Program

OR

list
all queue
attributes

List at
least one
attribute

SELECT
Queues for which
the User has any

Privilege

list
attribute
names

NAME
of queue

name of
QUEUE_TABLE

queue data
resides in

MAX_RETRIES
allowed when

dequeuing

RETRY_DELAY
interval

between retries
(seconds)

DEQUEUE_
ENABLED

RETENTION
interval

messages
kept in queue

OWNER
of queue

QID object
number
of queue

ENQUEUE_
ENABLED

USER_
COMMENT

optional
information

QUEUE_TYPE
of queue

(RAW/Object
Type)

AQ Administrative Interface : SELECTING the Queues for which the
User has any Privilege
Administrative Interface: Views 10-13

Selecting Queues for Which User Has Any Privilege
Purpose
This view describes all queues accessible to the user.

Table 10–6 ALL_QUEUES

Column Name & Description Null? Type

OWNER—Owner of the queue NOT NULL VARCHAR2(30)

NAME—Name of the queue NOT NULL VARCHAR2(30)

QUEUE_TABLE—Name of the table the queue
data resides in

NOT NULL VARCHAR2(30)

QID—Object number of the queue NOT NULL NUMBER

QUEUE_TYPE—Type of the queue - VARCHAR2(15)

MAX_RETRIES—Maximum number of retries
allowed when dequeuing from the queue

- NUMBER

RETRY_DELAY—Time interval between retries - NUMBER

ENQUEUE_ENABLED—Queue is enabled for
enqueue

- VARCHAR2(7)

DEQUEUE_ENABLED—Queue is enabled for
dequeue

- VARCHAR2(7)

RETENTION—Time interval processed messages
retained in the queue

- VARCHAR2(40)

USER_COMMENT—User specified comment - VARCHAR2(50)
10-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queues for Which User Has Queue Privilege
Selecting Queues for Which User Has Queue Privilege

Figure 10–6 Selecting Queues for Which the User Has Queue Privilege

Name of View
QUEUE_PRIVILEGES

Purpose
This view describes queues for which the user is the grantor, or grantee, or owner,
or an enabled role or the queue is granted to PUBLIC.

See Also: Table 10–1 for a list of views in the adminstrative
interface

User view:
QUEUE_PRIVILEGES

User/
Program

OR

list
all queue
attributes

List at
least one
attribute

SELECT
queues for which
user has queue

privilege

list
attribute
names

OWNER
of the queue

NAME
of the queue

ENQUEUE_
PRIVILEGE to

ENQUEUE to the
queue

DEQUEUE_
PRIVILEGE

to DEQUEUE
from the queue

GRANTEE
to whom

access was
grant

GRANTOR
who performed

the grant

 :

SELECTING the Queues for which the
User has Queue Privilege

AQ Administrative Interface :
Administrative Interface: Views 10-15

Selecting Queues for Which User Has Queue Privilege

Table 10–7 QUEUE_PRIVILEGES

Column Name & Description Null? Type

GRANTEE—Name of the user to whom access
was granted

NOT NULL VARCHAR2(30)

OWNER—Owner of the queue NOT NULL VARCHAR2(30)

NAME—Name of the queue NOT NULL VARCHAR2(30)

GRANTOR—Name of the user who performed
the grant

NOT NULL VARCHAR2(30)

ENQUEUE_PRIVILEGE—Permission to enqueue
to the queue

- NUMBER(1 if
granted, 0 if
not)

DEQUEUE_PRIVILEGE—Permission to dequeue
to the queue

- NUMBER(1 if
granted, 0 if
not)
10-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Messages in Queue Table
Selecting Messages in Queue Table

Figure 10–7 Selecting Messages in Queue Table

User view:
AQ$<name of queue table>

User/
Program

OR

list
all queue

table attributes
List at
least one
attribute

SELECT
Messages in
Queue Table

list
attribute
names

MSG_ID
of the

message

CORR_ID
user-provided

identifier

MSG_STATE
of this message

message
DELAY

(seconds)
ENQ_TIME ENQ_USER_ID

DEQ_USER_ID

QUEUE
name

MSG_
PRIORITY

EXPIRATION
interval

message expires
(seconds)

ENQ_TXN_ID

DEQ_TIME DEQ_TXN_ID

EXCEPTION_
QUEUE
name

RETRY_
COUNT

EXCEPTION_
QUEUE_OWNER
exception queue

schema

USER_DATA

SENDER_
PROTOCOL
for sender
address

SENDER_NAME
enqueing the

message

SENDER_
ADDRESS of

last propagation
queue

ORIGINAL_
MSGID

of message in
source queue

PROTOCOL
for receiving

agent's address

PROPAGATED_
MSGID in

receiving agent's
queue

CONSUMER_
NAME of the

agent receiving
message

ADDRESS
 of agent
receiving

AQ Administrative Interface : SELECTING Messages in Queue Table
Administrative Interface: Views 10-17

Selecting Messages in Queue Table
Name of View
Select messages in Queue Table.

Purpose
This view describes the queue table in which message data is stored. This view is
automatically created with each queue table and should be used for querying the
queue data. The dequeue history data (time, user identification and transaction
identification) is only valid for single consumer queues.

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–8 View for Selecting Messages in a Queue Table

Column Name & Description Null? Type

QUEUE—queue name - VARCHAR2(30)

MSG_ID—unique identifier of the message - RAW(16)

CORR_ID—user-provided correlation identifier - VARCHAR2(128)

MSG_PRIORITY—message priority - NUMBER

MSG_STATE—state of this message - VARCHAR2(9)

DELAY—number of seconds the message is
delayed

- DATE

EXPIRATION—number of seconds in which the
message will expire after being READY

- NUMBER

ENQ_TIME— enqueue time - DATE

ENQ_USER_ID—enqueue user id - NUMBER

ENQ_TXN_ID—enqueue transaction id NOT NULL VARCHAR2(30)

DEQ_TIME—dequeue time - DATE

DEQ_USER_ID—dequeue user id - NUMBER

DEQ_TXN_ID—dequeue transaction id - VARCHAR2(30)

RETRY_COUNT—number of retries - NUMBER

EXCEPTION_QUEUE_OWNER—exception queue
schema

- VARCHAR2(30)

EXCEPTION_QUEUE—exception queue name - VARCHAR2(30)
10-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Messages in Queue Table
USER_DATA—user data - BLOB

SENDER_NAME—name of the Agent enqueuing
the message (valid only for 8.1-compatible
queue tables)

- VARCHAR2(30)

SENDER_ADDRESS—queue name and database
name of the source (last propagating) queue; the
database name is not specified if the source
queue is in the local database (valid only for
8.1-compatible queue tables)

- VARCHAR2(1024)

SENDER_PROTOCOL—protocol for sender
address, reserved for future use (valid only for
8.1-compatible queue tables)

- NUMBER

ORIGINAL_MSGID—message id of the message
in the source queue (valid only for
8.1-compatible queue tables)

- RAW(16)

CONSUMER_NAME—name of the Agent receiving
the message (valid ONLY for 8.1-compatible
MULTICONSUMER queue tables)

- VARCHAR2(30)

ADDRESS—address (queue name and database
link name) of the agent receiving the
message.The database link name is not specified
if the address is in the local database. The
address is NULL if the receiving agent is local
to the queue (valid ONLY for 8.1-compatible
multiconsumer queue tables)

- VARCHAR2(1024)

PROTOCOL—protocol for receiving agent’s
address (valid only for 8.1-compatible queue
tables)

- NUMBER

PROPAGATED_MSGID—message id of the
message in the receiving agent’s queue (valid
only for 8.1-compatible queue tables)

NULL RAW(16)

ORIGINAL_QUEUE_NAME—name of the queue
the message came from

- -

ORIGINAL_QUEUE_OWNER—owner of the
queue the message came from

- -

Table 10–8 (Cont.) View for Selecting Messages in a Queue Table

Column Name & Description Null? Type
Administrative Interface: Views 10-19

Selecting Messages in Queue Table
EXPIRATION_REASON—the reason the
message came into the exception queue.
Possible values are TIME_EXPIRATION
(message expired after the specified expired
time), MAX_RETRY_EXCEEDED (max. retry
count was exceeded), and PROPAGATION_
FAILURE (message became undeliverable
during propagation)

- -

Table 10–8 (Cont.) View for Selecting Messages in a Queue Table

Column Name & Description Null? Type
10-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queue Tables in User Schema
Selecting Queue Tables in User Schema

Figure 10–8 Selecting Queue Tables in User Schema

See Also: Table 10–1 for a list of views in the adminstrative
interface

User view:
USER_QUEUE_TABLES

User/
Program

OR

list
all queue

table attributes
List at
least one
attribute

SELECT
Queue

Tables in User
Schema

list
attribute
names

QUEUE_TABLE
name

queue table
TYPE

payload
OBJECT_TYPE

SORT_ORDER
RECIPIENTS

(single or
multiconsumer)

MESSAGE_
GROUPING

COMPATIBLE
(8.0 or 8.1)

PRIMARY_
INSTANCE

SECONDARY_
INSTANCE

OWNER_
INSTANCE

USER_
COMMENT

AQ Administrative Interface : SELECTING Queue Tables in User Schema
Administrative Interface: Views 10-21

Selecting Queue Tables in User Schema
Name of View
USER_QUEUE_TABLES

Syntax
This view is the same as DBA_QUEUE_TABLES with the exception that it only shows
queue tables in the user’s schema. It does not contain a column for OWNER.

Table 10–9 USER_QUEUE_TABLES

Column Name & Description Null? Type

QUEUE_TABLE—queue table name - VARCHAR2(30)

TYPE—payload type - VARCHAR2(7)

OBJECT_TYPE—name of object type, if any - VARCHAR2(61)

SORT_ORDER—user specified sort order - VARCHAR2(22)

RECIPIENTS—SINGLE or MULTIPLE - VARCHAR2(8)

MESSAGE_GROUPING—NONE or
TRANSACTIONAL

- VARCHAR2(13)

COMPATIBLE—indicates the lowest version
with which the queue table is compatible

- VARCHAR2(5)

PRIMARY_INSTANCE—indicates which
instance is the primary owner of the queue
table; a value of 0 indicates that there is no
primary owner

- NUMBER

SECONDARY_INSTANCE—indicates which
owner is the secondary owner of the queue
table; this instance becomes the owner of the
queue table if the primary owner is not up; a
value of 0 indicates that there is no secondary
owner

- NUMBER

OWNER_INSTANCE—indicates which instance
currently owns the queue table

- NUMBER

USER_COMMENT—user comment for the queue
table

- VARCHAR2(50)
10-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queues In User Schema
Selecting Queues In User Schema

Figure 10–9 Selecting Queues in User Schema

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
attributes

List at
least one
attribute

User view:
USER_QUEUES

SELECT
queues in

user schema

list
attribute
names

Queue
NAME

QUEUE_TABLE
name QID

MAX_RETRYS
for dequeue

attempts

QUEUE_TYPE

RETRY_DELAY
ENQUEUE_
ENABLED
(true/false)

DEQUEUE_
ENABLED
(true/false)

USER_
COMMENT

RETENTION
time (seconds)

AQ Administrative Interface : SELECTING Queues in User Schema
Administrative Interface: Views 10-23

Selecting Queues In User Schema
Name of View
USER_QUEUES

Purpose
This view is the same as DBA_QUEUES with the exception that it only shows queues
in the user’s schema.

Table 10–10 USER_QUEUES

Column Name & Description Null? Type

NAME—queue name NOT NULL VARCHAR2(30)

QUEUE_TABLE—queue table where this queue
resides

NOT NULL VARCHAR2(30)

QID—unique queue identifier NOT NULL NUMBER

QUEUE_TYPE—queue type - VARCHAR2(15)

MAX_RETRIES—number of dequeue attempts
allowed

- NUMBER

RETRY_DELAY—number of seconds before
retry can be attempted

- NUMBER

ENQUEUE_ENABLED—YES/NO - VARCHAR2(7)

DEQUEUE_ENABLED—YES/NO - VARCHAR2(7)

RETENTION—number of seconds message is
retained after dequeue

- VARCHAR2(40)

USER_COMMENT—user comment for the queue - VARCHAR2(50)
10-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Propagation Schedules in User Schema
Selecting Propagation Schedules in User Schema

Figure 10–10 Selecting Propagation Schedules in User Schema

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
Propag. Schedules

in User Schema

list
attribute
names

continued on next page

AQ Administrative Interface : SELECTING Propagation Schedules in User Schema
Administrative Interface: Views 10-25

Selecting Propagation Schedules in User Schema
Name of View
USER_QUEUE_SCHEDULES

See Also: Table 10–1 for a list of views in the adminstrative
interface

QNAME
of the

source queue

DESTINATION
db link for
destination

queues

original
START_TIME

PROPAGATION_
WINDOW
(seconds)

function
to compute

NEXT_TIME

SCHEDULE_
DISABLED

(N = enabled,
Y = disabled)

PROCESS_
NAME

executing
schedule

LAST_RUN_
DATE of

successful sched.
execution

original
START_DATE

LATENCY wait
(seconds)

INSTANCE
number

executing
sched.

LAST_RUN_
TIME of

successful sched.
execution

CURRENT_
START_TIME
of current sched.

execution

NEXT_RUN_
DATE of next

sched.
execution

TOTAL_TIME
executing

sched.
(seconds)

TOTAL_NUMBER
of messages
propagated in

executing sched.

TOTAL_BYTES
propagated in

executing
sched.

AVG_NUMBER
of messages
propagated
in window

MAX_BYTES
of bytes

propagated
in window

AVG_SIZE of
a propagated

message
(bytes)

LAST_ERROR
_MSG (error

number and error
message text)

AVG_TIME to
propagate a

message
(seconds)

FAILURES
number of times
execution failed

LAST_ERROR
_TIME of last
unsuccessful

execution

MAX_NUMBER
of messages
propagated
in window

LAST_ERROR
_DATE of

unsucessful
execution

Schedule is
disabled on
16th failure

Returns NULL
if not currently
executing

Returns NULL
if currently
executing

NEXT_RUN_
TIME of next

sched.
execution

SESSION_ID
of the job
executing

sched.

CURRENT_
START_DATE of
current sched.

execution

Only applicable in
Real Application
Clusters
environment
10-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Propagation Schedules in User Schema
Purpose

Table 10–11 USER_QUEUE_SCHEDULES

Column Name & Description Null? Type

QNAME—source queue name NOT NULL VARCHAR2(30)

DESTINATION—destination name, currently
limited to be a DBLINK name

NOT NULL VARCHAR2(128)

START_DATE—date to start propagation in the
default date format

- DATE

START_TIME—time of day at which to start
propagation in HH:MI:SS format

- VARCHAR2(8)

PROPAGATION_WINDOW—duration in seconds
for the propagation window

- NUMBER

NEXT_TIME—function to compute the start of
the next propagation window

- VARCHAR2(200)

LATENCY—maximum wait time to propagate a
message during the propagation window.

- NUMBER

SCHEDULE_DISABLED—N if enabled Y if
disabled and schedule will not be executed

- VARCHAR(1)

PROCESS_NAME—The name of the SNP
background process executing this schedule.
NULL if not currently executing

- VARCHAR2(8)

SESSION_ID—The session ID (SID,
SERIAL#) of the job executing this schedule.
NULL if not currently executing

- VARCHAR2(82)

INSTANCE—The Real Application Clusters
instance number executing this schedule

- NUMBER

LAST_RUN_DATE—The date on the last
successful execution

- DATE

LAST_RUN_TIME—The time of the last
successful execution in HH:MI:SS format

- VARCHAR2(8)

CURRENT_START_DATE—Date at which the
current window of this schedule was started

- DATE

CURRENT_START_TIME—Time of day at which
the current window of this schedule was started
in HH:MI:SS format

- VARCHAR2(8)
Administrative Interface: Views 10-27

Selecting Propagation Schedules in User Schema
NEXT_RUN_DATE—Date at which the next
window of this schedule will be started

- DATE

NEXT_RUN_TIME—Time of day at which the
next window of this schedule will be started in
HH:MI:SS format

- VARCHAR2(8)

TOTAL_TIME—Total time in seconds spent in
propagating messages from the schedule

- NUMBER

TOTAL_NUMBER—Total number of messages
propagated in this schedule

- NUMBER

TOTAL_BYTES—Total number of bytes
propagated in this schedule

- NUMBER

MAX_NUMBER—The maximum number of
messages propagated in a propagation window

- NUMBER

MAX_BYTES—The maximum number of bytes
propagated in a propagation window

- NUMBER

AVG_NUMBER—The average number of
messages propagated in a propagation window

- NUMBER

AVG_SIZE—The average size of a propagated
message in bytes

- NUMBER

AVG_TIME—The average time, in seconds, to
propagate a message

- NUMBER

FAILURES—The number of times the execution
failed. If 16, the schedule will be disabled

- NUMBER

LAST_ERROR_DATE—The date of the last
unsuccessful execution

- DATE

LAST_ERROR_TIME—The time of the last
unsuccessful execution

- VARCHAR2(8)

LAST_ERROR_MSG—The error number and
error message text of the last unsuccessful
execution

- VARCHAR2(4000)

Table 10–11 (Cont.) USER_QUEUE_SCHEDULES

Column Name & Description Null? Type
10-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queue Subscribers
Selecting Queue Subscribers

Figure 10–11 Selecting Queue Subscribers

Name of View
AQ$<queue_table_name>_S

Purpose
This is a view of all the subscribers for all the queues in any given queue table. This
view is generated when the queue table is created and is called aq$<queue_
table_name>_s . This view is used to query subscribers for any or all the queues
in this queue table. Note that this view is only created for 8.1-compatible queue

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
subscriber
attributes

List at
least one
attribute

User view
AQ$<queue_table_name>_S

SELECT
Queue

Subscribers

list
attribute
names

NAMEQUEUE ADDRESS PROTOCOL TRANSFORMA-
TION

AQ Administrative Interface : SELECTING Queue Subscribers
Administrative Interface: Views 10-29

Selecting Queue Subscribers
tables. This view also displays the transformation for the subscriber if it was created
with one.

Usage Notes
For queues created in 8.1-compatible queue tables, this view provides functionality
that is equivalent to the dbms_aqadm.queue_subscribers() procedure. For
these queues, it is recommended that the view be used instead of this procedure to
view queue subscribers.

Table 10–12 AQ$<queue_table_name>_S

Column Name & Description Null? Type

QUEUE—name of Queue for which subscriber is
defined

NOT NULL VARCHAR2(30)

NAME—name of Agent - VARCHAR2(30)

ADDRESS—address of Agent - VARCHAR2(1024)

PROTOCOL—protocol of Agent - NUMBER

TRANSFORMATION—the name of the
transformation can be null

- VARCHAR2(61)
10-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting Queue Subscribers and Their Rules
Selecting Queue Subscribers and Their Rules

Figure 10–12 Selecting Queue Subscribers and their Rules

Name of View
AQ$<queue_table_name>_R

Purpose
This view displays only the rule based subscribers for all queues in a given queue
table including the text of the rule defined by each subscriber. This is a view of

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
subscriber
attributes

List at
least one
attribute

User view
AQ$<queue_table_name>_R

SELECT
Queue Sub-
scriber and

Rules

list
attribute
names

NAMEQUEUE

RULE

ADDRESS PROTOCOL

TRANSFORMA-
TION

AQ Administrative Interface : SELECTING Queue Subscriber and Rules
Administrative Interface: Views 10-31

Selecting Queue Subscribers and Their Rules
subscribers with rules defined on any queues of a given queue table. This view is
generated when the queue table is created and is called aq$<queue_table_name>_r.
It is used to query subscribers for any or all the queues in this queue table. Note that
this view is only created for 8.1-compatible queue tables. The view will also display
the transformation for the subscriber if one was specified.

Table 10–13 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QUEUE—name of Queue for which subscriber is
defined

NOT NULL VARCHAR2(30)

NAME—name of Agent - VARCHAR2(30)

ADDRESS—address of Agent - VARCHAR2(1024)

PROTOCOL—protocol of Agent - NUMBER

RULE—text of defined rule - VARCHAR2(30)

TRANSFORMATION—name of transformation
specified, can be null

- VARCHAR2(61)
10-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting the Number of Messages in Different States for the Whole Database
Selecting the Number of Messages in Different States for the Whole
Database

Figure 10–13 Selecting the Number of Messages in Different States for the Whole Database

Name of View
GV$AQ

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
statistics

List at
least one
attribute

USER view
GV$AQ

SELECT
Number of Msgs

in States for
Whole Db

list
attribute
names

QID
of queue

number msgs
WAITING

number msgs
READY

number msgs
EXPIRED

TOTAL_WAIT
seconds
'ready'

AVERAGE_WAIT
seconds
'ready'

AQ Administrative Interface : SELECTING Number of Messages in
States for Whole Database
Administrative Interface: Views 10-33

Selecting the Number of Messages in Different States for the Whole Database
Purpose
Provides information about the number of messages in different states for the whole
database.

Table 10–14 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID—the identity of the queue. This is the same
as the qid in user_queues and dba_
queues.

- NUMBER

WAITING—the number of messages in the state
'WAITING'.

- NUMBER

READY—the number of messages in state
'READY'.

- NUMBER

EXPIRED—the number of messages in state
'EXPIRED'.

- NUMBER

TOTAL_WAIT—the number of seconds for
which messages in the queue have been waiting
in state 'READY'

- NUMBER

AVERAGE_WAIT—the average number of
seconds a message in state 'READY' has been
waiting to be dequeued.

- NUMBER
10-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting the Number of Messages in Different States for Specific Instances
Selecting the Number of Messages in Different States for Specific
Instances

Figure 10–14 Selecting the Number of Messages in Different States for Specific Instances

Name of View
V$AQ

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list
all queue
statistics

List at
least one
attribute

USER view
V$AQ

SELECT
Number of Msgs

in States for
Instances

list
attribute
names

QID
of queue

number msgs
WAITING

number msgs
READY

number msgs
EXPIRED

TOTAL_WAIT
seconds
'ready'

AVERAGE_WAIT
seconds
'ready'

AQ Administrative Interface : SELECTING Number of Messages
in States for Instances
Administrative Interface: Views 10-35

Selecting the Number of Messages in Different States for Specific Instances
Purpose
Provides information about the number of messages in different states for specific
instances.

Table 10–15 AQ$<queue_table_name>_R

Column Name & Description Null? Type

QID — the identity of the queue. This is the
same as the qid in user_queues and dba_
queues.

- NUMBER

WAITING — the number of messages in the
state 'WAITING'.

- NUMBER

READY — the number of messages in state
'READY'.

- NUMBER

EXPIRED — the number of messages in state
'EXPIRED'.

- NUMBER

TOTAL_WAIT — the number of seconds for
which messages in the queue have been wait-
ing in state 'READY'

- NUMBER

AVERAGE_WAIT — the average number of sec-
onds a message in state 'READY' has been wait-
ing to be dequeued.

- NUMBER
10-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting the AQ Agents Registered for Internet Access
Selecting the AQ Agents Registered for Internet Access

Figure 10–15 Selecting the AQ Agents Registered for Internet Access

Name of View
AQ$INTERNET_USERS

See Also: Table 10–1 for a list of views in the adminstrative
interface

User/
Program

OR

list all
agent

attributes

List at
least one
attribute

USER view
AQ$INTERNET_USERS

SELECT
AQ Internet

Agents

list
attribute
names

AGENT_NAME DB_USERNAME HTTP_ENABLED

FTP_ENABLED

SMTP_ENABLED

AQ Administrative Interface : SELECTING AQ Agents Registered for Internet Access
Administrative Interface: Views 10-37

Selecting User Transformations
Purpose
Provides information about the agents registered for Internet access to AQ. It also
provides the list of database users that each Internet agent maps to.

Selecting User Transformations

Name of View
USER_TRANSFORMATIONS

Purpose
This view displays all the transformations owned by the user. To view the
transformation definition, query USER_ATTRIBUTE_TRANSFORMATIONS.

Table 10–16 AQ$INTERNET_USERS

Column Name & Description Null? Type

AGENT_NAME—the name of the AQ Internet
agent

NOT NULL VARCHAR2(30)

DB_USERNAME—the name of the database user
that this Internet agent maps to

NOT NULL VARCHAR2(30)

HTTP_ENABLED—indicates whether this agent
is allowed to access AQ through HTTP. Has a
value of YES or NO

- VARCHAR2(4)

SMTP_ENABLED—indicates whether this agent
is allowed to access AQ through SMTP. Has a
value of YES or NO

- VARCHAR2(4)

FTP_ENABLED—indicates whether this agent is
allowed to access AQ through FTP. Always has
a value of NO in current release

- VARCHAR2(4)

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–17 USER_TRANSFORMATIONS

Column Name & Description Null? Type

TRANSFORMATION_ID—unique id for the
transformation

- NUMBER

NAME—transformation name - VARCHAR2(30)
10-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Transformations
Selecting User Transformation Functions

Name of View
USER_ATTRIBUTE_TRANSFORMATIONS

Purpose
This view displays the transformation functions for all the transformations of the
user.

Selecting All Transformations

FROM_TYPE—source type name - VARCHAR2(61)

TO_TYPE—target type name - VARCHAR2(61)

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–18 USER_ATTRIBUTE_TRANSFORMATIONS

Column Name & Description Null? Type

TRANSFORMATION_ID—unique id of the
transformation

- NUMBER

NAME—transformation name - VARCHAR2(30)

FROM_TYPE—source type name - VARCHAR2(61)

TO_TYPE— target type name - VARCHAR2(61)

ATTRIBUTE—target type attribute number - NUMBER

ATRIBUTE_
TRANSFORMATION—transformation function
for the attribute

- VARCHAR2(4000)

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–17 USER_TRANSFORMATIONS

Column Name & Description Null? Type
Administrative Interface: Views 10-39

Selecting All Transformations
Name of View
DBA_TRANSFORMATIONS

Purpose
This view displays all the transformations in the database. These transformations
can be specified with Advanced Queue operations like enqueue, dequeue and
subscribe to automatically integrate transformations in AQ messaging. This view is
accessible only to users having DBA privileges.

Table 10–19 DBA_TRANSFORMATIONS

Column Name & Description Null? Type

TRANSFORMATION_ID—unique identifier for the
transformation

- NUMBER

OWNER—owning user of the transformation - VARCHAR2(30)

NAME— transformation name - VARCHAR2(30)

FROM_TYPE—source type name - VARCHAR2(61)

TO_TYPE—target type name - VARCHAR2(61)

 Namespace—one for transformations created by
the Oracle transformation engine. Transformations
from third party-transformation engines are in
different namespaces.

- -

From_type_schema —owning user of the source
type

- -

From_type_name —source type of the
transformation

- -

To_type_Schema —owning user of the
destination type

- -

To_type_name —destination type of the
transformation. The transformation takes an object
of the source type and returns an object of the
destination type.

- -

Transformation_type —type of the
transformation. Values: SQL and XSL

- -

Attribute_Name —attribute name of the
destination type for which the transformation is
being specified.

- -
10-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Selecting All Transformation Functions
Selecting All Transformation Functions

Name of View
DBA_ATTRIBUTE_TRANSFORMATIONS

Purpose
This view displays the transformation functions for all the transformations in the
database.

Transformation_Expression —can be a SQL
expression, P/LSQL function, or an XSL document

- -

Comment—user-specified comment. - -

See Also: Table 10–1 for a list of views in the adminstrative
interface

Table 10–20 DBA_ATTRIBUTE_TRANSFORMATIONS

Column Name & Description Null? Type

TRANSFORMATION_ID—unique id of the
transformation

- NUMBER

OWNER— transformation owner - VARCHAR2(30)

NAME—transformation name - VARCHAR2(30)

FROM_TYPE— source type name - VARCHAR2(61)

TO_TYPE— target type name - VARCHAR2(61)

ATTRIBUTE— target type attribute number - NUMBER

ATRIBUTE_
TRANSFORMATION—transformation function
for the attribute

- VARCHAR2(4000)

Table 10–19 DBA_TRANSFORMATIONS

Column Name & Description Null? Type
Administrative Interface: Views 10-41

Selecting All Transformation Functions
10-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Operational Interface: Basic Ope
11

Operational Interface: Basic Operations

In this chapter we describe the operational interface to Oracle Advanced Queuing
in terms of use cases. That is, we discuss each operation (such as "Enqueue a
Message") as a use case by that name. The table listing all the use cases is provided
at the head of the chapter (see "Use Case Model: Operational Interface — Basic
Operations" on page 11-2).

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations",
locates all the use cases in a single drawing. If you are using the HTML version of
this document, you can use this figure to navigate to the use case in which you are
interested by clicking on the relevant use case title.

Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment which illustrate the
use case.
rations 11-1

Use Case Model: Operational Interface — Basic Operations
Use Case Model: Operational Interface — Basic Operations
Table 11–1, " Use Case Model: Operational Interface" indicates with a + where
examples are provided for specific use cases and in which programmatic
environment.

The table refers to programmatic environments with the following abbreviations:

� P — PL/SQL using the DBMS_AQADM and DBMS_AQ packages

� O — C using OCI (Oracle Call Interface)

� V — Visual Basic using OO4O (Oracle Objects for OLE)

� J — Java (native AQ) using JDBC (Java Database Connectivity)

� JM — Java (JMS standard) using JDBC (Java Database Connectivity)

Table 11–1 Use Case Model: Operational Interface

Use Case P O V J JM

Enqueuing a Message on page 11-4 - - - - -

Enqueuing a Message [Specify Options] on page 11-6 + - + - +

Enqueuing a Message [Specify Message Properties] on page 11-9 + - + - +

Enqueuing a Message [Specify Message Properties [Specify Sender ID]] on
page 11-12

+ - + - +

Enqueuing a Message [Add Payload] on page 11-14 + - + - +

Listening to One or More Single-Consumer Queues on page 11-23 + + + - -

Listening to One or More Multiconsumer Queues on page 11-35 + + + - -

Dequeuing a Message on page 11-44 - - - - -

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions] on
page 11-47

+ - + - +

Dequeuing a Message from a Multiconsumer Queue [Specify Options] on page 11-52 + - + - +

Registering for Notification on page 11-55 - - - - -

Registering for Notification [Specifying Subscription Name—Single-Consumer
Queue] on page 11-58

- + - - -

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
on page 11-59

- + - - -
11-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Model: Operational Interface — Basic Operations
Posting for Subscriber Notification on page 11-66 + + - - -

Adding an Agent to the LDAP Server on page 11-69 - - - - -

Removing an Agent from the LDAP Server on page 11-71 - - - - -

Table 11–1 (Cont.) Use Case Model: Operational Interface

Use Case P O V J JM
Operational Interface: Basic Operations 11-3

Enqueuing a Message
Enqueuing a Message

Figure 11–1 Enqueuing a Message

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Enqueuing a Message [Specify Options]" on page 11-6

� "Enqueuing a Message [Specify Message Properties]" on
page 11-9

� "Enqueuing a Message [Specify Message Properties [Specify
Sender ID]]" on page 11-12

� "Enqueuing a Message [Add Payload]" on page 11-14

AQ Operational Interface : ENQUEUING a Message

User/
Program

specify
queue name

ENQUEUE
a Message

specify
options

add
payload

specify
message
properties
11-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message
Purpose
Adds a message to the specified queue.

Usage Notes
If a message is enqueued to a multiconsumer queue with no recipient and the queue
has no subscribers (or rule-based subscribers that match this message), then the
Oracle error ORA 24033 is raised. This is a warning that the message will be
discarded since there are no recipients or subscribers to whom it can be delivered.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types
Reference DBMS_AQ, ENQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQOracleQueue.enque

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-16

� Java (JDBC): Enqueue a message (add payload) on page 11-18

� Visual Basic (OO4O): Enqueue a message on page 11-21
Operational Interface: Basic Operations 11-5

Enqueuing a Message [Specify Options]
Enqueuing a Message [Specify Options]

Figure 11–2 Enqueuing a Message [Specify Options]

show
immediately

put
next in

sequence

show
on commit

put
before specified

message

put
before all
messages

OR

OR

OR

Enqueue
a message

default
for visibility

Only value
allowed for
nonpersistent
queue

Specify a value only if
sequence deviation is
specified as BEFORE
a specified message

default for
sequence
deviation

show
relative msgid

specify
transformation

SPECIFY
options

AQ Operational Interface : Enqueue a Message SPECIFYING Options
11-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Specify Options]
Purpose
To specify the options available for the enqueue operation.

Usage Notes
Do not use the immediate option when you want to use LOB locators since LOB
locators are valid only for the duration of the transaction. As the immediate option
automatically commits the transaction, your locator will not be valid.

� The sequence deviation parameter in enqueue options can be used to
change the order of processing between two messages. The identity of the other
message, if any, is specified by the enqueue options parameter relative msgid.
The relationship is identified by the sequence deviation parameter.

Specifying sequence deviation for a message introduces some restrictions
for the delay and priority values that can be specified for this message. The
delay of this message has to be less than or equal to the delay of the message
before which this message is to be enqueued. The priority of this message has to
be greater than or equal to the priority of the message before which this
message is to be enqueued.

� The visibility option must be immediate for non-persistent queues.

� Only local recipients are supported are supported for non-persistent queues.

� If a transformation is specified, it will be applied to the message before
enqueuing it to the queue. The transformation must map the message into an
object whose type is the ADT type of the queue.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Enqueuing a Message" on page 11-4

� "Enqueuing a Message [Specify Message Properties]" on
page 11-9

� "Enqueuing a Message [Specify Message Properties [Specify
Sender ID]]" on page 11-12

� "Enqueuing a Message [Add Payload]" on page 11-14
Operational Interface: Basic Operations 11-7

Enqueuing a Message [Specify Options]
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, ENQUEUE Procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms, AQ Enqueue
Option

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-16

� Java (JDBC): Enqueue a message (add payload) on page 11-18

� Visual Basic (OO4O): Enqueue a message on page 11-21
11-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Specify Message Properties]
Enqueuing a Message [Specify Message Properties]

Figure 11–3 Enqueuing a Message [Specify Message Properties]

AQ Operational Interface : Enqueue a
Message

SPECIFYING Message
Properties

set
no delay

set
no priority

defaults
to null

specify
correlation

id

set
no expiration

set
specific
delay

set
specific
priority

specify
recipients

set
specific

expiration

OR

OR

OR

OR

specify
exception

queue

record
message ID

default to system
provided queue

specify
no exception

queue

Enqueue
a message

default

default

default
= 1

only with
multi-consumer
queues

default to NULL

specify
sender_id

SPECIFY
message
properties
Operational Interface: Basic Operations 11-9

Enqueuing a Message [Specify Message Properties]
Purpose
The Message Properties describe the information that is used by AQ to manage
individual messages. These are set at enqueue time and their values are returned at
dequeue time.

Usage Notes
� To view messages in a waiting or processed state, you can either dequeue or

browse by message ID, or use SELECT statements.

� Message delay and expiration are enforced by the queue monitor (QMN)
background processes. You should remember to start the QMN processes for
the database if you intend to use the delay and expiration features of AQ.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, ENQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQMessageProperty

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Enqueuing a Message" on page 11-4

� "Enqueuing a Message [Specify Options]" on page 11-6

� "Enqueuing a Message [Specify Message Properties [Specify
Sender ID]]" on page 11-12

� "Enqueuing a Message [Add Payload]" on page 11-14
11-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Specify Message Properties]
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-16

� Java (JDBC): Enqueue a message (add payload) on page 11-18

� Visual Basic (OO4O): Enqueue a message on page 11-21
Operational Interface: Basic Operations 11-11

Enqueuing a Message [Specify Message Properties [Specify Sender ID]]
Enqueuing a Message [Specify Message Properties [Specify Sender ID]]

Figure 11–4 Enqueuing a Message [Specify Message Properties [Specify Sender ID]]

Purpose
To identify the sender (producer) of a message.

Usage Notes
Not applicable.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Enqueuing a Message" on page 11-4

� "Enqueuing a Message [Specify Options]" on page 11-6

� "Enqueuing a Message [Specify Message Properties]" on
page 11-9

� "Enqueuing a Message [Add Payload]" on page 11-14

specify
sender
name

specify
sender
address

specify
sender
protocol

SPECIFY
Sender ID

Specify
message
properties

default
= null

default
= null

default
= null/zero

: AQ Operational
Interface

Enqueue a
Message

Specify Message
Properties

SPECIFYING
Sender ID
11-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Specify Message Properties [Specify Sender ID]]
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, ENQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQMessageProperty.setsender

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-16

� Java (JDBC): Enqueue a message (add payload) on page 11-18

� Visual Basic (OO4O): Enqueue a message on page 11-21

For more information about Agent see:

� "Agent Type (aq$_agent)" on page 2-3
Operational Interface: Basic Operations 11-13

Enqueuing a Message [Add Payload]
Enqueuing a Message [Add Payload]

Figure 11–5 Enqueuing a Message [Add Payload]

Usage Notes
To store a payload of type RAW, AQ will create a queue table with LOB column as the
payload repository. The maximum size of the payload is determined by which
programmatic environment you use to access AQ. For PL/SQL, Java and
precompilers the limit is 32K; for the OCI the limit is 4G.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Enqueuing a Message" on page 11-4

� "Enqueuing a Message [Specify Options]" on page 11-6

� "Enqueuing a Message [Specify Message Properties]" on
page 11-9

� "Enqueuing a Message [Specify Message Properties [Specify
Sender ID]]" on page 11-12

add
as object

add
as RAW

OR

ADD
payload

Enqueue
a message

AQ Operational Interface : Enqueue a
Message ADDING Payload
11-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Add Payload]
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, ENQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQOracleQueue.enque

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages on page 11-16

� Java (JDBC): Enqueue a message (add payload) on page 11-18
Operational Interface: Basic Operations 11-15

Enqueuing a Message [Add Payload]
� Visual Basic (OO4O): Enqueue a message on page 11-21

PL/SQL (DBMS_AQ Package): Enqueue of Object Type Messages

Enqueue a Single Message and Specify the Queue Name and Payload
/* Enqueue to msg_queue: */
DECLARE

Enqueue_options DBMS_AQ.enqueue_options_t;
Message_properties DBMS_AQ.message_properties_t;
Message_handle RAW(16);
Message aq.message_typ;

BEGIN
Message := aq.message_typ(’NORMAL MESSAGE’,

’enqueued to msg_queue first.’);

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager
CREATE USER aq IDENTIFIED BY aq;
GRANT Aq_administrator_role TO aq;
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (

Queue_table => ’aq.objmsgs_qtab’,
Queue_payload_type => ’aq.message_typ’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name => ’aq.msg_queue’,
Queue_table => ’aq.objmsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name => ’aq.msg_queue’,
Enqueue => TRUE);

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
Queue_table => ’aq.prioritymsgs_qtab’,
Sort_list => ’PRIORITY,ENQ_TIME’,
Queue_payload_type => ’aq.message_typ’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
Queue_name => ’aq.priority_msg_queue’,
Queue_table => ’aq.prioritymsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
Queue_name => ’aq.priority_msg_queue’,
Enqueue => TRUE);
11-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Add Payload]
DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
Enqueue_options => enqueue_options,
Message_properties => message_properties,
Payload => message,
Msgid => message_handle);

COMMIT;
END;

Enqueue a Single Message and Specify the Priority
/* The queue name priority_msg_queue is defined as an object type queue table.

The payload object type is message. The schema of the queue is aq. */

/* Enqueue a message with priority 30: */
DECLARE

Enqueue_options dbms_aq.enqueue_options_t;
Message_properties dbms_aq.message_properties_t;
Message_handle RAW(16);
Message aq.Message_typ;

BEGIN
Message := Message_typ(’PRIORITY MESSAGE’, ’enqued at priority 30.’);

message_properties.priority := 30;

DBMS_AQ.ENQUEUE(queue_name => ’priority_msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

Enqueue a Single Message and Specify a Transformation
/* Enqueue to msg_queue: */
DECLARE

Enqueue_options DBMS_AQ.enqueue_options_t;
Message_properties DBMS_AQ.message_properties_t;
Message_handle RAW(16);
Message aq.message_typ;

BEGIN
Operational Interface: Basic Operations 11-17

Enqueuing a Message [Add Payload]
Message := aq.message_typ(’NORMAL MESSAGE’,
’enqueued to msg_queue first.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
Enqueue_options => enqueue_options,
Message_properties => message_properties,
transformation => ’AQ.MSG_MAP’,
Payload => message,
Msgid => message_handle);

COMMIT;
END;

Where MSG_MAP was created as follows:

BEGIN
DBMS.TRANSFORM.CREATE_TRANSFORMATION
(

schema => ’AQ’,
name => ’MSG_MAP’,
from_schema => ’AQ’,
from_type => ’PO_ORDER1’,
to_schema => ’AQ’,
to_type => ’PO_ORDER2’,
transformation => ’AQ.MAP_PO_ORDER (source.user_data)’),

END;

Java (JDBC): Enqueue a message (add payload)
/* Setup */
connect system/manager
create user aq identified by aq;
grant aq_administrator_role to aq;

public static void setup(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;
AQAgent agent;

qtable_prop = new AQQueueTableProperty("RAW");

q_table = aq_sess.createQueueTable ("aq", "rawmsgs_qtab", qtable_prop);
11-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Add Payload]
queue_prop = new AQQueueProperty();
queue = aq_sess.createQueue (q_table, "msg_queue", queue_prop);

queue.start();

qtable_prop = new AQQueueTableProperty("RAW");
qtable_prop.setMultiConsumer(true);

qtable_prop.setSortOrder("priority,enq_time");
q_table = aq_sess.createQueueTable ("aq", "rawmsgs_qtab2",

qtable_prop);

queue_prop = new AQQueueProperty();
queue = aq_sess.createQueue (q_table, "priority_msg_queue", queue_prop);

queue.start();

agent = new AQAgent("subscriber1", null);

queue.addSubscriber(agent, null);
}

/* Enqueue a message */
public static void example(AQSession aq_sess) throws AQException, SQLException
{

AQQueue queue;
AQMessage message;
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data = "new message";
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to the queue */
queue = aq_sess.getQueue ("aq", "msg_queue");

/* Create a message to contain raw payload: */
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data: */
b_array = test_data.getBytes();
Operational Interface: Basic Operations 11-19

Enqueuing a Message [Add Payload]
raw_payload = message.getRawPayload();

raw_payload.setStream(b_array, b_array.length);

/* Create a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue(enq_option, message);

db_conn.commit();
}

/* Enqueue a message with priority = 5 */
public static void example(AQSession aq_sess) throws AQException, SQLException
{

AQQueue queue;
AQMessage message;
AQMessageProperty msg_prop;
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data = "priority message";
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to the queue */
queue = aq_sess.getQueue ("aq", "msg_queue");

/* Create a message to contain raw payload: */
message = queue.createMessage();

/* Get Message property */
msg_prop = message.getMessageProperty();

/* Set priority */
msg_prop.setPriority(5);

/* Get handle to the AQRawPayload object and populate it with raw data: */
b_array = test_data.getBytes();

raw_payload = message.getRawPayload();
11-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing a Message [Add Payload]
raw_payload.setStream(b_array, b_array.length);

/* Create a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue(enq_option, message);

db_conn.commit();
}

Visual Basic (OO4O): Enqueue a message
Enqueuing messages of type objects

'Prepare the message. MESSAGE_TYPE is a user defined type
' in the "AQ" schema
Set OraMsg = Q.AQMsg(1, "MESSAGE_TYPE")
Set OraObj = DB.CreateOraObject("MESSAGE_TYPE")

OraObj("subject").Value = "Greetings from OO4O"
OraObj("text").Value = "Text of a message originated from OO4O"

Set OraMsg.Value = OraObj
Msgid = Q.Enqueue

Enqueuing messages of type RAW

'Create an OraAQ object for the queue "DBQ"
Dim Q as object
Dim Msg as object
Dim OraSession as object
Dim DB as object

Set OraSession = CreateObject("OracleInProcServer.XOraSession")
Set OraDatabase = OraSession.OpenDatabase(mydb, “scott/tiger" 0&)
Set Q = DB.CreateAQ("DBQ")

'Get a reference to the AQMsg object
Set Msg = Q.AQMsg
Msg.Value = "Enqueue the first message to a RAW queue."

'Enqueue the message
Q.Enqueue()

'Enqueue another message.
Operational Interface: Basic Operations 11-21

Enqueuing a Message [Add Payload]
Msg.Value = "Another message"
Q.Enqueue()

'Enqueue a message with nondefault properties.
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Msg.Delay = 5
Msg.Value = "Urgent message"
Q.Enqueue()
Msg.Value = "The visibility option used in the enqueue call is

ORAAQ_ENQ_IMMEDIATE"
Q.Visible = ORAAQ_ENQ_IMMEDIATE
Msgid = Q.Enqueue

'Enqueue Ahead of message Msgid_1
Msg.Value = "First Message to test Relative Message id"
Msg.Correlation = "RELATIVE_MESSAGE_ID"

Msgid_1 = Q.Enqueue
Msg.Value = "Second message to test RELATIVE_MESSAGE_ID is queued

ahead of the First Message "
OraAq.relmsgid = Msgid_1
Msgid = Q.Enqueue
11-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
Listening to One or More Single-Consumer Queues

Figure 11–6 Listening to One or More Single-Consumer Queues

Usage Notes
The call takes a list of agents as an argument. You specify the queue to be monitored
in the address field of each agent listed. You also must specify the name of the agent
when monitoring multiconsumer queues. For single-consumer queues, an agent
name must not be specified. Only local queues are supported as addresses. Protocol
is reserved for future use.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Listening to One or More Multiconsumer Queues" on
page 11-35

User/
Program

listen
with no wait

listen
with defined

wait

listen
with indefinite

wait

OR

OR

LISTEN
to Queue(s)

default
for
wait

LISTEN to single-consumer queue(s)

Of the Agent, only the
address is specified.

specify
queue(s)

: AQ Operational Interface LISTENING to Queues
Operational Interface: Basic Operations 11-23

Listening to One or More Single-Consumer Queues
This is a blocking call that returns when there is a message ready for consumption
for an agent in the list. If there are messages for more than one agent, only the first
agent listed is returned. If there are no messages found when the wait time expires,
an error is raised.

A successful return from the listen call is only an indication that there is a
message for one of the listed agents in one the specified queues. The interested
agent must still dequeue the relevant message.

Note that you cannot call listen on nonpersistent queues.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, LISTEN procedure

� C (OCI): Oracle Call Interface Programmer’s Guide Relational Functions,
LNOCIAQListen

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ
Object > Monitoring Messages

� Java (JDBC): Oracle9i Supplied Java Packages Reference, AQSession.listen

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Listen to Queues on page 11-24

� Java (JDBC): Listen to Queues

� C (OCI): Listen to Single-Consumer Queues on page 11-26

PL/SQL (DBMS_AQ Package): Listen to Queues
/* The listen call allows you to monitor a list of queues for messages for

specific agents. You need to have dequeue privileges for all the queues
you wish to monitor. */
11-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
Listen to Single-Consumer Queue (Timeout of Zero).
DECLARE

Agent_w_msg aq$_agent;
My_agent_list dbms_aq.agent_list_t;

BEGIN
/* NOTE: MCQ1, MCQ2, MCQ3 are multiconsumer queues in SCOTT’s schema
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT’s schema
*/

Qlist(1):= aq$_agent(NULL, 'scott.SCQ1', NULL);
Qlist(2):= aq$_agent(NULL, 'SCQ2', NULL);
Qlist(3):= aq$_agent(NULL, 'SCQ3', NULL);

/* Listen with a time-out of zero: */
DBMS_AQ.LISTEN(

Agent_list => My_agent_list,
Wait => 0,
Agent => agent_w_msg);

DBMS_OUTPUT.PUT_LINE('Message in Queue :- ' || agent_w_msg.address);
DBMS_OUTPUT.PUT_LINE('');

END;

Java (JDBC): Listen to Queues
public static void monitor_status_queue(Connection db_conn)
{

AQSession aq_sess;
AQAgent[] agt_list = null;
AQAgent ret_agt = null;

try
{

/* Create an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);

/* Construct the waiters list: */
agt_list = new AQAgent[3];

agt_list[0] = new AQAgent(null, "scott.SCQ1",0);
agt_list[1] = new AQAgent (null, "SCQ2",0);
agt_list[2] = new AQAgent (null, "SCQ3",0);

/* Wait for order status messages for 120 seconds: */
Operational Interface: Basic Operations 11-25

Listening to One or More Single-Consumer Queues
ret_agt = aq_sess.listen(agt_list, 120);

System.out.println("Message available for agent: " +
ret_agt.getName() + " " + ret_agt.getAddress());

}
catch (AQException aqex)
{

System.out.println("Exception-1: " + aqex);
}
catch (Exception ex)
{

System.out.println("Exception-2: " + ex);
}

}

C (OCI): Listen to Single-Consumer Queues

Listening for Single-Consumer Queues with Zero Timeout
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

switch (status)
{

case OCI_SUCCESS:
break;

case OCI_SUCCESS_WITH_INFO:
printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED_DATA:
printf("Error - OCI_NEED_DATA\n");
break;

case OCI_NO_DATA:
11-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
printf("Error - OCI_NO_DATA\n");
break;

case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

case OCI_STILL_EXECUTING:
printf("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
printf("Error - OCI_CONTINUE\n");
break;

default:
break;

}
}

/* set agent into descriptor */
void SetAgent(agent, appname, queue,errhp)

LNOCIAQAgent *agent;
text *appname;
text *queue;
LNOCIError *errhp;
{

OCIAttrSet(agent, OCI_DTYPE_AQAGENT,
appname ? (dvoid *)appname : (dvoid *)"",
appname ? strlen((const char *)appname) : 0,

OCI_ATTR_AGENT_NAME, errhp);

OCIAttrSet(agent, OCI_DTYPE_AQAGENT,
queue ? (dvoid *)queue : (dvoid *)"",
queue ? strlen((const char *)queue) : 0,

OCI_ATTR_AGENT_ADDRESS, errhp);

printf("Set agent name to %s\n", appname ? (char *)appname : "NULL");
printf("Set agent address to %s\n", queue ? (char *)queue : "NULL");

}

/* get agent from descriptor */
Operational Interface: Basic Operations 11-27

Listening to One or More Single-Consumer Queues
void GetAgent(agent, errhp)
LNOCIAQAgent *agent;
LNOCIError *errhp;
{
text *appname;
text *queue;
ub4 appsz;
ub4 queuesz;

if (!agent)
{

printf("agent was NULL \n");
return;

}
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&appname, &appsz, OCI_ATTR_AGENT_NAME, errhp));
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&queue, &queuesz, OCI_ATTR_AGENT_ADDRESS, errhp));
if (!appsz)

printf("agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (!queuesz)

printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);

}

int main()
{

OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCISession *usrhp;
OCIAQAgent *agent_list[3];
OCIAQAgent *agent = (OCIAQAgent *)0;
/* added next 2 121598 */
int i;

/* Standard OCI Initialization */

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp,
(ub4) OCI_HTYPE_ENV, 0, (dvoid **) 0);
11-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
0, (dvoid **) 0);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid **) 0);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR_PASSWORD, errhp);

OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, OCI_DEFAULT);

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

/* AQ LISTEN Initialization - allocate agent handles */
for (i = 0; i < 3; i++)
{

agent_list[i] = (OCIAQAgent *)0;
OCIDescriptorAlloc(envhp, (dvoid **)&agent_list[i],

OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
}

Operational Interface: Basic Operations 11-29

Listening to One or More Single-Consumer Queues
/*
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT’s schema
*/

SetAgent(agent_list[0], (text *)0, "SCOTT.SCQ1", errhp);
SetAgent(agent_list[1], (text *)0, "SCOTT.SCQ2", errhp);
SetAgent(agent_list[2], (text *)0, "SCOTT.SCQ3", errhp);

checkerr(errhp,OCIAQListen(svchp, errhp, agent_list, 3, 0, &agent, 0));

printf("MESSAGE for :- \n");
GetAgent(agent, errhp);
printf("\n");

}

Listening for Single-Consumer Queues with Timeout of 120 Seconds
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

switch (status)
{

case OCI_SUCCESS:
break;

case OCI_SUCCESS_WITH_INFO:
printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED_DATA:
printf("Error - OCI_NEED_DATA\n");
break;

case OCI_NO_DATA:
printf("Error - OCI_NO_DATA\n");
11-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
break;
case OCI_ERROR:

OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

case OCI_STILL_EXECUTING:
printf("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
printf("Error - OCI_CONTINUE\n");
break;

default:
break;

}
}

/* set agent into descriptor */
/* void SetAgent(agent, appname, queue) */
void SetAgent(agent, appname, queue,errhp)

LNOCIAQAgent *agent;
text *appname;
text *queue;
LNOCIError *errhp;
{

OCIAttrSet(agent, OCI_DTYPE_AQAGENT,
appname ? (dvoid *)appname : (dvoid *)"",
appname ? strlen((const char *)appname) : 0,

OCI_ATTR_AGENT_NAME, errhp);

OCIAttrSet(agent, OCI_DTYPE_AQAGENT,
queue ? (dvoid *)queue : (dvoid *)"",
queue ? strlen((const char *)queue) : 0,

OCI_ATTR_AGENT_ADDRESS, errhp);

printf("Set agent name to %s\n", appname ? (char *)appname : "NULL");
printf("Set agent address to %s\n", queue ? (char *)queue : "NULL");

}

/* get agent from descriptor */
Operational Interface: Basic Operations 11-31

Listening to One or More Single-Consumer Queues
void GetAgent(agent, errhp)
LNOCIAQAgent *agent;
LNOCIError *errhp;
{
text *appname;
text *queue;
ub4 appsz;
ub4 queuesz;

if (!agent)
{

printf("agent was NULL \n");
return;

}
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&appname, &appsz, OCI_ATTR_AGENT_NAME, errhp));
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&queue, &queuesz, OCI_ATTR_AGENT_ADDRESS, errhp));
if (!appsz)

printf("agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (!queuesz)

printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);

}

int main()
{

OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCISession *usrhp;
OCIAQAgent *agent_list[3];
OCIAQAgent *agent = (OCIAQAgent *)0;
/* added next 2 121598 */
int i;

/* Standard OCI Initialization */

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp,
(ub4) OCI_HTYPE_ENV, 0, (dvoid **) 0);
11-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Single-Consumer Queues
OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
0, (dvoid **) 0);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid **) 0);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR_PASSWORD, errhp);

OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, OCI_DEFAULT);

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

/* AQ LISTEN Initialization - allocate agent handles */
for (i = 0; i < 3; i++)
{

agent_list[i] = (OCIAQAgent *)0;
OCIDescriptorAlloc(envhp, (dvoid **)&agent_list[i],

OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
}

Operational Interface: Basic Operations 11-33

Listening to One or More Single-Consumer Queues
/*
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT’s schema
*/

SetAgent(agent_list[0], (text *)0, "SCOTT.SCQ1", errhp);
SetAgent(agent_list[1], (text *)0, "SCOTT.SCQ2", errhp);
SetAgent(agent_list[2], (text *)0, "SCOTT.SCQ3", errhp);

checkerr(errhp,OCIAQListen(svchp, errhp, agent_list, 3, 120, &agent, 0));

printf("MESSAGE for :- \n");
GetAgent(agent, errhp);
printf("\n");

}

11-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Multiconsumer Queues
Listening to One or More Multiconsumer Queues

Figure 11–7 Listening to One or More Multiconsumer Queues

User/
Program

listen
with no wait

listen
with defined

wait

listen
with indefinite

wait

OR

OR

specify
name of
listener

LISTEN
to Queue(s)

default
for
wait

LISTEN to at least one multi-consumer queue

Protocol must be
set to NULL

identify
agent

Only total
queues

specify
queue

a

AQ Operational Interface : LISTENING to Queues
Operational Interface: Basic Operations 11-35

Listening to One or More Multiconsumer Queues
Usage Notes
See the usage notes in "Listening to One or More Single-Consumer Queues" on
page 11-23.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, LISTEN procedure

� C (OCI): Oracle Call Interface Programmer’s Guide Relational Functions,
LNOCIAQListen

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ
Object > Monitoring Messages

� Feature not available through the Java API

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Listening to One or More Single-Consumer Queues" on
page 11-23
11-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Multiconsumer Queues
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Listen to Queues on page 11-37

� C (OCI): Listen to Multiconsumer Queues on page 11-38

PL/SQL (DBMS_AQ Package): Listen to Queues
/* The listen call allows you to monitor a list of queues for messages for

specific agents. You need to have dequeue privileges for all the queues
you wish to monitor. */

Listen to Multiconsumer Queue (Timeout of Zero).
DECLARE

Agent_w_msg aq$_agent;
My_agent_list dbms_aq.agent_list_t;

BEGIN
/* NOTE: MCQ1, MCQ2, MCQ3 are multiconsumer queues in SCOTT’s schema
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT’s schema
*/

Qlist(1):= aq$_agent('agent1', 'MCQ1', NULL);
Qlist(2):= aq$_agent('agent2', 'scott.MCQ2', NULL);
Qlist(3):= aq$_agent('agent3', 'scott.MCQ3', NULL);

/* Listen with a time-out of zero: */
DBMS_AQ.LISTEN(

agent_list => My_agent_list,
wait => 0,
agent => agent_w_msg);

DBMS_OUTPUT.PUT_LINE('Message in Queue :- ' || agent_w_msg.address);
DBMS_OUTPUT.PUT_LINE('');

END;
/

Listen to Mixture of Multiconsumer Queues (Timeout 100 Seconds).
DECLARE

Agent_w_msg aq$_agent;
My_agent_list dbms_aq.agent_list_t;

BEGIN
Operational Interface: Basic Operations 11-37

Listening to One or More Multiconsumer Queues
/* NOTE: MCQ1, MCQ2, MCQ3 are multiconsumer queues in SCOTT’s schema
* SCQ1, SCQ2, SCQ3 are single-consumer queues in SCOTT’s schema
*/
Qlist(1):= aq$_agent('agent1', 'MCQ1', NULL);
Qlist(2):= aq$_agent(NULL, 'scott.SQ1', NULL);
Qlist(3):= aq$_agent('agent3', 'scott.MCQ3', NULL);
/* Listen with a time-out of 100 seconds */
DBMS_AQ.LISTEN(

Agent_list => My_agent_list,
Wait => 100,
Agent => agent_w_msg);
DBMS_OUTPUT.PUT_LINE('Message in Queue :- ' || agent_w_msg.address

|| 'for agent' || agent_w_msg.name);
DBMS_OUTPUT.PUT_LINE('');

END;
/

C (OCI): Listen to Multiconsumer Queues

Listening to Multiconsumer Queues with a Zero Timeout, a Timeout of 120
Seconds, and a Timeout of 100 Seconds
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

switch (status)
{

case OCI_SUCCESS:
break;

case OCI_SUCCESS_WITH_INFO:
printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED_DATA:
printf("Error - OCI_NEED_DATA\n");
break;
11-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Multiconsumer Queues
case OCI_NO_DATA:
printf("Error - OCI_NO_DATA\n");
break;

case OCI_ERROR:
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

case OCI_STILL_EXECUTING:
printf("Error - OCI_STILL_EXECUTE\n");
break;

case OCI_CONTINUE:
printf("Error - OCI_CONTINUE\n");
break;

default:
break;

}
}

void SetAgent(OCIAQAgent *agent,
text *appname,
text *queue,
OCIError *errhp,
OCIEnv *envhp);

void GetAgent(OCIAQAgent *agent,
OCIError *errhp);

/*--*/
/* OCI Listen examples for multiconsumers */
/* */
void SetAgent(agent, appname, queue, errhp)
LNOCIAQAgent *agent;
text *appname;
text *queue;
LNOCIError *errhp;
{

OCIAttrSet(agent,
OCI_DTYPE_AQAGENT,
appname ? (dvoid *)appname : (dvoid *)"",
appname ? strlen((const char *)appname) : 0,

OCI_ATTR_AGENT_NAME,
Operational Interface: Basic Operations 11-39

Listening to One or More Multiconsumer Queues
errhp);

OCIAttrSet(agent,
OCI_DTYPE_AQAGENT,
queue ? (dvoid *)queue : (dvoid *)"",
queue ? strlen((const char *)queue) : 0,

OCI_ATTR_AGENT_ADDRESS,
errhp);

printf("Set agent name to %s\n", appname ? (char *)appname : "NULL");
printf("Set agent address to %s\n", queue ? (char *)queue : "NULL");

}

/* get agent from descriptor */
void GetAgent(agent, errhp)
LNOCIAQAgent *agent;
LNOCIError *errhp;
{

text *appname;
text *queue;
ub4 appsz;
ub4 queuesz;

if (!agent)
{

printf("agent was NULL \n");
return;

}
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&appname, &appsz, OCI_ATTR_AGENT_NAME, errhp));
checkerr(errhp, OCIAttrGet(agent, OCI_DTYPE_AQAGENT,

(dvoid *)&queue, &queuesz, OCI_ATTR_AGENT_ADDRESS, errhp));
if (!appsz)

printf("agent name: NULL\n");
else printf("agent name: %.*s\n", appsz, (char *)appname);
if (!queuesz)

printf("agent address: NULL\n");
else printf("agent address: %.*s\n", queuesz, (char *)queue);

}

/* main from AQ Listen to multiconsumer Queues */

/* int main() */
int main(char *argv, int argc)
{

11-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Multiconsumer Queues
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCISession *usrhp;
OCIAQAgent *agent_list[3];
OCIAQAgent *agent;
int i;

/* Standard OCI Initialization */

OCIInitialize((ub4) OCI_OBJECT,
(dvoid *)0,
(dvoid * (*)()) 0,
(dvoid * (*)()) 0,
(void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
0, (dvoid **) 0);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **)0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
0, (dvoid **) 0);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
0, (dvoid **) 0);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
0, (dvoid **) 0);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);
Operational Interface: Basic Operations 11-41

Listening to One or More Multiconsumer Queues
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *) usrhp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR_PASSWORD, errhp);

OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, OCI_DEFAULT);

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

/* AQ LISTEN Initialization - allocate agent handles */
for (i = 0; i < 3; i++)
{

OCIDescriptorAlloc(envhp, (dvoid **)&agent_list[i],
OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

}

/*
* MCQ1, MCQ2, MCQ3 are multiconsumer queues in SCOTT’s schema
*/

/* Listening to Multiconsumer Queues with Zero Timeout */

SetAgent(agent_list[0], "app1", "MCQ1", errhp);
SetAgent(agent_list[1], "app2", "MCQ2", errhp);
SetAgent(agent_list[2], "app3", "MCQ3", errhp);

checkerr(errhp, OCIAQListen(svchp, errhp, agent_list, 3, 0, &agent, 0));

printf("MESSAGE for :- \n");
GetAgent(agent, errhp);
printf("\n");

/* Listening to Multiconsumer Queues with Timeout of 120 Seconds */

SetAgent(agent_list[0], "app1", "SCOTT.MCQ1", errhp);
SetAgent(agent_list[1], "app2", "SCOTT.MCQ2", errhp);
SetAgent(agent_list[2], "app3", "SCOTT.MCQ3", errhp);

checkerr(errhp, OCIAQListen(svchp, errhp, agent_list, 3, 120, &agent, 0));
11-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Listening to One or More Multiconsumer Queues
printf("MESSAGE for :- \n");
GetAgent(agent, errhp);
printf("\n");

/* Listening to a Mixture of Single and Multiconsumer Queues
* with a Timeout of 100 Seconds
*/

SetAgent(agent_list[0], "app1", "SCOTT.MCQ1", errhp);
SetAgent(agent_list[1], "app2", "SCOTT.MCQ2", errhp);
SetAgent(agent_list[2], (text *)0, "SCOTT.SCQ3", errhp);

checkerr(errhp, OCIAQListen(svchp, errhp, agent_list, 3, 100, &agent, 0));

printf("MESSAGE for :- \n");
GetAgent(agent, errhp);
printf("\n");

}

Operational Interface: Basic Operations 11-43

Dequeuing a Message
Dequeuing a Message

Figure 11–8 Dequeuing a Message

Purpose
Dequeues a message from the specified queue.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Dequeuing a Message from a Single-Consumer Queue
[SpecifyOptions]" on page 11-47

� "Dequeuing a Message from a Multiconsumer Queue [Specify
Options]" on page 11-52

AQ Operational Interface : DEQUEUING a Message

User/
Program

name
a queue

specify
options

DEQUEUE
a Message

From a multiconsumer
queue
11-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeuing a Message
Usage Notes

Search criteria and dequeue order for messages:
� The search criteria for messages to be dequeued is determined by the consumer

name, msgid and correlation parameters in the dequeue options. Msgid uniquely
identifies the message to be dequeued. Correlation identifiers are
application-defined identifiers that are not interpreted by AQ.

� Only messages in the READY state are dequeued unless a msgid is specified.

� The dequeue order is determined by the values specified at the time the queue
table is created unless overridden by the msgid and correlation id in dequeue
options.

� The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the
beginning of the browsing transaction.

Navigating through a queue
The default NAVIGATION parameter during dequeue is NEXT MESSAGE. This
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the FIRST
MESSAGE navigation option when the first message in the queue needs to be
processed by every dequeue command. This usually becomes necessary when a
higher priority message arrives in the queue while messages already-enqueued are
being processed.

Note: It may also be more efficient to use the FIRST MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST MESSAGE option is not specified, AQ will
have to continually generate the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST MESSAGE
option is specified, AQ will use a new snapshot for every dequeue
command.
Operational Interface: Basic Operations 11-45

Dequeuing a Message
Dequeue by Message Grouping
� Messages enqueued in the same transaction into a queue that has been enabled

for message grouping will form a group. If only one message is enqueued in the
transaction, this will effectively form a group of one message. There is no upper
limit to the number of messages that can be grouped in a single transaction.

� In queues that have not been enabled for message grouping, a dequeue in
LOCKED or REMOVE mode locks only a single message. By contrast, a dequeue
operation that seeks to dequeue a message that is part of a group will lock the
entire group. This is useful when all the messages in a group need to be
processed as an atomic unit.

� When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The
application can then use the NEXT TRANSACTION to start dequeuing messages
from the next available group. In the event that no groups are available, the
dequeue will time-out after the specified WAIT period.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, DEQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQOracleQueue.dequeue

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Dequeue of Object Type Messages on page 11-49

� Java (JDBC): Dequeue a message from a single-consumer queue (specify
options) on page 11-49

� Visual Basic (OO4O): Dequeue a message on page 11-50
11-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]

Figure 11–9 Dequeuing a Message from a Single-Consumer Queue

optional
correlation
information

get
first message

in group

browse
unlocked
message

show
immediately

add
message info.

get
with no wait

get
first message

browse
locked

message

show
on commit

get
with defined

wait

get
next message

(in group)

remove
a message

get
with indefinite

wait

OR
OR

OR
OR

OR

DEQUEUE single-consumer queue

OR

OR

default for
dequeue
mode

default
for
navigation

default
for
wait

default for
visibility

specify
transformation

SPECIFY
options

: DEQUEUING a MessageAQ Operational Interface

DEQUEUE
a Message
Operational Interface: Basic Operations 11-47

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
Purpose
To specify the options available for the dequeue operation.

Usage Notes
Typically, you expect the consumer of messages to access messages using the
dequeue interface. You can view processed messages or messages still to be
processed by browsing by message id or by using SELECTs.

The transformation, if specified, is applied before returning the message to the
caller. The transformation should be defined to map the queue ADT type to the
return type desired by the caller.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, DEQUEUE procedure

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQDequeueOption

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Dequeuing a Message" on page 11-44

� "Dequeuing a Message from a Multiconsumer Queue [Specify
Options]" on page 11-52
11-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� PL/SQL (DBMS_AQ Package): Dequeue of Object Type Messages on page 11-49

� Java (JDBC): Dequeue a message from a single-consumer queue (specify
options) on page 11-49

� Visual Basic (OO4O): Dequeue a message on page 11-50

PL/SQL (DBMS_AQ Package): Dequeue of Object Type Messages
/* Dequeue from msg_queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
DBMS_AQ.DEQUEUE(

queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;
END;

Java (JDBC): Dequeue a message from a single-consumer queue (specify
options)
/* Dequeue a message with correlation id = ’RUSH’ */
public static void example(AQSession aq_sess) throws AQException, SQLException
{

AQQueue queue;
AQMessage message;
AQRawPayload raw_payload;
AQDequeueOption deq_option;
byte[] b_array;
Connection db_conn;
Operational Interface: Basic Operations 11-49

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
db_conn = ((AQOracleSession)aq_sess).getDBConnection();

queue = aq_sess.getQueue ("aq", "msg_queue");

/* Create a AQDequeueOption object with default options: */
deq_option = new AQDequeueOption();

deq_option.setCorrelation("RUSH");

/* Dequeue a message */
message = queue.dequeue(deq_option);

System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload();

b_array = raw_payload.getBytes();

db_conn.commit();
}

Visual Basic (OO4O): Dequeue a message
Dequeuing messages of RAW type

'Dequeue the first message available
Q.Dequeue()
Set Msg = Q.QMsg

'Display the message content
MsgBox Msg.Value

'Dequeue the first message available without removing it
' from the queue
Q.DequeueMode = ORAAQ_DEQ_BROWSE

'Dequeue the first message with the correlation identifier
' equal to "RELATIVE_MSG_ID"
Q.Navigation = ORAAQ_DQ_FIRST_MSG
Q.correlate = "RELATIVE_MESSAGE_ID"
Q.Dequeue

'Dequeue the next message with the correlation identifier
11-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
' of "RELATIVE_MSG_ID"
Q.Navigation = ORAAQ_DQ_NEXT_MSG
Q.Dequeue()

'Dequeue the first high priority message
Msg.Priority = ORAQMSG_HIGH_PRIORITY
Q.Dequeue()

'Dequeue the message enqueued with message id of Msgid_1
Q.DequeueMsgid = Msgid_1
Q.Dequeue()

'Dequeue the message meant for "ANDY"
Q.consumer = "ANDY"
Q.Dequeue()

'Return immediately if there is no message on the queue
Q.wait = ORAAQ_DQ_NOWAIT
Q.Dequeue()

Dequeuing messages of Oracle object type

Set OraObj = DB.CreateOraObject("MESSAGE_TYPE")
Set QMsg = Q.AQMsg(1, "MESSAGE_TYPE")

'Dequeue the first message available without removing it
Q.Dequeue()
OraObj = QMsg.Value

'Display the subject and data
MsgBox OraObj!subject & OraObj!Data
Operational Interface: Basic Operations 11-51

Dequeuing a Message from a Multiconsumer Queue [Specify Options]
Dequeuing a Message from a Multiconsumer Queue [Specify Options]

Figure 11–10 Dequeuing a Message from a Multiconsumer Queue

get
first message

in group

browse
unlocked
message

show
immediately

add
message info.

get
with no wait

get
first message

browse
locked

message

show
on commit

get
with defined

wait

get
next message

(in group)

remove
a message

get
with indefinite

wait

OR
OR

OR
OR

OR

DEQUEUE multi-consumer queue
identify
agent

(dequeuer)

OR
OR

default for
dequeue
mode

default
for
navigation

default
for
wait

default
for
visibility

optional
correlation
information

SPECIFY
options

DEQUEUE
a Message

AQ Operational Interface DEQUEUING a Message:
11-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Dequeuing a Message from a Multiconsumer Queue [Specify Options]
Purpose
To specify the options available for the dequeue operation.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Oracle9i Supplied PL/SQL Packages and Types Reference
DBMS_AQ, DEQUEUE procedure

� Visual Basic (OO4O): There is no applicable syntax reference for this use case

� Java (JDBC): Oracle9i Supplied Java Packages Reference,oracle.jms,
AQDequeOption

Examples
 Examples in the following programmatic environments are provided:

� Java (JDBC): Dequeue a message from a multiconsumer queue (specify options)
on page 11-54

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Dequeuing a Message" on page 11-44

� "Dequeuing a Message from a Single-Consumer Queue
[SpecifyOptions]" on page 11-47
Operational Interface: Basic Operations 11-53

Dequeuing a Message from a Multiconsumer Queue [Specify Options]
Java (JDBC): Dequeue a message from a multiconsumer queue (specify
options)

/* Dequeue a message for subscriber1 in browse mode*/
public static void example(AQSession aq_sess) throws AQException, SQLException
{

AQQueue queue;
AQMessage message;
AQRawPayload raw_payload;
AQDequeueOption deq_option;
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

queue = aq_sess.getQueue ("aq", "priority_msg_queue");

/* Create a AQDequeueOption object with default options: */
deq_option = new AQDequeueOption();

/* Set dequeue mode to BROWSE */
deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_BROWSE);

/* Dequeue messages for subscriber1 */
deq_option.setConsumerName("subscriber1");

/* Dequeue a message: */
message = queue.dequeue(deq_option);

System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload();

b_array = raw_payload.getBytes();

db_conn.commit();
}

11-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification
Registering for Notification

Figure 11–11 Registering for Notification

User/
Program

specify
namespace

specify
subscription

name

specify
user-defined

context

specify
callback
function

REGISTER
for Notification

specify
registration
information

AQ Administrative Interface : REGISTERING for Notification
Operational Interface: Basic Operations 11-55

Registering for Notification
Purpose
To register a callback for message notification.

Usage Notes
� This call is invoked for registration to a subscription which identifies the

subscription name of interest and the associated callback to be invoked. Interest
in several subscriptions can be registered at one time.

� This interface is only valid for the asynchronous mode of message delivery. In
this mode, a subscriber issues a registration call which specifies a callback.
When messages are received that match the subscription criteria, the callback is
invoked. The callback may then issue an explicit message_receive (dequeue)
to retrieve the message.

� The user must specify a subscription handle at registration time with the
namespace attribute set to LNOCI_SUBSCR_NAMESPACE_AQ.

� The subscription name is the string ’schema .queue ’ if the registration is for a
single-consumer queue and ’schema.queue:consumer_name ’ if the
registration is for a multiconsumer queues.

� Related Functions: LNOCIAQListen (), LNOCISubscriptionDisable (),
LNOCISubscriptionEnable (), LNOCISubscriptionUnRegister ()

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Registering for Notification [Specifying Subscription
Name—Single-Consumer Queue]" on page 11-58

� "Registering for Notification [Specifying Subscription
Name—Multiconsumer Queue]" on page 11-59

For more information about the OCI operation Register for
Notification see:

� Oracle Call Interface Programmer’s Guide
11-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification
� PL/SQL (DBMS_AQ Package): Not available.

� C (OCI): Oracle Call Interface Programmer’s Guide LNOCI Programming
Advanced Topics, Publish-Subscribe Notification

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ
Object > Monitoring Messages

� Java (JDBC): Not available.

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Examples in the following programmatic
environments are provided:

� C (OCI): Register for Notifications For Single-Consumer and Multiconsumer
Queries on page 11-60
Operational Interface: Basic Operations 11-57

Registering for Notification [Specifying Subscription Name—Single-Consumer Queue]
Registering for Notification [Specifying Subscription
Name—Single-Consumer Queue]

Figure 11–12 Specifying Subscription Name—Single-Consumer Queue

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Registering for Notification" on page 11-55

� "Registering for Notification [Specifying Subscription
Name—Multiconsumer Queue]" on page 11-59

specify
schema
name

SPECIFY
Subscription

Name

Register
for

Notification
Single-consumer queue

specify
queue
name

Optional
information

AQ Operational Interface Register for
Notification

SPECIFYING Subscription
Name:
11-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
Registering for Notification [Specifying Subscription
Name—Multiconsumer Queue]

Figure 11–13 Specifying Subscription Name - Multiconsumer Queue

Usage Notes
Not applicable.

See Also:

� Table 11–1 for a list of operational interface basic operations

� "Registering for Notification" on page 11-55

� "Registering for Notification [Specifying Subscription
Name—Single-Consumer Queue]" on page 11-58

specify
schema
name

REGISTER
for

Notification
Multi-consumer queue

specify
subscription

name

specify
queue

specify
consumer

The string must be of the
format 'queue:consumer'

Optional
information

AQ Operational
Interface

Register for
Notification

SPECIFYING Subscription
Name: :
Operational Interface: Basic Operations 11-59

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): Not available.

� C (OCI): Oracle Call Interface Programmer’s Guide LNOCI Programming
Advanced Topics, Publish-Subscribe Notification

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): From Help
Topics, Contents tab, select OO4O Automation Server > OBJECTS > OraAQ
Object > Monitoring Messages

� Java (JDBC): Not available.

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

C (OCI): Register for Notifications For Single-Consumer and Multiconsumer
Queries
/* OCIRegister can be used by the client to register to receive notifications

when messages are enqueued into non-persistent and normal queues. */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;

/* The callback that gets invoked on notification */
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
LNOCISubscription *subscrhp; /* subscription handle */
dvoid *pay; /* payload */
ub4 payl; /* payload length */
dvoid *desc; /* the AQ notification descriptor */
ub4 mode;
11-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
{
text *subname;
ub4 size;
ub4 *number = (ub4 *)ctx;
text *queue;
text *consumer;
OCIRaw *msgid;
OCIAQMsgProperties *msgprop;

(*number)++;

/* Get the subscription name */
OCIAttrGet((dvoid *)subscrhp, OCI_HTYPE_SUBSCRIPTION,

(dvoid *)&subname, &size,
OCI_ATTR_SUBSCR_NAME, errhp);

printf("got notification number %d for %.*s %d \n",
*number, size, subname, payl);

/* Get the queue name from the AQ notify descriptor */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,

OCI_ATTR_QUEUE_NAME, errhp);

/* Get the consumer name for which this notification was received */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &size,

OCI_ATTR_CONSUMER_NAME, errhp);

/* Get the message id of the message for which we were notified */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgid, &size,

OCI_ATTR_NFY_MSGID, errhp);

/* Get the message properties of the message for which we were notified */
OCIAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&msgprop, &size,

OCI_ATTR_MSG_PROP, errhp);

}

int main(argc, argv)
int argc;
char *argv[];
{

OCISession *authp = (OCISession *) 0;

/* The subscription handles */
OCISubscription *subscrhp[5];
Operational Interface: Basic Operations 11-61

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
/* Registrations are for AQ namespace */
ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;

/* The context fot the callback */
ub4 ctx[5] = {0,0,0,0,0};

printf("Initializing OCI Process\n");

/* The OCI Process Environment must be initialized with OCI_EVENTS */
/* OCI_OBJECT flag is set to enable us dequeue */
(void) OCIInitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,

(dvoid * (*)(dvoid *, size_t)) 0,
(dvoid * (*)(dvoid *, dvoid *, size_t))0,
(void (*)(dvoid *, dvoid *)) 0);

printf("Initialization successful\n");

/* The standard OCI setup */
printf("Initializing OCI Env\n");
(void) OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0,

(dvoid **) 0);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
(size_t) 0, (dvoid **) 0);

/* Server contexts */
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,

(size_t) 0, (dvoid **) 0);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
(size_t) 0, (dvoid **) 0);

printf("connecting to server\n");
(void) OCIServerAttach(srvhp, errhp, (text *)"", strlen(""), 0);
printf("connect successful\n");

/* Set attribute server context in the service context */
(void) OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,

(ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp);

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
11-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
(void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "scott", (ub4) strlen("scott"),
(ub4) OCI_ATTR_USERNAME, errhp);

(void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger", (ub4) strlen("tiger"),
(ub4) OCI_ATTR_PASSWORD, errhp);

checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, errhp);

/* Setting the subscription handle for notification on
a NORMAL single-consumer queue */

printf("allocating subscription handle\n");
subscrhp[0] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

printf("setting subscription name\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) "SCOTT.SCQ1", (ub4) strlen("SCOTT.SCQ1"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

printf("setting subscription callback\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

printf("setting subscription context \n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *)&ctx[0], (ub4)sizeof(ctx[0]),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

printf("setting subscription namespace\n");
(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,

(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

/* Setting the subscription handle for notification on a NORMAL multiconsumer
consumer queue */
Operational Interface: Basic Operations 11-63

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
subscrhp[1] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[1],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.MCQ1:APP1",
(ub4) strlen("SCOTT.MCQ1:APP1"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx[1], (ub4)sizeof(ctx[1]),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

/* Setting the subscription handle for notification on a non-persistent
single-consumer queue */

subscrhp[2] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.NP_SCQ1",
(ub4) strlen("SCOTT.NP_SCQ1"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx[2], (ub4)sizeof(ctx[2]),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
11-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

/* Setting the subscription handle for notification on
a non-persistent multi consumer queue */

/* Waiting on user specified recipient */
subscrhp[3] = (OCISubscription *)0;
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[3],

(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) 0, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "SCOTT.NP_MCQ1",
(ub4) strlen("SCOTT.NP_MCQ1"),
(ub4) OCI_ATTR_SUBSCR_NAME, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *)&ctx[3], (ub4)sizeof(ctx[3]),
(ub4) OCI_ATTR_SUBSCR_CTX, errhp);

(void) OCIAttrSet((dvoid *) subscrhp[3], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) 0,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, errhp);

printf("Registering for all the subscriptiosn \n");
checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 4, errhp,

OCI_DEFAULT));

printf("Waiting for notifcations \n");

/* wait for minutes for notifications */
sleep(300);

printf("Exiting\n");
}

Operational Interface: Basic Operations 11-65

Posting for Subscriber Notification
Posting for Subscriber Notification

Figure 11–14 Posting for Subscriber Notification

Purpose
To post to a list of anonymous subscriptions so clients registered for the
subscription get notifications.

See Also: Table 11–1 for a list of operational interface basic
operations

User/
Program

specify
namespace

specify
subscription

name

specify
payload

POST
Notifications

specify
post

information

AQ Operational Interface : Posting Notifications
11-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Posting for Subscriber Notification
Usage Notes
Several subscriptions can be posted to at one time. Posting to a subscription
involves identifying the subscription name and the payload, if desired. It is possible
for no payload to be associated with this call. This call provides a best-effort
guarantee. A notification goes to registered clients at most once.

This call is primarily used for lightweight notification and is useful in the case of
several system events. If an application needs more rigid guarantees, it can use AQ
functionality by enqueuing to a queue.

When using OCI, the user must specify a subscription handle at registration time
with the namespace attribute set to OCI_SUBSCR_NAMESPACE_ANONYMOUS.

When using PL/SQL, the namespace attribute in aq$_post_info must be set to
DBMS_AQ.NAMESPACE_ANONYMOUS.

Related functions: LNOCIAQListen(), OCISvcCtxToLda(),
LNOCISubscriptionEnable(), OCISubscriptionRegister(),
LNOCISubscriptionUnRegister(), dbms_aq.register, dbms_
aq.unregister.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): POST procedure.

� C (OCI): Oracle Call Interface Programmer’s Guide LNOCI Programming
Advanced Topics, Publish-Subscribe Notification

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): Not
supported.

� Java (JDBC): Not supported.

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

PL/SQL (DBMS_AQ Package): Post of Object-Type Messages
-- Register for notification
DECLARE

reginfo sys.aq$_reg_info;
Operational Interface: Basic Operations 11-67

Posting for Subscriber Notification
reginfolist sys.aq$_reg_info_list;

BEGIN
-- Register for anonymous subscription PUBSUB1.ANONSTR, consumer_name ADMIN
-- The PL/SQL callback pubsub1.mycallbk will be invoked
-- when a notification is received
reginfo := sys.aq$_reg_info('PUBSUB1.ANONSTR:ADMIN',

DBMS_AQ.NAMESPACE_ANONYMOUS,
'plsql://PUBSUB1.mycallbk', HEXTORAW('FF'));

reginfolist := sys.aq$_reg_info_list(reginfo);

sys.dbms_aq.register(reginfolist, 1);

commit;
END;
/

-- Post to an anonymous subscription
DECLARE

postinfo sys.aq$_post_info;
postinfolist sys.aq$_post_info_list;

BEGIN

-- Post to the anonymous subscription PUBSUB1.ANONSTR, consumer_name ADMIN
postinfo := sys.aq$_post_info('PUBSUB1.ANONSTR:ADMIN',0,HEXTORAW('FF'));
postinfolist := sys.aq$_post_info_list(postinfo);

sys.dbms_aq.post(postinfolist, 1);

commit;

END;
/

11-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Adding an Agent to the LDAP Server
Adding an Agent to the LDAP Server

Figure 11–15 Adding an Agent to LDAP

Purpose
To add an agent to the LDAP server.

Usage Notes
This call takes an agent and an optional certificate location as the arguments,
and adds the agent entry to the LDAP server. The certificate location parameter is
the distinguished name of the LDAP entry that contains the digital certificate which
the agent will use. If the agent does not have a digital certificate, this parameter will
be defaulted to null.

See Also: Table 11–1 for a list of operational interface basic
operations

name,
address,
protocol

specify
agent

User/
Program

specify
location do not specify

location

OR

location of LDAP
entry containing
agent's digital
certificate

location of
agent's digital
certificate

default
(null)

ADD
agent to LDAP

AQ Operational Interface : Adding an Agent to the LDAP Server
Operational Interface: Basic Operations 11-69

Adding an Agent to the LDAP Server
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): BIND_AGENT procedure.

� C (OCI): Oracle Call Interface Programmer’s Guide LNOCI Programming
Advanced Topics

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): Not
supported.

� Java (JDBC): Not supported.

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.
11-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Removing an Agent from the LDAP Server
Removing an Agent from the LDAP Server

Figure 11–16 Removing an Agent from LDAP

Purpose
To remove an agent from the LDAP server.

Usage notes
This call takes an agent as the argument, and removes the corresponding agent
entry in the LDAP server.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� PL/SQL (DBMS_AQ Package): UNBIND_AGENT procedure.

� C (OCI): Oracle Call Interface Programmer’s Guide LNOCI Programming
Advanced Topics

� Visual Basic (OO4O) (Oracle Objects for OLE (OO4O) Online Help): Not
supported.

� Java (JDBC): Not supported.

See Also: Table 11–1 for a list of operational interface basic
operations

name,
address,
protocol

specify
agent

User/
Program

REMOVE
agent from

LDAP

AQ Operational Interface : REMOVING an Agent from LDAP
Operational Interface: Basic Operations 11-71

Removing an Agent from the LDAP Server
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.
11-72 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating Applications
12

Creating Applications Using JMS

In Chapter 1, "Introduction to Oracle Advanced Queuing" we described a
messaging system for an imaginary company, BooksOnLine . In this chapter we
consider the features of the Oracle JMS interface to AQ in the context of a sample
application based on that scenario. This chapter contains these topics:

� A Sample Application Using JMS

� General Features of JMS

� JMS Point-to-Point Model Features

� JMS Publish-Subscribe Model Features

� JMS Message Producer Features

� JMS Message Consumer Features

� JMS Propagation

� Message Transformation with JMS AQ
Using JMS 12-1

A Sample Application Using JMS
A Sample Application Using JMS
The operations of a large bookseller, BooksOnLine , are based on an online book
ordering system that automates activities across the various departments involved
in the entire sale process. The front end of the system is an order entry application
where new orders are entered. These incoming orders are processed by an order
processing application that validates and records the order. Shipping departments
located at regional warehouses are then responsible for ensuring that these orders
are shipped in a timely fashion. There are three regional warehouses: one serving
the East Region, one serving the West Region, and a third warehouse for shipping
International orders. Once an order has been shipped, the order information is
routed to a central billing department that handles payment processing. The
customer service department, located at its own site, is responsible for maintaining
order status and handling inquiries about orders.

In Chapter 1 we outlined a messaging system for an imaginary company,
BooksOnLine . In this chapter we consider the features of the JMS interface to AQ
in the context of a sample application based on that scenario. This sample
application has been devised for the sole purpose of demonstrating the features of
Oracle AQ. Our aim in creating this integrated scenario is to make it easier to grasp
the possibilities of this technology by locating our explanations within a single
context. However, it is not possible within the scope of a single relatively small code
sample to demonstrate every possible application of AQ.

General Features of JMS
The following topics are discussed in this section:

� J2EE Compliance

� JMS Connection and Session

� JMS Destinations - Queue and Topic

� System-Level Access Control in JMS

� Destination-Level Access Control in JMS

� Retention and Message History in JMS

� Supporting Oracle Real Application Clusters in JMS

� Supporting Statistics Views in JMS

� Structured Payload/Message Types in JMS
12-2 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
J2EE Compliance
In release 9.2, Oracle JMS conforms to the Sun Microsystems JMS 1.0.2b standard.
You can define the J2EE compliance mode for an OJMS client at run time. For
compliance, set the Java property "oracle.jms.j2eeCompliant" to TRUE as a
command line option. For noncompliance, do nothing. FALSE is the default value.

New features in release 9.2 support J2EE compliance and are also available in the
noncompliant mode. These include support for:

� Nontransacted sessions

� Nondurable subscribers

� Temporary queues and topics

� Nonpersistent delivery mode

� Multiple JMS messages types on a single JMS queue or topic (using AQ queues
of the AQ$_JMS_MESSAGE type)

� The noLocal option for durable subscribers

Features of JMSPriority , JMSExpiration , and nondurable subscribers vary
depending on which mode you use.

JMSPriority
JMSPriority values depend on whether you are running the default,
noncompliant mode or the compliant mode, in which you set the compliance flag to
TRUE:

� In noncompliant mode, java.lang.Integer.MAX_VALUE is the lowest
priority, java.lang.Integer.MIN_VALUE is the highest priority, and 1 is
the default priority.

� In compliant mode, 0 is the lowest priority, 9 is the highest priority, and 4 is the
default priority.

JMSExpiration
JMSExpiration values depend on whether you are running the default,
noncompliant mode or the compliant mode, in which you set the compliance flag to
TRUE:

See Also: Java Message Service Specification, version 1.0.2b,
published by Sun Microsystems, Inc.
Creating Applications Using JMS 12-3

General Features of JMS
� In noncompliant mode, the JMSExpiration header value is the sum of the
enqueue time and the time-to-live, as specified in the JMS specification when a
message is enqueued. When a message is received, the duration of the
expiration (not the expiration time) is returned. If a message never expires, -1 is
returned.

� In compliant mode, the JMSExpiration header value in a dequeued message
is the sum of the JMS time stamp when the message was enqueued (Greenwich
Mean Time, in milliseconds) and the time-to live (in milliseconds). If a message
never expires, 0 is returned.

Durable Subscribers
Durable subscriber behavior, when subscribers use the same name, depends on
whether you are running the default, noncompliant mode or the compliant mode,
in which you set the compliance flag to TRUE.

� In noncompliant mode, two durable TopicSubscribers with the same name can
be active against two different topics.

� In compliant mode, durable subscribers with the same name are not allowed.
The following cases can occur:

Case 1—If two subscribers use the same name and are created against the same
topic, but the selector used for each subscriber is different, then the underlying
AQ subscription is altered using the internal DBMS_AQJMS.ALTER_
SUBSCRIBER() call.

Case 2—If two subscribers use the same name and are created against two
different topics, and:

� If the client that uses the same subscription name also originally created the
subscription name, then the existing subscription is dropped and the new
subscription is created.

� If a different client (a client that did not originate the subscription name)
uses an existing subscription name, then the subscription is not dropped
and an error is thrown. Since it is not known if the subscription was created
by JMS or PL/SQL, the subscription on the other topic should not be
dropped.
12-4 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
JMS Connection and Session

Connection Factory
A ConnectionFactory encapsulates a set of connection configuration parameters
that has been defined by an administrator. A client uses it to create a Connection
with a JMS provider. In this case Oracle JMS, Oracle8i is the JMS Provider.

There are two types of ConnectionFactory objects

� QueueConnectionFactory

� TopicConnectionFactory

ConnectionFactory objects can be obtained in one of the following ways

1. Static methods in AQjmsFactory

2. Java Naming and Directory Interface (JNDI) Lookup from a LDAP directory
server

Using AQjmsFactory to Obtain ConnectionFactory Objects
The AQjmsFactory class can be used to obtain a handle to Queue/Topic
ConnectionFactory objects.

� To obtain a QueueConnectionFactory , use the
AQjmsFactory.getQueueConnectionFactory() method

The queue connection factory can be created using hostname, port number, SID
driver or by using JDBC URL and properties.

� To obtain a TopicConnectionFactory , use the
AQjmsFactory.getTopicConnectionFactory() method

The topic connection factory can be created using hostname, port number, SID
driver or by using JDBC URL and properties.

Example
public static void get_Factory() throws JMSException
{

QueueConnectionFactory qc_fact = null;
/* get queue connection factory for database "aqdb", host "sun-123", port

5521, driver "thin" */
qc_fact = AQjmsFactory.getQueueConnectionFactory("sun-123", "aqdb", 5521,

"thin");
}

Creating Applications Using JMS 12-5

General Features of JMS
Using JNDI to Look Up ConnectionFactory Objects
ConnectionFactory objects can be registered in an LDAP server by a JMS
administrator.

The following setup is required to enable JNDI lookup in JMS:

1. When the Oracle9i server is installed, the database must be registered with the
LDAP server. This can be done using the Database Configuration Assistant
(DBCA).

AQ entries in the LDAP server have the following structure:

Connection Factory information is stored under <cn=OracleDBConnections>,
while topics and queues are stored under <cn=OracleDBQueues>

2. The GLOBAL_TOPIC_ENABLED system parameter for the database must be set
to TRUE. This ensures that all queues and topics created in AQ are
automatically registered with the LDAP server.

This parameter can be set by using

ALTER SYSTEM SET GLOBAL_TOPICS_ENABLED = TRUE

3. After the database has been setup to use an LDAP server, the JMS administrator
can register QueueConnectionFactory and TopicConnectionFactory objects in
LDAP by using the AQjmsFactory.registerConnectionFactory()
method.

The registration can be done in one of the following ways:

� Connect directly to the LDAP server - The user must have the GLOBAL_AQ_
USER_ROLE to register connection factories in LDAP

<cn=acme, cn=com>

<cn=OracleContext>

<cn=db1>

(administrative context)

(root of oracle RDBMS schema)

(database)

<cn=OracleDBConnections> <cn=OracleDBQueue> <cn= . . .>

(Other db objects)(Queues / Topics)(Connection Factories)
12-6 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
To connect directly to LDAP, the parameters for the
registerConnectionFactory method include the LDAP context, the name of
the Queue/Topic ConnectionFactory, hostname, database SID, port
number, JDBC driver (thin or oci8) and factory type (queue or topic).

� Connect to LDAP through the database server - the user can log on to the
Oracle9i database first and then have the database update the LDAP entry.
The user that logs on to the database must have the AQ_ADMINISTRATOR_
ROLE to perform this operation.

To connect directly to LDAP through the database server, the parameters
for the registerConnectionFactory method include a JDBC connection (to a
user having AQ_ADMINISTRATOR_ROLE), the name of the Queue/Topic
ConnectionFactory, hostname, database SID, port number, JDBC driver
(thin or oci8) and factory type (queue or topic).

After the Connection Factory objects have been registered in LDAP by a JMS
administrator, they can be looked up by using JNDI

Example
Lets say the JMS administrator wants to register a order entry queue connection
factory, oe_queue_factory . In LDAP, it can be registered as follows:

public static void register_Factory_in_LDAP() throws Exception
{

Hashtable env = new Hashtable(5, 0.75f);
env.put(Context.INITIAL_CONTEXT_FACTORY, AQjmsConstants.INIT_CTX_FACTORY);

// aqldapserv is your LDAP host and 389 is your port
env.put(Context.PROVIDER_URL, "ldap://aqldapserv:389);

// now authentication info
// username/password scheme, user is OE, password is OE
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=oe,cn=users,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "oe");

/* register queue connection factory for database "aqdb", host "sun-123",
port 5521, driver "thin" */

AQjmsFactory.registerConnectionFactory(env, "oe_queue_factory", "sun-123",
"aqdb", 5521, "thin", "queue");

}

Creating Applications Using JMS 12-7

General Features of JMS
After order entry, queue connection factory oe_queue_factory has been
registered in LDAP; it can be looked up as follows:

public static void get_Factory_from_LDAP() throws Exception
{

Hashtable env = new Hashtable(5, 0.75f);
env.put(Context.INITIAL_CONTEXT_FACTORY, AQjmsConstants.INIT_CTX_FACTORY);

// aqldapserv is your LDAP host and 389 is your port
env.put(Context.PROVIDER_URL, "ldap://aqldapserv:389);

// now authentication info
// username/password scheme, user is OE, password is OE
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=oe,cn=users,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "oe");

DirContext inictx = new InitialDirContext(env);
// initialize context with the distinguished name of the database server
inictx=(DirContext)inictx.lookup("cn=db1,cn=OracleContext,cn=acme,cn=com");

//go to the connection factory holder cn=OraclDBConnections
DirContext connctx = (DirContext)inictx.lookup("cn=OracleDBConnections");

// get connection factory "oe_queue_factory"
QueueConnectionFactory qc_fact =

(QueueConnectionFactory)connctx.lookup("cn=oe_queue_factory");
}

Connection
A JMS Connection is a client’s active connection to its JMS provider. A Connection
performs several critical services:

� Encapsulates either an open connection or a pool of connections with a JMS
provider

� Typically represents an open TCP/IP socket (or a set of open sockets) between a
client and a provider’s service daemon

� Provides a structure for authenticating clients at the time of its creation

� Creates Sessions

� Provides Connection metadata

� Supports an optional ExceptionListener
12-8 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
A JMS Connection to the database can be created by invoking
createQueueConnection() or createTopicConnection() and passing
the parameters username and password on the QueueConnectionFactory and
TopicConnectionFactory object respectively.

Connection Setup
A JMS client typically creates a Connection , Session and a number of
MessageProducers and MessageConsumers . In the current version only one
open session for each connection is allowed, except in the following cases:

� If the JDBC oci8 driver is used to create the JMS Connection

� If the user provides an OracleOCIConnectionPool instance during JMS
Connection creation

When a Connection is created it is in stopped mode. In this state no messages can be
delivered to it. It is typical to leave the Connection in stopped mode until setup is
complete. At that point the Connection’s start() method is called and messages
begin arriving at the Connection’s consumers. This setup convention minimizes any
client confusion that may result from asynchronous message delivery while the
client is still in the process of setup.

It is possible to start a Connection and to perform setup subsequently. Clients that
do this must be prepared to handle asynchronous message delivery while they are
still in the process of setting up. A MessageProducer can send messages while a
Connection is stopped.

Some of the methods that are supported on the Connection object are

� start() - start, or restart, a Connection’s delivery of incoming messages.

� stop() - Used to temporarily stop a Connection’s delivery of incoming
messages. When stopped, delivery to all the Connection’s message consumers
is inhibited. Also, synchronous receive’s block and messages are not delivered
to message listener

� close() - close the JMS session and release all associated resources

� createQueueSession(true, 0) - create a queue session

� createTopicSession (true, 0) - create a topic session

� setExceptionListener (ExceptionListener) - set an exception
listener for the connection. This allows a client to be asynchronously notified of
a problem. Some connections only consume messages so they have no other
way to learn the connection has failed.
Creating Applications Using JMS 12-9

General Features of JMS
� getExceptionListener() - get the ExceptionListener for this connection.

Session
A Connection is a factory for Sessions that use its underlying connection to a JMS
provider for producing and consuming messages. A JMS Session is a single
threaded context for producing and consuming messages. Although it may allocate
provider resources outside the Java virtual machine, it is considered a light-weight
JMS object.

A Session serves several purposes:

� Constitutes a factory for its MessageProducer s and MessageConsumers .

� Provides a way to get a handle to a destination objects (queues/topics)

� Supplies provider-optimized message factories

� Supports a single series of transactions that combines work spanning this
session’s Producers and Consumers, organizing these into atomic units.

� Defines a serial order for the messages it consumes and the messages it
produces.

� Serializes execution of MessageListener s registered with it.

When you use the OCI JDBC driver, you can create multiple sessions for each
connection. When you use other JDBC drivers, only one session can be created from
one connection.

Because a provider may allocate some resources on behalf of a session outside the
JVM, clients should close them when they are not needed. Relying on garbage
collection to eventually reclaim these resources may not be timely enough. The
same is true for the MessageProducers and MessageConsumer s created by a
session.

Methods on the Session object include:

� commit() - commits all messages performed in this transaction and releases
locks currently held

� rollback() - rollsback any messages done in the transaction and release locks
currently held

� close() - closes the session

� getDBConnection() - gets a handle to the underlying JDBC connection. This
handle can be used to perform other SQL DML operations as part of the same
session. The method is Oracle JMS specific.
12-10 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
� acknowledge() - acknowledges message receipt in a nontransacted session

� recover() - restarts message delivery in a nontransacted session. In effect, the
series of delivered messages in the session are reset to the point after the last
acknowledged message.

The following are some of the extensions to JMS made by Oracle. The Session
object has to be cast to AQjmsSession to use any of the extensions.

� QueueTables and Queues, Topics can be created from the Session object

� createQueueTable() - creates a queue table

� getQueueTable() - gets a handle to an existing queue table

� createQueue() - creates a queue

� getQueue() - gets a handle to an existing queue

� createTopic() - creates a topic

� getTopic() - gets a handle to an existing topic

The following code illustrates how some of the preceding calls are used.

Example Code
public static void bol_example(String ora_sid, String host, int port,

String driver)
{

QueueConnectionFactory qc_fact = null;
QueueConnection q_conn = null;
QueueSession q_sess = null;
AQQueueTableProperty qt_prop = null;
AQQueueTable q_table = null;
AQjmsDestinationProperty dest_prop = null;
Queue queue = null;
BytesMessage bytes_msg = null;

try
{

/* get queue connection factory */
qc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora_sid,

port, driver);

/* create queue connection */
q_conn = qc_fact.createQueueConnection("boluser", "boluser");
Creating Applications Using JMS 12-11

General Features of JMS
/* create queue session */
q_sess = q_conn.createQueueSession(true, Session.CLIENT_ACKNOWLEDGE);

/* start the queue connection */
q_conn.start();

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");

/* create a queue table */
q_table = ((AQjmsSession)q_sess).createQueueTable("boluser",

"bol_ship_queue_table",
qt_prop);

dest_prop = new AQjmsDestinationProperty();

/* create a queue */
queue = ((AQjmsSession)q_sess).createQueue(q_table, "bol_ship_queue",

dest_prop);

/* start the queue */
((AQjmsDestination)queue).start(q_sess, true, true);

/* create a bytes message */
bytes_msg = q_sess.createBytesMessage();

/* close session */
q_sess.close();

/* close connection */
q_conn.close();

}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}

JMS Destinations - Queue and Topic
A Destination is an object a client uses to specify the destination where it sends
messages, and the source from which it receives messages.
12-12 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
There are two types of destination objects - Queue and Topic . In AQ, these map to
a <schema>.<queue> at a specific database. Queue maps to a single-consumer
queue in AQ and Topic maps to multiconsumer queue in AQ.

Destination objects can be obtained in one of the following ways:

1. Using domain specific methods in the JMS Session

2. Java Naming and Directory Interface (JNDI) Lookup from a LDAP directory
server

Using a JMS Session to Obtain Destination Objects
Destination objects are created from a Session object using domain specific
session methods.

� AQjmsSession.getQueue(queue_owner, queue_name) - this method can
be used to get a handle to a JMS queue

� AQjmsSession.getTopic(topic_owner, topic_name) - this method can
be used to get a handle to a JMS topic

Example Code
In the BooksOnline application, new orders are to be sent to the neworders_
queue in OE schema. After creating a JMS connection and session, we can get a
handle to the queue as follows

public Queue get_queue_example(QueueSession jms_session)
{

QueueSender sender;
Queue queue = null;

try
{

/* get a handle to the OE.oe_new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

}
catch (JMSException ex){

System.out.println("Exception: " + ex); }
return queue;

}

Creating Applications Using JMS 12-13

General Features of JMS
Using JNDI to Look Up Destination Objects
As described in "Connection Factory" on page 12-5, the database can be configured
to register schema objects with an LDAP server. If a database has been configured to
use LDAP and the GLOBAL_TOPIC_ENABLED parameter has been set to TRUE,
then all JMS queues and topics are automatically registered with the LDAP server
when they are created.

The administrator can also create aliases to the queues and topics registered in
LDAP using the DBMS_AQAQDM.add_alias_to_ldap PL/SQL procedure.

Queues and topics that are registered in LDAP can be looked up through JNDI
using the queue/topic name or one of their aliases.

Example Code
Lets say we have a new orders queue OE.OE_neworders_que stored in LDAP, it
can be looked up as follows:

public static void get_Factory_from_LDAP() throws Exception
{

Hashtable env = new Hashtable(5, 0.75f);
env.put(Context.INITIAL_CONTEXT_FACTORY, AQjmsConstants.INIT_CTX_FACTORY);

// aqldapserv is your LDAP host and 389 is your port
env.put(Context.PROVIDER_URL, "ldap://aqldapserv:389);

// now authentication info
// username/password scheme, user is OE, password is OE
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=oe,cn=users,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "oe");

DirContext inictx = new InitialDirContext(env);
// initialize context with the distinguished name of the database server
inictx=(DirContext)inictx.lookup("cn=db1,cn=OracleContext,cn=acme,cn=com");

// go to the destination holder
DirContext destctx = (DirContext)inictx.lookup("cn=OracleDBQueues");

// get the destination OE.OE_new_orders queue
Queue myqueue = (Queue)destctx.lookup("cn=OE.OE_new_orders_que");

}

Methods on the Destination Object include:
12-14 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
� alter() - alters a queue or topic

� schedulePropagation() - schedules propagation from a source to a
destination

� unschedulePropagation() - unschedules a previously scheduled
propagation

� enablePropagationSchedule () - enable a propagation schedule

� disablePropagationSchedule () - disable a propagation schedule

� start() - starts a queue or a topic. The queue can be started for enqueue or
dequeue. The topic can be started for publish or subscribe.

� stop() - stops a queue or a topic. The queue is stopped for enqueue or
dequeue. The topic is stopped for publish or subscribe.

� drop() - drops a queue or a topic

Example Code
public static void setup_example(TopicSession t_sess)
{

AQQueueTableProperty qt_prop = null;
AQQueueTable q_table = null;
AQjmsDestinationProperty dest_prop = null;
Topic topic = null;
TopicConnection t_conn = null;

try
{

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
/* create a queue table */
q_table = ((AQjmsSession)t_sess).createQueueTable("boluser",

"bol_ship_queue_table",
qt_prop);

dest_prop = new AQjmsDestinationProperty();
/* create a topic */
topic = ((AQjmsSession)t_sess).createTopic(q_table, "bol_ship_queue",

dest_prop);

/* start the topic */
((AQjmsDestination)topic).start(t_sess, true, true);

/* schedule propagation from topic "boluser" to the destination
dblink "dba" */
Creating Applications Using JMS 12-15

General Features of JMS
((AQjmsDestination)topic).schedulePropagation(t_sess, "dba", null,
null, null, null);

/*
some processing done here

*/
/* Unschedule propagation */
((AQjmsDestination)topic).unschedulePropagation(t_sess, "dba");
/* stop the topic */
((AQjmsDestination)topic).stop(t_sess, true, true, true);
/* drop topic */
((AQjmsDestination)topic).drop(t_sess);
/* drop queue table */

q_table.drop(true);
/* close session */

t_sess.close();
/* close connection */
t_conn.close();

}
catch(Exception ex)
{

System.out.println("Exception: " + ex);
}

}

System-Level Access Control in JMS
Oracle8i supports system-level access control for all queuing operations. This
feature allows an application designer or DBA to create users as queue
administrators. A queue/topic administrator can invoke all JMS interface (both
administration and operation) on any queue in the database. This simplifies the
administrative work since all administrative scripts for the queues in a database can
be managed under one schema. For more information, see "Oracle Enterprise
Manager Support" on page 4-8.

Example Scenario and Code
In the BooksOnLine (BOL) application, the DBA creates BOLADM, the BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADM to create, drop, manage, and monitor any queues in the database.If you
decide to create PL/SQL packages in the BOLADM schema that can be used by any
applications to enqueue or dequeue, then you should also grant BOLADM the
ENQUEUE_ANY and DEQUEUE_ANY system privilege.
12-16 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
CREATE USER BOLADM IDENTIFIED BY BOLADM; GRANT CONNECT, RESOURCE, aq_
administrator_role TO BOLADM;
((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "BOLADM", false);
((AQjmsSession)t_sess).grantSystemPrivilege("DEQUEUE_ANY", "BOLADM", false)
;where t_sess is the session object.

In the application, AQ propagators populate messages from the OE (Order Entry)
schema to WS (Western Sales), ES (Eastern Sales) and OS (Worldwide Sales)
schemas. The WS, ES and OS schemas in turn populate messages to CB (Customer
Billing) and CS (Customer Service) schemas. Hence the OE, WS, ES and OS schemas
all host queues that serve as the source queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
queue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you need to grant schemas of the source
queues enqueue privileges to the destination queues.

To simplify administration, all schemas that host a source queue in the
BooksOnLine application are granted the ENQUEUE_ANY system privilege.

((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "OE", false);
((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "WS", false);
((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "ES", false);
((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "OS", false);
where t_sess is the session object

To propagate to a remote destination queue, the login user (specified in the
database link in the address field of the agent structure) should either be granted
the ’ENQUEUE ANY’ privilege, or be granted the rights to enqueue to the
destination queue. However, you do not need to grant any explicit privileges if the
login user in the database link also owns the queue tables at the destination.

Destination-Level Access Control in JMS
Oracle8i supports queue/topic level access control for enqueue and dequeue
operations. This feature allows the application designer to protect queues/topics
created in one schema from applications running in other schemas. You need to
grant only minimal access privileges to the applications that run outside the
queue/topic’s schema. The supported access privileges on a queue/topic are
ENQUEUE, DEQUEUE and ALL. For more information see "Oracle Enterprise Manager
Support" in Chapter 4, "Managing AQ".
Creating Applications Using JMS 12-17

General Features of JMS
Example Scenario and Code
The BooksOnLine application processes customer billings in its CB and CBADM
schemas. CB (Customer Billing) schema hosts the customer billing application, and
the CBADM schema hosts all related billing data stored as queue tables. To protect
the billing data, the billing application and the billing data reside in different
schemas. The billing application is allowed only to dequeue messages from CBADM_
shippedorders_topic , the shipped order topic. It processes the messages, and
then enqueues new messages into CBADM_billedorders_topic , the billed order
topic.

To protect the queues from other illegal operations from the application, the
following two grant calls are made:

/* Grant dequeue privilege on the shipped orders queue to the Customer
Billing application. The CB application retrieves orders that are shipped
but not billed from the shipped orders queue. */

((AQjmsDestination)cbadm_shippedorders_topic).grantTopicPrivilege(t_sess,
"DEQUEUE", "CB", false);
where t_sess is the session

/* Grant enqueue privilege on the billed orders queue to Customer Billing
application.The CB application is allowed to put billed orders into this
queue after processing the orders. */

((AQjmsDestination)cbadm_billedorders_topic).grantTopicPrivilege(t_sess,
"ENQUEUE", "CB", false);

Retention and Message History in JMS
AQ allows users retain messages in the queue table. This means that SQL can then
be used to query these message for analysis. Messages are often related to each
other. For example, if a message is produced as a result of the consumption of
another message, the two are related. As the application designer, you may want to
keep track of such relationships. Along with retention and message identifiers, AQ
lets you automatically create message journals, also called tracking journals or event
journals. Taken together -- retention, message identifiers and SQL queries -- make it
possible to build powerful message warehouses.

Example Scenario and Code
Let us suppose that the shipping application needs to determine the average
processing times of orders. This includes the time the order has to wait in the
12-18 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
backed_order topic. Specifying the retention as TRUE for the shipping queues and
specifying the order number in the correlation field of the message, SQL queries can
be written to determine the wait time for orders in the shipping application.

For simplicity, we will only analyze orders that have already been processed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_topic and the enqueue time in the
WS_shipped_orders_topic .

SELECT SUM(SO.enq_time - BO.enq_time) / count (*) AVG_PRCS_TIME
FROM WS.AQ$WS_orders_pr_mqtab BO , WS.AQ$WS_orders_mqtab SO
WHERE SO.msg_state = ’PROCESSED’ and BO.msg_state = ’PROCESSED’
AND SO.corr_id = BO.corr_id and SO.queue = ’WS_shippedorders_topic’;

/* Average waiting time in the backed order queue: */
SELECT SUM(BACK.deq_time - BACK.enq_time)/count (*) AVG_BACK_TIME

FROM WS.AQ$WS_orders_mqtab BACK
WHERE BACK.msg_state = ’PROCESSED’ AND BACK.queue = ’WS_backorders_topic’;

Supporting Oracle Real Application Clusters in JMS
Oracle Real Application Clusters can be used to improve AQ performance by
allowing different queues to be managed by different instances. You do this by
specifying different instance affinities (preferences) for the queue tables that store
the queues. This allows queue operations (enqueue/dequeue) or topic operations
(publish/subscribe) on different queues or topics to occur in parallel.

The AQ queue monitor process continuously monitors the instance affinities of the
queue tables. The queue monitor assigns ownership of a queue table to the specified
primary instance if it is available, failing which it assigns it to the specified
secondary instance.

If the owner instance of a queue table terminates, the queue monitor changes
ownership to a suitable instance such as the secondary instance.

AQ propagation is able to make use of Real Application Clusters, although it is
transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus, a job_queue_process associated with the owner
instance of a queue table will be handling the propagation from queues stored in
that queue table thereby minimizing pinging. Additional discussion on this topic
can be found under AQ propagation scheduling (see "Scheduling a Queue
Propagation"in Chapter 9, "Administrative Interface"and Oracle9i Real Application
Clusters Setup and Configuration.)
Creating Applications Using JMS 12-19

General Features of JMS
Example Scenario and Code
In the BooksOnLine example, operations on the OE_neworders_que and
booked_order_topic at the order entry (OE) site can be made faster if the two
topics are associated with different instances. This is done by creating the topics in
different queue tables and specifying different affinities for the queue tables in the
CreateQueueTable () command.

In the example, the queue table OE_orders_sqtab stores queue OE_neworders_
que and the primary and secondary are instances 1 and 2 respectively. For queue
table OE_orders_mqtab stores queue booked_order_topic and the primary
and secondary are instances 2 and 1 respectively. The objective is to let instances 1
& 2 manage the two queues in parallel. By default, only one instance is available. In
this case the owner instances of both queue tables will be set to instance1. However,
if Oracle Real Application Clusters are set up correctly and both instances 1 and 2
are available, then queue table OE_orders_sqtab will be owned by instance 1 and
the other queue table will be owned by instance 2. The primary and secondary
instance specification of a queue table can be changed dynamically using the alter_
queue_table() command as shown in the example that follows. Information about
the primary, secondary and owner instance of a queue table can be obtained by
querying the view USER_QUEUE_TABLES. See "Selecting Queue Tables in User
Schema" in Chapter 10, "Administrative Interface: Views".

/* Create queue tables, topics for OE */

/* createing a queue table to hold queues */
qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_OBJECT_MESSAGE");
qt_prop.setPrimaryInstance(1);
qt_prop.setSecondaryInstance(2);
q_table = createQueueTable("OE", "OE_orders_sqtab", qt_prop);

/* creating a queue table to hold topics */
qt1_prop = new AQQueueTableProperty("SYS.AQ$_JMS_OBJECT_MESSAGE");
qt1_prop.setMultiConsumer(TRUE);
qt1_prop.setPrimaryInstance(2);
qt1_prop.setSecondaryInstance(1);
q_table1 = createQueueTable("OE", "OE_orders_mqtab", qt1_prop);

dest_prop = new AQjmsDestinationProperty();
queue = ((AQjmsSession)q_sess).createQueue(q_table. "OE_neworders_que",

dest_prop);

dest_prop1 = new AQjmsDestinationProperty();
topic = ((AQjmsSession)q_sess).createTopic(q_table1, "OE_bookedorders_topic",

dest_prop1);
12-20 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
/* Check instance affinity of OE queue tables from AQ administrative view: */
SELECT queue_table, primary_instance, secondary_instance, owner_instance
FROM user_queue_tables;

/* Alter Instance Affinity of OE queue tables */
q_table.alter("OE_orders_sqtab", 2, 1);
q_table1.alter("OE_orders_mqtabl", 1, 2);

Supporting Statistics Views in JMS
Each instance keeps its own AQ statistics information in its own System Global
Area (SGA), and does not have knowledge of the statistics gathered by other
instances. Then, when a GV$AQ view is queried by an instance, all other instances
funnel their AQ statistics information to the instance issuing the query.

Example Scenario and Code
The gv $view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed. The order processing application can
use this to dynamically tune the number of order-processing processes. See
Chapter , "Selecting the Number of Messages in Different States for the Whole
Database" in Chapter 10, "Administrative Interface: Views".

CONNECT oe/oe

/* Count the number as messages and the average time for which the messages
have been waiting: */

SELECT READY, AVERAGE_WAIT
FROM gv$aq Stats, user_queues Qs
WHERE Stats.qid = Qs.qid and Qs.Name = ’OE_neworders_que’;

Structured Payload/Message Types in JMS
JMS Messages are composed of the following parts:

� Header - All messages support the same set of header fields. Header fields
contain values used by both clients and providers to identify and route
messages

� Properties - In addition to the standard header fields, you can add optional
header fields to a message
Creating Applications Using JMS 12-21

General Features of JMS
– Standard properties - JMS defines some standard properties that are in
effect, optional header fields.

– Provider specific properties - every JMS provider can add certain provider-
specific properties to a message

– Application-specific properties - this provides a mechanism for adding
application specific header fields to a message

� Body - this is the message payload. JMS defines various types of message
payloads, and a type that can store JMS messages of any or all JMS-specified
message types.

Message Headers
You can use a header-only JMS message. A message body is not required. The
message header contains the following fields:

� JMSDestination - this field contains the destination to which the message is
sent. In AQ this would correspond to the destination queue/topic.

� JMSDeliveryMode - JMS supports two modes of message delivery -
PERSISTENT (where messages are logged to stable storage) and NON_
PERSISTENT (messages not logged). Oracle AQ supports persistent message
delivery.

� JMSMessageID - this value uniquely identifies a message in a provider. All
message ids must begin with ID:.

� JMSTimeStamp - contains the time the message was handed over to the
provider to be sent. This maps to AQ message enqueue time.

� JMSCorrelationID - this field can be used by a client to link one message
with another.

� JMSReplyTo - this field contains a Destination supplied by a client when a
message is sent. Clients can use the following types to specify the ReplyTo
destination: oracle.jms.AQjmsAgent ; javax.jms.Queue ;
javax.jms.Topic .

� JMSType - this field contains a message type identifier supplied by a client at
send time. For portability it is recommended that the JMSType be symbolic
values.

� JMSExpiration - In non-J2EE compliance mode, the JMSExpiration header
value is the sum of the enqueue time and the time-to-live. In compliant mode,
the JMSExpiration header value in a dequeued message is the sum of the
12-22 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
JMS time stamp when the message was enqueued (Greenwich Mean Time, in
milliseconds) and the time-to live (in milliseconds). Refer to "J2EE Compliance"
on page 12-3 for more information.

� JMSPriority - This field contains the priority of the message. In
J2EE-compliance mode, the permitted values for priority are 0–9, with 9 the
highest priority and 4 the default, in conformance with Sun Microsystem’s JMS
1.0.2b standard. Noncompliant mode is the default. Refer to "J2EE Compliance"
on page 12-3 for more information. JMS permits an administrator to configure
JMS to override the client-specified values for JMSDeliveryMode ,
JMSExpiration and JMSPriority .

Message Properties
Properties are a mechanism to add optional header fields to a message. Properties
allow a client, using message selectors, to have a JMS provider select messages on
its behalf using application-specific criteria. Property names are Strings and values
can be: boolean, byte, short, int, long, float, double, and string.

JMS-defined properties begin with "JMSX" .

� JMSXUserID - The identity of the user sending the message.

� JMSXAppID - this is the identity of the application sending the message.

� JMSXDeliveryCount - the number of message delivery attempts.

� JMSXGroupid - this field is set by the client refers to the identity of the message
group, this message is a part of.

� JMSXGroupSeq - the sequence number of a message within a group.

� JMSXRcvTimeStamp - the time the message was delivered to the consumer
(dequeue time)

� JMSXState - message state set by provider. Message can be WAITING, READY,
EXPIRED or RETAINED

Oracle JMS specific properties begin with JMS_Oracle . The following properties
are Oracle-specific:

� JMS_OracleExcpQ - queue name to send the message to if it cannot be
delivered to the original destination. Only Destinations of type EXCEPTION
can be specified in the JMS_OracleExcpQ property.

� JMS_OracleDelay - time in seconds to delay the delivery of the message.
This may affect the order if message delivery
Creating Applications Using JMS 12-23

General Features of JMS
� JMS_OracleOriginalMessageId - if the messages are propagated from one
destination to another, this property is set to the message id of the message in
the source. If the message is not propagated, this property has the same value
as the JMSMessageId .

A client can add additional header fields to a message by defining properties. These
properties can then be used in message selectors to select specific messages.

JMS properties or header fields are set either explicitly by the client or automatically
by the JMS provider (these are generally read-only). Some JMS properties are set
using the parameters specified send and receive operations.

Table 12–1 Message Header Fields

Message Header Field Type Set by Use

JMSDestination Destination Set by JMS after Send Method has
completed

The destination to which the
message is sent

JMSDeliveryMode int Set by JMS after Send Method has
completed

The delivery mode
-PERSISTENT

JMSExpiration long Set by JMS after Send Method has
completed

The expiration time can be
specified for a Message Pro-
ducer or can be explicitly
specified during each send or
publish

JMSPriority int Set by JMS after Send Method has
completed

Message’s priority can be
specified for a Message Pro-
ducer or can be explicitly
specified during each send or
publish

JMSMessageID String Set by JMS after Send Method has
completed

A value that uniquely identi-
fies each message sent by the
provider

JMSTimeStamp long Set by JMS after Send Method has
completed

The time a message is handed
to a provider to be sent

JMSCorrelationID String Set by JMS client A field that can be used to
link one message with
another
12-24 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
JMSReplyTo Destination Set by JMS client A destination set by the cli-
ent, where a reply to the mes-
sage should be sent. Should
be specified as AQjsAgent ,
javax.jms.Queue , or
javax.jms.Topic types

JMSType String Set by JMS client Message type identifier

JMSRedelivered boolean Set by JMS provider The message probably was
delivered earlier but the cli-
ent did not acknowledge it at
that time

Table 12–2 JMS Defined Message Properties

JMS Defined Message
Property Type Set by Use

JMSXUserID String Set by JMS after Send Method has
completed

The identity of the user send-
ing the message

JMSAppID String Set by JMS after Send Method
has completed

The identity of the applica-
tion sending the message

JMSDeliveryCount int Set by JMS after Receive Method
has completed

The number of message
delivery attempts; the first is
1, second is 2,...

JMSXGroupID String Set by JMS client The identity of the message
group the message is a part of

JMSXGroupSeq int Set by JMS client The sequence number of the
message within the group
first message is 1, second
message is 2...

JMSXRcvTimeStamp String Set by JMS after Receive Method
has completed

The time that JMS delivered
the message to the consumer

JMSXState int Set by JMS Provider Message state set by provider

Table 12–1 Message Header Fields

Message Header Type Set by Use
Creating Applications Using JMS 12-25

General Features of JMS
Message Body
JMS provides five forms of message body:

� StreamMessage - a message whose body contains a stream of Java primitive
values. It is filled and read sequentially.

� BytesMessage - a message whose body contains a stream of uninterpeted bytes.
This message type is for directly encoding a body to match an existing message
format.

� MapMessage - a message whose body contains a set of name-value pairs.
Names are strings and values are Java primitive types. The entries can be
accessed sequentially by enumerator or randomly by name.

� TextMessage - a message whose body contains a java.lang.String.

� ObjectMessage - a message that contains a serializable Java object.

� ADTmessage - a message whose body contains an Oracle ADT type object
(AdtMessage type has been added in Oracle JMS).

The AQ$_JMS_MESSAGE Type
This type can store JMS messages of all the JMS-specified message types:
JMSStream , JMSBytes , JMSMap, JMSText , and JMSObject . You can create a
queue table of AQ$_JMS_MESSAGE type, but use any message type.

Table 12–3 Oracle Defined Message Properties

Header Field/Property Type Set by Use

JMS_OracleExcpQ String Set by JMS Client Specifies the name of the
exception queue

JMS_OracleDelay int Set by JMS Client Specifies the time (seconds)
after which the message
should become available to
the consumers

JMS_OracleOrigi-
nalMessageID

String Set by JMS Provider Specifies the message id of
the message in source when
the messages are propagated
from one destination to
another
12-26 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
Stream Message
 A StreamMessage is used to send a stream of Java primitives. It is filled and read
sequentially. It inherits from Message and adds a stream message body. Its methods
are based largely on those found in java.io.DataInputStream and
java.io.DataOutputStream .

The primitive types can be read or written explicitly using methods for each type.
They may also be read or written generically as objects. To use Stream Messages,
create the queue table with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_
MESSAGE payload types.

Stream messages support the following conversion table. A value written as the row
type can be read as the column type.

Bytes Message
A BytesMessage is used to send a message containing a stream of uninterpreted
bytes. It inherits Message and adds a bytes message body. The receiver of the
message supplies the interpretation of the bytes. Its methods are based largely on
those found in java.io.DataInputStream and
java.io.DataOutputStream .

This message type is for client encoding of existing message formats. If possible,
one of the other self-defining message types should be used instead.

Table 12–4 Stream Message Conversion

boolean byte short char int long float double String byte[]

boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

String X X X X X X X X X -

byte[] - - - - - - - - - X
Creating Applications Using JMS 12-27

General Features of JMS
The primitive types can be written explicitly using methods for each type. They
may also be written generically as objects. To use Bytes Messages, create the queue
table with SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_MESSAGE payload types.

Map Message
A MapMessage is used to send a set of name-value pairs where names are Strings
and values are Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined. It inherits from Message
and adds a map message body. The primitive types can be read or written explicitly
using methods for each type. They may also be read or written generically as
objects.

To use Map Messages, create the queue table with the SYS.AQ$_JMS_MAP_
MESSAGE or AQ$_JMS_MESSAGE payload types. Map messages support the
following conversion table. A value written as the row type can be read as the
column type.

Text Message
A TextMessage is used to send a message containing a
java.lang.StringBuffer . It inherits from Message and adds a text message
body. The text information can be read or written using methods getText() and
setText(...) . To use Text Messages, create the queue table with the SYS.AQ$_
JMS_TEXT_MESSAGE or AQ$_JMS_MESSAGE payload types.

Table 12–5 Map Message Conversion

boolean byte short char int long float double String byte[]

boolean X - - - - - - - X -

byte - X X - X X - - X -

short - - X - X X - - X -

char - - - X - - - - X -

int - - - - X X - - X -

long - - - - - X - - X -

float - - - - - - X X X -

double - - - - - - - X X -

String X X X X X X X X X -

byte[] - - - - - - - - - X
12-28 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
Object Message
An ObjectMessage is used to send a message that contains a serializable Java object.
It inherits from Message and adds a body containing a single Java reference. Only
serializable Java objects can be used. If a collection of Java objects must be sent, one
of the collection classes provided in JDK 1.2 can be used. The objects can be read or
written using the methods getObject() and setObject(...) .To use Object
Messages, create the queue table with the SYS.AQ$_JMS_OBJECT_MESSAGE or
AQ$_JMS_MESSAGE payload types.

Example Code
public void enqueue_new_orders(QueueSession jms_session, BolOrder new_order)
{

QueueSender sender;
Queue queue;
ObjectMessage obj_message;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
sender = jms_session.createSender(queue);
obj_message = jms_session.createObjectMessage();
obj_message.setJMSCorrelationID("RUSH");
obj_message.setObject(new_order);
jms_session.commit();

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

AdtMessage
An AdtMessage is used to send a message that contains a Java object that maps to
an Oracle Object type. These objects inherit from Message and add a body
containing a Java object that implements the CustomDatum or ORAData interface.

See Also: Oracle9i Java Developer’s Guide for information about the
CustomDatum and ORAData interfaces
Creating Applications Using JMS 12-29

General Features of JMS
To use AdtMessage, create the queue table with payload type as the Oracle Object
Type. The AdtMessage payload can be read and written using the getAdtPayload
and setAdtPayload methods.

You can also use an AdtMessage to send messages to queues of type
SYS.XMLType. You must use the oracle.xdb.XMLType class to create the
message.

Using Message Properties with Different Message Types
� JMS Properties that can be set by client using the setProperty call:

– On StreamMessage , BytesMessage , ObjectMessage , TextMessage ,
MapMessage -

JMSXAppID

JMSXGroupID

JMSXGroupSeq

JMS_OracleExcpQ

JMS_OracleDelay

– On AdtMessage

JMS_OracleExcpQ

JMS_OracleDelay

� JMS Properties that can be obtained by client using the getProperty call

– On StreamMessage , BytesMessage , ObjectMessage , TextMessage ,
MapMessage

JMSXuserID

JMSXAppID

JMSXDeliveryCount

JMSXGroupID

JMSXGroupSeq

JMSXRecvTimeStamp

JMSXState

JMS_OracleExcpQ
12-30 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
JMS_OracleDelay

JMS_OracleOriginalMessageID

– On AdtMessage

JMSXDeliveryCount

JMSXRecvTimeStamp

JMSXState

JMS_OracleExcpQ

JMS_OracleDelay

� JMS Properties/Header_fields that can be included in a Message Selector

– For QueueReceiver , TopicSubscriber and TopicReceiver on
queues containing JMS type payloads, any SQL92 where clause of a string
that contains

JMSPriority (int)

JMSCorrelationID (String)

JMSMessageID (String) - only for QueueReceiver and TopicReceiver

JMSTimestamp (Date)

JMSType (String)

JMSXUserID (String)

JMSXAppID (String)

JMSXGroupID (String)

JMSXGroupSeq (int)

Any user-defined property in JMS message

– For QueueReceiver , TopicSubscriber and TopicReceiver on
queues containing ADT payloads, use AQ rule syntax for any SQL92 where
clause of string that contains

* corrid

* priority

* tab.user_data.<adt_field_name>
Creating Applications Using JMS 12-31

General Features of JMS
Payload Used by JMS Examples
/*

* BooksOrder - payload for BooksOnline example
*
*/

import java.lang.*;
import java.io.*;
import java.util.*;

public class BolOrder implements Serializable
{

int orderno;
String status;
String type;
String region;
BolCustomer customer;
String paymentmethod;
BolOrderItem[] itemlist;
String ccnumber;
Date orderdate;

public BolOrder(int orderno, BolCustomer customer)
{

this.customer = customer;
this.orderno = orderno;

}

public int getOrderNo()
{

return orderno;
}

public String getStatus()
{

return status;
}

public void setStatus(String new_status)
{

status = new_status;
}

12-32 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
public String getRegion()
{

return region;
}

public void setRegion(String region)
{

this.region = region;
}

public BolCustomer getCustomer()
{

return customer;
}

public String getPaymentmethod()
{

return paymentmethod;
}

public void setPaymentmethod(String paymentmethod)
{

this.paymentmethod = paymentmethod;
}

public BolOrderItem[] getItemList()
{

return itemlist;
}

public void setItemList(BolOrderItem[] itemlist)
{

this.itemlist = itemlist;
}

public String getCCnumber()
{

return ccnumber;
}

public void setCCnumber(String ccnumber)
Creating Applications Using JMS 12-33

General Features of JMS
{
this.ccnumber = ccnumber;

}

public Date getOrderDate()
{

return orderdate;
}

public void setOrderDate(Date orderdate)
{

this.orderdate = orderdate;
}

}

/*
* BolOrderItem - order item type for BooksOnline example
*
*/

import java.lang.*;
import java.io.*;
import java.util.*;

public class BolOrderItem implements Serializable
{

BolBook item;
int quantity;

public BolOrderItem(BolBook book, int quantity)
{

item = book;
this.quantity = quantity;

}

public BolBook getItem()
{

return item;
}

public int getQuantity()
{

12-34 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
return quantity;
}

}

/*
* BolBook - book type for BooksOnline example
*
*/

import java.lang.*;
import java.io.*;
import java.util.*;

public class BolBook implements Serializable
{

String title;
String authors;
String isbn;
float price;

public BolBook(String title)
{

this.title = title;
}

public BolBook(String title, String authors, String isbn, float price)
{

this.title = title;
this.authors = authors;
this.isbn = isbn;
this.price = price;

}

public String getISBN()
{

return isbn;
}

public String getTitle()
{

return title;
}

Creating Applications Using JMS 12-35

General Features of JMS
public String getAuthors()
{

return authors;
}

public float getPrice()
{

return price;
}

}
/*

* BolCustomer - customer type for BooksOnline example
*
*/

import java.lang.*;
import java.io.*;
import java.util.*;

public class BolCustomer implements Serializable
{

int custno;
String custid;
String name;
String street;
String city;
String state;
int zip;
String country;

public BolCustomer(int custno, String name)
{

this.custno = custno;
this.name = name;

}

public BolCustomer(int custno, String custid, String name, String street,
String city, String state, int zip, String country)

{

this.custno = custno;
12-36 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of JMS
this.custid = custid;
this.name = name;
this.street = street;
this.city = city;
this.state = state;
this.zip = zip;
this.country = country;

}

public int getCustomerNo()
{

return custno;
}

public String getCustomerId()
{

return custid;
}

public String getName()
{

return name;
}

public String getStreet()
{

return street;
}

public String getCity()
{

return city;
}

public String getState()
{

return state;
}

public int getZipcode()
{

return zip;
}

Creating Applications Using JMS 12-37

JMS Point-to-Point Model Features
public String getCountry()
{

return country;
}

}

JMS Point-to-Point Model Features
� Queues

� Queue Sender

� Queue Receiver

� Queue Browser

Queues
In the point-to-point model, clients exchange messages using queues - from one
point to another. These queues are used by message producers and consumers to
send and receive messages.

An administrator creates single-consumer queues by means of the createQueue
method in AQjmsSession . A client may obtain a handle to a previously created
queue using the getQueue method on AQjmsSession .

These queues are described as single-consumer queues because a message can be
consumed by only a single consumer. Put another way: a message can be consumed
exactly once. This raises the question: What happens when there are multiple
processes or operating system threads concurrently dequeuing from the same
queue? Since a locked message cannot be dequeued by a process other than the one
that has created the lock, each process will dequeue the first unlocked message at
the head of the queue.

Before using a queue, the queue needs to be enabled for enqueue/dequeue using
start call in AQjmsDestination .

After processing, the message is removed if the retention time of the queue is 0, or is
retained for a specified retention time. As long as the message is retained, it can be
either

� queried using SQL on the queue table view, or

� dequeued using a QueueBrowser and specifying the message ID of the
processed message.
12-38 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Point-to-Point Model Features
Queue Sender
A client uses a QueueSender to send messages to a queue. A QueueSender is
created by passing a queue to a session’s createSender method. A client also has
the option of creating a QueueSender without supplying a queue. In that case a
queue must be specified on every send operation.

A client can specify a default delivery mode, priority and time-to-live for all
messages sent by the QueueSender . Alternatively, the client can define these
options on a per message basis.

Example Code
In the BooksOnline application, new orders are to be sent to the new_orders_
queue . After creating a JMS connection and session, we create a sender:

public void enqueue_new_orders(QueueSession jms_session, BolOrder new_order)
{

QueueSender sender;
Queue queue;
ObjectMessage obj_message;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");
sender = jms_session.createSender(queue);
obj_message = jms_session.createObjectMessage();
obj_message.setJMSCorrelationID("RUSH");
obj_message.setObject(new_order);
sender.send(obj_message);
jms_session.commit();

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

Queue Receiver
A client uses a QueueReceiver to receive messages from a queue. A
QueueReceiver is created using the session’s createQueueReceiver method.
A QueueReceiver can be created with a message selector. This allows the client to
restrict messages delivered to the consumer to those that match the selector.
Creating Applications Using JMS 12-39

JMS Point-to-Point Model Features
The selector for queues containing payloads of type TextMessage ,
StreamMessage , BytesMessage , ObjectMessage , MapMessage can contain
any expression that has a combination of one or more of the following:

� JMSMessageID =’ID:23452345 ’ to retrieve messages that have a specified
message ID (all message IDs being prefixed with ID:)

� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

JMSCorrelationID LIKE ’RE%’

� User-defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

For queues containing AdtMessages the selector must be a SQL expression on the
message payload contents or message ID or priority or correlation ID.

� Selector on message id - to retrieve messages that have a specific message ID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with ’ID:’

� Selector on priority or correlation is specified as follows

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

Example Scenario and Code
In the BOL application, new orders are retrieved from the new_orders_queue .
These orders are then published to the OE.OE_bookedorders_topic . After
creating a JMS connection and session, you create a receiver to receive messages:

public void get_new_orders(QueueSession jms_session)
{

QueueReceiver receiver;
Queue queue;
ObjectMessage obj_message;
BolOrder new_order;
BolCustomer customer;
String state;
String cust_name;
12-40 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Point-to-Point Model Features
try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

receiver = jms_session.createReceiver(queue);

for(;;)
{

/* wait for a message to show up in the queue */
obj_message = (ObjectMessage)receiver.receive(10);

new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

obj_message.clearBody();

/* determine customer region and assign a shipping region*/
if((state.equals("CA")) || (state.equals("TX")) ||

(state.equals("WA")) || (state.equals("NV")))
obj_message.setStringProperty("Region", "WESTERN");

else
obj_message.setStringProperty("Region", "EASTERN");

cust_name = new_order.getCustomer().getName();

obj_message.setStringProperty("Customer", cust_name);

if(obj_message.getJMSCorrelationID().equals("RUSH"))
book_rush_order(obj_message);
else
book_new_order(obj_message);

jms_session.commit();
}

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

Creating Applications Using JMS 12-41

JMS Point-to-Point Model Features
Queue Browser
A client uses a QueueBrowser to view messages on a queue without removing
them. The browser methods return a java .util .Enumeration that is used to scan
the queue’s messages. The first call to nextElement gets a snapshot of the queue.
A QueueBrowser may also optionally lock messages as it is scanning them. This is
similar to a "SELECT ... for UPDATE" command on the message. This prevents
other consumers from removing the message while they are being scanned.

A QueueBrowser can also be created with a message selector. This allows the
client to restrict messages delivered to the browser to those that match the selector.

The selector for queues containing payloads of type TextMessage ,
StreamMessage , BytesMessage , ObjectMessage , MapMessage can contain
any expression that has a combination of one or more of the following:

� JMSMessageID =’ID:23452345 ’ to retrieve messages that have a specified
message ID (all message IDs being prefixed with ID:)

� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

JMSCorrelationID LIKE ’RE%’

� User-defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

For queues containing AdtMessages the selector must be a SQL expression on the
message payload contents or messageID or priority or correlationID.

� Selector on message id - to retrieve messages that have a specific messageID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with ’ID:’

� Selector on priority or correlation is specified as follows

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000
12-42 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
Example Scenario and Code
In the BooksOnline application, new orders are put into the new_orders_queue. A
client can then browse selected messages.

public void browse_rush_orders(QueueSession jms_session)
{

QueueBrowser browser;
Queue queue;
ObjectMessage obj_message;
BolOrder new_order;
Enumeration messages;
String customer_name;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

/* create a Browser to look at RUSH orders in USA */
browser = jms_session.createBrowser(queue,

"JMSCorrelationID = ’RUSH’ and country = ’USA’ ");

for (messages = browser.getEnumeration() ; messages.hasMoreElements() ;)
{

obj_message = (ObjectMessage)messages.nextElement();

new_order = (BolOrder)obj_message.getObject();

customer_name = new_order.getCustomer().getName();
System.out.println("Customer " + customer_name +

" has placed a RUSH order");
}

browser.close();
}
catch (Exception ex)
{

System.out.println("Exception " + ex);
}

}

JMS Publish-Subscribe Model Features
The following topics are discussed in this section:
Creating Applications Using JMS 12-43

JMS Publish-Subscribe Model Features
� Topic

� Durable Subscriber

� Topic Publisher

� Recipient Lists

� TopicReceiver

� Topic Browser

Topic
JMS has various features that allow you to develop an application based on a
publish-subscribe model. The aim of this application model is to enable flexible and
dynamic communication between applications functioning as publishers and
applications playing the role of subscribers. The specific design point is that the
applications playing these different roles should be decoupled in their
communication.They should interact based on messages and message content.

In distributing messages, publisher applications do not have to explicitly handle or
manage message recipients. This allows for the dynamic addition of new subscriber
applications to receive messages without changing any publisher application logic.
Subscriber applications receive messages based on message content without regard
to which publisher applications are sending messages. This allows the dynamic
addition of subscriber applications without changing any subscriber application
logic. Subscriber applications specify interest by defining a rule-based subscription
on message properties or the message content of a topic. The system automatically
routes messages by computing recipients for published messages using the
rule-based subscriptions.

In the Publish-Subscribe model, messages are published to and received from
topics. A topic is created using the CreateTopic method in an AQjmsSession. A
client may obtain a handle to a previously-created Topic using the getTopic method
in AQjmsSession.

You use the publish-subscribe model of communication in JMS by taking the
following steps:

� Enable enqueue/dequeue on the Topic using the start call in
AQjmsDestination.

� Set up one or more topics to hold messages. These topics should represent an
area or subject of interest. For example, a topic can be used to represent billed
orders.
12-44 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
� Create a set of Durable Subscribers. Each subscriber may specify a selector that
represents a specification (selects) for the messages that the subscriber wishes to
receive. A null selector indicates that the subscriber wishes to receive all
messages published on the topic

� Subscribers may be local or remote. Local subscribers are durable subscribers
defined on the same topic on which the message is published. Remote
subscribers are other topics, or recipients on other topics that are defined as
subscribers to a particular queue. In order to use remote subscribers, you must
set up propagation between the two local and remote topic. For details on
propagation, see: Chapter 9, "Administrative Interface".

� Create TopicPublishers using the session’s createPublisher method
Messages are published using the publish call. Messages may be published to
all subscribers to the topic or to a specified subset of recipients on the topic

� Subscribers may receive messages on the topic by using the receive method

� Subscribers may also receive messages asynchronously by using Message
Listeners. The concepts of Remote Subscribers and Propagation are Oracle
extensions to JMS.

Example Scenario
In the BooksOnline application all booked orders are published to the OE_
bookedorders_topic . Orders for customers in the eastern region are routed to
the ES.ES_bookedorders_topic and those for the western region are routed to
the WS.WS_bookedorders_topic . There is also another application that
subscribes to the OE_bookedorders_topic to track messages for some important
customers. Refer to the code examples in the following sections.

Durable Subscriber
Durable Subscribers are instituted in either of the following ways:

� A client uses the session’s createDurableSubscriber method to create
durable subscribers.

� A DurableSubscriber is be created with a message selector. This allows the
client to restrict messages delivered to the subscriber to those that match the
selector.

The selector for topics containing payloads of type TextMessage ,
StreamMessage , BytesMessage , ObjectMessage , MapMessage can contain
any expression that has a combination of one or more of the following:
Creating Applications Using JMS 12-45

JMS Publish-Subscribe Model Features
� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

� User-defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

For topics containing AdtMessages the selector must be a SQL expression on the
message payload contents or priority or correlationID .

� Selector on priority or correlation is specified as follows

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

The syntax for the selector is described in detail in Oracle9i Supplied Java Packages
Reference, createDurableSubscriber .

Remote subscribers are defined using the createRemoteSubscriber call.The
remote subscriber may be a specific consumer at the remote topic or all subscribers
at the remote topic

A remote subscriber is defined using the AQjmsAgent structure. An AQjmsAgent
consists of a name and address. The name refers to the consumer_name at the
remote topic. The address refers to the remote topic:

<schema>.<topic_name>[@dblink]

� To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in
the name field of AQjmsAgent . The remote topic must be specified in the
address field of AQjmsAgent .

� To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the
address field of AQjmsAgent .

In the BooksOnline application there is one local subscriber SUBS1 and two remote
subscribers -

� West_Shipping at the remote topic WS.WS_bookedorders_topic

� East_Shipping at ES.ES_booked_orders_topic
12-46 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
Example Code
 public void create_booked_orders_subscribers(TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;
AQjmsAgent agt_east;
AQjmsAgent agt_west;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OR_bookedorders_topic");

/* Create local subscriber - to track messages for some customers */
tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",

"JMSPriority < 3 AND Customer = ’MARTIN’",
false);

/* Create remote subscribers in the western and eastern region */
agt_west = new AQjmsAgent("West_Shipping", "WS.WS_bookedorders_topic");

((AQjmsSession)jms_session).createRemoteSubscriber(topic, agt_west,
"Region = ’WESTERN’");

agt_east = new AQjmsAgent("East_Shipping", "ES.ES_bookedorders_topic");

((AQjmsSession)jms_session).createRemoteSubscriber(topic, agt_east,
"Region = ’EASTERN’");

/* schedule propagation between bookedorders_topic and
WS_bookedorders_topic, ES.ES_bookedorders_topic */

((AQjmsDestination)topic).schedulePropagation(jms_session,
"WS.WS_bookedorders_topic",

null, null, null, null);

((AQjmsDestination)topic).schedulePropagation(jms_session,
"ES.ES_bookedorders_topic",

null, null, null, null);
}
catch (Exception ex)
{

Creating Applications Using JMS 12-47

JMS Publish-Subscribe Model Features
System.out.println("Exception " + ex);
}

}

Topic Publisher
Messages are published using TopicPublisher :

A TopicPublisher is created by passing a Topic to a session’s
createPublisher method. A client also has the option of creating a
TopicPublisher without supplying a Topic . In this case, a Topic must be
specified on every publish operation. A client can specify a default delivery mode,
priority and time-to-live for all messages sent by the TopicPublisher . It can also
specify these options on a per message basis.

Example Scenario and Code
In the BooksOnline application, booked orders are published to the OE.OE_
bookedorders_topic

public void book_new_order(TopicSession jms_session, ObjectMessage obj_message)
{

TopicPublisher publisher;
Topic topic;

try
{

/* get a handle to the booked_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE",

"OE_bookedorders_topic");

publisher = jms_session.createPublisher(topic);

publisher.publish(topic, obj_message);

jms_session.commit();
}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

12-48 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
In the BooksOnline application, each shipping region receives messages from the
corresponding booked orders topic (WS_bookedorder_topic or ES_
bookedorder_topic). The local subscriber SUBS1 receives messages from the
OE_booked_orders_topic .

public void get_martins_orders(TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order;
String state;
int i = 0;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OE_bookedorders_topic");

/* Create local subscriber - to track messages for some customers */
tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",

"JMSPriority < 3 AND Customer = ’MARTIN’",
false);

/* process 10 messages */
for(i=0; i<10; i++)
{

/* wait for a message to show up in the topic */
obj_message = (ObjectMessage)tsubs.receive(10);

new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Order: " + i + " for customer " +
customer.getName());

jms_session.commit();
}

}
catch (Exception ex)
{

System.out.println("Exception " + ex);
Creating Applications Using JMS 12-49

JMS Publish-Subscribe Model Features
}
}

Recipient Lists
In the JMS publish-subscribe model, clients can specify explicit recipient lists
instead of having messages sent to all the subscribers of the topic. These recipients
may or may not be existing subscribers of the topic. The recipient list overrides the
subscription list on the topic for this message. The concept of recipient lists is an
Oracle extension to JMS.

Example Scenario and Code
Suppose we want to send high priority messages only to SUBS1 and Fedex_
Shipping in the Eastern region instead of publishing them to all the subscribers of
the OE_bookedorders_topic :

public void book_rush_order(TopicSession jms_session,
ObjectMessage obj_message)

{

TopicPublisher publisher;
Topic topic;
AQjmsAgent[] recp_list = new AQjmsAgent[2];

try
{

/* get a handle to the booked_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE",

"OE_bookedorders_topic");

publisher = jms_session.createPublisher(null);

recp_list[0] = new AQjmsAgent("SUBS1", null);
recp_list[1] = new AQjmsAgent("Fedex_Shipping",

"ES.ES_bookedorders_topic");

publisher.setPriority (1);
((AQjmsTopicPublisher)publisher).publish(topic, obj_message, recp_list);

jms_session.commit();

}
catch (Exception ex)
{

12-50 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
System.out.println("Exception: " + ex);
}

}

TopicReceiver
If the recipient name is explicitly specified in the recipient list, but that recipient is
not a subscriber to the queue, then messages sent to it can be received by creating a
TopicReceiver.TopicReceiver is an Oracle extension to JMS.

A TopicReceiver can also be created with a message selector. This allows the
client to restrict messages delivered to the recipient to those that match the selector.

The syntax for the selector for TopicReceiver is the same as that for
QueueReceiver.

Example Scenario and Code
public void ship_rush_orders(TopicSession jms_session)
{

Topic topic;
TopicReceiver trec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order;
String state;
int i = 0;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("ES",

"ES_bookedorders_topic");

/* Create local subscriber - to track messages for some customers */
trec = ((AQjmsSession)jms_session).createTopicReceiver(topic,

"Fedex_Shipping",
null);

/* process 10 messages */
for(i = 0; i < 10; i++)
{

/* wait for a message to show up in the topic */
obj_message = (ObjectMessage)trec.receive(10);
Creating Applications Using JMS 12-51

JMS Publish-Subscribe Model Features
new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Rush Order for customer " +
customer.getName());

jms_session.commit();
}

}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

For remote subscribers - if the subscriber name at the remote topic has explicitly
been specified in the createRemoteSubscriber call, then to receive a message,
we can use TopicReceivers

public void get_westernregion_booked_orders(TopicSession jms_session)
{

Topic topic;
TopicReceiver trec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order;
String state;
int i = 0;

try
{

/* get a handle to the WS_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* Create local subscriber - to track messages for some customers */
trec = ((AQjmsSession)jms_session).createTopicReceiver(topic,

"West_Shipping",
null);

/* process 10 messages */
for(i = 0; i < 10; i++)
{

/* wait for a message to show up in the topic */
12-52 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
obj_message = (ObjectMessage)trec.receive(10);

new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Received Order for customer " +
customer.getName());

jms_session.commit();
}

}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

If the subscriber name is not specified in the createRemoteSubscriber call,
clients have to use durable subscribers at the remote site to receive messages.

Topic Browser
A client uses a TopicBrowser to view messages on a topic without removing them.
The browser methods return a java.util.Enumeration that is used to scan the
topic's messages. The first call to nextElement gets a snapshot of the topic. A
TopicBrowser may also optionally lock messages as it is scanning them. This is
similar to a SELECT ... for UPDATE command on the message. This prevents
other consumers from removing the message while they are being scanned.

A TopicBrowser can also be created with a message selector. This allows the client
to restrict messages delivered to the browser to those that match the selector.

The selector for the TopicBrowser can take any of the following forms:

� JMSMessageID =’ID:23452345 ’ to retrieve messages that have a specified
message ID (all message IDs are prefixed with ID:)

� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’
JMSCorrelationID LIKE ’RE%’

� User-defined message properties:
Creating Applications Using JMS 12-53

JMS Publish-Subscribe Model Features
color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

For topics containing AdtMessages, the selector must be a SQL expression on the
message payload contents or messageID or priority or correlationID.

� Selector on message id - to retrieve messages that have a specific messageID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with ID:

Selector on priority or correlation is specified as follows:

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows:

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

As with any consumer for topics, only durable subscribers are allowed

to create topic browsers.

TopicBrowsers also support a purge feature. This allows a client using a topic
browser to discard all messages that have been seen during the current browse
operation on the topic. A purge is equivalent to a destructive receive of all of the
seen messages (as if performed using a TopicSubscriber).

For the purpose of a purge, a message is considered seen if it has been returned to
the client using a call to the nextElement() operation on the
java.lang.Enumeration for the topic browser. Messages that have not yet been
seen by the client will not be discarded during a purge. A purge operation may be
performed multiple times on the same topic browser.

As with all other JMS messaging operations, the effect of a purge becomes stable
when the JMS session used to create the TopicBrowser is committed. If the
operations on the session are rolled back, the effects of the purge operation are also
undone.

Example Scenario and Code
In the BooksOnline application, all booked orders are published to the OE_
booked_orders_topic . A client can then browse selected messages.

import oracle.jms.TopicBrowser;
// ...
public void browse_rush_orders(TopicSession jms_session)
{

12-54 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Publish-Subscribe Model Features
TopicBrowser browser;
Topic topic;
ObjectMessage obj_message;
BolOrder new_order;
Enumeration messages;
String customer_name;

try
{

/* get a handle to the OE_booked_orders_topic topic */
topic = ((AQjmsSession) jms_session).getTopic("OE",

"OE_booked_orders_topic");

/* create a Browser to look at RUSH orders */
browser = jms_session.createBrowser(

topic, "SUBS1", "JMSCorrelationID = 'RUSH'");

int count = 0;
for (messages = browser.getEnumeration() ; messages.hasMoreElements() ;)
{

obj_message = (ObjectMessage)messages.nextElement();
new_order = (BolOrder)obj_message.getObject();

customer_name = new_order.getCustomer().getName();
System.out.println("Customer " + customer_name +

" has placed a RUSH order");

++count;
}

/* purge messages seen during this browse if there are too many */
if (count > 100)
{

browser.purgeSeen();
}

browser.close();
}
catch (Exception ex)
{
System.out.println("Exception " + ex);
}

}

Creating Applications Using JMS 12-55

JMS Message Producer Features
JMS Message Producer Features
� Priority and Ordering of Messages

� Time Specification - Delay

� Time Specification - Expiration

� Message Grouping

Priority and Ordering of Messages
 The message ordering dictates the order in which messages will be received from a
queue or topic. The ordering method is specified when the queue table for the
queue or topic is created (see "Creating a Queue Table" in Chapter 9,
"Administrative Interface"). Currently, AQ supports ordering on two of the message
attributes:

� Priority

� Enqueue time

When combined, they lead to four possible ways of ordering:

FIFO Ordering of Messages If enqueue time was chosen as the ordering criteria,
then messages are received in the order of the enqueue time. The enqueue time is
assigned to the message by AQ at message publish/send time. This is also the
default ordering.

Priority Ordering of Messages If priority ordering is chosen, each message will be
assigned a priority. Priority can be specified as a message property at publish/send
time by the Message Producer. The messages will be received in the order of the
priorities assigned.

First-In, First-Out (FIFO) Priority Ordering A FIFO-priority topic/queue can also
be created by specifying both the priority and the enqueue time as the sort order of
the messages. A FIFO-priority topic/queue behaves like a priority queue, except if
two messages are assigned the same priority, they will be received in the order of
their enqueue time.

Enqueue Time Followed by Priority Messages with the same enqueue time will
be received according to their priorities. If the ordering criteria of two message is
the same, then the order they are received is indeterminate. However, AQ does
ensure that messages send/published in the same session with the same ordering
criteria will be received in the order they were sent.
12-56 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Producer Features
Example Scenario and Code
Using the BooksOnLine application, a customer can request one of the following:

� FedEx shipping (priority 3)

� Priority air shipping (priority 2)

� Regular ground shipping (priority 1)

Priority can be specified at the Message Producer level using the setPriority
call, or during the send or publish call. The latter overrides the former.

The Order Entry application uses a FIFO queue to store new orders. New orders are
processed by the order entry application and published to the booked orders topic.
The order entry application will retrieve messages from the new orders queue in the
order of their enqueue time. It uses a FIFO-priority topic to store booked orders.
Booked orders are propagated to the regional booked orders topics. At each region,
orders in these regional booked orders topics are processed in the order of the
shipping priorities. The following calls create the FIFO-priority topic for the Order
Entry application to store booked orders.

public static void createPriorityTopic(TopicSession jms_session)
{

AQQueueTableProperty qt_prop;
AQQueueTable pr_qtable;
AQjmsDestinationProperty dest_prop;
Topic bookedorders_topic;

try
{

/* Create a priority queue table for OE */
qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_OBJECT_MESSAGE");
qt_prop.setComment("Order Entry Priority " +

"MultiConsumer Orders queue table");
qt_prop.setCompatible("8.1");
qt_prop.setMultiConsumer(true);

/* Set a FIFO-priority order */
qt_prop.setSortOrder("priority, enq_time");

pr_qtable = ((AQjmsSession)jms_session).createQueueTable("OE",
"OE_orders_pr_mqtab", qt_prop);

/* Create a Queue in this queue table */
dest_prop = new AQjmsDestinationProperty();
Creating Applications Using JMS 12-57

JMS Message Producer Features
bookedorders_topic =((AQjmsSession)jms_session).createTopic(pr_qtable,
"OE_bookedorders_topic", dest_prop);

/* Enable enqueue and dequeue on the topic */
((AQjmsDestination)bookedorders_topic).start(jms_session, true, true);

}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}

/* When an order arrives, the order entry application can use the following
procedure to publish the order into its booked orders topic. A shipping
priority is specified for each order: */

public static void order_enqueue(TopicSession jms_session, String book_title,
int book_qty, int order_num, int cust_no,
String cust_name, int ship_priority,
String cust_state, String cust_country,
String cust_order_type)

{
BolOrder order;
BolCustomer cust_data;
BolBook book_data;
BolOrderItem[] item_list;
Topic topic;
ObjectMessage obj_message;
TopicPublisher tpub;

try
{

book_data = new BolBook(book_title);
cust_data = new BolCustomer(cust_no, cust_name);

order = new BolOrder(order_num, cust_data);

item_list = new BolOrderItem[1];
item_list[0] = new BolOrderItem(book_data, book_qty);

order.setItemList(item_list);

/* get a handle to the OE bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",
12-58 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Producer Features
"OE_bookedorders_topic");

/* Create the topic publisher */
tpub = jms_session.createPublisher(topic);

obj_message = jms_session.createObjectMessage();
obj_message.setObject(order);

/* Send message - specify priority */
tpub.publish(topic, obj_message, DeliveryMode.PERSISTENT,

ship_priority,0);

jms_session.commit();
}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

Time Specification - Delay
Messages can be sent/published to a queue/topic with Delay. The delay represents
a time interval after which the message becomes available to the Message
Consumer. A message specified with a delay is in a waiting state until the delay
expires and the message becomes available. Delay for a message is specified as
message property (JMS_OracleDelay). This property is not specified in the JMS
standard. It is an AQ extension to JMS message properties.

Delay processing requires the AQ background process, the queue monitor to be
started. Note also that receiving by msgid overrides the delay specification.

Example Scenario and Code
In the BooksOnLine application, delay can be used to implement deferred billing.
The billing application defines a queue in which shipped orders that are not billed
immediately are placed with a delay. For example, a certain class of customer
accounts, such as corporate customers, may not be billed for 15 days. The billing
application dequeues incoming shipped order messages (from the shipped orders
queue) and if the order is for a corporate customer, this order is enqueued into a
deferred billing queue with a delay. Delay works similarly for publish, though a
scenario has not been provided.

public static void defer_billing(QueueSession jms_session,
Creating Applications Using JMS 12-59

JMS Message Producer Features
BolOrder deferred_order)
{

Queue def_bill_q;
ObjectMessage obj_message;
QueueSender qsender;

try
{

/* get a handle to the deferred billing queue */
def_bill_q = ((AQjmsSession)jms_session).getQueue("CBADM",

"deferbilling_que");

/* Create the QueueSender */
qsender = jms_session.createSender(def_bill_q);

obj_message = jms_session.createObjectMessage();
obj_message.setObject(deferred_order);

/* Set Delay as 15 days
* Delay is specified in seconds

*/
obj_message.setIntProperty("JMS_OracleDelay", 15*60*60*24);

qsender.send(obj_message);

jms_session.commit();

}
catch (Exception ex)
{

System.out.println("Exception " + ex);
}

}

Time Specification - Expiration
Producers of messages can specify expiration limits, or Time-to-Live (coded as
TimeToLive) for messages. This defines the period of time the message is available
for a Message Consumer.

Time-to-Live can be specified at send/publish time or using the set TimeToLive
method of a Message Producer, with the former overriding the latter. Note that the
AQ background process, the queue monitor must be running to implement
Time-to-Live.
12-60 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Producer Features
Example Scenario
In the BooksOnLine application, TimeToLive can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available on a back order topic. If the shipping policy is that
all back orders must be shipped within a week, then messages can be published
into the back order topic with an expiration of one week. In this case, any back
orders that are not processed within one week are moved to the exception topic
with the message state set to EXPIRED. This can be used to flag any orders that
have not been shipped according to the back order shipping policy.

Example Code
/* Re-enqueue a back order into a back_order Topic and set a timeToLive of

7 days;
All back orders must be processed in 7 days or they are moved to the
exception queue */

public static void requeue_back_order(TopicSession jms_session,
String sale_region, BolOrder back_order)

{
Topic back_order_topic;
ObjectMessage obj_message;
TopicPublisher tpub;
long timetolive;

try
{

/* Look up a back order topic based on the region */
if(sale_region.equals("WEST"))
{

back_order_topic = ((AQjmsSession)jms_session).getTopic("WS",
"WS_backorders_topic");

}
else if(sale_region.equals("EAST"))
{

back_order_topic = ((AQjmsSession)jms_session).getTopic("ES",
"ES_backorders_topic");

}
else
{

back_order_topic = ((AQjmsSession)jms_session).getTopic("OS",
"OS_backorders_topic");

}

obj_message = jms_session.createObjectMessage();
Creating Applications Using JMS 12-61

JMS Message Producer Features
obj_message.setObject(back_order);

tpub = jms_session.createPublisher(null);

/* Set message expiration to 7 days: */
timetolive = 7*60*60*24*1000; // specified in milliseconds

/* Publish the message */
tpub.publish(back_order_topic, obj_message, DeliveryMode.PERSISTENT,

1, timetolive);

jms_session.commit();
}
catch (Exception ex)
{

System.out.println("Exception :" + ex);
}

}

Message Grouping
Messages belonging to a queue/topic can be grouped to form a set that can only be
consumed by one consumer at a time. This requires the queue/topic be created in a
queue table that is enabled for transactional message grouping (see "Creating a
Queue Table", Chapter 9, "Administrative Interface"). All messages belonging to a
group have to be created in the same transaction and all messages created in one
transaction belong to the same group. Using this feature, you can segment a
complex message into simple messages. This is an AQ extension and not part of the
JMS specification.

For example, messages directed to a queue containing invoices could be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also very
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group irrespective of which properties are specified for
subsequent messages in the group.
12-62 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Producer Features
The message grouping property is preserved across propagation. However, it is
important to note that the destination topic to which messages have to be
propagated must also be enabled for transactional grouping. There are also some
restrictions you need to keep in mind if the message grouping property is to be
preserved while dequeuing messages from a queue enabled for transactional
grouping (see “Dequeue Methods" and "Modes of Dequeuing" for additional
information).

Example Scenario
In the BooksOnLine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar behavior.

In the example that follows, each send corresponds to an individual book that is
part of an order, and the group/transaction represents a complete order. Only the
first message contains customer information. Note that the OE_neworders_que is
defined in the queue table OE_orders_sqtab which has been enabled for
transactional grouping.

Example Code
public static void createMsgGroupQueueTable(QueueSession jms_session)
{

AQQueueTableProperty sqt_prop;
AQQueueTable sq_table;
AQjmsDestinationProperty dest_prop;
Queue neworders_q;

try
{

/* Create a single-consumer orders queue table
* with message grouping = TRANSACTIONAL
*/

sqt_prop = new AQQueueTableProperty("BOLADM.order_typ");
sqt_prop.setComment("Order Entry Single-Consumer Orders queue table");
sqt_prop.setCompatible("8.1");
sqt_prop.setMessageGrouping(AQQueueTableProperty.TRANSACTIONAL);

sq_table = ((AQjmsSession)jms_session).createQueueTable("OE",
"OE_orders_sqtab", sqt_prop);

/* Create new orders queue for OE */
dest_prop = new AQjmsDestinationProperty();
neworders_q = ((AQjmsSession)jms_session).createQueue(sq_table,
Creating Applications Using JMS 12-63

JMS Message Producer Features
"OE_neworders_que",
dest_prop);

}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
}

}

/* This method send an order to the specified queue */
public static void enqueue_order(QueueSession jms_session, Queue queue,

int order_num, String cust_name, int cust_id,
int book_qty, String book_title)

{
QueueSender sender;
ObjectMessage obj_message;
BolOrder order;
BolCustomer cust_data=null;
BolBook book_data;
BolOrderItem[] item_list;

try
{

book_data = new BolBook(book_title);

if(cust_name != null)
{

cust_data = new BolCustomer(cust_id, cust_name);
}

order = new BolOrder(order_num, cust_data);

item_list = new BolOrderItem[1];
item_list[0] = new BolOrderItem(book_data, book_qty);

order.setItemList(item_list);

sender = jms_session.createSender(queue);

obj_message = jms_session.createObjectMessage();

obj_message.setObject(order);
12-64 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Producer Features
sender.send(obj_message);
}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

/* Enqueue groups of orders */
public static void enqueue_order_groups(QueueSession jms_session)
{

Queue neworders_q;

try
{

neworders_q = ((AQjmsSession)jms_session).getQueue("OE",
"OE_neworders_que");

/* Enqueue first group */
enqueue_order(jms_session, neworders_q, 1, "John", 1000, 2,

"John’s first book");

enqueue_order(jms_session, neworders_q, 1, null, 0, 1,
"John’s second book");

jms_session.commit();

/* Enqueue second group */
enqueue_order(jms_session, neworders_q, 2, "Mary", 1001, 1,

"Mary’s first book");

enqueue_order(jms_session, neworders_q, 2, null, 0, 1,
"Mary’s second book");

enqueue_order(jms_session, neworders_q, 2, null, 0, 1,
"Mary’s third book");

jms_session.commit();

/* Enqueue third group */
enqueue_order(jms_session, neworders_q, 3, "Scott", 1002, 1,

"Scott’s first book");

enqueue_order(jms_session, neworders_q, 3, null, 0, 2,
"Scott’s second book");
Creating Applications Using JMS 12-65

JMS Message Consumer Features
enqueue_order(jms_session, neworders_q, 3, null, 0, 2,
"Scott’s third book");

jms_session.commit();
}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

JMS Message Consumer Features
� Receiving Messages

� Message Navigation in Receive

� Modes for Receiving Messages

� Retry With Delay Interval

� Asynchronously Receiving Message Using Message Listener

� AQ Exception Handling

Receiving Messages
A JMS application can receive messages by creating a message consumer. Messages
can be received synchronously using the receive call or an synchronously using a
Message Listener.

There are three modes of receive,

� block until a message arrives for a consumer

� block for a maximum of the specified time

� nonblocking

Example Code: Block Until a Message Arrives
public BolOrder get_new_order1(QueueSession jms_session)

{
Queue queue;
QueueReceiver qrec;
12-66 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order = null;
String state;

try
{
/* get a handle to the new_orders queue */

queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

qrec = jms_session.createReceiver(queue);

/* wait for a message to show up in the queue */
obj_message = (ObjectMessage)qrec.receive();

new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName());

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}
return new_order;

}

Example: Block for a Maximum of 60 Seconds
public BolOrder get_new_order2(QueueSession jms_session)

{
Queue queue;
QueueReceiver qrec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order = null;
String state;

try
{

Creating Applications Using JMS 12-67

JMS Message Consumer Features
/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

qrec = jms_session.createReceiver(queue);

/* wait for 60 seconds for a message to show up in the queue */
obj_message = (ObjectMessage)qrec.receive(60000);

new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName());

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}
return new_order;

}

Example Code: Nonblocking
public BolOrder poll_new_order3(QueueSession jms_session)

{
Queue queue;
QueueReceiver qrec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order = null;
String state;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

qrec = jms_session.createReceiver(queue);

/* check for a message to show in the queue */
obj_message = (ObjectMessage)qrec.receiveNoWait();
12-68 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
new_order = (BolOrder)obj_message.getObject();

customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName());

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}
return new_order;

}

Message Navigation in Receive
When a consumer does the first receive in its session, its gets the first message in the
queue or topic. Subsequent receives get the next message, and so on. The default
behavior works well for FIFO queues and topics, but not for priority ordered
queues. If a high priority message arrives for the consumer, this client program will
not receive the message until it has cleared the messages that were already there for
it.

To provide the consumer a better control in navigating the queue for its messages,
the AQ navigation modes are made available to it as JMS extensions. These modes
can be set at the TopicSubscriber , QueueReceiver or the TopicReceiver .

� FIRST_MESSAGE resets the consumer’s position to the beginning of the queue.
This is a useful mode for priority ordered queues as it allows the consumer to
remove the message on the top of the queue.

� NEXT_MESSAGE get the message after the established position of the consumer.
For example, a NEXT_MESSAGE issued after the position is at the fourth
message, will get the second message in the queue. This is the default behavior.

For transaction grouping

� FIRST_MESSAGE resets the consumer’s position to the beginning of the queue

� NEXT_MESSAGE sets the position to the next message in the same transaction.
Creating Applications Using JMS 12-69

JMS Message Consumer Features
� NEXT_TRANSACTION sets the position to the first message in the next
transaction.

Note that the transaction grouping property may be negated if messages are
received in the following ways:

� Receive specifying a correlation identifier in the selector,

� Receive by specifying a message identifier in the selector,

� Committing before all the messages of a transaction group have been
received.

If in navigating through the queue, the program reaches the end of the queue while
using the NEXT_MESSAGE or NEXT_TRANSACTION option, and you have specified a
blocking receive, then the navigating position is automatically changed to the
beginning of the queue.

By default, a QueueReceiver , Topic Receiver , or TopicSubscriber uses
FIRST_MESSAGE for the first receive call, and NEXT_MESSAGE for the
subsequent receive calls.

Example Scenario
The get_new_orders() procedure retrieves orders from the OE_neworders_
que . Each transaction refers to an order, and each message corresponds to an
individual book in that order. The get_orders() procedure loops through the
messages to retrieve the book orders. It resets the position to the beginning of the
queue using the FIRST_MESSAGE option before the first receive. It then uses the
next message navigation option to retrieve the next book (message) of an order
(transaction). If it gets an exception indicating all message in the current
group/transaction have been fetched, it changes the navigation option to next
transaction and get the first book of the next order. It then changes the navigation
option back to next message for fetching subsequent messages in the same
transaction. This is repeated until all orders (transactions) have been fetched.

Example Code
public void get_new_orders(QueueSession jms_session)

{
Queue queue;
QueueReceiver qrec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder new_order;
String state;
12-70 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
int new_orders = 1;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE","OE_neworders_que");
qrec = jms_session.createReceiver(queue);

/* set navigation to first message */

((AQjmsTopicSubscriber)qrec).setNavigationMode(AQjmsConstants.NAVIGATION_FIRST_
MESSAGE);

while(new_orders != 0)
{

try{

/* wait for a message to show up in the topic */
obj_message = (ObjectMessage)qrec.receiveNoWait();

if (obj_message != null) /* no more orders in the queue */
{

System.out.println(" No more orders ");
new_orders = 0;

}
new_order = (BolOrder)obj_message.getObject();
customer = new_order.getCustomer();
state = customer.getState();

System.out.println("Order: for customer " +
customer.getName());

/* Now get the next message */

((AQjmsTopicSubscriber)qrec).setNavigationMode(AQjmsConstants.NAVIGATION_NEXT_
MESSAGE);

}catch(AQjmsException ex)
{ if (ex.getErrorNumber() == 25235)

{
System.out.println("End of transaction group");

((AQjmsTopicSubscriber)qrec).setNavigationMode(AQjmsConstants.NAVIGATION_NEXT_
TRANSACTION);
Creating Applications Using JMS 12-71

JMS Message Consumer Features
}
else

throw ex;
}

}
}catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

Modes for Receiving Messages

For Point-to-Point Mode
Aside from the normal receive , which allows the dequeuing client to delete the
message from the queue, JMS provides an interface that allows the JMS client to
Browse its messages in the queue. A QueueBrowser can be created using the
createBrowser method from QueueSession .

If a message is browsed, it remains available for further processing. Note that after a
message has been browsed there is no guarantee that the message will be available
to the JMS session again as a receive call from a concurrent session might remove
the message.

To prevent a viewed message from being removed by a concurrent JMS client, you
can view the message in the locked mode. To do this, you need to create a
QueueBrowser with the locked mode using the AQ extension to the JMS
interface.The lock on the message with a browser with locked mode is released
when the session performs a commit or a rollback.

To remove the message viewed by a QueueBrowser , the session must create a
QueueReceiver and use the JMSmesssageID as the selector.

Example Code
Refer to the QueueBrowser Example in Point-to-Point features

Remove-No-Data
The MessageConsumer can remove the message from the queue or topic without
retrieving the message using the receiveNoData call. This is useful when the
application has already examined the message, perhaps using the QueueBrowser .
12-72 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
This mode allows the JMS client to avoid the overhead of retrieving the payload
from the database, which can be substantial for a large message.

Example Scenario and Code
In the following scenario from the BooksOnLine example, international orders
destined to Mexico and Canada are to be processed separately due to trade policies
and carrier discounts. Hence, a message is viewed in the locked mode (so no other
concurrent user removes the message) using the QueueBrowser and the customer
country (message payload) is checked. If the customer country is Mexico or Canada
the message be deleted from the queue using the remove with no data (since the
payload is already known) mode. Alternatively, the lock on the message is released
by the commit call. Note that the receive call uses the message identifier obtained
from the locked mode browse .

public void process_international_orders(QueueSession jms_session)
{

QueueBrowser browser;
Queue queue;
ObjectMessage obj_message;
BolOrder new_order;
Enumeration messages;
String customer_name;
String customer_country;
QueueReceiver qrec;
String msg_sel;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

/* create a Browser to look at RUSH orders */
browser = ((AQjmsSession)jms_session).createBrowser(queue, null, true);

for (messages = browser.getEnumeration() ; messages.hasMoreElements() ;)
{

obj_message = (ObjectMessage)messages.nextElement();

new_order = (BolOrder)obj_message.getObject();

customer_name = new_order.getCustomer().getName();

customer_country = new_order.getCustomer().getCountry();
Creating Applications Using JMS 12-73

JMS Message Consumer Features
if (customer_country equals ("Canada") || customer_country equals (
"Mexico"))

{
System.out.println("Order for Canada or Mexico");
msg_sel = "JMSMessageID = ’" + obj_message. getJMSMessageID()+ "’";
qrec = jms_session.createReceiver(queue, msg_sel);
((AQjmsQueueReceiver)qrec).receiveNoData();

}
}

}catch (JMSException ex)
{ System.out.println("Exception " + ex);

}
}

Retry With Delay Interval

Max Retries
If the transaction receiving the message from a queue/topic fails, it is regarded as
an unsuccessful attempt to remove the message. AQ records the number of failed
attempts to remove the message in the message history.

In addition, it also allows the application to specify at the queue/topic level, the
maximum number of retries supported on messages. If the number of failed
attempts to remove a message exceed this number, the message is moved to the
exception queue and is no longer available to applications.

Retry Delay
If the transaction receiving a message aborted, this could be because of a ’bad’
condition, for example, an order that could not be fulfilled because there were
insufficient books in stock. Since inventory updates are made every 12 hours, it
makes sense to retry after that time. If an order was not filled after 4 attempts,
this could indicates there is a problem.

AQ allows users to specify a retry_delay along with max_retries . This means
that a message that has undergone a failed attempt at retrieving will remain visible
in the queue for dequeue after ’retry_delay ’ interval. Until then it will be in the
’WAITING’ state. The AQ background process, the time manager enforces the retry
delay property.
12-74 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
 The maximum retries and retry delay are properties of the queue/topic which can
be set when the queue/topic is created or using the alter method on the
queue/topic. The default value for MAX_RETRIES is 5.

Example Scenario and Code
 If an order cannot be filled because of insufficient inventory, the transaction
processing the order is aborted. The booked_orders topic is set up with max_
retries = 4 and retry_delay = 12 hours.Thus, if an order is not filled up in two
days, it is moved to an exception queue.

public BolOrder process_booked_order(TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder booked_order = null;
String country;
int i = 0;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* Create local subscriber - to track messages for Western Region */
tsubs = jms_session.createDurableSubscriber(topic, "SUBS1",

"Region = ’Western’ ",
false);

/* wait for a message to show up in the topic */
obj_message = (ObjectMessage)tsubs.receive(10);

booked_order = (BolOrder)obj_message.getObject();

customer = booked_order.getCustomer();
country = customer.getCountry();

if (country == "US")
{

jms_session.commit();
}
else
Creating Applications Using JMS 12-75

JMS Message Consumer Features
{
jms_session.rollback();
booked_order = null;

}
}catch (JMSException ex)
{ System.out.println("Exception " + ex) ;}

return booked_order;
}

Asynchronously Receiving Message Using Message Listener

Message Listener for a Message Consumer
The JMS client can receive messages asynchronously by setting the
MessageListener using the setMessageListener method available with the
Consumer.

When a message arrives for the message consumer, the onMessage method of the
message listener is invoked with the message. The message listener can commit or
abort the receipt of the message. The message listener will not receive messages if
the JMS Connection has been stopped. The receive call must not be used to
receive messages once the message listener has been set for the consumer.

Example
The application processing the new orders queue can be set up for asynchronously
receiving messages from the queue.

public class OrderListener implements MessageListener
{

QueueSession the_sess;

/* constructor */
OrderListener(QueueSession my_sess)
{

the_sess = my_sess;
}

/* message listener interface */
public void onMessage(Message m)
{

ObjectMessage obj_msg;
BolCustomer customer;
BolOrder new_order = null;
12-76 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
try {
/* cast to JMS Object Message */
obj_msg = (ObjectMessage)m;

/* Print some useful information */
new_order = (BolOrder)obj_msg.getObject();
customer = new_order.getCustomer();
System.out.println("Order: for customer " + customer.getName());

/* call the process order method
* NOTE: we are assuming it is defined elsewhere
* /
process_order(new_order);

/* commit the asynchronous receipt of the message */
the_sess.commit();

}catch (JMSException ex)
{ System.out.println("Exception " + ex) ;}

}
}

public void setListener1(QueueSession jms_session)
{

Queue queue;
QueueReceiver qrec;
MessageListener ourListener;

try
{

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

/* create a queue receiver */
qrec = jms_session.createReceiver(queue);

/* create the message listener */
ourListener = new OrderListener(jms_session);

/* set the message listener for the receiver */
qrec.setMessageListener(ourListener);

}
catch (JMSException ex)
{

Creating Applications Using JMS 12-77

JMS Message Consumer Features
System.out.println("Exception: " + ex);
}

}

Message Listener for All Consumers on a Session
The JMS client can receive messages asynchronously for all the consumers of the
session by setting the MessageListener at the session.

When a message arrives for any of the message consumers of the session, the
onMessage method of the message listener is invoked with the message. The
message listener can commit or abort the receipt of the message. The message
listener will not receive messages if the JMS connection has been stopped. No other
mode for receiving messages must be used in the session once the message listener
has been set.

Example Scenario and Code
In the customer service component of the BooksOnLine example, messages from
different databases arrive at the customer service topics, indicating the state of the
order. The customer service application monitors the topics and whenever there is a
message about a customer order, it updates the order status in the order_status_
table . The application uses the session listener to monitor the different topics.
Whenever there is a message in any of the topics, the onMessage method of the
session MessageListener is invoked.

/* define our message listener class */
public class CustomerListener implements MessageListener
{

TopicSession the_sess;

/* constructor */
CustomerListener(TopicSession my_sess)
{

the_sess = my_sess;
}

/* message listener interface */
public void onMessage(Message m)
{

ObjectMessage obj_msg;
BolCustomer customer;
BolOrder new_order = null;

try
12-78 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
{
/* cast to JMS Object Message */
obj_msg = (ObjectMessage)m;

/* Print some useful information */
new_order = (BolOrder)obj_msg.getObject();
customer = new_order.getCustomer();
System.out.println("Order: for customer " + customer.getName());

/* call the update status method
* NOTE: we are assuming it is defined elsewhere
* /

update_status(new_order, new_order.getStatus());

/* commit the asynchronous receipt of the message */
the_sess.commit();

}catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}

}

}
public void monitor_status_topics(TopicSession jms_session)

{
Topic[] topic = new Topic[4];
TopicSubscriber[] tsubs= new TopicSubscriber[4];

try
{

/* get a handle to the OE_bookedorders_topic */
topic[0] = ((AQjmsSession)jms_session).getTopic("CS",

"CS_bookedorders_topic");
tsubs[0] = jms_session.createDurableSubscriber(topic[0], "BOOKED_ORDER");

topic[1] = ((AQjmsSession)jms_session).getTopic("CS",
"CS_billedorders_topic");

tsubs[1] = jms_session.createDurableSubscriber(topic[1], "BILLED_ORDER");

topic[2] = ((AQjmsSession)jms_session).getTopic("CS",
"CS_backdorders_topic");

tsubs[2] = jms_session.createDurableSubscriber(topic[2], "BACKED_ORDER");

topic[3] = ((AQjmsSession)jms_session).getTopic("CS",
"CS_shippedorders_topic");
Creating Applications Using JMS 12-79

JMS Message Consumer Features
tsubs[3] = jms_session.createDurableSubscriber(topic[3], "SHIPPED_ORDER");

MessageListener mL = new CustomerListener(jms_session);

/* set the session’s message listener */
jms_session.setMessageListener(mL);

}catch(JMSException ex)
{ System.out.println("Exception: " + ex); }

}

AQ Exception Handling
AQ provides four integrated mechanisms to support exception handling in
applications: EXCEPTION_QUEUES, EXPIRATION, MAX_RETRIES and RETRY_
DELAY.

An exception_queue is a repository for all expired or unserviceable messages.
Applications cannot directly enqueue into exception queues. However, an
application that intends to handle these expired or unserviceable messages can
receive/remove them from the exception queue.

To retrieve messages from exception queues, the JMS client must use the
point-to-point interface.The exception queue for messages intended for a topic must
be created in a queue table with multiple consumers enabled. Like any other queue,
the exception queue must be enabled for receiving messages using the start method
in the AQOracleQueue class. You will get an exception if you try to enable it for
enqueue.

The exception queue is a provider (Oracle) specific message property called "JMS_
OracleExcpQ" that can be set with the message before sending/publishing it. If an
exception queue is not specified, the default exception queue is used. If the
queue/topic is created in a queue table, say QTAB, the default exception queue will
be called AQ$_QTAB_E. The default exception queue is automatically created when
the queue table is created.

Messages are moved to the exception queues by AQ under the following
conditions:

� The message is not being dequeued within the specified timeToLive . For
messages intended for more than one subscriber, the message will be moved to
the exception queue if one or more of the intended recipients is not able to
dequeue the message within the specified timeToLive . If the timeToLive
was not specified for the message, (either in the publish or send call, or as the
publisher or sender), it will never expire.
12-80 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Message Consumer Features
� The message was received successfully. However, because of an error while
processing the message, the application aborts the transaction that performed
the receive . The message is returned to the queue/topic and will be available
for any applications that are waiting to receive messages. Since this was a failed
attempt to receive the message, its retry count is updated.

If the retry count of the message exceeds the maximum value specified for the
queue/topic where it resides, it is moved to the exception queue. When a
message has multiple subscribers, then the message is moved to the exception
queue only when all the recipients of the message have exceeded the retry limit.

A receive is considered rolled back or undone if the application aborts the entire
transaction, or if it rolls back to a savepoint that was taken before the receive.

� The client program successfully received a message but terminated before
committing the transaction.

Example Scenarios
The section retry with delay interval has an example with MAX_RETRIES. In the
BooksOnLine application, the business rule for each shipping region is that an order
will be placed in a back order queue if the order cannot be filled immediately. The
back order application will try to fill the order once a day. If the order cannot be
filled within 7 days, it is placed in an exception queue for special processing. We
implement this using the Time-to-Live property of messages in conjunction with
exception queues.

1. Create the exception queue WS_back_order_exp_que

public void create_excp_que(TopicSession jms_session)
{

AQQueueTable q_table;
Queue excpq;

try {
/* create the exception queue in the queue table with multiple

* consumer flag true
*/
q_table = ((AQjmsSession)jms_session).getQueueTable("WS", "WS_orders_

mqtab");

AQjmsDestinationProperty dest_prop = new AQjmsDestinationProperty();

dest_prop.setQueueType(AQjmsDestinationProperty.EXCEPTION_QUEUE);
excpq = ((AQjmsSession)jms_session).createQueue(q_table,

"WS_back_orders_excp_que",
Creating Applications Using JMS 12-81

JMS Message Consumer Features
dest_prop);
/* start the exception queue for receiving (dequeuing) messages only

*/
((AQjmsDestination)excpq).start(jms_session, false, true);

}
catch (JMSException ex)
{ System.out.println("Exception " + ex); }

}

2. Publish message on back orders queue with exception queue set to WS_back_
orders_excp_que

public static void requeue_back_order(TopicSession jms_session,
String sale_region, BolOrder back_order)

{
Topic back_order_topic;
ObjectMessage obj_message;
TopicPublisher tpub;
long timetolive;

try
{

back_order_topic = ((AQjmsSession)jms_session).getTopic("WS",
"WS_backorders_topic");

obj_message = jms_session.createObjectMessage();
obj_message.setObject(back_order);

/* set exception queue */
obj_message.setStringProperty("JMS_OracleExcpQ", "WS.WS_back_orders_

excp_que");

tpub = jms_session.createPublisher(null);

/* Set message expiration to 7 days: */
timetolive = 7*60*60*24*1000; // specified in milliseconds

/* Publish the message */
tpub.publish(back_order_topic, obj_message, DeliveryMode.PERSISTENT,

1, timetolive);
jms_session.commit();

}
catch (Exception ex)
{

System.out.println("Exception :" + ex);
12-82 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Propagation
}
}

3. Receive expired messages from the exception queue using the point-to-point
interface

public BolOrder get_expired_order(QueueSession jms_session)
{

Queue queue;
QueueReceiver qrec;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder exp_order = null;

try
{
/* get a handle to the exception queue */

queue = ((AQjmsSession) jms_session).getQueue("WS", "WS_back_orders_excp_
que");

qrec = jms_session.createReceiver(queue);

/* wait for a message to show up in the queue */
obj_message = (ObjectMessage)qrec.receive();

exp_order = (BolOrder)obj_message.getObject();

customer = exp_order.getCustomer();

System.out.println("Expired Order: for customer " +
customer.getName());

}
catch (JMSException ex)
{

System.out.println("Exception: " + ex);
}
return exp_order;

}

JMS Propagation
� Remote Subscribers

� Scheduling Propagation
Creating Applications Using JMS 12-83

JMS Propagation
� Enhanced Propagation Scheduling Capabilities

� Exception Handling During Propagation

Remote Subscribers
This feature enables applications to communicate with each other without having to
be connected to the same database.

AQ allows a remote subscriber, that is a subscriber at another database, to subscribe
to a topic. When a message published to the topic meets the criterion of the remote
subscriber, AQ will automatically propagate the message to the queue/topic at the
remote database specified for the remote subscriber.

The snapshot (job_queue) background process performs propagation.
Propagation is performed using database links and Oracle Net Services.

There are two ways to implement remote subscribers:

� The createRemoteSubscriber method can be used to create a remote
subscriber to/on the topic. The remote subscriber is specified as an instance of
the class AQjmsAgent .

� The AQjmsAgent has a name and an address. The address consists of a
queue/topic and the database link (dblink) to the database of the subscriber.

There are two kinds of remote subscribers:

Case 1 The remote subscriber is a topic. This occurs when no name is specified for
the remote subscriber in the AQjmsAgent object and the address is a topic. The
message satisfying the subscriber’s subscription is propagated to the remote topic.
The propagated message is now available to all the subscriptions of the remote
topic that it satisfies.

Case 2 Specify a specific remote recipient for the message. The remote subscription
can be for a particular consumer at the remote database. If the name of the remote
recipient is specified (in the AQjmsAgent object), then the message satisfying the
subscription is propagated to the remote database for that recipient only. The
recipient at the remote database uses the TopicReceiver interface to retrieve its
messages. The remote subscription can also be for a point-to-point queue

Example Scenario for Case 1
Assume the order entry application and Western region shipping application are on
different databases, db1 and db2 . Further assume that there is a dblink dblink_
12-84 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Propagation
oe_ws from database db1 , the order entry database, to the western shipping
database db2. The WS_bookedorders_topic at db2 is a remote subscriber to the
OE_bookedorders_topic in db1.

Example Scenario for Case 2
Assume the order entry application and Western region shipping application are on
different databases, db1 and db2. Further assume that there is a dblink dblink_
oe_ws from the local order entry database db1 to the western shipping database
db2 . The agent "Priority" at WS_bookedorders_topic in db2 is a remote
subscriber to the OE_bookedorders_topic in db1. Messages propagated to the
WS_bookedorders_topic are for "Priority" only.

public void remote_subscriber(TopicSession jms_session)
{

Topic topic;
ObjectMessage obj_message;
AQjmsAgent remote_sub;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OE_bookedorders_topic");
/* create the remote subscriber, name unspecified and address

* the topic WS_booked_orders_topic at db2
*/

remote_sub = new AQjmsAgent(null, "WS.WS_bookedorders_topic@dblink_oe_
ws");

/* subscribe for western region orders */
((AQjmsSession)jms_session).createRemoteSubscriber(topic, remote_sub,

"Region = ’Western’ ");
}
catch (JMSException ex)
{ System.out.println("Exception :" + ex); }
catch (java.sql.SQLException ex1)
{System.out.println("SQL Exception :" + ex1); }

}

Database db2 - shipping database: The WS_booked_orders_topic has two
subscribers, one for priority shipping and the other normal. The messages from the
Order Entry database are propagated to the Shipping database and delivered to the
correct subscriber. Priority orders have a message priority of 1.
Creating Applications Using JMS 12-85

JMS Propagation
public void get_priority_messages(TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder booked_order;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* Create local subscriber - for priority messages */
tsubs = jms_session.createDurableSubscriber(topic, "PRIORITY",

" JMSPriority = 1 ", false);

obj_message = (ObjectMessage) tsubs.receive();

booked_order = (BolOrder)obj_message.getObject();
customer = booked_order.getCustomer();
System.out.println("Priority Order: for customer " +

customer.getName());

jms_session.commit();
}
catch (JMSException ex)
{ System.out.println("Exception :" + ex); }

}

public void get_normal_messages(TopicSession jms_session)
{

Topic topic;
TopicSubscriber tsubs;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder booked_order;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");
12-86 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Propagation
/* Create local subscriber - for priority messages */
tsubs = jms_session.createDurableSubscriber(topic, "PRIORITY",

" JMSPriority > 1 ", false);

obj_message = (ObjectMessage) tsubs.receive();

booked_order = (BolOrder)obj_message.getObject();
customer = booked_order.getCustomer();
System.out.println("Normal Order: for customer " + customer.getName());

jms_session.commit();
}
catch (JMSException ex)
{ System.out.println("Exception :" + ex); }

}

public void remote_subscriber1(TopicSession jms_session)
{

Topic topic;
ObjectMessage obj_message;
AQjmsAgent remote_sub;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OE_bookedorders_topic");
/* create the remote subscriber, name "Priority" and address

* the topic WS_booked_orders_topic at db2
*/

remote_sub = new AQjmsAgent("Priority", "WS.WS_bookedorders_topic@dblink_
oe_ws");

/* subscribe for western region orders */
((AQjmsSession)jms_session).createRemoteSubscriber(topic, remote_sub,

"Region = ’Western’ ");
}
catch (JMSException ex)
{ System.out.println("Exception :" + ex); }
catch (java.sql.SQLException ex1)
{System.out.println("SQL Exception :" + ex1); }

}

Creating Applications Using JMS 12-87

JMS Propagation
Remote database:
database db2 - Western Shipping database.

/* get messages for subscriber priority */
public void get_priority_messages1(TopicSession jms_session)
{

Topic topic;
TopicReceiver trecs;
ObjectMessage obj_message;
BolCustomer customer;
BolOrder booked_order;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* create a local receiver "Priority" for the remote subscription
* to WS_bookedorders_topic
*/

trecs = ((AQjmsSession)jms_session).createTopicReceiver(topic, "Priority",
null);

obj_message = (ObjectMessage) trecs.receive();

booked_order = (BolOrder)obj_message.getObject();
customer = booked_order.getCustomer();
System.out.println("Priority Order: for customer " +

customer.getName());

jms_session.commit();
}
catch (JMSException ex)
{ System.out.println("Exception :" + ex); }

}

Scheduling Propagation
Propagation must be scheduled using the schedule_propagation method for
every topic from which messages are propagated to target destination databases.

A schedule indicates the time frame during which messages can be propagated
from the source topic. This time frame may depend on a number of factors such as
network traffic, load at source database, load at destination database, and so on.
The schedule therefore has to be tailored for the specific source and destination.
12-88 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Propagation
When a schedule is created, a job is automatically submitted to the job_queue
facility to handle propagation.

The administrative calls for propagation scheduling provide great flexibility for
managing the schedules (see "Scheduling a Queue Propagation", Chapter 9,
"Administrative Interface"). The duration or propagation window parameter of a
schedule specifies the time frame during which propagation has to take place. If the
duration is unspecified then the time frame is an infinite single window. If a
window has to be repeated periodically then a finite duration is specified along
with a next_time function that defines the periodic interval between successive
windows.

The latency parameter for a schedule is relevant only when a queue does not have
any messages to be propagated. This parameter specifies the time interval within
which a queue has to be rechecked for messages. Note that if the latency parameter
is to be enforced, then the job_queue_interval parameter for the job_queue_
processes should be less than or equal to the latency parameter. The propagation
schedules defined for a queue can be changed or dropped at anytime during the life
of the queue. In addition there are calls for temporarily disabling a schedule
(instead of dropping the schedule) and enabling a disabled schedule. A schedule is
active when messages are being propagated in that schedule. All the administrative
calls can be made irrespective of whether the schedule is active or not. If a schedule
is active then it will take a few seconds for the calls to be executed.

Job queue processes must be started for propagation to take place. At least 2 job
queue processes must be started. The dblinks to the destination database must also
be valid. The source and destination topics of the propagation must be of the same
message type. The remote topic must be enabled for enqueue. The user of the
dblink must also have enqueue privileges to the remote topic.

Example Code
public void schedule_propagation(TopicSession jms_session)

{
Topic topic;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* Schedule propagation immediately with duration of 5 minutes and latency
20 sec */
Creating Applications Using JMS 12-89

JMS Propagation
((AQjmsDestination)topic).schedulePropagation(jms_session, "dba", null,
new Double(5*60), null, new Double(20));

}catch (JMSException ex)
{System.out.println("Exception: " + ex);}

}

Propagation schedule parameters can also be altered.

/* alter duration to 10 minutes and latency to zero */
public void alter_propagation(TopicSession jms_session)
{

Topic topic;
try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");

/* Schedule propagation immediately with duration of 5 minutes and latency
20 sec */

((AQjmsDestination)topic).alterPropagationSchedule(jms_session, "dba",
new Double(10*60), null, new Double(0));

}catch (JMSException ex)
{System.out.println("Exception: " + ex);}

}

Enhanced Propagation Scheduling Capabilities
Detailed information about the schedules can be obtained from the catalog views
defined for propagation. Information about active schedules—such as the name of
the background process handling that schedule, the SID (session, serial number) for
the session handling the propagation and the Oracle instance handling a schedule
(relevant if Real Application Clusters are being used)—can be obtained from the
catalog views. The same catalog views also provide information about the previous
successful execution of a schedule (last successful propagation of message) and the
next execution of the schedule.

For each schedule, detailed propagation statistics are maintained:

� The total number of messages propagated in a schedule

� Total number of bytes propagated in a schedule

� Maximum number of messages propagated in a window
12-90 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Propagation
� Maximum number of bytes propagated in a window

� Average number of messages propagated in a window

� Average size of propagated messages

� Average time to propagated a message

These statistics have been designed to provide useful information to the queue
administrators for tuning the schedules such that maximum efficiency can be
achieved.

Propagation has built-in support for handling failures and reporting errors. For
example, if the database link specified is invalid, or the remote database is
unavailable, or the remote topic/queue is not enabled for enqueuing, then the
appropriate error message is reported. Propagation uses an exponential backoff
scheme for retrying propagation from a schedule that encountered a failure. If a
schedule continuously encounters failures, the first retry happens after 30 seconds,
the second after 60 seconds, the third after 120 seconds and so forth. If the retry time
is beyond the expiration time of the current window then the next retry is
attempted at the start time of the next window.

A maximum of 16 retry attempts are made after which the schedule is automatically
disabled. When a schedule is disabled automatically due to failures, the relevant
information is written into the alert log. At anytime it is possible to check if there
were failures encountered by a schedule and if so how many successive failure
were encountered, the error message indicating the cause for the failure and the
time at which the last failure was encountered. By examining this information, an
administrator can fix the failure and enable the schedule.

During a retry if propagation is successful then the number of failures is reset to 0.
Propagation has built-in support for Real Application Clusters and is transparent to
the user and the administrator. The job that handles propagation is submitted to the
same instance as the owner of the queue table where the source topic resides. If at
anytime there is a failure at an instance and the queue table that stores the topic is
migrated to a different instance, the propagation job is also automatically migrated
to the new instance. This will minimize the pinging between instances and thus
offer better performance. Propagation has been designed to handle any number of
concurrent schedules.

Note that the number of job_queue_processes is limited to a maximum of 36
and some of these may be used to handle non-propagation related jobs.Hence,
propagation has built in support for multi-tasking and load balancing. The
propagation algorithms are designed such that multiple schedules can be handled
by a single snapshot (job_queue) process. The propagation load on a job_queue
Creating Applications Using JMS 12-91

JMS Propagation
processes can be skewed based on the arrival rate of messages in the different
source topics. If one process is overburdened with several active schedules while
another is less loaded with many passive schedules, propagation automatically
re-distributes the schedules among the processes such that they are loaded
uniformly.

Example Scenario
In the BooksOnLine example, the OE_bookedorders_topic is busy since
messages in it are propagated to different shipping sites. The following example
code illustrates the calls supported by enhanced propagation scheduling for error
checking and schedule monitoring.

Example Code
CONNECT OE/OE;
/* get averages
select avg_time, avg_number, avg_size from user_queue_schedules;

/* get totals
select total_time, total_number, total_bytes from user_queue_schedules;

/* get maximums for a window
select max_number, max_bytes from user_queue_schedules;

/* get current status information of schedule
select process_name, session_id, instance, schedule_disabled

from user_queue_schedules;

/* get information about last and next execution
select last_run_date, last_run_time, next_run_date, next_run_time

from user_queue_schedules;

/* get last error information if any
select failures, last_error_msg, last_error_date, last_error_time

from user_queue_schedules;

Exception Handling During Propagation
When a system errors such as a network failure occurs, AQ will continue to attempt
to propagate messages using an exponential back-off algorithm. In some situations
that indicate application errors AQ will mark messages as UNDELIVERABLE if there
is an error in propagating the message.
12-92 Oracle9i Application Developer’s Guide - Advanced Queuing

Message Transformation with JMS AQ
Examples of such errors are when the remote queue/topic does not exist or when
there is a type mismatch between the source queue/topic and the remote
queue/topic.In such situations users must query the DBA_SCHEDULES view to
determine the last error that occurred during propagation to a particular
destination.The trace files in the $ORACLE_HOME/log directory can provide
additional information about the error.

Message Transformation with JMS AQ
The following topics are discussed in this section:

� Defining Message Transformations

� Sending Messages to a Destination Using a Transformation

� Receiving Messages from a Destination Using a Transformation

� Specifying Transformations for Topic Subscribers

� Specifying Transformations for Remote Subscribers

Defining Message Transformations
Transformations can be defined to map messages of one format to another.
Transformations are useful when applications that use different formats to
represent the same information have to be integrated. Transformations can be SQL
expressions and PLSQL functions.

The transformations can be created using the DBMS_TRANSFORM.create_
transformation procedure. Transformation can be specified for the following
operations:

� Sending a message to a queue or topic

� Receiving a message from a queue, or topic

� Creating a Topic Subscriber

� Creating a Remote Subscriber. This will enable propagation of messages
between Topics of different formats.

The Message Transformation feature is an AQ extension to the standard JMS
interface.
Creating Applications Using JMS 12-93

Message Transformation with JMS AQ
Example Scenario
In the BooksOnLine example, we will consider the order entry and shipping
applications. For these examples, we will use topics with ADT type payloads.

Example Code
Assume that the Order entry topic OE.OE_bookedorders_topic has a payload
of type OE.OE_ORDER.

create or replace TYPE OE_order as OBJECT (
orderno NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
orderregion VARCHAR2(30),
customer CUSTOMER_TYP,
paymentmethod VARCHAR2(30),
creditcard# VARCHAR2(30);
items ORDERITEMLIST_VARTYP,
order_date DATE,
total NUMBER);

The Western Shipping topic WS_bookedorders_topic has payload of type
WS.WS_ORDER:

create or replace TYPE WS_Order AS OBJECT (
customer_name VARCHAR2(100),
address VARCHAR2(1000),
city VARCHAR2(1000),
state VARCHAR2(1000),
country VARCHAR2(1000),
zipcode VARCHAR2(1000),
orderno NUMBER,
status VARCHAR2(30),
ordertype VARCHAR2(30),
items ORDERITEMLIST_VARTYP,
order_date VARCHAR2(10));

The java classes (that implement the CustomDatum interface) can be generated for
these types using the Jpublisher utility.

We will define a transformation that defines the mapping from OE.OE_Order to
WS.WS_ORDER as:

execute dbms_transform.create_transformation(
schema => ’OE’,

name => ’OE2WS’,
12-94 Oracle9i Application Developer’s Guide - Advanced Queuing

Message Transformation with JMS AQ
from_schema => ’OE,
from_type => ’OE_order’,
to_schema => ’WS’,
to_type => ’WS_order’,
transformation => ’OE_order(source.user_data.customer.name, \

source.user_data.customer.street, \
source.user_data.customer.city, \
source.user_data.customer.state, \
source.user_data.customer.country, \
source.user_data.customer.zipcode, \
source.user_data.customer.country, \
source.user_data.orderno, \
source.user_data.status, \
source.user_data.ordertype, \
source.user_date.items, \
TO_CHAR(source.user_date.order_date, ’MM:DD:YYYY’))’);

Sending Messages to a Destination Using a Transformation
A transformation can be supplied when sending/publishing a message to a
queue/topic. The transformation will be applied before putting the message into
the queue/topic.

The application can specify a transformation using the setTransformation
interface in the AQjmsQueueSender and AQjmsTopicPublisher interfaces.

Example Code
Lets say that the orders that are processed by the order entry application should be
published to the WS_bookedorders_topic.

The transformation OE2WS (defined in the previous section) is supplied so that the
messages are inserted into the topic in the correct format.

public void ship_booked_orders(TopicSession jms_session,
AQjmsADTMessage adt_message)

{
TopicPublisher publisher;
Topic topic;

try
{

/* get a handle to the WS_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("WS",

"WS_bookedorders_topic");
Creating Applications Using JMS 12-95

Message Transformation with JMS AQ
publisher = jms_session.createPublisher(topic);

/* set the transformation in the publisher */
((AQjmsTopicPublisher)publisher).setTransformation("OE2WS");

publisher.publish(topic, adt_message);

}
catch (JMSException ex)
{

System.out.println("Exception :" ex);
}

}

Receiving Messages from a Destination Using a Transformation
A transformation can be applied when receiving a message from a queue or topic.
The transformation will be applied to the message before returning it to JMS
application.

The transformation can be specified using setTransformation () interface of the
AQjmsQueueReceiver, AQjmsTopicSubscriber and
AQjmsTopicReceiver .

Example Code
Lets say the Western Shipping application retrieves messages from the OE_
bookedorders_topic. It specifies the transformation ’OE2WS’ to retrieve the message
as the WS_order ADT.

Lets say that the WSOrder Java class has been generated by Jpublisher to map to the
Oracle Object WS.WS_order

public AQjmsAdtMessage retrieve_booked_orders(TopicSession jms_session)
AQjmsTopicReceiver receiver;
Topic topic;
Message msg = null;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OE_bookedorders_topic");

/* Create a receiver for WShip */
12-96 Oracle9i Application Developer’s Guide - Advanced Queuing

Message Transformation with JMS AQ
receiver = ((AQjmsSession)jms_session).createTopicReceiver(topic,
"WShip, null, WSOrder.getFactory());

/* set the transformation in the publisher */
receiver.setTransformation("OE2WS");

msg = receiver.receive(10);
}
catch (JMSException ex)
{

System.out.println("Exception :" ex);
}

return (AQjmsAdtMessage)msg;
}

Specifying Transformations for Topic Subscribers
A transformation can also be specified when creating Topic Subscribers using the
CreateDurableSubscriber call. The transformation is applied to the retrieved
message before returning it to the subscriber. If the subscriber specified in the
CreateDurableSubscriber already exists, it’s transformation is set to the
specified transformation.

Example Code
The Western Shipping application subscribes to the OE_bookedorders_topic with
the transformation ’OE2WS’. This transformation is applied to the messages and the
returned message is of Oracle Object type WS.WS_orders.

Lets say that the WSOrder java class has been generated by Jpublisher to map to the
Oracle Object WS.WS_order:

public AQjmsAdtMessage retrieve_booked_orders(TopicSession jms_session)
{

TopicSubscriber subscriber;
Topic topic;
AQjmsAdtMessage msg = null;

try
{

/* get a handle to the OE_bookedorders_topic */
topic = ((AQjmsSession)jms_session).getTopic("OE",

"OE_bookedorders_topic");
Creating Applications Using JMS 12-97

Message Transformation with JMS AQ
/* create a subscriber with the transformation OE2WS */
subs = ((AQjmsSession)jms_session).createDurableSubscriber(topic,

’WShip’, null, false, WSOrder.getFactory(), "OE2WS");

msg = subscriber.receive(10);
}
catch (JMSException ex)
{

System.out.println("Exception :" ex);
}

return (AQjmsAdtMessage)msg;
}

Specifying Transformations for Remote Subscribers
AQ allows a remote subscriber, that is a subscriber at another database, to subscribe
to a topic.

Transformations can be specified when creating remote subscribers using the
createRemoteSubscriber . This enables propagation of messages between
Topics of different formats. When a message published at a topic meets the
criterion of a remote subscriber, AQ will automatically propagate the message to
the queue/topic at the remote database specified for the remote subscriber. If a
transformation is also specified, AQ will apply the transformation to the message
before propagating it to the queue/topic at the remote database.

Example Code
A remote subscriber is created at the OE.OE_bookedorders_topic so that messages
are automatically propagated to the WS.WS_bookedorders_topic. The
transformation OE2WS is specified when creating the remote subscriber so that the
messages reaching the WS_bookedorders_topic have the correct format.

Lets say that the WSOrder java class has been generated by Jpublisher to map to the
Oracle Object WS.WS_order

public void create_remote_sub(TopicSession jms_session)
{

AQjmsAgent subscriber;
Topic topic;

try
{

/* get a handle to the OE_bookedorders_topic */
12-98 Oracle9i Application Developer’s Guide - Advanced Queuing

Message Transformation with JMS AQ
topic = ((AQjmsSession)jms_session).getTopic("OE",
"OE_bookedorders_topic");

subscriber = new AQjmsAgent("WShip", "WS.WS_bookedorders_topic");

((AQjmsSession)jms_session).createRemoteSubscriber(topic,
subscriber, null, WSOrder.getFactory(),"OE2WS");

}
catch (JMSException ex)
{

System.out.println("Exception :" ex);
}

}

Creating Applications Using JMS 12-99

Message Transformation with JMS AQ
12-100 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Administrative Interface: Basic
13

JMS Administrative Interface: Basic

Operations

In this chapter we describe the administrative interface to Oracle Advanced
Queuing in terms of use cases. That is, we discuss each operation (such as "Creating
a Queue Table") as a use case by that name. A table listing all the use cases is
provided at the head of the chapter (see Use Case Model: JMS Administrative
Interface — Basic Operations on page 13-2).

A summary figure, "Use Case Diagram: Administrator’s Interface — Basic
Operations", locates all the use cases in a single drawing. If you are using the HTML
version of this document, you can use this figure to navigate to the use case in
which you are interested, by clicking on the relevant use case title.

Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment which illustrate the
use case.
Operations 13-1

Use Case Model: JMS Administrative Interface — Basic Operations
Use Case Model: JMS Administrative Interface — Basic Operations

Table 13–1 Use Case Model: JMS Administrative Interface — Basic Operations

Use Case

Registering a Queue/Topic Connection Factory Through the Database—with JDBC Connection Parameters on
page 13-4

Registering a Queue/Topic Connection Factory Through the Database—with a JDBC URL on page 13-6

Registering a Queue/Topic Connection Factory Through LDAP—with JDBC Connection Parameters on
page 13-8

Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL on page 13-11

Unregistering a Queue/Topic Connection Factory in LDAP Through the Database on page 13-13

Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP on page 13-15

Getting a Queue Connection Factory with JDBC URL on page 13-17

Getting a Queue Connection Factory with JDBC Connection Parameters on page 13-19

Getting a Topic Connection Factory with JDBC URL on page 13-21

Getting a Topic Connection Factory with JDBC Connection Parameters on page 13-23

Getting a Queue/Topic Connection Factory in LDAP on page 13-25

Getting a Queue/Topic in LDAP on page 13-27

Creating a Queue Table on page 13-28

Creating a Queue Table [Specify Queue Table Property] on page 13-30

Getting a Queue Table on page 13-31

Specifying Destination Properties on page 13-33

Creating a Queue—Point-to-Point on page 13-35

Creating a Topic—Publish-Subscribe on page 13-37

Granting System Privileges on page 13-39

Revoking System Privileges on page 13-40

Granting Topic Privileges—Publish-Subscribe on page 13-42

Revoking Topic Privileges—Publish-Subscribe on page 13-44

Granting Queue Privileges—Point-to-Point on page 13-46

Revoking Queue Privileges—Point-to-Point on page 13-48
13-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Model: JMS Administrative Interface — Basic Operations
Starting a Destination on page 13-50

Stopping a Destination on page 13-52

Altering a Destination on page 13-54

Dropping a Destination on page 13-56

Scheduling a Propagation on page 13-57

Enabling a Propagation Schedule on page 13-59

Altering a Propagation Schedule on page 13-61

Disabling a Propagation Schedule on page 13-63

Unscheduling a Propagation on page 13-64

Table 13–1 (Cont.) Use Case Model: JMS Administrative Interface — Basic Operations

Use Case
JMS Administrative Interface: Basic Operations 13-3

Registering a Queue/Topic Connection Factory Through the Database—with JDBC Connection Parameters
Registering a Queue/Topic Connection Factory Through the
Database—with JDBC Connection Parameters

Figure 13–1 Registering Through the Database with JDBC Connection Parameters

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Registering a Queue/Topic Connection Factory Through the
Database—with a JDBC URL" on page 13-6

specify
port number

specify
driver

specify
Oracle SiD

specify
DB connection

specify
type

specify
hostname

specify
connection

factory

Register a queue topic connection factory with
JDBC connection parameters to LDAP

name of connection factory
to be stored in LDAP

type of connection factory:
queue or topic

User/
Program

REGISTER
queue / topic

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connection factory
13-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering a Queue/Topic Connection Factory Through the Database—with JDBC Connection Parameters
Purpose
Register a queue/topic connection factory through the database with JDBC
connection parameters to LDAP.

Usage Notes
registerConnectionFactory is a static method. To successfully register the
connection factory, the DB connection passed to registerConnectionFactory
must be granted AQ_ADMINISTRATOR_ROLE. After registration, look up the
connection factory using JNDI.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference, oracle.jms,
AQjmsFactory.registerConnectionFactory.

Example
String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(db_conn, "queue_conn1", "sun-123",

"db1", 1521, "thin", "queue");
JMS Administrative Interface: Basic Operations 13-5

Registering a Queue/Topic Connection Factory Through the Database—with a JDBC URL
Registering a Queue/Topic Connection Factory Through the
Database—with a JDBC URL

Figure 13–2 Registering Through the Database with a JDBC URL

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Registering a Queue/Topic Connection Factory Through the
Database—with JDBC Connection Parameters" on page 13-4

specify
JDBC URL

specify
property info

specify
DB connection

specify
type

specify
connection

factory

Register a queue / topic connection factory
with JDBC URL to LDAP

name of connection factory
to be stored in LDAP

type of connection factory:
queue or topic

User/
Program

REGISTER
queue / topic

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connection factory
13-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering a Queue/Topic Connection Factory Through the Database—with a JDBC URL
Purpose
Register a queue/topic connection factory through the database with a JDBC URL
to LDAP.

Usage Notes
registerConnectionFactory is a static method. To successfully register the
connection factory, the DB connection passed to registerConnectionFactory
must be granted AQ_ADMINISTRATOR_ROLE. After registration, look up the
connection factory using JNDI.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference, oracle.jms,
AQjmsFactory.registerConnectionFactory.

Example
String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.registerConnectionFactory(db_conn, "topic_conn1", url,

null, "topic");
JMS Administrative Interface: Basic Operations 13-7

Registering a Queue/Topic Connection Factory Through LDAP—with JDBC Connection Parameters
Registering a Queue/Topic Connection Factory Through LDAP—with
JDBC Connection Parameters

Figure 13–3 Registering Through LDAP with JDBC Connection Parameters

specify
port number

specify
driver

specify
Oracle SiD

specify
type

specify
hostname

specify
connection

factory

Register Connection Factory, (static method), with
JDBC connection parameters, through LDAP

name of connection factory
to be stored in LDAP

type of connection factory:
queue or topic

User/
Program

REGISTER
queue / topic

use te valid LDAP connection established
to perform the register

specify
LDAP

environment

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connectin factory
13-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering a Queue/Topic Connection Factory Through LDAP—with JDBC Connection Parameters
Purpose
Register a queue/topic connection factory through LDAP with JDBC connection
parameters to LDAP.

Usage Notes
registerConnectionFactory is a static method. To successfully register the
connection factory, the hashtable passed to registerConnectionFactory must
contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global_aq_user_role). After registration, look up the
connection factory using JNDI.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.registerConnectionFactory.

Example
Hashtable env = new Hashtable(5, 0.75f);
/* the following statements set in hashtable env:

* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP user name
* the LDAP user password

*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Registering a Queue/Topic Connection Factory Through
LDAP—with a JDBC URL" on page 13-11
JMS Administrative Interface: Basic Operations 13-9

Registering a Queue/Topic Connection Factory Through LDAP—with JDBC Connection Parameters
env.put(Context.SECURITY_CREDENTIALS, "welcome");

AQjmsFactory.registerConnectionFactory(env, "queue_conn1", "sun-123",
"db1", 1521, "thin", "queue");
13-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL
Registering a Queue/Topic Connection Factory Through LDAP—with a
JDBC URL

Figure 13–4 Registering Through LDAP with a JDBC URL

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Registering a Queue/Topic Connection Factory Through
LDAP—with JDBC Connection Parameters" on page 13-8

specify
JDBC URL

specify
property info

specify
LDAP

environment

specify
type

specify
connection

factory

Register Connection Factory, (static method), with
JDBC URL, through LDAP

name of connection factory
to be stored in LDAP

type of connection factory:
queue or topic

User/
Program

REGISTER
queue / topic

use the valid LDAP connection established
to perform the register

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connection factory
JMS Administrative Interface: Basic Operations 13-11

Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL
Purpose
Register a queue/topic connection factory through LDAP with JDBC connection
parameters to LDAP.

Usage Notes
registerConnectionFactory is a static method. To successfully register the
connection factory, the hashtable passed to registerConnectionFactory must
contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global_aq_user_role) . After registration, look up the
connection factory using JNDI.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.registerConnectionFactory.

Example
String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP user name
* the LDAP user password

*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.registerConnectionFactory(env, "topic_conn1", url, null, "topic");
13-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Unregistering a Queue/Topic Connection Factory in LDAP Through the Database
Unregistering a Queue/Topic Connection Factory in LDAP Through the
Database

Figure 13–5 Unregistering a Queue/Topic Connection Factory in LDAP Through the Database

Purpose
Unregister a queue/topic connection factory in LDAP.

Usage Notes
unregisterConnectionFactory is a static method. To successfully unregister
the connection factory, the DB connection passed to
unregisterConnectionFactory must be granted AQ_ADMINISTRATOR_ROLE.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Unregistering a Queue/Topic Connection Factory in LDAP
Through LDAP" on page 13-15

specify
DB connection

specify
connection

factory

Unregister Connection Factory, (static method),
through database

name of connection factory
to be removed from LDAP

User/
Program

UNREGISTER
queue / topic

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connection factory
JMS Administrative Interface: Basic Operations 13-13

Unregistering a Queue/Topic Connection Factory in LDAP Through the Database
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.unregisterConnectionFactory.

Example
String url;
java.sql.connection db_conn;

url = "jdbc:oracle:thin:@sun-123:1521:db1";
db_conn = DriverManager.getConnection(url, "scott", "tiger");
AQjmsFactory.unregisterConnectionFactory(db_conn, "topic_conn1");
13-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP
Unregistering a Queue/Topic Connection Factory in LDAP Through
LDAP

Figure 13–6 Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP

Purpose
Register a queue/topic connection factory in LDAP.

Usage Notes
unregisterConnectionFactory is a static method. To successfully unregister
the connection factory, the hashtable passed to unregisterConnectionFactory

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Unregistering a Queue/Topic Connection Factory in LDAP
Through the Database" on page 13-13

specify
LDAP

environment

specify
connection

factory

Unregister Connection Factory, (static method),
through LDAP

name of connection factory
to be removed from LDAP

User/
Program

UNREGISTER
queue / topic

use the valid LDAP connection established
to perform the unregister

JMS Administrative Interface : AQjmsFactory
: Register queue / topic connection factory
JMS Administrative Interface: Basic Operations 13-15

Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP
must contain all the information to establish a valid connection to the LDAP server.
Furthermore, the connection must have write access to the connection factory
entries in the LDAP server (which requires the LDAP user to be either the database
itself or be granted global_aq_user_role).

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.unregisterConnectionFactory.

Example
String url;
Hashtable env = new Hashtable(5, 0.75f);

/* the following statements set in hashtable env:
* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP user name
* the LDAP user password

*/

env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put("searchbase", "cn=db1,cn=Oraclecontext,cn=acme,cn=com");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aqadmin,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");
url = "jdbc:oracle:thin:@sun-123:1521:db1";
AQjmsFactory.unregisterConnectionFactory(env, "queue_conn1");
13-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Queue Connection Factory with JDBC URL
Getting a Queue Connection Factory with JDBC URL

Figure 13–7 Getting a Queue Connection Factory with JDBC Connection

Purpose
Get a Queue Connection Factory with JDBC URL

Usage Notes
getQueueConnectionFactory is a static method.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Getting a Queue Connection Factory with JDBC Connection
Parameters" on page 13-19

User/
Program

getQueueConnectionFactory [static method], with JDBC URL

specify
property

info

specify
JDBC URL

GET
a Queue

Connection
Factory

-
JMS
Administrative
Interface

AQjmsFactory GETTING a Queue Connection
Factory:
JMS Administrative Interface: Basic Operations 13-17

Getting a Queue Connection Factory with JDBC URL
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.getQueueConnectionFactory

Example
String url = "jdbc:oracle:oci8:internal/oracle"
Properties info = new Properties();
QueueConnectionFactory qc_fact;

info.put("internal_logon", "sysdba");
qc_fact = AQjmsFactory.getQueueConnectionFactory(url, info);
13-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Queue Connection Factory with JDBC Connection Parameters
Getting a Queue Connection Factory with JDBC Connection Parameters

Figure 13–8 Getting a Queue Connection Factory with JDBC Connection Parameters

User/
Program

createQueueConnectionFactory [static method],
using JDBC connection parameters

specify
Oracle Sid

specify
Hostname

specify
Driver

specify
Port Number

GET
a Queue

Connection
Factory

JMS Administrative Interface
GETTING a Queue Connection Factory

AQjmsFactory- :
JMS Administrative Interface: Basic Operations 13-19

Getting a Queue Connection Factory with JDBC Connection Parameters
Purpose
Get a Queue Connection Factory with JDBC Connection Parameters

Usage Notes
getQueueConnectionFactory is a static method.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.getQueueConnectionFactory

Example
String host = "dlsun";
String ora_sid = "rdbms8i"
String driver = "thin";
int port = 5521;
QueueConnectionFactory qc_fact;

qc_fact = AQjmsFactory.getQueueConnectionFactory(host, ora_sid, port, driver);

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Getting a Queue Connection Factory with JDBC URL" on
page 13-17
13-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Topic Connection Factory with JDBC URL
Getting a Topic Connection Factory with JDBC URL

Figure 13–9 Getting a Topic Connection Factory with JDBC URL

Purpose
Get a Topic Connection Factory with a JDBC URL.

Usage Notes
getTopicConnectionFactory is a static method.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Getting a Topic Connection Factory with JDBC Connection
Parameters" on page 13-23

User/
Program

getTopicConnectionFactory, with JDBC URL [static method]

specify
property

info

specify
JDBC URL

GET
a Topic

Connection
Factory

-
JMS
Administrative
Interface

AQjmsFactory GETTING a Topic Connection Factory:
JMS Administrative Interface: Basic Operations 13-21

Getting a Topic Connection Factory with JDBC URL
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.getTopicConnectionFactory

Example
String url = "jdbc:oracle:oci8:internal/oracle"
Properties info = new Properties();
TopicConnectionFactory tc_fact;

info.put("internal_logon", "sysdba");
tc_fact = AQjmsFactory.getTopicConnectionFactory(url, info);
13-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Topic Connection Factory with JDBC Connection Parameters
Getting a Topic Connection Factory with JDBC Connection Parameters

Figure 13–10 Getting a Topic Connection Factory with JDBC Connection Parameters

User/
Program

getTopicConnectionFactory [static method],
JDBC connection parameters

specify
Oracle Sid

specify
Hostname

specify
Driver

specify
Port Number

GET
a Topic

Connection
Factory

JMS Administrative Interface
GETTING a Topic Connection Factory

AQjmsFactory- :
JMS Administrative Interface: Basic Operations 13-23

Getting a Topic Connection Factory with JDBC Connection Parameters
Usage Note
getTopicConnectionFactory is a Static Method.

Purpose
Get a topic connection factory with JDBC connection parameters.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsFactory.getTopicConnectionFactory

Example
String host = "dlsun";
String ora_sid = "rdbms8i"
String driver = "thin";
int port = 5521;
TopicConnectionFactory tc_fact;

tc_fact = AQjmsFactory.getTopicConnectionFactory(host, ora_sid, port, driver);

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsFactory" on page B-49

� "Getting a Topic Connection Factory with JDBC URL" on
page 13-21
13-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Queue/Topic Connection Factory in LDAP
Getting a Queue/Topic Connection Factory in LDAP

Figure 13–11 Getting a Queue/Topic Connection Factory in LDAP

Purpose
Get a queue/topic connection factory from LDAP.

Example
Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
queueConnectionFactory qc_fact;

/* the following statements set in hashtable env:
* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP user name
* the LDAP user password

*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

User/
Program

specify
connectionfactory

name

LOOKUP
Queue / Topic

Connection
Factory

JMS Administrative Interface Directory Context:
JMS Administrative Interface: Basic Operations 13-25

Getting a Queue/Topic Connection Factory in LDAP
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBConnections,cn=db1,cn=Oraclecontext,cn=acme,c
n=com");
qc_fact = (queueConnectionFactory)ctx.lookup("cn=queue_conn1");
13-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Queue/Topic in LDAP
Getting a Queue/Topic in LDAP

Figure 13–12 Getting a Queue/Topic in LDAP

Purpose
Get a queue/topic from LDAP.

Example
Hashtable env = new Hashtable(5, 0.75f);
DirContext ctx;
topic topic_1;

/* the following statements set in hashtable env:
* service provider package
* the URL of the ldap server
* the distinguished name of the database server
* the authentication method (simple)
* the LDAP user name
* the LDAP user password

*/
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

User/
Program

specify
qeueue / topic

name

LOOKUP
Queue / Topic

JMS Administrative Interface Directory Context:
JMS Administrative Interface: Basic Operations 13-27

Creating a Queue Table
env.put(Context.PROVIDER_URL, "ldap://sun-456:389");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=db1aquser1,cn=acme,cn=com");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

ctx = new InitialDirContext(env);
ctx =
(DirContext)ctx.lookup("cn=OracleDBQueues,cn=db1,cn=Oraclecontext,cn=acme,cn=com
");
topic_1 = (topic)ctx.lookup("cn=topic_1");

Creating a Queue Table

Figure 13–13 Creating a Queue Table

User/
Program

specify
Owner

specify
Queue

Table Name

specify
Queue Table

Property

CREATE
a Queue

Table

JMS Administrative Interface
CREATING a Queue Table

AQjmsSession- :
13-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Table
Purpose
Create a queue table.

Usage Notes
CLOB, BLOB, BFILE objects are valid attributes for an AQ object type load.
However, only CLOB and BLOB can be propagated using AQ propagation in
Oracle8i and after.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createQueueTable

Example
QueueSession q_sess = null;
AQQueueTable q_table = null;
AQQueueTableProperty qt_prop = null;

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
q_table = ((AQjmsSession)q_sess).createQueueTable("boluser",
"bol_ship_queue_table", qt_prop);

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Queue Table [Specify Queue Table Property]" on
page 13-30
JMS Administrative Interface: Basic Operations 13-29

Creating a Queue Table [Specify Queue Table Property]
Creating a Queue Table [Specify Queue Table Property]

Figure 13–14 Creating a Queue Table [Specify Queue Table Property]

Purpose
Specify queue table properties

Usage Notes
 Not applicable.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.AQ,
AQQueueTableProperty

Example
QueueSession q_sess = null;

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.AQ.AQQueueTableProperty" on page B-58

� "Creating a Queue Table" on page 13-28

AQQueueTableProperty constructor

specify
Payload

Type

SPECIFY
Queue Table

Property

CREATE
a Queue

Table

JMS Administrative Interface
SPECIFYING Queue Table Property

AQQueueTableProperty- :
13-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting a Queue Table
AQQueueTable q_table = null;
AQQueueTableProperty qt_prop = null;

qt_prop = new AQQueueTableProperty("SYS.AQ$_JMS_BYTES_MESSAGE");
q_table = ((AQjmsSession)q_sess).createQueueTable("boluser",

"bol_ship_queue_table", qt_prop);

Getting a Queue Table

Figure 13–15 Getting Queue Table

Purpose
Get a queue table.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

specify
Owner

specify
Queue Table

Name

GET
a Queue

Table

JMS Administrative Interface
GETTING a Queue Table

AQjmsSession- :
JMS Administrative Interface: Basic Operations 13-31

Getting a Queue Table
Usage Notes
If the caller that opened the connection is not the owner of the queue table, the
caller must have AQ enqueue/dequeue privileges on queues/topics in the queue
table. Otherwise the queue-table will not be returned.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.getQueueTable

Example
QueueSession q_sess;
AQQueueTable q_table;

q_table = ((AQjmsSession)q_sess).getQueueTable("boluser",
"bol_ship_queue_table");
13-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying Destination Properties
Specifying Destination Properties

Figure 13–16 Specifying Destination Properties

User/
Program

AQjmsDestinationProperty (constructor)

specify
Comment

SPECIFY
Destination
Properties

Default = Normal

Default = 5

Default = No retention
set

Retain
Indefinitely

specify
Destination

Type as
EXECPTION

OR

OR

set
Retention

Time

specify
Destination

Type as
NORMAL

specify
Maximum

Retries

JMS Administrative Interface
SPECIFYING Destination Properties

AQjmsDestinationProperty- :
JMS Administrative Interface: Basic Operations 13-33

Specifying Destination Properties
Purpose
Specify destination properties.

Usage Notes
Not applicable.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestinationProperty

Example
No example is provided with this release.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestinationProperty" on page B-48
13-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue—Point-to-Point
Creating a Queue—Point-to-Point

Figure 13–17 Creating a Queue—Point-to-Point

Purpose
Create a queue in a specified queue table.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

createQueue, with queue table information
and destination properties

specify
Queue Name

specify
Queue Table

specify
Destination

Property

CREATE
a Queue

JMS Administrative Interface
CREATING a Queue

AQjmsSession- :
JMS Administrative Interface: Basic Operations 13-35

Creating a Queue—Point-to-Point
Usage Notes
The queue table in which a queue is created has to be a single-consumer queue
table.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createQueue

Example
QueueSession q_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Queue queue;

queue = ((AQjmsSession)q_sess).createQueue(q_table, "jms_q1", dest_prop);
13-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic—Publish-Subscribe
Creating a Topic—Publish-Subscribe

Figure 13–18 Creating a Topic—Publish-Subscribe

Purpose
Create a topic in the publish-subscribe model.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

createTopic, with queue table information
and destination properties

specify
Topic Name

specify
Queue Table

specify
Destination

Property

CREATE
a Topic

JMS Administrative Interface
CREATING a Topic

AQjmsSession- :
JMS Administrative Interface: Basic Operations 13-37

Creating a Topic—Publish-Subscribe
Usage Notes
Not applicable.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createTopic

Example
TopicSession t_sess;
AQQueueTable q_table;
AqjmsDestinationProperty dest_prop;
Topic topic;

topic = ((AQjmsSessa)t_sess).createTopic(q_table, "jms_t1", dest_prop);
13-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Granting System Privileges
Granting System Privileges

Figure 13–19 Granting System Privileges

Purpose
Grant AQ system privileges to a user/roles.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

grantSystemPrivilege

specify
Grantee

set
Admin
Option

GRANT
System

Privileges

see Usage Notes
specify
Privilege

JMS Administrative Interface
GRANTING System Privileges

AQjmsSession- :
JMS Administrative Interface: Basic Operations 13-39

Revoking System Privileges
Usage Notes
Initially only SYS and SYSTEM can use this procedure successfully.

The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.grantSystemPrivilege

Example
TopicSession t_sess;

((AQjmsSession)t_sess).grantSystemPrivilege("ENQUEUE_ANY", "scott", false);

Revoking System Privileges

Figure 13–20 Revoking System Privileges

User/
Program

revokeSystemPrivilege

specify
Grantee

REVOKE
System

Privileges

specify
Privilege

JMS Administrative Interface
REVOKING System Privileges

AQjmsSession- :
13-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking System Privileges
Purpose
Revoke AQ system privileges from user/roles.

Usage Notes
The privileges are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.revokeSystemPrivilege

Example
TopicSession t_sess;

((AQjmsSession)t_sess).revokeSystemPrivilege("ENQUEUE_ANY", "scott");

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53
JMS Administrative Interface: Basic Operations 13-41

Granting Topic Privileges—Publish-Subscribe
Granting Topic Privileges—Publish-Subscribe

Figure 13–21 Granting Topic Privileges—Publish-Subscribe

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

grantTopicPrivilege

specify
Grantee

GRANT
Topic

Privileges

see Usage Notes

specify
Session

specify
Privilege

specify
Grant Option

JMS Administrative Interface
GRANTING Topic Privileges

AQjmsDestination- :
13-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Granting Topic Privileges—Publish-Subscribe
Purpose
Grant a topic privilege in the publish-subscribe model.

Usage Notes
The privileges are ENQUEUE, DEQUEUE and ALL. ALL means both. Initially only the
queue table owner can use this procedure to grant privileges on the topic.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.grantTopicPrivilege

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).grantTopicPrivilege(t_sess, "ENQUEUE", "scott",
false);
JMS Administrative Interface: Basic Operations 13-43

Revoking Topic Privileges—Publish-Subscribe
Revoking Topic Privileges—Publish-Subscribe

Figure 13–22 Revoking Topic Privileges—Publish-Subscribe

Purpose
Revoke a topic privilege in the publish-subscribe model

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

revokeTopicPrivilege

specify
Grantee

REVOKE
a Topic
Privilege

see Usage Notes

specify
Session

specify
Privilege

JMS Administrative Interface
REVOKING a Topic Privilege

AQjmsDestination- :
13-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking Topic Privileges—Publish-Subscribe
Usage Notes
The privileges are ENQUEUE, DEQUEUE, and ALL. ALL means both.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.revokeTopicPrivilege

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).revokeTopicPrivilege(t_sess, "ENQUEUE", "scott");
JMS Administrative Interface: Basic Operations 13-45

Granting Queue Privileges—Point-to-Point
Granting Queue Privileges—Point-to-Point

Figure 13–23 Granting Queue Privileges—Point-to-Point

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

grantQueuePrivilege

specify
Grantee

GRANT
Queue

Privileges

Default = False

specify
Session

specify
Privilege

specify
Grant Option

JMS Administrative Interface
GRANTING Queue Privileges

AQjmsSession- :
13-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Granting Queue Privileges—Point-to-Point
Purpose
Grant a queue privilege in the point-to-point model

Usage Notes
The privileges are ENQUEUE, DEQUEUE and ALL. ALL means both. Initially only the
queue table owner can use this procedure to grant privileges on the queue.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.grantQueuePrivilege

Example
QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).grantQueuePrivilege(q_sess, "ENQUEUE", "scott",
false);
JMS Administrative Interface: Basic Operations 13-47

Revoking Queue Privileges—Point-to-Point
Revoking Queue Privileges—Point-to-Point

Figure 13–24 Revoking Queue Privileges—Point-to-Point

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

revokeQueuePrivilege

specify
Revokee

REVOKE
Queue

Privilege

Default = False

specify
Session

specify
Privilege

specify
revoke_option

JMS Administrative Interface
REVOKING Queue Privileges

AQjmsSession- :
13-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking Queue Privileges—Point-to-Point
Purpose
Revoke queue privilege in the point-to-point model

Usage Notes
The privileges are ENQUEUE, DEQUEUE and ALL. ALL means both. To revoke a
privilege, the revoker must be the original grantor of the privilege. The privileges
propagated through the GRANT option are revoked if the grantors privilege is also
revoked.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.revokeQueuePrivilege

Example
QueueSession q_sess;
Queue queue;

((AQjmsDestination)queue).revokeQueuePrivilege(q_sess, "ENQUEUE", "scott");
JMS Administrative Interface: Basic Operations 13-49

Starting a Destination
Starting a Destination

Figure 13–25 Starting a Destination

Purpose
Start a destination.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

startSTART
a Destination

specify
Session

see Usage Notes

see Usage Notes
set

Enable
Dequeue

set
Enable

Enqueue

JMS Administrative Interface
STARTING a Destination

AQjmsDestination- :
13-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Starting a Destination
Usage Notes
After creating a destination, the administrator must use the start method to enable
the destination. If Enable Enqueue is set to TRUE, then the destination is enabled
for enqueue. If Enable Enqueue is set to FALSE, then the destination is disabled for
enqueue. Similarly, if Enable Dequeue is set to TRUE, then the destination is
enabled for dequeue. If Enable Dequeue is set to FALSE, the destination is disabled
for dequeue.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.start

Example
TopicSession t_sess;
QueueSession q_sess;
Topic topic;
Queue queue;

(AQjmsDestination)topic.start(t_sess, true, true);
(AQjmsDestination)queue.start(q_sess, true, true);
JMS Administrative Interface: Basic Operations 13-51

Stopping a Destination
Stopping a Destination

Figure 13–26 Stopping a Destination

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

stop

specify
Session

see Usage Notes

see Usage Notes
set

Disable
Dequeue

set
Wait

set
Disable

Enqueue

STOP
a Destination

-
JMS
Administrative
Interface

AQjmsDestination STOPPING a Destination:
13-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Stopping a Destination
Purpose
Stop a destination.

Usage Notes
If Disable Dequeue is set to TRUE, then the destination is disabled for dequeue. If
Disable dequeue is set to FALSE, then the current setting is not altered. Similarly if
Disable Enqueue set to TRUE, then the destination is disabled for enqueue. If
Disable Enqueue is set to FALSE, then the current setting is not altered.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.stop

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).stop(t_sess, true, false);
JMS Administrative Interface: Basic Operations 13-53

Altering a Destination
Altering a Destination

Figure 13–27 Altering a Destination

Purpose
Alter a destination.

Usage Notes
Not applicable.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

alter

specify
Session

ALTER
a Destination

specify
Destination
Properties

JMS Administrative Interface ALTERING a DestinationAQjmsDestination- :
13-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Destination
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.alter

Example
QueueSession q_sess;
Queue queue;
TopicSession t_sess;
Topic topic;

AQjmsDestionationProperty dest_prop1, dest_prop2;

((AQjmsDestination)queue).alter(dest_prop1);
((AQjmsDestination)topic).alter(dest_prop2);
JMS Administrative Interface: Basic Operations 13-55

Dropping a Destination
Dropping a Destination

Figure 13–28 Dropping a Destination

Purpose
Drop a destination.

Usage Notes
Not applicable.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.drop

Example
QueueSession q_sess;
Queue queue;

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

drop

specify
Session

DROP
a Destination

JMS Administrative Interface
DROPPING a Destination

AQjmsDestination- :
13-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Scheduling a Propagation
TopicSession t_sess;
Topic topic;

((AQjmsDestionation)queue).drop(q_sess);
((AQjmsDestionation)topic).drop(t_sess);

Scheduling a Propagation

Figure 13–29 Scheduling a Propagation

User/
Program

schedulePropagation

specify
Session see Usage Notes

specify
Start Time

(date)

specify
Destination

specify
Duration

(seconds)

specify
Latency

specify
Next Time
(seconds)

SCHEDULE
a Propagation

JMS Administrative Interface
SCHEDULING a Propagation

AQjmsDestination- :
JMS Administrative Interface: Basic Operations 13-57

Scheduling a Propagation
Purpose
Schedule a Propagation

Usage Notes
Messages can be propagated to other topics in the same database by specifying a
NULL destination. If the message has multiple recipients at the same destination in
either the same or different queues the message will be propagated to all of them at
the same time.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.schedulePropagation

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).schedulePropagation(t_sess, null, null, null, null,
new Double(0));

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47
13-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Enabling a Propagation Schedule
Enabling a Propagation Schedule

Figure 13–30 Enabling a Propagation Schedule

Purpose
Enable a Propagation Schedule

Usage Notes
NULL destination indicates that the propagation is to the local database.

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

enablePropagationSchedule

specify
Session

ENABLE
a Propagation

Schedule

see Usage Notesspecify
Destination

JMS Administrative Interface
ENABLING a Propagation Schedule

AQjmsDestination- :
JMS Administrative Interface: Basic Operations 13-59

Enabling a Propagation Schedule
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.enablePropagationSchedule

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).enablePropagationSchedule(t_sess, "dbs1");
13-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Altering a Propagation Schedule
Altering a Propagation Schedule

Figure 13–31 Altering a Propagation Schedule

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

alterPropagationSchedule

specify
Session see Usage Notes

specify
Duration

(seconds)

specify
Destination

specify
Next Time
(seconds)

specify
Latency

(seconds)

ALTER
a Propagation

Schedule

JMS Administrative Interface
ALTERING a Propagation Schedule

AQjmsDestination- :
JMS Administrative Interface: Basic Operations 13-61

Altering a Propagation Schedule
Purpose
Alter a propagation schedule.

Usage Notes
NULL destination indicates that the propagation is to the local database

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.alterPropagationSchedule

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).alterPropagationSchedule(t_sess, null, 30, null, new
Double(30));
13-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Disabling a Propagation Schedule
Disabling a Propagation Schedule

Figure 13–32 Disabling a Propagation Schedule

Purpose
Disable a propagation schedule.

Usage Notes
NULL destination indicates that the propagation is to the local database

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47

User/
Program

disablePropagationScedule

specify
Session

DISABLE
a Propagation

Schedule

see Usage Notesspecify
Destination

JMS Administrative Interface
DISABLING a Propagation Schedule

AQjmsDestination- :
JMS Administrative Interface: Basic Operations 13-63

Unscheduling a Propagation
Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.disablePropagationSchedule

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).disablePropagationSchedule(t_sess, "dbs1");

Unscheduling a Propagation

Figure 13–33 Unscheduling a Propagation

User/
Program

unschedulePropagation

specify
Session

UNSCHEDULE
a Propagation

see Usage Notesspecify
Destination

JMS Administrative Interface
UNSCHEDULING a Propagation

AQjmsDestination- :
13-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Unscheduling a Propagation
Purpose
Unschedule a propagation.

Usage Notes
Unschedule a previously scheduled propagation.

Syntax
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsDestination.unschedulePropagation

Example
TopicSession t_sess;
Topic topic;

((AQjmsDestination)topic).unschedulePropagation(t_sess, "dbs1");

See Also:

� Table 13–1 for a list of JMS administrative interface basic
operations

� "Class - oracle.jms.AQjmsDestination" on page B-47
JMS Administrative Interface: Basic Operations 13-65

Unscheduling a Propagation
13-66 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Operational Interface: Basic Operations (Poin
14

JMS Operational Interface: Basic

Operations (Point-to-Point)

In this chapter we describe the operational interface to Oracle Advanced Queuing
in terms of use cases. That is, we discuss each operation (such as "Creating a Queue
Sender") as a use case by that name. The table listing all the use cases is provided at
the head of the chapter (see "Use Case Model: Operational Interface — Basic
Operations" on page 14-2).

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations",
locates all the use cases in a single drawing. If you are using the HTML version of
this document, you can use this figure to navigate to the use case that interests you
by clicking on the relevant use case title.

Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment that illustrate the use
case.
t-to-Point) 14-1

Use Case Model: Operational Interface — Basic Operations
Use Case Model: Operational Interface — Basic Operations

Table 14–1 Use Case Model: Operational Interface — Basic Operations

Use Case

Creating a Queue Connection with Username/Password on page 14-3

Creating a Queue Connection with an Open JDBC Connection on page 14-4

Creating a Queue Connection with Default Connection Factory Parameters on page 14-6

Creating a Queue Connection with an Open OracleOCIConnection Pool on page 14-7

Creating a Queue Session on page 14-9

Creating a Queue Sender on page 14-10

Sending a Message Using a Queue Sender with Default Send Options on page 14-11

Sending Messages Using a Queue Sender by Specifying Send Options on page 14-13

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages on page 14-15

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages on
page 14-17

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages on page 14-19

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking Messages While
Browsing on page 14-21

Browsing Messages Using a Queue Browser on page 14-23

Creating a Queue Receiver for Queues of Standard JMS Type Messages on page 14-25

Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages on page 14-27

Creating a Queue Connection with an Open OracleOCIConnection Pool on page 14-29
14-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Connection with Username/Password
Creating a Queue Connection with Username/Password

Figure 14–1 Creating a Queue Connection with Username/Password

Purpose
Create a queue connection with username/password.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.QueueConnectionFactory" on page B-32

� "Creating a Queue Connection with an Open JDBC Connection"
on page 14-4

� "Creating a Queue Connection with Default Connection
Factory Parameters" on page 14-6

� "Creating a Queue Connection with an Open
OracleOCIConnection Pool" on page 14-7

User/
Program

createQueueConnection, specify Username/Password

specify
Password

specify
Username

CREATE
a

Queue
Connection

-JMS Operational
Interface

QueueConnectionFactory CREATING a Queue Connection:
JMS Operational Interface: Basic Operations (Point-to-Point) 14-3

Creating a Queue Connection with an Open JDBC Connection
Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueConnectionFactory.createQueueConnection

Example
QueueConnectionFactory qc_fact =
AQjmsFactory.getQueueConnectionFactory("sun123", "oratest", 5521, "thin");
/* Create a queue connection using a username/password */
QueueConnection qc_conn = qc_fact.createQueueConnection("jmsuser", "jmsuser");

Creating a Queue Connection with an Open JDBC Connection

Figure 14–2 Creating a Queue Connection with an Open JDBC Connection

User/
Program

createQueueConnection, using an
open JDBC connection

CREATE
a

Queue
Connection

JMS Operational
Interface

CREATING a Queue
ConnectionAQjmsQueueConnectionFactory- :
14-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Connection with an Open JDBC Connection
Purpose
Create a queue connection with an open JDBC connection.

Usage Notes
This is a static method.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueConnectionFactory.createQueueConnection

Example 1
This method may be used if the user wants to use an existing JDBC connection (say
from a connection pool) for JMS operations. In this case JMS will not open a new
connection, but instead use the supplied JDBC connection to create the JMS
QueueConnection object.

Connection db_conn; /* previously opened JDBC connection */
QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(db_

conn);

Example 2
This method is the only way to create a JMS QueueConnection when using JMS
from java stored procedures inside the database (JDBC Server driver)

OracleDriver ora = new OracleDriver();
QueueConnection qc_conn =

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsQueueConnectionFactory" on
page B-52

� "Creating a Queue Connection with Username/Password" on
page 14-3

� "Creating a Queue Connection with Default Connection
Factory Parameters" on page 14-6

� "Creating a Queue Connection with an Open
OracleOCIConnection Pool" on page 14-7
JMS Operational Interface: Basic Operations (Point-to-Point) 14-5

Creating a Queue Connection with Default Connection Factory Parameters
AQjmsQueueConnectionFactory.createQueueConnection(ora.defaultConnection());

Creating a Queue Connection with Default Connection Factory
Parameters

Figure 14–3 Creating a Connection with Default Connection Factory Parameters

Purpose
Create a queue connection with default connection factory parameters.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsQueueConnectionFactory" on
page B-52

� "Creating a Queue Connection with Username/Password" on
page 14-3

� "Creating a Queue Connection with an Open JDBC Connection"
on page 14-4

� "Creating a Queue Connection with an Open
OracleOCIConnection Pool" on page 14-7

User/
Program

createQueueConnection, default
QueueConnectionFactory parameters

CREATE
a

Queue
Connection

JMS Operational
Interface

CREATING a Queue
ConnectionAQjmsQueueConnectionFactory- :
14-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Connection with an Open OracleOCIConnection Pool
Usage Notes
The QueueConnectionFactory properties must contain a default username and
password: otherwise, this method will throw a JMSException.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueConnectionFactory.createQueueConnection

Creating a Queue Connection with an Open OracleOCIConnection Pool

Figure 14–4 Creating a Queue Connection with an Open OracleOCIConnectionPool

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsQueueConnectionFactory" on
page B-52

� "Creating a Queue Connection with Username/Password" on
page 14-3

� "Creating a Queue Connection with an Open JDBC Connection"
on page 14-4

� "Creating a Queue Connection with Default Connection
Factory Parameters" on page 14-6

User/
Program

createQueueConnection, using
OracleOCIConnectionPool

CREATE
a

Queue
Connection

JMS Operational Interface
CREATING a Queue Connection

AQjmsQueueConnectionFactory- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-7

Creating a Queue Connection with an Open OracleOCIConnection Pool
Purpose
Create a queue connection with an open OracleOCIConnectionPool.

Usage notes
This is a static method.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueConnectionFactory.createQueueConnection

Example
This method may be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS will
not open an new OracleOCIConnectionPool instance, but instead use the
supplied OracleOCIConnectionPool instance to create the JMS
QueueConnection object.

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(cpool);
14-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Session
Creating a Queue Session

Figure 14–5 Creating a Queue Session

Purpose
Create a queue session.

Usage Notes
Transacted and nontransacted sessions are supported.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.QueueConnection" on page B-32

User/
Program

createQueueSession
CREATE

a
Queue
Session

see Usage Notes

see Usage Notes
specify

Acknowledge-
ment Mode

specify
if Session

is Transacted

JMS Operational Interface CREATING a Queue SessionQueueConnection- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-9

Creating a Queue Sender
Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConnection.createQueueSession

Example
For a transacted session:

QueueConnection qc_conn;
QueueSession q_sess = qc_conn.createQueueSession(true, 0);

Creating a Queue Sender

Figure 14–6 Creating a Queue Sender

Purpose
Create a queue sender.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.Session" on page B-34

User/
Program

createSender

specify
Queue

CREATE
a Queue
Sender

JMS Operational Interface CREATING a Queue Sender Session- :
14-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Sending a Message Using a Queue Sender with Default Send Options
Usage Notes
If a sender is created without a default Queue, then the destination Queue will have
to be specified on every send operation.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createSender

Sending a Message Using a Queue Sender with Default Send Options

Figure 14–7 Sending a Message Using a Queue Sender with Default Send Options

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.QueueSender" on page B-33

User/
Program

send, default Send Options

specify
Message

specify
Queue

SEND
a Message

using a Queue
Sender

JMS Operational Interface

SENDING a Message using a Queue Sender

QueueSender- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-11

Sending a Message Using a Queue Sender with Default Send Options
Purpose
Send a message using a queue sender with default send options.

Usage Notes
If the QueueSender has been created with a default queue, then the queue
parameter may not necessarily be supplied in the send call. If a queue is specified in
the send operation, then this value will override the default queue of the
QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send call.

This send operation uses default values for message priority (1) and timeToLive
(infinite).

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueSender.send

Example

Example1
/* Create a sender to send messages to any queue */
QueueSession jms_sess;
QueueSender sender1;
TextMessage message;
sender1 = jms_sess.createSender(null);
sender1.send(queue, message);

Example2
/* Create a sender to send messages to a specific queue */
QueueSession jms_sess;
QueueSender sender2;
Queue billed_orders_que;
TextMessage message;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(queue, message);
14-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Sending Messages Using a Queue Sender by Specifying Send Options
Sending Messages Using a Queue Sender by Specifying Send Options

Figure 14–8 Sending Messages Using a Queue Sender by Specifying Send Options

User/
Program

specify
Queue

specify
Message

specify
Message
Priority

specify
TimeToLive

(milliseconds)

SEND
a Message

using a Queue
Sender

send, specifying Send Options

see Usage Notesspecify
Delivery Mode

JMS Operational Interface
SENDING a Message using a Queue Sender

QueueSender- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-13

Sending Messages Using a Queue Sender by Specifying Send Options
Purpose
Send messages using a queue sender by specifying send options.

Usage Notes
If the QueueSender has been created with a default queue, then the queue
parameter may not necessarily be supplied in the send call. If a queue is specified in
the send operation, then this value will override the default queue of the
QueueSender.

If the QueueSender has been created without a default queue, then the queue
parameter must be specified in every send call.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueSender.send

Example

Example1
/* Create a sender to send messages to any queue */
/* Send a message to new_orders_que with priority 2 and timetoLive 100000

milliseconds */
QueueSession jms_sess;
QueueSender sender1;
TextMessage mesg;
Queue new_orders_que
sender1 = jms_sess.createSender(null);
sender1.send(new_orders_que, mesg, DeliveryMode.PERSISTENT, 2, 100000);

Example2
/* Create a sender to send messages to a specific queue */
/* Send a message with priority 1 and timetoLive 400000 milliseconds */
QueueSession jms_sess;
QueueSender sender2;

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.QueueSender" on page B-33
14-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages
Queue billed_orders_que;
TextMessage mesg;
sender2 = jms_sess.createSender(billed_orders_que);
sender2.send(mesg, DeliveryMode.PERSISTENT, 1, 400000);

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes
or Map Messages

Figure 14–9 Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.Session" on page B-34

User/
Program

createBrowser, for queues with text, stream,
object, bytes or map messages

specify
Message
Selector

specify
Queue

CREATE
a

Queue
Browser

-JMS Operational
Interface Session CREATING a Queue Browser for Queues of

Standard JMS Type Messages:
JMS Operational Interface: Basic Operations (Point-to-Point) 14-15

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages
Purpose
Create a queue browser for queues with text, stream, objects, bytes or map
messages.

Usage Notes
To retrieve messages that match certain criteria, the selector for the QueueBrowser
can be any expression that has a combination of one or more of the following:

� JMSMessageID = ’ID:23452345 ’ to retrieve messages that have a specified
message ID

� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

� User defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

All message IDs must be prefixed with "ID:"

Use methods in java.util.Enumeration to go through list of messages.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example

Example1
/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;

browser = jms_session.createBrowser(queue);

Example2
/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;
14-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages
/* create a Browser to look at messages with correlationID = RUSH */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = ’RUSH'");

Creating a Queue Browser for Queues with Text, Stream, Objects,
Bytes, Map Messages, Locking Messages

Figure 14–10 Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map
Messages, Locking Messages While Browsing

Purpose
Create a queue browser for queues with text, stream, objects, bytes or map
messages, locking messages while browsing.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.Session" on page B-34

User/
Program

createBrowser, for queues with text, stream, object, bytes
or map messages, locking messages while browsing

specify
Message
Selector

specify
Queue

CREATE
a

Queue
Browser

-JMS Operational Interface Session
CREATING a Queue Browser for Queues
of Standard JMS Type Messages:
JMS Operational Interface: Basic Operations (Point-to-Point) 14-17

Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Messages
Usage Notes
If locked parameter is specified as true, messages are locked as they are browsed.
Hence these messages cannot be removed by other consumers until the browsing
session ends the transaction

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example

Example1
/* Create a browser without a selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;

browser = jms_session.createBrowser(queue, null, true);

Example2
/* Create a browser for queues with a specified selector */
QueueSession jms_session;
QueueBrowser browser;
Queue queue;

/* create a Browser to look at messages with
correlationID = RUSH in lock mode */

browser = jms_session.createBrowser(queue, "JMSCorrelationID = ’RUSH'", true);
14-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages
Creating a Queue Browser for Queues of Oracle Object Type (ADT)
Messages

Figure 14–11 Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages

Purpose
Create a queue browser for queues of Oracle object type (ADT) messages.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

createBrowser, for queues with ADT messages

specify
Message
Selector

specify
Queue

CREATE
a

Queue
Browser

see Usage Notes
specify

Custom Datum
Factory

JMS Operational Interface
CREATING a Queue Browser for Queues
of Oracle Object Type (ADT) Messages

AQjmsSession- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-19

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages
Usage Notes
For queues containing AdtMessages the selector for QueueBrowser can be a SQL
expression on the message payload contents or messageID or priority or
correlationID.

� Selector on message id - to retrieve messages that have a specific messageID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with ’ID:’

� Selector on priority or correlation is specified as follows

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example
The CustomDatum factory for a particular java class that maps to the SQL ADT
payload can be obtained using the getFactory static method.

Assume the Queue - test_queue has payload of type SCOTT.EMPLOYEE and the
java class that is generated by Jpublisher for this ADT is called Employee. The
Employee class implements the CustomDatum interface. The CustomDatumFactory
for this class can be obtained by using the Employee.getFactory() method.

 /* Create a browser for a Queue with Adt messages of type EMPLOYEE*/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser(test_queue,
"corrid=’EXPRESS’", Employee.getFactory());
14-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking Messages While Browsing
Creating a Queue Browser for Queues of Oracle Object Type (ADT)
Messages, Locking Messages While Browsing

Figure 14–12 Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking
Messages While Browsing

User/
Program

createBrowser, for queues with ADT messages,
locking messages while browsing

specify
Message
Selector

specify
Queue

see Usage Notes
specify

Custom Datum
Factory

specify
LOCK = TRUE

CREATE
Queue

Browser

JMS Operational Interface AQjmsSession-
JMS Operational Interface: Basic Operations (Point-to-Point) 14-21

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking Messages While Browsing
Purpose
Create a queue browser for queues of Oracle object type (ADT) messages, locking
messages while browsing.

Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example
 /* Create a browser for a Queue with Adt messages of type EMPLOYEE* in lock
mode/
QueueSession jms_session
QueueBrowser browser;
Queue test_queue;

browser = ((AQjmsSession)jms_session).createBrowser(test_queue, null,
Employee.getFactory(), true);

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53
14-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Browsing Messages Using a Queue Browser
Browsing Messages Using a Queue Browser

Figure 14–13 Browsing Messages Using a Queue Browser

Purpose
Browse messages using a queue browser.

Usage Notes
Use methods in java.util.Enumeration to go through the list of messages.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueBrowser

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.QueueBrowser" on page B-31

User/
Program

getEnumeration
Browse

Messages
using Queue

Browser

JMS Operational Interface
BROWSING Messages Using a Queue Browser

QueueBrowser- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-23

Browsing Messages Using a Queue Browser
Example
/* Create a browser for queues with a specified selector */
public void browse_rush_orders(QueueSession jms_session)
{

QueueBrowser browser;
Queue queue;
ObjectMessage obj_message
BolOrder new_order;
Enumeration messages;

/* get a handle to the new_orders queue */
queue = ((AQjmsSession) jms_session).getQueue("OE", "OE_neworders_que");

/* create a Browser to look at RUSH orders */
browser = jms_session.createBrowser(queue, "JMSCorrelationID = 'RUSH'");

/* Browse through the messages */
for (messages = browser.elements() ; message.hasMoreElements() ;)
{

obj_message = (ObjectMessage)message.nextElement();
}

}

14-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Receiver for Queues of Standard JMS Type Messages
Creating a Queue Receiver for Queues of Standard JMS Type Messages

Figure 14–14 Creating a Queue Receiver for Queues of Standard JMS Type Messages

Purpose
Create a queue receiver for queues of standard JMS type messages.

Usage Notes
The selector for the QueueReceiver can be any expression that has a combination of
one or more of the following:

� JMSMessageID = ’ID:23452345 ’ to retrieve messages that have a specified
message ID

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Interface - javax.jms.Session" on page B-34

User/
Program

createReceiver, for queues with text, stream,
object, bytes or map messages

specify
Message
Selector

specify
Queue

Create
a Queue
Receiver

JMS Operational Interface Session CREATING a Queue Receiver:-
JMS Operational Interface: Basic Operations (Point-to-Point) 14-25

Creating a Queue Receiver for Queues of Standard JMS Type Messages
� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

� User defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

All message IDs must be prefixed with "ID:"

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createReceiver

Example

Example1
/* Create a receiver without a selector */
QueueSession jms_session
QueueReceiver receiver;
Queue queue;

receiver = jms_session.createReceiver(queue);

Example2
/* Create a receiver for queues with a specified selector */
QueueSession jms_session;
QueueReceiver receiver;
Queue queue;

/* create a Receiver to receive messages with correlationID starting with EXP
*/
browser = jms_session.createReceiver(queue, "JMSCorrelationID LIKE 'EXP%'");
14-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages
Creating a Queue Receiver for Queues of Oracle Object Type (ADT)
Messages

Figure 14–15 Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages

Purpose
Create a queue receiver for queues of Oracle object type (ADT) messages.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

createReceiver, for queues with ADT messages

specify
Message
Selector

specify
Queue

see Usage Notes
specify

Custom Datum
Factory

CREATE
a

Queue
Receiver

JMS Operational Interface CREATING a Queue ReceiverAQjmsSession- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-27

Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages
Usage Notes
The CustomDatum factory for a particular java class that maps to the SQL ADT
payload can be obtained using the getFactory static method.

For queues containing AdtMessages the selector for QueueReceiver can be a SQL
expression on the message payload contents or messageID or priority or
correlationID.

� Selector on message id - to retrieve messages that have a specific messageID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with ’ID:’

� Selector on priority or correlation is specified as follows

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createReceiver

Example
Assume the Queue - test_queue has payload of type SCOTT.EMPLOYEE and the
java class that is generated by Jpublisher for this ADT is called Employee. The
Employee class implements the CustomDatum interface. The CustomDatumFactory
for this class can be obtained by using the Employee.getFactory() method.

/* Create a receiver for a Queue with Adt messages of type EMPLOYEE*/
QueueSession jms_session
QueueReceiver receiver;
Queue test_queue;

browser = ((AQjmsSession)jms_session).createReceiver(test_queue,
"JMSCorrelationID = ’MANAGER’, Employee.getFactory());
14-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Queue Connection with an Open OracleOCIConnection Pool
Creating a Queue Connection with an Open OracleOCIConnection Pool

Figure 14–16 Creating a Queue Connection with an Open OracleOCIConnectionPool

Purpose
Create a queue connection with an open OracleOCIConnectionPool.

Usage notes
This is a static method.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueConnectionFactory.createQueueConnection

Example
This method may be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS will
not open an new OracleOCIConnectionPool instance, but instead use the
supplied OracleOCIConnectionPool instance to create the JMS
QueueConnection object.

See Also:

� Table 14–1 for a list of JMS operational interface basic
operations

� "Class - oracle.jms.AQjmsQueueConnectionFactory" on
page B-52

User/
Program

createQueueConnection, using
OracleOCIConnectionPool

CREATE
a

Queue
Connection

JMS Operational Interface
CREATING a Queue Connection

AQjmsQueueConnectionFactory- :
JMS Operational Interface: Basic Operations (Point-to-Point) 14-29

Creating a Queue Connection with an Open OracleOCIConnection Pool
OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
QueueConnection qc_conn =
AQjmsQueueConnectionFactory.createQueueConnection(cpool);
Connection db_conn; /* previously opened JDBC connection */

QueueConnection qc_conn = AQjmsQueueConnectionFactory.createQueueConnection(db_
conn);
14-30 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Operational Interface: Basic Operations (Publish-Sub
15

JMS Operational Interface: Basic

Operations (Publish-Subscribe)

In this chapter we describe the operational interface (publish-subscribe) to Oracle
Advanced Queuing in terms of use cases. That is, we discuss each operation (such
as "Publish a Message") as a use case by that name. The table listing all the use cases
is provided at the head of the chapter (see "Use Case Model: Operational Interface
— Basic Operations" on page 14-2).

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations",
locates all the use cases in single drawing. If you are using the HTML version of this
document, you can use this figure to navigate to the use case that interests you by
clicking on the relevant use case title.

The individual use cases are themselves laid out as follows:

Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment that illustrate the use
case.
scribe) 15-1

Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe)
Use Case Model: JMS Operational Interface — Basic Operations
(Publish-Subscribe)

Table 15–1 JMS Operational Interface—Basic Operations (Publish-Subscribe)

Use Case

Creating a Topic Connection with Username/Password on page 15-4

Creating a Topic Connection with Open JDBC Connection on page 15-5

Creating a Topic Connection with Default Connection Factory Parameters on page 15-7

Creating a Topic Connection with an Open OracleOCIConnectionPool on page 15-8

Creating a Topic Session on page 15-10

Creating a Topic Publisher on page 15-11

Publishing a Message Using a Topic Publisher—with Minimal Specification on page 15-12

Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay on page 15-15

Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live on page 15-18

Publishing a Message Using a Topic Publisher—Specifying a Recipient List Overriding Topic Subscribers on
page 15-21

Creating a Durable Subscriber for a JMS Topic without Selector on page 15-24

Creating a Durable Subscriber for a JMS Topic with Selector on page 15-26

Creating a Durable Subscriber for an ADT Topic without Selector on page 15-29

Creating a Durable Subscriber for an ADT Topic with Selector on page 15-31

Creating a Remote Subscriber for Topics of JMS Messages on page 15-34

Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages on page 15-37

Unsubscribing a Durable Subscription for a Local Subscriber on page 15-40

Unsubscribing a Durable Subscription for a Remote Subscriber on page 15-42

Creating a Topic Receiver for a Topic of Standard JMS Type Messages on page 15-44

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages on page 15-46

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages on page 15-48

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes, Map Messages, Locking Messages While
Browsing on page 15-50
15-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe)
Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages on page 15-52

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages, Locking Messages While Browsing
on page 15-55

Browsing Messages Using a Topic Browser on page 15-57

Table 15–1 (Cont.) JMS Operational Interface—Basic Operations (Publish-Subscribe)

Use Case
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-3

Creating a Topic Connection with Username/Password
Creating a Topic Connection with Username/Password

Figure 15–1 Publish-Subscribe—Creating a Topic Connection with Username/Password

Purpose
Create a topic connection with username/password

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicConnectionFactory" on page B-38

� "Creating a Topic Connection with Open JDBC Connection" on
page 15-5

� "Creating a Topic Connection with Default Connection Factory
Parameters" on page 15-7

� "Creating a Topic Connection with an Open
OracleOCIConnectionPool" on page 15-8

User/
Program

createTopicConnection, with a specified Username/Password

specify
Password

specify
Username

CREATE
a

Topic
Connection

-JMS Operational
Interface

TopicConnectionFactory CREATING a Topic Connection:
15-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Connection with Open JDBC Connection
Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicConnectionFactory.createTopicConnection

Example
TopicConnectionFactory tc_fact =

AQjmsFactory.getTopicConnectionFactory("sun123", "oratest", 5521, "thin");
/* Create a topic connection using a username/password */
TopicConnection tc_conn = tc_fact.createTopicConnection("jmsuser", "jmsuser");

Creating a Topic Connection with Open JDBC Connection

Figure 15–2 Publish-Subscribe—Creating a Topic Connection with Open JDBC Connection

User/
Program

createTopicConnection [static method],
using an open JDBC connection

specify
JDBC

Connection
Object

CREATE
a

Topic
Connection

JMS Operational
Interface

CREATING a Topic
ConnectionAQjmsTopicConnectionFactory- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-5

Creating a Topic Connection with Open JDBC Connection
Purpose
Create a topic connection with open JDBC connection.

Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicConnectionFactory.createTopicConnection

Example 1
Connection db_conn; /*previously opened JDBC connection */
TopicConnection tc_conn = AQjmsTopicConnectionFactory.createTopicConnection(db_
conn);

Example 2
OracleDriver ora = new OracleDriver();
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(ora.defaultConnection());

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsTopicConnectionFactory" on
page B-55

� "Creating a Topic Connection with Username/Password" on
page 15-4

� "Creating a Topic Connection with Default Connection Factory
Parameters" on page 15-7

� "Creating a Topic Connection with an Open
OracleOCIConnectionPool" on page 15-8
15-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Connection with Default Connection Factory Parameters
Creating a Topic Connection with Default Connection Factory
Parameters

Figure 15–3 Publish-Subscribe—Creating a Topic Connection with Default Connection Factory
Parameters

Purpose
Create a topic connection with default connection factory parameters.

Usage Notes
Not applicable.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsTopicConnectionFactory" on
page B-55

� "Creating a Topic Connection with Username/Password" on
page 15-4

� "Creating a Topic Connection with Open JDBC Connection" on
page 15-5

� "Creating a Topic Connection with an Open
OracleOCIConnectionPool" on page 15-8

User/
Program

createTopicConnection, with default
QueueConnectionFactory parameters

CREATE
a

Topic
Connection

JMS Operational
Interface

CREATING a Topic
ConnectionAQjmsTopicConnectionFactory- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-7

Creating a Topic Connection with an Open OracleOCIConnectionPool
Syntax
� Java (JDBC): X,oracle.jms,

AQjmsTopicConnectionFactory.createTopicConnection

Creating a Topic Connection with an Open OracleOCIConnectionPool

Figure 15–4 Publish-Subscribe—Creating a Topic Connection with an Open OracleOCIConnectionPool

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsTopicConnectionFactory" on
page B-55

� "Creating a Topic Connection with Username/Password" on
page 15-4

� "Creating a Topic Connection with Open JDBC Connection" on
page 15-5

� "Creating a Topic Connection with Default Connection Factory
Parameters" on page 15-7

User/
Program

createTopicConnection [static method],
using an open OracleOCIConnectionPool

specify
open Oracle-

OCIConnection-
Pool Object

CREATE
a

Topic
Connection

JMS Operational Interface
CREATING a Topic Connection

AQjmsTopicConnectionFactory- :
15-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Connection with an Open OracleOCIConnectionPool
Purpose
Create a topic connection with an open OracleOCIConnectionPool .

Usage notes
This is a static method.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicConnectionFactory.createTopicConnection

Example
This method may be used if the user wants to use an existing
OracleOCIConnectionPool instance for JMS operations. In this case JMS will
not open an new OracleOCIConnectionPool instance, but instead use the
supplied OracleOCIConnectionPool instance to create the JMS
TopicConnection object.

OracleOCIConnectionPool cpool; /* previously created OracleOCIConnectionPool */
TopicConnection tc_conn =
AQjmsTopicConnectionFactory.createTopicConnection(cpool);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-9

Creating a Topic Session
Creating a Topic Session

Figure 15–5 Publish-Subscribe—Creating a Topic Session

Purpose
Create a topic session.

Usage Notes
Not applicable.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicConnection" on page B-37

User/
Program

createTopicSession
CREATE

a
Topic

Session

see Usage Notes

see Usage Notes
specify

Acknowledge-
ment Mode

specify
if Session

is Transacted

JMS Operational Interface
CREATING a Topic Session

TopicConnection- :
15-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Publisher
Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConnection.createTopicSession

Example
TopicConnection tc_conn;
TopicSession t_sess = tc_conn.createTopicSession(true,0);

Creating a Topic Publisher

Figure 15–6 Publish-Subscribe—Creating a Topic Publisher

Purpose
Create a topic publisher.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicSession" on page B-39

User/
Program

createTopicPublisher

specify
Topic

CREATE
a

Topic
Publisher

JMS Administrative Interface
CREATING a Topic Publisher

TopicSession- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-11

Publishing a Message Using a Topic Publisher—with Minimal Specification
Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createPublisher

Publishing a Message Using a Topic Publisher—with Minimal
Specification

Figure 15–7 Publish-Subscribe—Publishing a Message with Minimal Specification

User/
Program

publish, minimal specification

specify
Message

specify
Topic

PUBLISH
a

Message

JMS Operational Interface PUBLISHING a Message TopicPublisher- :
15-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—with Minimal Specification
Purpose
Publish a message with minimal specification.

Usage Notes
If the Topic Publisher has been created with a default topic, then the topic
parameter may not be specified in the publish call. If a topic is specified in the send
operation, then that value will override the default in the TopicPublisher. If the
TopicPublisher has been created without a default topic, then the topic must be
specified with the publish. The TopicPublisher uses the default values for message
priority (1) and timeToLive (infinite).

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicPublisher.publish

Example
Example 1 - publish specifying topic

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory('MYHOSTNAME',

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicPublisher" on page B-38

� "Publishing a Message Using a Topic Publisher—Specifying
Correlation and Delay" on page 15-15

� "Publishing a Message Using a Topic Publisher—Specifying
Priority and Time-To-Live" on page 15-18

� "Publishing a Message Using a Topic Publisher—Specifying a
Recipient List Overriding Topic Subscribers" on page 15-21
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-13

Publishing a Message Using a Topic Publisher—with Minimal Specification
'MYSID', myport, 'oci8');
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

/* create topic publisher */
publisher1 = jms_sess.createPublisher(null);

/* get topic object */
shipped_orders = ((AQjmsSession)jms_sess).getTopic('WS', 'Shipped_Orders_
Topic');

/* create text message */
TextMessage jms_sess.createTextMessage();

/* publish specifying the topic */
publisher1.publish(shipped_orders, text_message);

Example 2 - publish without specifying topic

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

/* create topic session */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

/* get shipped orders topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);

/* create text message */
TextMessage jms_sess.createTextMessage();

/* publish without specifying the topic */
publisher1.publish(text_message);
15-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay
Publishing a Message Using a Topic Publisher—Specifying Correlation
and Delay

Figure 15–8 Publish-Subscribe—Publishing a Message Specifying Correlation and Delay

User/
Program

publish, specifying correlation and delay

specify
Topic

PUBLISH
a

Message

see Usage Notes

specify
Correlation

specify
Delay

(seconds)

specify
Message

JMS Operational Interface PUBLISHING a Message TopicPublisher- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-15

Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay
Purpose
Publish a message specifying correlation and delay.

Usage Notes
The publisher can set the message properties like delay and correlation before
publishing.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicPublisher.publish()

Example
Example 1 - publish specifying delay, correlation

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicPublisher" on page B-38

� "Publishing a Message Using a Topic Publisher—with Minimal
Specification" on page 15-12

� "Publishing a Message Using a Topic Publisher—Specifying
Priority and Time-To-Live" on page 15-18

� "Publishing a Message Using a Topic Publisher—Specifying a
Recipient List Overriding Topic Subscribers" on page 15-21
15-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);

/* create text message */
TextMessage jms_sess.createTextMessage();

/* Set correlation and delay */

/* set correlation */
jms_sess.setJMSCorrelationID("FOO");

/* set delay of 30 seconds */
jms_sess.setLongProperty("JMS_OracleDelay", 30);

/* publish */
publisher1.publish(text_message);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-17

Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live
Publishing a Message Using a Topic Publisher—Specifying Priority and
Time-To-Live

Figure 15–9 Publish-Subscribe—Publishing Messages Specifying Priority and Time-To-Live

User/
Program

publish, specifying priority and time-to-live

specify
Topic

see Usage Notes

specify
Correlation

specify
Delay

(seconds)

specify
Message

specify
Priority

specify
Time-To-Live

PUBLISH
a

Message

JMS Operational Interface
PUBLISHING a Message

TopicPublisher- :
15-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live
Purpose
Publish a message specifying priority and time-to-live.

Usage Notes
The priority, and timeToLive of the message can be specified with the publish call.
The only delivery mode supported for this release is PERSISTENT.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicPublisher.publish

Example
Example 1 - publish specifying priority, timeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicPublisher" on page B-38

� "Publishing a Message Using a Topic Publisher—with Minimal
Specification" on page 15-12

� "Publishing a Message Using a Topic Publisher—Specifying
Correlation and Delay" on page 15-15

� "Publishing a Message Using a Topic Publisher—Specifying a
Recipient List Overriding Topic Subscribers" on page 15-21
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-19

Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);

/* create text message */
TextMessage jms_sess.createTextMessage();

/* publish message with priority 1 and time to live 200 seconds */
publisher1.publish(text_message, DeliveryMode.PERSISTENT, 1, 200000);
15-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—Specifying a Recipient List Overriding Topic Subscribers
Publishing a Message Using a Topic Publisher—Specifying a Recipient
List Overriding Topic Subscribers

Figure 15–10 Publish-Subscribe—Publishing a Message Specifying a Recipient List Overriding Topic
Subscribers

User/
Program

publish, specifying recipient list
overriding topic subscibers

specify
Topic

PUBLISH
a

Message

specify
Message

see Usage Notes
specify
a List of

Recipients

JMS Operational Interface
PUBLISHING a Message

TopicPublisher- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-21

Publishing a Message Using a Topic Publisher—Specifying a Recipient List Overriding Topic Subscribers
Purpose
Publish a messages specifying a recipient list overriding topic subscribers.

Usage Notes
The subscription list of the topic can be overridden by specifying the recipient list
with the publish call.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicPublisher.publish

Example
Example 1 - publish specifying priority, timeToLive

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicPublisher publisher1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicPublisher" on page B-38

� "Publishing a Message Using a Topic Publisher—with Minimal
Specification" on page 15-12

� "Publishing a Message Using a Topic Publisher—Specifying
Correlation and Delay" on page 15-15

� "Publishing a Message Using a Topic Publisher—Specifying
Priority and Time-To-Live" on page 15-18
15-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Publishing a Message Using a Topic Publisher—Specifying a Recipient List Overriding Topic Subscribers
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
publisher1 = jms_sess.createPublisher(shipped_orders);

/* create text message */
TextMessage jms_sess.createTextMessage();

/* create two receivers */
recipList = new AQjmsAgent[2];

recipList[0] = new AQjmsAgent("ES", "ES.shipped_orders_topic",
AQAgent.DEFAULT_AGENT_PROTOCOL);

recipList[1] = new AQjmsAgent("WS", "WS.shipped_orders_topic",
AQAgent.DEFAULT_AGENT_PROTOCOL);

/* publish message specifying a recipient list */
publisher1.publish(text_message, recipList);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-23

Creating a Durable Subscriber for a JMS Topic without Selector
Creating a Durable Subscriber for a JMS Topic without Selector

Figure 15–11 Publish-Subscribe—Creating a Durable Subscriber for JMS Topic without Selector

Purpose
Create a durable subscriber for a JMS topic without selector.

Usage Notes
The subscriber name and JMS topic need to be specified to create a durable
subscriber. An unsubscribe call is needed to end the subscription to the topic.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicSession" on page B-39

� "Creating a Durable Subscriber for a JMS Topic with Selector"
on page 15-26

User/
Program

createDurableSubscriber, for
a JMS topic without selector

specify
Topic

specify
Subscriber

Name

CREATE
a Durable
Subscriber

-JMS Operational
Interface TopicSession CREATING a Durable Subscriber (JMS):
15-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Durable Subscriber for a JMS Topic without Selector
Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.CreateDurableSubscriber

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
/* create a durable subscriber on the shipped_orders topic*/
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
'WesternShipping');
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-25

Creating a Durable Subscriber for a JMS Topic with Selector
Creating a Durable Subscriber for a JMS Topic with Selector

Figure 15–12 Publish-Subscribe—Creating a Durable Subscriber for a JMS Topic with Selector

User/
Program

createDurableSubscriber, for
a JMS topic with selector

specify
Topic

specify
Subscriber

Name

specify
Message
Selector

CREATE
a Durable
Subscriber

see Usage Notes
set

No-Local
Flag

JMS Operational Interface
CREATING a Durable Subscriber (JMS)

TopicSession- :
15-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Durable Subscriber for a JMS Topic with Selector
Purpose
Create a durable subscriber for a jms topic with selector.

Usage Notes
The client creates a durable subscriber by specifying a subscriber name and JMS
topic. Optionally, a message selector can be specified. Only messages with
properties matching the message selector expression are delivered to the subscriber.
The selector value may be null. The selector can contain any SQL92 expression that
has a combination of one or more of the following:

� JMS Message header fields or properties: JMSPriority (int), JMSCorrelationID
(string), JMSType (string), JMSXUserID (string), JMSXAppID (string),
JMSXGroupID (string) JMSXGroupSeq (int)

For example:

JMSPriority < 3 AND JMSCorrelationID = 'Fiction'

� User defined message properties

For example:

color IN ('RED', BLUE', 'GREEN') AND price < 30000

Operators allowed are:

� logical operators in precedence order NOT, AND, OR comparison operators

� =, >, >=, <, <=, <>, ! (both <> and ! can be used for not equal)

� arithmetic operators in precedence order +,- unary, *,/, +,-

� identifier [NOT] IN (string-literal1, string-literal2, ..)

� arithmetic-expr1 [NOT] BETWEEN arithmetic-expr2 and arithmetic-expr3

� identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.TopicSession" on page B-39

� "Creating a Durable Subscriber for a JMS Topic without
Selector" on page 15-24
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-27

Creating a Durable Subscriber for a JMS Topic with Selector
� pattern-value is a string literal where % refers to any sequence of

� characters and _ refers to any single character. The optional

� escape-character is used to escape the special meaning of the

� '_' and '%' in pattern-value

� identifier IS [NOT] NULL

A client can change an existing durable subscription by creating a durable
TopicSubscriber with the same name and a different message selector. An
unsubscribe call is needed to end the subscription to the topic.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsTopicPublisher.publish

Example
Example 1 - subscribe specifying selector

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");

/* create a subscriber */
/* with condition on JMSPriority and user property 'Region' */
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
'WesternShipping',

"JMSPriority > 2 and Region like 'Western%'",
false);
15-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Durable Subscriber for an ADT Topic without Selector
Creating a Durable Subscriber for an ADT Topic without Selector

Figure 15–13 Publish-Subscribe—Creating a Durable Subscriber for an ADT Topic without Selector

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Durable Subscriber for an ADT Topic with Selector"
on page 15-31

User/
Program

createDurableSubscriber, for an
ADT topic without selector

specify
Topic

specify
Subscriber

Name

specify
Custom Datum
Factory for the

ADT type

CREATE
a Durable
Subscriber

JMS Operational Interface
CREATING a Durable Subscriber (ADT)

AQjmsSession- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-29

Creating a Durable Subscriber for an ADT Topic without Selector
Purpose
Create a durable subscriber for an ADT topic without selector.

Usage Notes
To create a durable subscriber for a Topic of Oracle Object type, the client needs to
specify the CustomDatumFactory for the Oracle Object Type in addition to the
Topic and subscriber name.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createDurableSubscriber

Example
subscribe to an ADT queue

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");

/* create a subscriber, specifying the correct CustomDatumFactory */
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
'WesternShipping', AQjmsAgent.getFactory());
15-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Durable Subscriber for an ADT Topic with Selector
Creating a Durable Subscriber for an ADT Topic with Selector

Figure 15–14 Publish-Subscribe—Creating a Durable Subscriber for an ADT Topic with Selector

User/
Program

createDurableSubscriber, for an
ADT topic with selector

specify
Topic

specify
Subscriber

Name

specify
Message
Selector

specify
Custom Datum
Factory for the

ADT type

CREATE
a Durable
Subscriber

see Usage Notes
set

No-Local
Flag

JMS Operational Interface
CREATING a Durable Subscriber (ADT)

AQjmsSession- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-31

Creating a Durable Subscriber for an ADT Topic with Selector
Purpose
Create a durable subscriber for an ADT topic with selector.

Usage Notes
To create a durable subscriber for a Topic of Oracle Object type, the client needs to
specify the CustomDatumFactory for the Oracle Object Type in addition to the
Topic and subscriber name.

Optionally, a message selector may be specified. Only messages matching the
selector will be delivered to the subscriber.

ADT messages do not contain any user defined properties. However, the selector
can be used to select messages based on priority or correlation id or attribute values
of the message payload

The syntax for the selector for queues containing ADT messages is different from
the syntax for selectors on queues containing standard JMS payloads (text, stream,
object, bytes, map)

The selector is similar to the AQ rules syntax

 a. Selector on priority or correlation is specified as follows

 For example.:- priority > 3 AND corrid = 'Fiction'

 b. Selector on message payload is specified as follows. The attribute

 name must be prefixed with tab.user_data.

 For example:-

 tab.user_data.color = 'GREEN' AND tab.user_data.price < 30000

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createDurableSubscriber

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Durable Subscriber for an ADT Topic without
Selector" on page 15-29
15-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Durable Subscriber for an ADT Topic with Selector
Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;
/* the java mapping of the oracle object type created by J Publisher */
ADTMessage message;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and selector
*/
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
"WesternShipping", " priority > 1 and tab.user_data.region like 'WESTERN %'",
false, ADTMessage.getFactory());
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-33

Creating a Remote Subscriber for Topics of JMS Messages
Creating a Remote Subscriber for Topics of JMS Messages

Figure 15–15 Publish-Subscribe—Creating a Remote Subscriber for Topics of Standard JMS Type
Messages

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Remote Subscriber for Topics of Oracle Object Type
(ADT) Messages" on page 15-37

User/
Program

createRemoteSubscriber for a topic
of standard JMS type messages

specify
Topic

specify
Remote

Subscriber
(AQjmsAgent)

specify
Message
Selector

CREATE
a Remote
Subscriber

JMS Operational Interface
CREATING a Remote Subscriber

AQjmsSession- :
15-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Remote Subscriber for Topics of JMS Messages
Purpose
Create a remote subscriber for topics of jms messages without selector.

Usage Notes
AQ allows topics to have remote subscribers, for example, subscribers at other
topics in the same or different database. In order to use remote subscribers, you
must set up propagation between the local and remote topic.

Remote subscribers may be a specific consumer at the remote topic or all
subscribers at the remote topic. A remote subscriber is defined using the
AQjmsAgent structure. An AQjmsAgent consists of a name and address. The name
refers to the consumer_name at the remote topic. The address refers to the remote
topic - the syntax is (schema).(topic_name)[@dblink].

a) To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field
of AQjmsAgent

b) To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent

A message selector can also be specified. Only messages that satisfy the selector are
delivered to the remote subscriber. The message selector can be null. The syntax for
the selector is the same as that for createDurableSubscriber. The selector can be null.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createRemoteSubscriber

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;

/* create connection and session */
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-35

Creating a Remote Subscriber for Topics of JMS Messages
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",
"MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");

remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);

/* create a remote subscriber (selector is null)*/
subscriber1 = ((AQjmsSession)jms_sess).createRemoteSubscriber(shipped_orders,

remoteAgent, null);
15-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages
Creating a Remote Subscriber for Topics of Oracle Object Type (ADT)
Messages

Figure 15–16 Publish-Subscribe—Creating a Remote Subscriber for Topics of Oracle Object Type (ADT)
Messages

User/
Program

createRemoteSubscriber for a topic of
Oracle object type (ADT) messages

specify
Topic

specify
Remote

Subscriber
(AQjmsAgent)

specify
Message
Selector

CREATE
a Remote
Subscriber

specify
Custom Datum
Factory for the

ADT type

JMS Operational Interface
CREATING a Remote Subscriber for a Topic
of Oracle Object (ADT) Messages

AQjmsSession- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-37

Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages
Purpose
Create a remote subscriber for topics of oracle object type (ADT) messages.

Usage Notes
AQ allows topics to have remote subscribers, for example, subscribers at other
topics in the same or different database. In order to use remote subscribers, you
must set up propagation between the local and remote topic.

Remote subscribers may be a specific consumer at the remote topic or all
subscribers at the remote topic. A remote subscriber is defined using the
AQjmsAgent structure.

An AQjmsAgent consists of a name and address. The name refers to the consumer_
name at the remote topic. The address refers to the remote topic - the syntax is
(schema).(topic_name)[@dblink].

a) To publish messages to a particular consumer at the remote topic, the
subscription_name of the recipient at the remote topic must be specified in the
name field of AQjmsAgent. The remote topic must be specified in the address field
of AQjmsAgent

b) To publish messages to all subscribers of the remote topic, the name field of
AQjmsAgent must be set to null. The remote topic must be specified in the address
field of AQjmsAgent

The CustomDatumFactory of the Oracle Object type of the Topic must be specified.
A message selector can also be specified. Only messages that satisfy the selector are
delivered to the remote subscriber. The message selector can be null. The syntax for
message selector is that same as that for createDurableSubscriber with Topics of
ADT type messages. The message selector may be null.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createRemoteSubscriber

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Remote Subscriber for Topics of JMS Messages" on
page 15-34
15-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages
Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int my[port = 5521;
AQjmsAgent remoteAgent;
ADTMessage message;

/* create connection and session */
tc_fact=AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",
"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

/* create Topic session */
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

/* get the Shipped order topic */
shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
/* create a remote agent */
remoteAgent = new AQjmsAgent("WesternRegion", "WS.shipped_orders_topic", null);

/* create a remote subscriber with null selector*/
subscriber1=((AQjmsSession)jms_sess).createRemoteSubscriber(shipped_orders,
remoteAgent, null, message.getFactory);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-39

Unsubscribing a Durable Subscription for a Local Subscriber
Unsubscribing a Durable Subscription for a Local Subscriber

Figure 15–17 Publish-Subscribe—Unsubscribing a Durable Subscription for a Local Subscriber

Purpose
Unsubscribe a durable subscription for a local subscriber.

Usage Notes
Unsubscribe a durable subscription that has been created by a client on the
specified topic.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Unsubscribing a Durable Subscription for a Remote
Subscriber" on page 15-42

User/
Program

unsubscribe, local subscriber

specify
Topic

specify
Subscriber

Name

UNSUBSCRIBE
a Durable

Subscription

JMS Operational Interface
UNSUBSCRIBING a Durable Subscription

AQjmsSession- :
15-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Unsubscribing a Durable Subscription for a Local Subscriber
Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.unsubscribe

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession jms_sess;
TopicSubscriber subscriber1;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent[] recipList;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");
/* unsusbcribe "WesternShipping" from shipped_orders */
jms_sess.unsubscribe(shipped_orders, "WesternShipping");
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-41

Unsubscribing a Durable Subscription for a Remote Subscriber
Unsubscribing a Durable Subscription for a Remote Subscriber

Figure 15–18 Publish-Subscribe—Unsubscribing a Durable Subscription for a Remote Subscriber

Purpose
Unsubscribe a durable subscription for a remote subscriber.

Usage Notes
Not applicable.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Unsubscribing a Durable Subscription for a Local Subscriber"
on page 15-40

User/
Program

unsubscribe, remote subscriber

specify
Topic

specify
Remote

Subscriber
(AQjmsAgent)

UNSUBSCRIBE
a

Durable
Subscription

JMS Operational Interface
UNSUBSCRIBING a Durable subscription

AQjmsSession- :
15-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Unsubscribing a Durable Subscription for a Remote Subscriber
Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.unsubscribe

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
AQjmsAgent remoteAgent;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("OE", "Shipped_Orders_
Topic");

remoteAgent = new AQjmsAgent("WS", "WS.Shipped_Orders_Topic", null);

/* unsubscribe the remote agent from shipped_orders */
((AQjmsSession)jms_sess).unsubscribe(shipped_orders, remoteAgent);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-43

Creating a Topic Receiver for a Topic of Standard JMS Type Messages
Creating a Topic Receiver for a Topic of Standard JMS Type Messages

Figure 15–19 Publish-Subscribe—Creating a Topic Receiver for a Topic of Standard JMS Type
Messages

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Topic Receiver for a Topic of Oracle Object Type
(ADT) Messages" on page 15-46

User/
Program

createTopicReceiver, for a topic
of JMS type messages

specify
Topic

specify
Receiver

Name

specify
Message
Selector

CREATE
a Topic

Receiver

JMS Operational Interface
CREATING a Topic Receiver

AQjmsSession- :
15-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Receiver for a Topic of Standard JMS Type Messages
Purpose
Create a topic receiver for a topic of standard jms type messages.

Usage Notes
AQ allows messages to be sent to specified recipients. These receivers may or may
not be subscribers of the topic. If the receiver is not a subscriber to the topic, it will
receive only those messages that are explicitly addressed to it.

 This method must be used order to create a TopicReceiver object for consumers that
are not 'Durable Subscribers'.A message selector can be specified. The syntax for the
message selector is the same as that of a QueueReceiver for a queue of standard JMS
type messages.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createTopicReceiver

Example
TopicConnectionFactory tc_fact = null;

TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_
Topic");

receiver = ((AQjmsSession)jms_sess).createTopicReceiver(shipped_orders,
"WesternRegion", null);
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-45

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages
Creating a Topic Receiver for a Topic of Oracle Object Type (ADT)
Messages

Figure 15–20 Publish-Subscribe—Creating a Topic Receiver for a Topic of Oracle Object Type (ADT)
Messages

JMS Operational Interface
CREATING a Topic Receiver

AQjmsSession- :

User/
Program

createTopicReceiver, for a topic
of ADT messages

specify
Topic

specify
Receiver

Name

specify
Message
Selector

specify
Custom Datum
Factory for the

ADT type

CREATE
a Topic

Receiver
15-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages
Purpose
Create a topic receiver for a topic of ADT messages with selector.

Usage Notes
AQ allows messages to be sent to all subscribers of a topic or to specified recipients.
These receivers may or may not be subscribers of the topic. If the receiver is not a
subscriber to the topic, it will receive only those messages that are explicitly
addressed to it.

This method must be used order to create a TopicReceiver object for consumers that
are not 'Durable Subscribers'. The CustomDatumFactory of the Oracle Object type
of the queue must be specified. A message selector can also be specified. This can be
null. The syntax for the message selector is the same as that of a QueueReceiver for
queues with ADT messages.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createTopicReceiver

Example
TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
TopicReceiver receiver;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Topic Receiver for a Topic of Standard JMS Type
Messages" on page 15-44
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-47

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS", "Shipped_Orders_
Topic");

receiver = ((AQjmsSession)jms_sess).createTopicReceiver(shipped_orders,
"WesternRegion", null);

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or
Map Messages

Figure 15–21 Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages

User/
Program

createBrowser, for topics with text, stream,
object, bytes or map messages

specify
Message
Selector

specify
Topic

CREATE
a

Topic
Browser

JMS Operational Interface
CREATING a Queue Browser for
Queues of Standard JMS Type Messages

Session- :
15-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages
Purpose
Create a topic browser for topics with text, stream, objects, bytes, or map messages.

Usage Notes
To retrieve messages that have a certain correlationID, the selector for the
TopicBrowser can be one of the following:

� JMSMessageID = ’ID:23452345 ’ to retrieve messages that have a specified
message ID

� JMS Message header fields or properties:

JMSPriority < 3 AND JMSCorrelationID = ’Fiction’

� User defined message properties:

color IN (’RED’, BLUE’, ’GREEN’) AND price < 30000

All message IDs must be prefixed with "ID:". Use methods in
java.util.Enumeration to go through a list of messages.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example

Example 1
/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.Session" on page B-34

� "Creating a Topic Browser for Topics with Text, Stream, Objects,
Bytes, Map Messages, Locking Messages While Browsing" on
page 15-50
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-49

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes, Map Messages, Locking Messages While Browsing
browser = ((AQjmsSession) jms_session).createBrowser(topic, "SUBS1");

Example2
/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;

/* create a Browser to look at messages with correlationID = RUSH */
browser = ((AQjmsSession) jms_session).createBrowser(topic, "SUBS1",

"JMSCorrelationID = 'RUSH'");

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes,
Map Messages, Locking Messages While Browsing

Figure 15–22 Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages,
Locking Messages While Browsing

User/
Program

createBrowser, for topics with text, stream, object, bytes
or map messages, locking messages while browsing

specify
Message
Selector

specify
Topic

CREATE
a

Topic
Browser

JMS Operational Interface
CREATING a Queue Browser for Queues
of Standard JMS Type Messages

AQjmsSession- :
15-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes, Map Messages, Locking Messages While Browsing
Purpose
Create a topic browser for topics with text, stream, objects, bytes or map messages,
locking messages while browsing.

Usage Notes
If a locked parameter is specified as true, messages are locked as they are browsed.
Hence these messages cannot be removed by other consumers until the browsing
session ends the transaction.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example

Example 1
/* Create a browser without a selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;

browser = ((AQjmsSession) jms_session).createBrowser(topic,
"SUBS1", true);

Example 2
/* Create a browser for topics with a specified selector */
TopicSession jms_session;
TopicBrowser browser;
Topic topic;

/* create a Browser to look at messages with correlationID = RUSH in

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Interface - javax.jms.Session" on page B-34

� "Creating a Topic Browser for Topics with Text, Stream, Objects,
Bytes or Map Messages" on page 15-48
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-51

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages
lock mode */

browser = ((AQjmsSession) jms_session).createBrowser(topic,
"SUBS1", "JMSCorrelationID = 'RUSH'", true);

Creating a Topic Browser for Topics of Oracle Object Type (ADT)
Messages

Figure 15–23 Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages

User/
Program

createBrowser, for topics with ADT messages

specify
Message
Selector

specify
Topic

CREATE
a

Topic
Browser

see Usage Notes
specify

Custom Datum
Factory

JMS Operational Interface
CREATING a Queue Browser for Queues
of Oracle Object Type (ADT) Messages

AQjmsSession- :
15-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages
Purpose
Create a topic browser for topics of Oracle object type (ADT) messages.

Usage Notes
For topics containing AdtMessages, the selector for TopicBrowser can be a SQL
expression on the message payload contents or messageID or priority or
correlationID.

� Selector on message id - to retrieve messages that have a specific messageID

msgid = ’23434556566767676’

Note: in this case message IDs must NOT be prefixed with "ID:"

� Selector on priority or correlation is specified as follows:

priority < 3 AND corrid = ’Fiction’

� Selector on message payload is specified as follows:

tab.user_data.color = ’GREEN’ AND tab.user_data.price < 30000

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example
The CustomDatum factory for a particular Java class that maps to the SQL ADT
payload can be obtained using the getFactory static method. Assume the Topic
- test_topic has payload of type SCOTT.EMPLOYEE and the Java class that is
generated by Jpublisher for this ADT is called Employee . The Employee class
implements the CustomDatum interface. The CustomDatumFactory for this class
can be obtained by using the Employee.getFactory() method.

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Topic Browser for Topics of Oracle Object Type
(ADT) Messages, Locking Messages While Browsing" on
page 15-55
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-53

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages
/* Create a browser for a Topic with Adt messages of type EMPLOYEE*/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;

browser = ((AQjmsSession) jms_session).createBrowser(test_topic,
"SUBS1", Employee.getFactory());
15-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages, Locking Messages While Browsing
Creating a Topic Browser for Topics of Oracle Object Type (ADT)
Messages, Locking Messages While Browsing

Figure 15–24 Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages, Locking
Messages while Browsing

User/
Program

createBrowser, for topics with ADT Messages,
locking messages while browsing

specify
Topic

specify
Message
Selector

CREATE
Topic

Browser

see Usage Notes
specify

Custom Datum
Factory

specify
if Messages
Locked while

Browsing

JMS Operational Interface
CREATING a Queue Browser for Queues of
Oracle Object Type (ADT) Messages

AQjmsSession- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-55

Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages, Locking Messages While Browsing
Purpose
Create a topic browser for topics of Oracle object type (ADT) messages, locking
messages while browsing.

Usage Notes
Not applicable.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBrowser

Example
/* Create a browser for a Topic with ADT messages of type EMPLOYEE* in
lock mode/
TopicSession jms_session
TopicBrowser browser;
Topic test_topic;

browser = ((AQjmsSession) jms_session).createBrowser(test_topic,
"SUBS1", Employee.getFactory(), true);

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

� "Creating a Topic Browser for Topics of Oracle Object Type
(ADT) Messages" on page 15-52
15-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Browsing Messages Using a Topic Browser
Browsing Messages Using a Topic Browser

Figure 15–25 Browsing Messages Using a Topic Browser

Purpose
Browse messages using a topic browser.

Usage Notes
Use methods in java.util.Enumeration to go through the list of messages. Use
the method purgeSeen in TopicBrowser to purge messages that have been seen
during the current browse.

Syntax
Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms, TopicBrowser,
AQjmsTopicBrowser

Example
/* Create a browser for topics with a specified selector */
public void browse_rush_orders(TopicSession jms_session)
{

TopicBrowser browser;

See Also:

� Table 15–1 for a list of publish-subscribe basic operations in the
JMS operational interface

� "Class - oracle.jms.AQjmsTopicBrowser" on page B-59

User/
Program

getEnumeration
Browse

Messages
using Topic

Browser

JMS Operational Interface
BROWSING Messages Using a Queue Browser

QueueBrowser- :
JMS Operational Interface: Basic Operations (Publish-Subscribe) 15-57

Browsing Messages Using a Topic Browser
Topic topic;
ObjectMessage obj_message
BolOrder new_order;
Enumeration messages;

/* get a handle to the new_orders topic */
topic = ((AQjmsSession) jms_session).getTopic("OE", "OE_bookedorders_

topic");

/* create a Browser to look at RUSH orders */
browser = ((AQjmsSession) jms_session).createBrowser(topic,

"SUBS1", "JMSCorrelationID = 'RUSH'");

/* Browse through the messages */
for (messages = browser.elements() ; message.hasMoreElements() ;)
{

obj_message = (ObjectMessage)message.nextElement();
}

/* Purge messages seen during this browse */
browser.purgeSeen();

}

15-58 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Operational Interface: Basic Operations (Shared
16

JMS Operational Interface: Basic

Operations (Shared Interfaces)

In this chapter we describe the operational interface (shared interfaces) to Oracle
Advanced Queuing in terms of use cases. That is, we discuss each operation (such
as "Enqueue a Message") as a use case by that name. The table listing all the use
cases is provided at the head of the chapter (see " Use Case Model: Operational
Interface — Basic Operations (Shared Interfaces)" on page 16-2).

A summary figure, "Use Case Diagram: Operational Interface — Basic Operations",
locates all the use cases in a single drawing. If you are using the HTML version of
this document, you can use this figure to navigate to the use case that interests you
by clicking on the relevant use case title.

Each use case is laid out as follows:

� Use case figure. A figure that depicts the use case.

� Purpose. The purpose of this use case.

� Usage Notes. Guidelines to assist implementation.

� Syntax. The main syntax used to perform this activity.

� Examples. Examples in each programmatic environment that illustrate the use
case.
Interfaces) 16-1

Use Case Model: JMS Operational Interface — Basic Operations (Shared Interfaces)
Use Case Model: JMS Operational Interface — Basic Operations
(Shared Interfaces)

Table 16–1 Use Case Model: Operational Interface — Basic Operations (Shared Interfaces)

Use Case

Starting a JMS Connection on page 16-5

Getting the JMS Connection from a Session on page 16-6

Committing All Operations in a Session on page 16-7

Rolling Back All Operations in a Session on page 16-8

Getting the Underlying JDBC Connection from a JMS Session on page 16-10

Getting the Underlying OracleOCIConnectionPool from a JMS Connection on page 16-11

Creating a Bytes Message on page 16-12

Creating a Map Message on page 16-13

Creating a Stream Message on page 16-15

Creating an Object Message on page 16-16

Creating a Text Message on page 16-17

Creating a JMS Message on page 16-19

Creating a JMS Message (Header Only) on page 16-20

Creating an ADT Message on page 16-21

Specifying Message Correlation ID on page 16-23

Specifying JMS Message Property on page 16-25

Specifying JMS Message Property as Boolean on page 16-27

Specifying JMS Message Property as String on page 16-29

Specifying JMS Message Property as Int on page 16-31

Specifying JMS Message Property as Double on page 16-33

Specifying JMS Message Property as Float on page 16-35

Specifying JMS Message Property as Byte on page 16-37

Specifying JMS Message Property as Long on page 16-39

Specifying JMS Message Property as Short on page 16-41
16-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Model: JMS Operational Interface — Basic Operations (Shared Interfaces)
Specifying JMS Message Property as Object on page 16-43

Setting Default TimeToLive for All Messages Sent by a Message Producer on page 16-45

Setting Default Priority for All Messages Sent by a Message Producer on page 16-46

Creating an AQjms Agent on page 16-48

Receiving a Message Synchronously Using a Message Consumer by Specifying Timeout on page 16-50

Receiving a Message Synchronously Using a Message Consumer Without Waiting on page 16-52

Specifying the Navigation Mode for Receiving Messages on page 16-53

Specifying a Message Listener to Receive a Message Asynchronously at the Message Consumer on page 16-55

Specifying a Message Listener to Receive a Message Asynchronously at the Session on page 16-58

Getting the Correlation ID of a Message on page 16-59

Getting the Message ID of a Message as Bytes on page 16-60

Getting the Message ID of a Message as a String on page 16-61

Getting the JMS Message Property on page 16-63

 Getting the JMS Message Property as a Boolean on page 16-64

Getting the JMS Message Property as a String on page 16-66

Getting the JMS Message Property as Int on page 16-68

Getting the JMS Message Property as Double on page 16-70

Getting the JMS Message Property as Float on page 16-71

Getting the JMS Message Property as Byte on page 16-73

Getting the JMS Message Property as Long on page 16-74

Getting the JMS Message Property as Short on page 16-76

Getting the JMS Message Property as Object on page 16-76

Closing a Message Producer on page 16-79

Closing a Message Consumer on page 16-80

Stopping a JMS Connection on page 16-81

Closing a JMS Session on page 16-82

Closing a JMS Connection on page 16-83

Table 16–1 (Cont.) Use Case Model: Operational Interface — Basic Operations (Shared Interfaces)

Use Case
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-3

Use Case Model: JMS Operational Interface — Basic Operations (Shared Interfaces)
Getting the Error Code for the JMS Exception on page 16-84

Getting the Error Number for the JMS Exception on page 16-85

Getting the Error Message for the JMS Exception on page 16-86

Getting the Exception Linked to the JMS Exception on page 16-88

Printing the Stack Trace for the JMS Exception on page 16-89

Setting the Exception Listener on page 16-90

Getting the Exception Listener on page 16-91

Setting the Ping Period for the Exception Listener on page 16-93

Getting the Ping Period for the Exception Listener on page 16-94

Table 16–1 (Cont.) Use Case Model: Operational Interface — Basic Operations (Shared Interfaces)

Use Case
16-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Starting a JMS Connection
Starting a JMS Connection

Figure 16–1 Starting a JMS Connection

Purpose
Start a JMS Connection for receiving messages.

Usage Notes
The start method is used to start (or restart) the connection’s delivery of incoming
messages.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

start
START

a
JMS

Connection

JMS Operational Interface
STARTING a JMS Connection

Connection- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-5

Getting the JMS Connection from a Session
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� See Java (JDBC): Oracle9i Supplied Java Packages Reference, oracle.jms
AQjmsConnection.start

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the JMS Connection from a Session

Figure 16–2 Getting the JMS Connection from a Session

Purpose
Get the JMS Connection from a Session

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

getJmsConnection, from a JMS sessionGET
the JMS

Connection

JMS Operational Interface
GETTING the JMS Connection

AQjmsSession- :
16-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Committing All Operations in a Session
Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.getJmsConnection

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Committing All Operations in a Session

Figure 16–3 Committing All Operations in a Session

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

User/
Program

commit
COMMIT

Operations in
Session

JMS Operational Interface
COMMITING All Operations in a Session

Session- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-7

Rolling Back All Operations in a Session
Purpose
Commit All Operations in a Session

Usage Notes
This method commits all JMS and SQL operations performed in this session.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

� See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.commit

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Rolling Back All Operations in a Session

Figure 16–4 Rolling Back All Operations in a Session

User/
Program

rollback
ROLLBACK

Operations in
Session

JMS Operational Interface
ROLLING BACK All Operations in a Session

Session- :
16-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Rolling Back All Operations in a Session
Purpose
Rollback All Operations in a Session

Usage Notes
This method aborts all JMS and SQL operations performed in this session.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.rollback

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-9

Getting the Underlying JDBC Connection from a JMS Session
Getting the Underlying JDBC Connection from a JMS Session

Figure 16–5 Getting the Underlying JDBC Connection from a JMS Session

Purpose
Get the Underlying JDBC Connection from a JMS session

Usage Notes
This method is used to obtain the underlying JDBC connection from a JMS session.
The JDBC connection may be used to perform SQL operations as part of the same
transaction that the JMS operations are done.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.getDBConnection

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

getDBConnection, from a JMS Session
GET

the JDBC
Connection

JMS Operational Interface
GETTING the Underlying JDBC Connection from a JMS Session

AQjmsSession- :
16-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Underlying OracleOCIConnectionPool from a JMS Connection
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

java.sql.Connection db_conn;
QueueSession jms_sess;
db_conn = ((AQjmsSession)jms_sess).getDBConnection();

Getting the Underlying OracleOCIConnectionPool from a JMS
Connection

Figure 16–6 Getting the Underlying OracleOCIConnectionPool from a JMS Connection

Purpose
Get the underlying OracleOCIConnectionPool from a JMS connection.

Usage Notes
This method is used to obtain the underlying OracleOCIConnectionPool
instance from a JMS connection. The settings of the OracleOCIConnectionPool
instance may be tuned by the user depending on the connection usage, for example,
the number of sessions the user wants to create using the given connection. The

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

getOCIConnectionPool from a JMS Connection
GET

the OracleOCI-
Connection-

Pool

JMS Operational Interface
GETTING the Underlying JDBC Connection from a JMS Session

AQjmsSession- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-11

Creating a Bytes Message
user should not, however, close the OracleOCIConnectionPool instance being
used by the JMS connection.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConnection.getOCIConnectionPool

Examples
oracle.jdbc.pool.OracleOCIConnectionPool cpool;
QueueConnection jms_conn;
cpool = ((AQjmsConnection)jms_conn).getOCIConnectionPool();

Creating a Bytes Message

Figure 16–7 Creating a Bytes Message

Purpose
Create a Bytes Message

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

User/
Program

createBytesMessage, see Usage Notes
CREATE
a Bytes

Message

JMS Operational Interface
CREATING a Bytes Message

Session- :
16-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Map Message
Usage Notes
This method can be used only if the queue table that contains the destination
queue/topic was created with the SYS.AQ$_JMS_BYTES_MESSAGE or AQ$_JMS_
MESSAGE payload types.

Refer to Java Packages Reference for methods used to populate a BytesMessage.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createBytesMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Creating a Map Message

Figure 16–8 Creating a Map Message

User/
Program

createMapMessage, see Usage Notes
CREATE

a Map
Message

JMS Operational Interface
CREATING a Map Message

Session- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-13

Creating a Map Message
Purpose
Create a Map Message

Usage Notes
This method can be used only if the queue table that contains the destination
queue/topic was created with the SYS.AQ$_JMS_MAP_MESSAGE or AQ$_JMS_
MESSAGE payload types.

Refer to Java Packages Reference for methods used to populate a MapMessage.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createMapMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34
16-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Stream Message
Creating a Stream Message

Figure 16–9 Creating a Stream Message

Purpose
Create a Stream Message

Usage Notes
This method can be used only if the queue table that contains the destination
queue/topic was created with the SYS.AQ$_JMS_STREAM_MESSAGE or AQ$_JMS_
MESSAGE payload types.

Refer to Java Packages Reference for methods used to populate a StreamMessage.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createStreamMessage

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

User/
Program

createStreamMessage, see Usage Notes
CREATE
a Stream
Message

JMS Operational Interface
CREATING a Stream Message

Session- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-15

Creating an Object Message
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Creating an Object Message

Figure 16–10 Creating an Object Message

Purpose
Create an Object Message

Usage Notes
This method can be used only if the queue table that contains the destination
queue/topic was created with the SYS.AQ$_JMS_OBJECT_MESSAGE or AQ$_JMS_
MESSAGE payload types.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

User/
Program

createObjectMessage, see Usage Notes

specify
Serializable

Object to Initialize
Message

CREATE
an Object
Message

JMS Operational Interface
CREATING an Object Message

Session- :
16-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a Text Message
Refer to Java Packages Reference for methods used to populate a ObjectMessage.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createObjectMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Creating a Text Message

Figure 16–11 Creating a Text Message

User/
Program

createTextMessage, see Usage Notes

specify
String Buffer

used to Initialize
the Message

CREATE
a

Text Message

JMS Operational Interface
CREATING a Text Message

Session- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-17

Creating a Text Message
Purpose
Create a Text Message

Usage Notes
This method can be used only if the queue table that contains the destination
queue/topic was created with the SYS.AQ$_JMS_TEXT_MESSAGE or AQ$_JMS_
MESSAGE payload types.

Refer to Java Packages Reference for methods used to populate a Text Message.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createTextMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34
16-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating a JMS Message
Creating a JMS Message

Figure 16–12 Creating a JMS Message

Purpose
Create a JMS message

Usage Notes
Use this ADT to store any or all of the JMS message types: bytes messages
(JMSBytes), map messages (JMSMap), stream messages (JMSStream), object
messages (JMSObject), or text messages (JMSText).

You can use the AQ$_JMS_MESSAGE construct message to construct messages of
different types. The message type must be one of the following:

� DBMS_AQ.JMS_TEXT_MESSAGE

� DBMS_AQ.JMS_OBJECT_MESSAGE

� DBMS_AQ.JMS_MAP_MESSAGE

� DBMS_AQ.JMS_BYTES_MESSAGE

� DBMS_AQ.JMS_STREAM_MESSAGE

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information on JMS types.

User/
Program

specify
message

type

CREATE
JMS

Message
createMessage

JMS Operational Interface AQjmsSession-
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-19

Creating a JMS Message (Header Only)
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

Creating a JMS Message (Header Only)

Figure 16–13 Creating a JMS Message (Header Only)

Purpose
Create a header-only JMS message

Usage Notes
Use this ADT to store any or all of the JMS message types: bytes messages
(JMSBytes), map messages (JMSMap), stream messages (JMSStream), object
messages (JMSObject), or text messages (JMSText).

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information on JMS types.

User/
Program

CREATE
Header-Only

Message
createMessage

JMS Operational Interface AQjmsSession-
16-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating an ADT Message
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

Creating an ADT Message

Figure 16–14 Creating an ADT Message

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsSession" on page B-53

User/
Program

createAdtMessage

specify
Custom Datum
used to Initialize

the Message

CREATE
an

ADT Message

JMS Operational Interface
CREATING an ADT Message

AQjmsSession- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-21

Creating an ADT Message
Purpose
Create an ADT Message

Usage Notes
This method can be used only if the queue table that contains the queue/topic was
created with an Oracle ADT payload_type (not one of the SYS.AQ$_JMS* types).

An ADT message must be populated with an object that implements the
CustomDatum interface. This object must be the java mapping of the SQL ADT
defined as the payload for the queue/topic. Java classes corresponding to SQL
ADTs may be generated using the Jpublisher tool. Please refer to the JDBC
documentation for details on CustomDatum interface and Jpublisher.

Refer to Java Packages Reference for methods used to populate AdtMessage .

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.createAdtMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available f.nctions in
each programmatic environment.

� No example is provided with this release.
16-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying Message Correlation ID
Specifying Message Correlation ID

Figure 16–15 Specifying Message Correlation ID

Purpose
Specify message correlation ID.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setJMSCorrelationID

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

User/
Program

setJMSCorrelationID
SPECIFY

a Correlation
ID

specify
JMScorrelationID

as a String

JMS Operational Interface
SPECIFYING a Correlation ID

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-23

Specifying Message Correlation ID
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.
16-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property
Specifying JMS Message Property

Figure 16–16 Specifying JMS Message Property

JMS Operational Interface
SPECIFYING Message Property

Message- :

User/
Program specify

Property as
Boolean

specify
Property as

String

specify
Property as

Int

specify
Property as

Double

specify
Property as

Float

SPECIFY
Message
Property

OR

OR

OR

OR

OR

OR

OR

specify
Property as

Byte

specify
Property as

Long

specify
Property as

Short

specify
Property as

Object

OR
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-25

Specifying JMS Message Property
Usage Notes
Property names starting with JMS are provider specific. User-defined properties
cannot start with JMS.

The following provider properties may be set by clients using Text, Stream, Object,
Bytes or Map Message:

� JMSXAppID (String)

� JMSXGroupID (string)

� JMSXGroupSeq (int)

� JMS_OracleExcpQ (String) - exception queue

� JMS_OracleDelay (int) - message delay (seconds)

The following properties may be set on AdtMessage

� JMS_OracleExcpQ (String) - exception queue - specified as "<schema>.queue_
name"

� JMS_OracleDelay (int) - message delay (seconds)

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Boolean
Specifying JMS Message Property as Boolean

Figure 16–17 Specifying Message Property as Boolean

setBooleanProperty

specify
Property

Name

specify
Property

Value
(boolean)

SPECIFY
Property as

Boolean

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Boolean

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-27

Specifying JMS Message Property as Boolean
Purpose
Specify Message Property as Boolean

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setBooleanProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as String
Specifying JMS Message Property as String

Figure 16–18 Specifying Message Property as String

setStringProperty

specify
Property

Name

specify
Property

Value
(string)

SPECIFY
Property as

String

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING String Property

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-29

Specifying JMS Message Property as String
Purpose
Specify Message Property as String

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setStringProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Int
Specifying JMS Message Property as Int

Figure 16–19 Specifying Message Property as Int

setIntProperty

specify
Property

Name

specify
Property

Value
(int)

SPECIFY
Property as

Int

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Int

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-31

Specifying JMS Message Property as Int
Purpose
Specify Message Property as Int

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setIntProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Double
Specifying JMS Message Property as Double

Figure 16–20 Specifying Message Property as Double

seDoubleProperty

specify
Property

Name

specify
Property

Value
(double)

SPECIFY
Property as

Double

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Double

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-33

Specifying JMS Message Property as Double
Purpose
Specify Message Property as Double

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setDoubleProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Float
Specifying JMS Message Property as Float

Figure 16–21 Specifying Message Property as Float

setFloatProperty

specify
Property

Name

specify
Property

Value
(float)

SPECIFY
Property as

Float

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Float

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-35

Specifying JMS Message Property as Float
Purpose
Specify Message Property as Float

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setFloatProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Byte
Specifying JMS Message Property as Byte

Figure 16–22 Specifying Message Property as Byte

setByteProperty

specify
Property

Name

specify
Property

Value
(byte)

SPECIFY
Property as

Byte

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Byte

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-37

Specifying JMS Message Property as Byte
Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setByteProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Long
Specifying JMS Message Property as Long

Figure 16–23 Use Case Diagram: Specifying Message Property as Long

setLongProperty

specify
Property

Name

specify
Property

Value
(long)

SPECIFY
Property as

Long

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Long

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-39

Specifying JMS Message Property as Long
Purpose

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setLongProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Short" on page 16-41

� "Specifying JMS Message Property as Object" on page 16-43
16-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Short
Specifying JMS Message Property as Short

Figure 16–24 Specifying Message Property as Short

setShortProperty

specify
Property

Name

specify
Property

Value
(short)

SPECIFY
Property as

Short

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Short

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-41

Specifying JMS Message Property as Short
Purpose
Specify Message Property as Short

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setShortProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Object" on page 16-43
16-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying JMS Message Property as Object
Specifying JMS Message Property as Object

Figure 16–25 Specifying Message Property as Object

setObjectProperty

specify
Property Value

(object)

specify
Property

Name

SPECIFY
Property
as Object

Specify
Message
Property

JMS Operational Interface
Specify Message Property SPECIFYING Property as Object

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-43

Specifying JMS Message Property as Object
Purpose
Specify Message Property as Object

Usage Notes
Only objectified primitive values supported - Boolean, Byte, Short, Integer, Long,
Float, Double and String.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.setObjectProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Specifying JMS Message Property" on page 16-25

� "Specifying JMS Message Property as Boolean" on page 16-27

� "Specifying JMS Message Property as String" on page 16-29

� "Specifying JMS Message Property as Int" on page 16-31

� "Specifying JMS Message Property as Double" on page 16-33

� "Specifying JMS Message Property as Float" on page 16-35

� "Specifying JMS Message Property as Byte" on page 16-37

� "Specifying JMS Message Property as Long" on page 16-39

� "Specifying JMS Message Property as Short" on page 16-41
16-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting Default TimeToLive for All Messages Sent by a Message Producer
Setting Default TimeToLive for All Messages Sent by a Message
Producer

Figure 16–26 Setting Default TimeToLive for All Messages Sent by a MessageProducer

Purpose
Set Default TimeToLive for All Messages Sent by a Message Producer

Usage Notes
TimetoLive is specified in milliseconds. It is calculated after the message is in ready
state (i.e after message delay has taken effect).

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsProducer.setTimeToLive

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageProducer" on page B-30

User/
Program

SPECIFY
Default Time-

To-Live
(milliseconds)

setTimeToLive, for all messges
sent by a message producer

JMS Operational Interface
SPECIFYING Default Time-To-Live for All Messages Sent by a Message Producer

MessageProducer- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-45

Setting Default Priority for All Messages Sent by a Message Producer
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

/* Set default timeToLive value to 100000 milliseconds for all messages sent by
the QueueSender*/
QueueSender sender;
sender.setTimeToLive(100000);

Setting Default Priority for All Messages Sent by a Message Producer

Figure 16–27 Setting Default Priority for All Messages Sent by a Message Producer

Purpose
Set Default Priority for All Messages Sent by a Message Producer

Usage Notes
Priority values can be any integer. A smaller number indicates higher priority.

If a priority value is explicitly specified during the send operation, it overrides the
producer’s default value set by this method.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageProducer" on page B-30

User/
Program

setPriority, for all messages
sent by a message producer

SPECIFY
Default Priority

JMS Operational Interface
SPECIFYING Default Priority for All Messages Sent by a Message Producer

MessageProducer- :
16-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting Default Priority for All Messages Sent by a Message Producer
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsProducer.setPriority

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

Example 1
/* Set default priority value to 2 for all messages sent by the QueueSender*/
QueueSender sender;
sender.setPriority(2);

Example 2
/* Set default priority value to 2 for all messages sent by the TopicPublisher*/
TopicPublisher publisher;
publisher.setPriority(1);
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-47

Creating an AQjms Agent
Creating an AQjms Agent

Figure 16–28 Creating an AQjmsAgent

Purpose
Create an AQjms Agent

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsAgent" on page B-45

User/
Program

AQjmsAgent

specify
Address

specify
Name

specify
Protocol

CREATE
a

JMS Agent

JMS Operational Interface
CREATING a JMS Agent

AQjmsAgent- :
16-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating an AQjms Agent
Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms, AQjmsAgent

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-49

Receiving a Message Synchronously Using a Message Consumer by Specifying Timeout
Receiving a Message Synchronously Using a Message Consumer by
Specifying Timeout

Figure 16–29 Receiving a Message Using a Message Consumer by Specifying Timeout

Purpose
Receive a Message Using a Message Consumer by Specifying Timeout

Usage Notes
Not applicable.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageConsumer" on page B-29

� "Receiving a Message Synchronously Using a Message
Consumer Without Waiting" on page 16-52

User/
Program

receive, specifying timeout

specify
to Wait
Forever

specify
Timeout

RECEIVE
a Message

-JMS Operational Interface MessageConsumer RECEIVING a Message:
16-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Receiving a Message Synchronously Using a Message Consumer by Specifying Timeout
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConsumer.receive

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS",
"Shipped_Orders_Topic");

/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
’WesternShipping’,

" priority > 1 and tab.user_data.region like ’WESTERN %’",
false,AQjmsAgent.getFactory());

/* receive, blocking for 30 seconds if there were no messages */
Message = subscriber.receive(30000);
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-51

Receiving a Message Synchronously Using a Message Consumer Without Waiting
Receiving a Message Synchronously Using a Message Consumer
Without Waiting

Figure 16–30 Receiving a Message Using a Message Consumer Without Waiting

Purpose
Receive a Message Using a Message Consumer Without Waiting

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConsumer.receiveNoWait

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageConsumer" on page B-29

� "Receiving a Message Synchronously Using a Message
Consumer by Specifying Timeout" on page 16-50

User/
Program

receiveNoWaitRECEIVE
a Message

JMS Operational Interface
RECEIVING a Message

MessageConsumer- :
16-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying the Navigation Mode for Receiving Messages
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Specifying the Navigation Mode for Receiving Messages

Figure 16–31 Specifying the Navigation Mode for Receiving Messages

User/
Program

setNavigationMode

get First
Message of Next

Transaction
Group

SPECIFY
Navigation

Mode for Rec.
Messages

get
Next Message
from Current

Position

get
First Message
in Queue or

Topic

OR

OR

JMS Operational Interface

SPECIFYING the Navigation Mode for Receiving Messages

:AQjmsQueueReceiver / AQjmsTopicSubscriber / AQjmsQueueReceiver
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-53

Specifying the Navigation Mode for Receiving Messages
Purpose
Specify the navigation mode for receiving messages.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsQueueReceiver.setNavigationMode,
AQjmsTopicReceiver.setNavigationMode,
AQjmsTopicSubscriber.setNavigationMode

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;

/* create connection and session */

tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",
"MYSID", myport, "oci8");

t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - oracle.jms.AQjmsQueueReceiver" on page B-42

� "Interface - oracle.jms.AQjmsTopicSubscriber" on page B-44

� "Interface - oracle.jms.AQjmsTopicReceiver" on page B-44
16-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying a Message Listener to Receive a Message Asynchronously at the Message Consumer
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS",
"Shipped_Orders_Topic");
/* create a subscriber, specifying the correct CustomDatumFactory and
selector */

subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
’WesternShipping’,

" priority > 1 and tab.user_data.region like ’WESTERN %’",
false,AQjmsAgent.getFactory());

subscriber1.setNavigationMode(AQjmsConstants.NAVIGATION_FIRST_MESSAGE);

/* get message for the subscriber, returning immediately if there was no
message */
Message = subscriber.receive();

Specifying a Message Listener to Receive a Message Asynchronously
at the Message Consumer

Figure 16–32 Specifying a Message Listener at the Message Consumer

User/
Program

setMessageListener, at the message consumer,
to receive a message asynchronously

specify
a Message

Listener

SPECIFY
a Message

Listener

JMS Operational Interface
SPECIFYING a Message Listener

MessageConsumer- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-55

Specifying a Message Listener to Receive a Message Asynchronously at the Message Consumer
Purpose
Specify a Message Listener at the Message Consumer

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConsumer.setMessageListener

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

TopicConnectionFactory tc_fact = null;
TopicConnection t_conn = null;
TopicSession t_sess = null;
TopicSession jms_sess;
Topic shipped_orders;
int myport = 5521;
MessageListener mLis = null;
/* create connection and session */
tc_fact = AQjmsFactory.getTopicConnectionFactory("MYHOSTNAME",

"MYSID", myport, "oci8");
t_conn = tc_fact.createTopicConnection("jmstopic", "jmstopic");
jms_sess = t_conn.createTopicSession(true, Session.CLIENT_ACKNOWLEDGE);

shipped_orders = ((AQjmsSession)jms_sess).getTopic("WS",
"Shipped_Orders_Topic");

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageConsumer" on page B-29

� "Specifying a Message Listener to Receive a Message
Asynchronously at the Session" on page 16-58
16-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Specifying a Message Listener to Receive a Message Asynchronously at the Message Consumer
/* create a subscriber, specifying the correct CustomDatumFactory and
selector */
subscriber1 = jms_sess.createDurableSubscriber(shipped_orders,
’WesternShipping’,

" priority > 1 and tab.user_data.region like ’WESTERN %’",
false,AQjmsAgent.getFactory());

mLis = new myListener(jms_sess, "foo");
/* get message for the subscriber, returning immediately if there was no
message */
subscriber.setMessageListener(mLis);

The definition of the myListener class
import oracle.AQ.*;
import oracle.jms.*;
import javax.jms.*;
import java.lang.*;
import java.util.*;
public class myListener implements MessageListener
{

TopicSession mySess;
String myName;

/* constructor */
myListener(TopicSession t_sess, String t_name)
{

mySess = t_sess;
myName = t_name;

}

public onMessage(Message m)
{

System.out.println("Retrieved message with correlation: " ||
m.getJMSCorrelationID());

try{
/* commit the dequeue */
mySession.commit();

} catch (java.sql.SQLException e)
{System.out.println("SQL Exception on commit"); }

}

}

JMS Operational Interface: Basic Operations (Shared Interfaces) 16-57

Specifying a Message Listener to Receive a Message Asynchronously at the Session
Specifying a Message Listener to Receive a Message Asynchronously
at the Session

Figure 16–33 Specifying a Message Listener at the Session

Purpose
Specify a Message Listener at the Session

Usage Notes
Not applicable.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

� "Specifying a Message Listener to Receive a Message
Asynchronously at the Message Consumer" on page 16-55

User/
Program

setMessageListener, at the session

specify
Message-
Listener

SPECIFY
a Message

Listener

JMS Operational Interface
SPECIFYING a Message Listener

Session- :
16-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Correlation ID of a Message
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.setMessageListener

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Correlation ID of a Message

Figure 16–34 Getting the Correlation ID of a Message

Purpose
Get the Correlation ID of a Message

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

User/
Program

getJMSCorrelationID
GET

the Correlation
ID of a

Message

JMS Operational Interface
GETTING the Correlation ID of a Message

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-59

Getting the Message ID of a Message as Bytes
Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getJMSCorrelationID

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Message ID of a Message as Bytes

Figure 16–35 Getting the Message ID of a Message as Bytes

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Class - oracle.jms.AQjmsMessage" on page B-50

� "Getting the Message ID of a Message as a String" on
page 16-61

User/
Program

getJMSMessageIDAsBytes,
see Usage Notes

GET
the Message ID
of a Message

JMS Operational Interface
GETTING the Message ID of a Message

AQjmsMessage- :
16-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Message ID of a Message as a String
Purpose
Get the Message ID of a Message as Bytes

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getJMSMessageID

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Message ID of a Message as a String

Figure 16–36 Getting the Message ID of a Message as a String

User/
Program

getJMSMessageID, as a string,
see Usage Notes

GET
the Message

ID of a
Message

JMS Operational Interface
GETTING the Message ID of a Message as a String

JMSMessage- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-61

Getting the Message ID of a Message as a String
Purpose
Get the Message ID of a Message as String

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getJMSMessageID

Examples
See Chapter 3, "AQ Programmatic Environments"for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the Message ID of a Message as Bytes" on page 16-60
16-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property
Getting the JMS Message Property

Figure 16–37 Getting the JMS Message Property

JMS Operational Interface
GETTING JMS Message Property

Message- :

User/
Program

get
Property as

String

get
Property as

Boolean

get
Property as

Double

get
Property as

Int

get
Property as

Float

get
Property as

Byte

get
Property as

Long

OR

OR

OR

OR

OR

OR

get
Property as

Short

get
Property as

Object

OR

OR

GET
JMS Message

Property
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-63

Getting the JMS Message Property as a Boolean
Getting the JMS Message Property as a Boolean

Figure 16–38 Getting the Message Property as a Boolean

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77

getBooleanProperty

specify
Property

Name

GET
the Message
Property as

Boolean

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Boolean

Message- :
16-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as a Boolean
Purpose
Get the Message Property as a Boolean

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getBooleanProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-65

Getting the JMS Message Property as a String
Getting the JMS Message Property as a String

Figure 16–39 Getting the Message Property as a String

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77

getStringProperty

specify
Property

Name

GET
the Message
Property as

a String

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as a String

Message- :
16-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as a String
Purpose
Get the Message Property as a String

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getStringProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

TextMessage message;

message.setStringProperty("JMS_OracleExcpQ", "scott.text_ecxcp_queue"); /*set
exception queue for message*/

message.setStringProperty("color", "red"); /*set user-defined property - color
*/
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-67

Getting the JMS Message Property as Int
Getting the JMS Message Property as Int

Figure 16–40 Getting the Message Property as Int

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77

getIntProperty

specify
Property

Name

GET
the Message
Property as

Int

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Int

Message- :
16-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as Int
Purpose
Get the Message Property as Int

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getIntProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

StreamMessage message;
message.setIntProperty("MMS_OracleDelay", 10); /*set message delay to 10
seconds*/

message.setIntProperty("empid", 1000); /*set user-defined property - empId*/
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-69

Getting the JMS Message Property as Double
Getting the JMS Message Property as Double

Figure 16–41 Getting the Message Property as Double

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77

getDoubleProperty

specify
Property

Name

GET
the Message
Property as

Double

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Double

Message- :
16-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as Float
Purpose
Get the Message Property as Double

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getDoubleProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the JMS Message Property as Float

Figure 16–42 Getting the Message Property as Float

getFloatProperty

specify
Property

Name

GET
the Message
Property as

Float

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Float

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-71

Getting the JMS Message Property as Float
Purpose
Get the Message Property as Float

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getFloatProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77
16-72 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as Byte
Getting the JMS Message Property as Byte

Figure 16–43 Getting the Message Property as Byte

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77

getByteProperty

specify
Property

Name

GET
the Message
Property as

Byte

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Byte

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-73

Getting the JMS Message Property as Long
Purpose
Get the Message Property as Byte

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getByteProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the JMS Message Property as Long

Figure 16–44 Getting the Message Property as Long

getLongProperty

specify
Property

Name

GET
the Message
Property as

Long

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Long

Message- :
16-74 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as Long
Purpose
Get the Message Property as Long.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getLongProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Short" on page 16-76

� "Getting the JMS Message Property as Object" on page 16-77
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-75

Getting the JMS Message Property as Short
Getting the JMS Message Property as Short

Figure 16–45 Getting the Message Property as Short

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Object" on page 16-77

getShortProperty

specify
Property

Name

GET
the Message

Property
as Short

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Short

Message- :
16-76 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the JMS Message Property as Object
Purpose
Get the Message Property as Short

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getShortProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the JMS Message Property as Object

Figure 16–46 Getting the Message Property as Object

getObjectProperty

specify
Property

Name

GET
the Message
Property as

Object

Get
JMS Message

Property

JMS Operational Interface
GETTING the Message Property as Object

Message- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-77

Getting the JMS Message Property as Object
Purpose
Get the Message Property as Object

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsMessage.getObjectProperty

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

TextMessage message;
message.setObjectProperty("empid", new Integer(1000);

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Message" on page B-27

� "Getting the JMS Message Property" on page 16-63

� "Getting the JMS Message Property as a Boolean" on page 16-64

� "Getting the JMS Message Property as a String" on page 16-66

� "Getting the JMS Message Property as Int" on page 16-68

� "Getting the JMS Message Property as Double" on page 16-70

� "Getting the JMS Message Property as Float" on page 16-71

� "Getting the JMS Message Property as Byte" on page 16-73

� "Getting the JMS Message Property as Long" on page 16-74

� "Getting the JMS Message Property as Short" on page 16-76
16-78 Oracle9i Application Developer’s Guide - Advanced Queuing

Closing a Message Producer
Closing a Message Producer

Figure 16–47 Closing a Message Producer

Purpose
Close a Message Producer

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsProducer.close

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageProducer" on page B-30

User/
Program

close
CLOSE

the
Message
Producer

JMS Operational Interface
CLOSING the MessageProducer

MessageProducer- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-79

Closing a Message Consumer
Closing a Message Consumer

Figure 16–48 Closing a Message Consumer

Purpose
Close a Message Consumer

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConsumer.close

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.MessageConsumer" on page B-29

User/
Program

close
CLOSE

the
Message
Consumer

JMS Operational Interface
CLOSING the Message Consumer

MessageConsumer- :
16-80 Oracle9i Application Developer’s Guide - Advanced Queuing

Stopping a JMS Connection
Stopping a JMS Connection

Figure 16–49 Stopping a JMS Connection

Purpose
Stop a JMS Connection

Usage Notes
This method is used to temporarily stop a Connection's delivery of incoming
messages.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConnection.stop

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

stop
STOP

a
JMS

Connection

JMS Operational Interface
STOPPING a JMS Connection

Connection- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-81

Closing a JMS Session
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Closing a JMS Session

Figure 16–50 Closing a JMS Session

Purpose
Close a JMS Session

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Session" on page B-34

User/
Program

close
CLOSE

JMS
Session

JMS Operational Interface
CLOSING JMS Session

Session- :
16-82 Oracle9i Application Developer’s Guide - Advanced Queuing

Closing a JMS Connection
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsSession.close

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Closing a JMS Connection

Figure 16–51 Closing a JMS Connection

Purpose
Close a JMS Connection

Usage Notes
This method closes the connection and releases all resources allocated on behalf of
the connection. Since the JMS provider typically allocates significant resources
outside the JVM on behalf of a Connection, clients should close them when they are

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

close
CLOSE

a
JMS

Connection

JMS Operational Interface
CLOSING a JMS Connection

Connection- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-83

Getting the Error Code for the JMS Exception
not needed. Relying on garbage collection to eventually reclaim these resources may
not be timely enough.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsConnection.close

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Error Code for the JMS Exception

Figure 16–52 Getting the Error Code for the JMS Exception

Purpose
Get the Error Code for the JMS Exception

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Exception javax.jms.JMSException" on page B-40

User/
Program

get Error Code
GET

the Error Code
for the JMS
Exception

JMS Operational Interface
GETTING the Error Code for the JMS Exception

JMSException- :
16-84 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Error Number for the JMS Exception
Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsException.getErrorCode

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Error Number for the JMS Exception

Figure 16–53 Getting the Error Number for the JMS Exception

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Exception oracle.jms.AQjmsException" on page B-56

getErrorNumber
GET

the Error
Number for the
JMS Exception

Get
JMS Message

Property

JMS Operational Interface
GETTING the Error Number for the JMS Exception

AQjmsException- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-85

Getting the Error Message for the JMS Exception
Purpose
Get the Error Number for the JMS Exception

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsException.getErrorNumber

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Getting the Error Message for the JMS Exception

Figure 16–54 Getting the Error Message for the JMS Exception

User/
Program

getMessage
GET

the Error
Message

JMS Operational Interface
GETTING the Error Message for the JMS Exception

JMSException- :
16-86 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Error Message for the JMS Exception
Purpose
Get the Error Message for the JMS Exception

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsException.getMessage

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Exception javax.jms.JMSException" on page B-40
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-87

Getting the Exception Linked to the JMS Exception
Getting the Exception Linked to the JMS Exception

Figure 16–55 Getting the Exception Linked to the JMS Exception

Purpose
Get the Exception Linked to the JMS Exception

Usage Notes
This method is used to get the Exception linked to this JMS exception. In general,
this contains the SQL Exception raised by the database.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsException.getLinkedException

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Exception javax.jms.JMSException" on page B-40

User/
Program

getLinkedException, see Usage Notes
GET

the Linked
Exception

JMS Operational Interface
GETTING the Linked Exception

JMSException- :
16-88 Oracle9i Application Developer’s Guide - Advanced Queuing

Printing the Stack Trace for the JMS Exception
Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Printing the Stack Trace for the JMS Exception

Figure 16–56 Printing the Stack Trace for the JMS Exception

Purpose
Print the Stack Trace for the JMS Exception

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Exception javax.jms.JMSException" on page B-40

User/
Program

printStackTrace
PRINT

the Stack
Trace

JMS Operational Interface
PRINTING the Stack Trace

JMSException- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-89

Setting the Exception Listener
See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms,
AQjmsException.printStackTrace

Examples
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment.

� No example is provided with this release.

Setting the Exception Listener

Figure 16–57 Setting the Exception Listener

Purpose
Specify an Exception Listener for the connection.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

setExceptionListener

specify
ExceptionListener

SET
ExceptionListener
at Connection

JMS Operational Interface
SETTING an Exception Listener

Connection- :
16-90 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Exception Listener
Usage Notes
If a serious problem is detected for the connection, the connection's
ExceptionListener, if one has been registered, will be informed. This is done by
calling the listener's onException() method, passing it a JMSException
describing the problem. This allows a JMS client to be asynchronously notified of a
problem. Some connections only consume messages, so they have no other way to
learn the connection has failed.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms
AQjmsConnection.setExceptionListener

Examples
//register an exception listener
Connection jms_connection;
jms_connection.setExceptionListener(

new ExceptionListener() {
public void onException (JMSException jmsException) {

System.out.println("JMS-EXCEPTION: " + jmsException.toString());
}

};
);

Getting the Exception Listener

Figure 16–58 Getting the Exception Listener

User/
Program

getExceptionListener
GET

ExceptionListener
at Connection

JMS Operational Interface
GETTING an Exception Listener

Connection- :
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-91

Getting the Exception Listener
Purpose
Get the Exception Listener for the connection.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms
AQjmsConnection.getExceptionListener

Examples
//Get the exception listener
Connection jms_connection;
ExceptionListener el = jms_connection.getExceptionListener();

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24
16-92 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting the Ping Period for the Exception Listener
Setting the Ping Period for the Exception Listener

Figure 16–59 Setting the Ping Period for the Exception Listener

Purpose
Specify the ping period for the Exception Listener.

Usage Notes
If an exception listener is set for the connection, the connection pings the database
periodically to ensure that the database is accessible. The period is specified in
milliseconds. The default value is 2 minutes. If an exception listener is not set for the
connection, the database is not pinged. This method can be called before or after the
exception listener is set.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

setPingPeriod

JMS Operational Interface
SETTING a PingPeriod for the Exception Listener

Connection- :

SET
a

Ping Period

specify
the ping period

(long)
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-93

Getting the Ping Period for the Exception Listener
Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms
AQjmsConnection.setPingPeriod

Examples
//set the ping period to 4 minutes
Connection jms_connection;
jms_connection.setPingPeriod(4*60*1000);

Getting the Ping Period for the Exception Listener

Figure 16–60 Getting the Ping Period for the Exception Listener

Purpose
Get the ping period for the Exception Listener.

See Also:

� Table 16–1 for a list of basic operations in the JMS shared
operational interface

� "Interface - javax.jms.Connection" on page B-24

User/
Program

getPingPeriod
GET

a
Ping Period

JMS Operational Interface
GETTING a Ping Period for the Exception Listener

Connection- :
16-94 Oracle9i Application Developer’s Guide - Advanced Queuing

Getting the Ping Period for the Exception Listener
Usage Notes
If an exception listener is set for the connection, the connection pings the database
periodically to ensure that the database is accessible. The period is specified in
milliseconds. The default value is 2 minutes. If an exception listener is not set for the
connection, the database is not pinged. This method will return the value of the
period set by the last call to setPingPeriod . If setPingPeriod was never
called, then the default value is returned

Syntax
See Chapter 3, "AQ Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

See Java (JDBC): Oracle9i Supplied Java Packages Reference oracle.jms
AQjmsConnection.getPingPeriod

Examples
//get the ping period
Connection jms_connection;
long pp = jms_connection.getPingPeriod();
JMS Operational Interface: Basic Operations (Shared Interfaces) 16-95

Getting the Ping Period for the Exception Listener
16-96 Oracle9i Application Developer’s Guide - Advanced Queuing

Internet Access to Advanced Q
17

Internet Access to Advanced Queuing

You can access AQ over the Internet by using Simple Object Access Protocol
(SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for AQ
operations. IDAP defines XML message structure for the body of the SOAP request.
An IDAP-structured message is transmitted over the Internet using transport
protocols such as HTTP or SMTP.

This chapter discusses the following topics:

� Overview of Advanced Queuing Operations Over the Internet

� The Internet Data Access Presentation (IDAP)

� SOAP and AQ XML Schemas

� Deploying the AQ XML Servlet

� Using HTTP to Access the AQ XML Servlet

� Using HTTP and HTTPS for Advanced Queuing Propagation

� Using SMTP to Access the AQ Servlet

� Customizing the AQ Servlet
ueuing 17-1

Overview of Advanced Queuing Operations Over the Internet
Overview of Advanced Queuing Operations Over the Internet
Figure 17–1 shows the architecture for performing AQ operations over HTTP. The
major components are:

� The AQ client program

� The Web server/ServletRunner hosting the AQ servlet

� The Oracle database server

The AQ client program sends XML messages (conforming to IDAP) to the AQ
servlet. Any HTTP client, for example Web browsers, can be used. The Web
server/ServletRunner hosting the AQ servlet interprets the incoming XML
messages. Examples include Apache/Jserv or Tomcat. The AQ servlet connects to
the Oracle database server and performs operations on the users’ queues.

Figure 17–1 Architecture for Performing AQ Operations Using HTTP

See "Using HTTP to Access the AQ XML Servlet" and "Using HTTP and HTTPS for
Advanced Queuing Propagation" on page 17-62 for details.

Figure 17–2 shows additional components in the architecture for sending AQ
messages over SMTP:

� E-mail server

� LDAP server (Oracle Internet Directory)

The e-mail server verifies client signatures using certificates stored in LDAP and
then routes the request to the AQ servlet.

AQ
Queue

Web
Server

AQ Client

Oracle9 i
Server

AQ Servlet

XML Message
over HTTP
17-2 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
Figure 17–2 Architecture for Performing AQ Operations Using SMTP

See "Using SMTP to Access the AQ Servlet" on page 17-65 for more details.

The Internet Data Access Presentation (IDAP)
The Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml
to specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

� All request and response tags are scoped in the SOAP namespace.

� AQ operations are scoped in the IDAP namespace.

� The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

� The receiver processes SOAP messages that have correct namespaces; for the
requests with incorrect namespaces, the receiver returns an invalid request
error.

� The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

AQ
Queue

Web
Server

AQ Client

Oracle9 i
Server

AQ Servlet

Oracle
Email
Server

LDAP
Server

XML Message
over SMTP
Internet Access to Advanced Queuing 17-3

The Internet Data Access Presentation (IDAP)
� The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

SOAP Message Structure
SOAP structures a message request or response as follows:

� SOAP envelope (the root or top element in an XML tree))

� SOAP header (first element under the root)

� SOAP body (the AQ XML document)

The SOAP Envelope
The tag of this root element is SOAP:Envelope . SOAP defines a global attribute
SOAP:encodingStyle that indicates serialization rules used instead of those
described by the SOAP specification. This attribute may appear on any element and
is scoped to that element and all child elements not themselves containing such an
attribute. Omitting SOAP:encodingStyle means that type specification has been
followed (unless overridden by a parent element).

The SOAP envelope also contains namespace declarations and additional attributes,
provided they are namespace qualified. Additional namespace-qualified
subelements can follow the body.

SOAP Headers
The tag of this first element under the root is SOAP:Header . A SOAP header passes
necessary information, such as the transaction ID, with the request. The header is
encoded as a child of the SOAP:Envelope XML element. Headers are identified by
the name element and are namespace-qualified. A header entry is encoded as an
embedded element.

The SOAP Body
The SOAP body, tagged SOAP:Body, contains a first subelement whose name is the
method name. This method request element contains elements for each input and
output parameter. The element names are the parameter names. The body also
contains SOAP:Fault , indicating information about an error.

For performing AQ operations, the SOAP body must contain an AQ XML
document. The AQ XML document has the namespace
http://ns.oracle.com/AQ/schemas/access
17-4 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
SOAP Method Invocation
A method invocation is performed by creating the request header and body and
processing the returned response header and body. The request and response
headers can consist of standard transport protocol-specific and extended headers.

In the case of SMTP (e-mail), the method invocation can be done by the filter
interface of the e-mail server, which invokes a Java method with the
e-mail-message-body as argument. This results in remote invocation of the POST
method on the AQ servlet. The response is e-mailed directly to the recipient
specified in the reply of the message. The response header can contain
SMTP-protocol-related headers also.

HTTP Headers
The POST method within the HTTP request header performs the SOAP method
invocation. The request should include the header SOAPMethodName, whose value
indicates the method to be invoked on the target. The value consists of a URI
followed by a "#", followed by a method name (which must not include the "#"
character), as follows:

SOAPMethodName: http://ns.oracle.com/AQ/schemas/access#AQXmlSend

The URI used for the interface must match the implied or specified namespace
qualification of the method name element in the SOAP:Body part of the payload.

Method Invocation Body
SOAP method invocation consists of a method request and optionally a method
response. The SOAP method request and method response are an HTTP request
and response, respectively, whose content is an XML document that consists of the
root and mandatory body elements. This XML document is referred to as the SOAP
payload in the rest of this chapter.

The SOAP payload is defined as follows:

� The SOAP root element is the top element in the XML tree.

� The SOAP payload headers contain additional information that must travel
with the request.

� The method request is represented as an XML element with additional elements
for parameters. It is the first child of the SOAP:Body element. This request can
be one of the AQ XML client requests described in the next section.
Internet Access to Advanced Queuing 17-5

The Internet Data Access Presentation (IDAP)
� The response is the return value or an error or exception that is passed back to
the client.

At the receiving site, a request can have one of the following outcomes:

a. The HTTP infrastructure on the receiving site is able to receive and process
the request.

b. The HTTP infrastructure on the receiving site cannot receive and process
the request.

c. The SOAP infrastructure on the receiving site is able to decode the input
parameters, dispatch to an appropriate server indicated by the server
address, and invoke an application-level function corresponding
semantically to the method indicated in the method request.

d. The SOAP infrastructure on the receiving site cannot decode the input
parameters, dispatch to an appropriate server indicated by the server
address, and invoke an application-level function corresponding
semantically to the interface or method indicated in the method request.

In (a), the HTTP infrastructure passes the headers and body to the SOAP
infrastructure. In (b), the result is an HTTP response containing an HTTP error in
the status field and no XML body. In (c), the result of the method request consists of
a response or error. In (d), the result of the method is an error that prevented the
dispatching infrastructure on the receiving side from successful completion. In (c)
and (d), additional message headers may for extensibility again be present in the
results of the request.

Results from a Method Request
The results of the request are to be provided in the form of a request-response. The
HTTP response must be of Content-Type text/xml . A SOAP result indicates
success and an error indicates failure. The method response will never contain both
a result and an error.

IDAP Documents
The body of a SOAP message is an IDAP message. This XML document has the
namespace http://ns.oracle.com/AQ/schemas/access . This body
represents:

� Client requests for enqueue, dequeue, and registration

� Server responses to client requests for enqueue, dequeue, and registration
17-6 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
� Notifications from the server to the client

Client Requests for Enqueue
Client requests for enqueue—SEND and PUBLISH requests—use the following
methods:

� AQXmlSend—to enqueue to a single-consumer queue

� AQXmlPublish —to enqueue to multiconsumer queues/topics

AQXmlSend and AQXmlPublish take the arguments and argument attributes
shown in Table 17–1. Required arguments are shown in bold.

Note: AQ Internet Access is supported only for 8.1-style queues.
8.0-style queues cannot be accessed using IDAP.

Table 17–1 Client Requests for Enqueue—Arguments and Attributes for AQXmlSend and AQXmlPublish

Argument Attribute

producer_options destination —specify the queue/topic to which messages are to be sent. The
destination element has an attribute lookup_type which determines how the
destination element value is interpreted

� DATABASE (default) —destination is interpreted as schema.queue_
name

� LDAP—the LDAP server is used to resolve the destination

- visibility

� ON_COMMIT—The enqueue is part of the current transaction. The operation is
complete when the transaction commits. This is the default case.

� IMMEDIATE—effects of the enqueue are visible immediately after the request
is completed. The enqueue is not part of the current transaction. The
operation constitutes a transaction on its own.

- transformation —the PL/SQL transformation to be invoked before the
message is enqueued

message_set —contains
one or more messages.

Each message consists of a message_header and message_payload

� message_header message_id —unique identifier of the message, supplied during dequeue

- correlation —correlation identifier of the message
Internet Access to Advanced Queuing 17-7

The Internet Data Access Presentation (IDAP)
- expiration —duration in seconds that a message is available for dequeuing.
This parameter is an offset from the delay. By default messages never expire.

If the message is not dequeued before it expires, then it is moved to the exception
queue in the EXPIRED state

- delay —duration in seconds after which a message is available for processing

- priority —the priority of the message. A smaller number indicates higher
priority. The priority can be any number, including negative numbers.

- sender_id —the application-specified identifier

� agent_name, address, protocol

� agent_alias —if specified, resolves to a name, address, protocol using
LDAP

- recipient_list —list of recipients; overrides the default subscriber list. Each
recipient consists of:

� agent_name, address, protocol

� agent_alias —if specified, resolves to a name, address, protocol using
LDAP

- message_state — state of the message is filled in automatically during dequeue

0: The message is ready to be processed.

1: The message delay has not yet been reached.

2: The message has been processed and is retained.

3: The message has been moved to the exception queue.

- exception_queue —in case of exceptions the name of the queue to which the
message is moved if it cannot be processed successfully. Messages are moved in
two cases: The number of unsuccessful dequeue attempts has exceeded max_
retries or the message has expired. All messages in the exception queue are in
the EXPIRED state.

The default is the exception queue associated with the queue table. If the
exception queue specified does not exist at the time of the move, then the message
is moved to the default exception queue associated with the queue table, and a
warning is logged in the alert file. If the default exception queue is used, then the
parameter returns a NULL value at dequeue time.

� message_payload this can have different sub-elements based on the payload type of the destination
queue/topic. The different payload types are described in the next section

AQXmlCommit this is an empty element—if specified, the user transaction is committed at the end
of the request

Table 17–1 Client Requests for Enqueue—Arguments and Attributes for AQXmlSend and AQXmlPublish

Argument Attribute
17-8 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
Message Payloads
AQ supports messages of the following types:

� RAW

� Oracle object (ADT)

� Java Messaging Service (JMS) types:

� Text message

� Map message

� Bytes message

� Object message

All these types of queues can be accessed using SOAP. If the queue holds messages
in RAW, Oracle object, or JMS format, XML payloads are transformed to the
appropriate internal format during enqueue and stored in the queue. During
dequeue, when messages are obtained from queues containing messages in any of
the preceding formats, they are converted to XML before being sent to the client.

The message payload type depends on the type of the queue on which the
operation is being performed. A discussion of the queue types follows:

RAW Queues The contents of RAW queues are raw bytes. The user must supply the
hex representation of the message payload in the XML message. For example,
<raw>023f4523</raw> .

Oracle object (ADT) type queues For ADT queues that are not JMS queues (that is, they
are not type AQ$_JMS_*), the type of the payload depends on the type specified
while creating the queue table that holds the queue. The XML specified here must
map to the SQL type of the payload for the queue table.

Example Assume the queue is defined to be of type EMP_TYP, which has the
following structure:

create or replace type emp_typ as object (
empno NUMBER(4),
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for details on mapping SQL types to XML
Internet Access to Advanced Queuing 17-9

The Internet Data Access Presentation (IDAP)
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2)
deptno NUMBER(2));

The corresponding XML representation is:

<EMP_TYP>
<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>

JMS Type Queues/Topics For queues with JMS types (that is, those with payloads of
type AQ$_JMS_*), there are four different XML elements, depending on the JMS
type. IDAP supports queues/topics with the following JMS types: TextMessage,
MapMessage, BytesMessage and ObjectMessage. JMS queues with payload type
StreamMessage are not supported through IDAP.

The JMS types and XML components are shown in Table 17-2. The distinct XML
element for each JMS type is shown in its respective column.
17-10 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
Required elements are shown in bold in Table 17–2.

All JMS messages consist of the following common elements:

� oracle_jms_properties , which consists of

� type —type of the message

� reply_to —consists of an agent_name , address , and protocol

� userid —supplied by AQ; client cannot specify

� appid —application identifier

� groupid —group identifier

� group_sequence —sequence within the group identified by group_id

� timestamp —the time the message was sent, which cannot be specified
during enqueue. It is automatically populated in a message that is
dequeued.

Table 17–2 JMS Types and XML Components: Payload Types Used for Queues/Topics

AQ$_JMS_TEXT_
MESSAGE

AQ$_JMS_MAP_
MESSAGE

AQ$_JMS_BYTES_
MESSAGE

AQ$_JMS_OBJECT_
MESSAGE

jms_text_message jms_map_message jms_bytes_message jms_object_message

oracle_jms_
properties

oracle_jms_
properties

oracle_jms_
properties

oracle_jms_
properties

user_properties user_properties user_properties user_properties

text_data —string
representing the text
payload

map_data —set of
name-value pairs called
items, consisting of:

� name

� int_value or

string_value or

long_value or

double_value or

boolean_value or

float_value or

short_value or

byte_value

bytes_data —hex
representation of the
payload bytes

ser_object_data —hex
representation of the
serialized object
Internet Access to Advanced Queuing 17-11

The Internet Data Access Presentation (IDAP)
� recv_timestamp —the time the message was received

� user_properties —in addition to the preceding predefined properties, users
can also specify their own message properties as name-value pairs. The user_
properties consists of a list of property elements. Each property is a
name-value pair consisting of the following:

� name—property name

� int_value —integer property value or

string_value —string property value or

long_value —long property value or

double_value —double property value or

boolean_value —boolean property value or

float_value — float property value or

short_value —short property value or

byte_value —byte property value or

The following examples show enqueue requests using the different message and
queue types.

Enqueue Request Example—Sending an ADT Message to a Single-Consumer
Queue
The queue QS.NEW_ORDER_QUE has a payload of type ORDER_TYP.

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">

<producer_options>
<destination>QS.NEW_ORDERS_QUE</destination>

</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>ORDER1</correlation>
17-12 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
<sender_id>
<agent_name>scott</agent_name>

</sender_id>
</message_header>

<message_payload>

<ORDER_TYP>
<ORDERNO>100</ORDERNO>
<STATUS>NEW</STATUS>
<ORDERTYPE>URGENT</ORDERTYPE>
<ORDERREGION>EAST</ORDERREGION>
<CUSTOMER>

<CUSTNO>1001233</CUSTNO>
<CUSTID>MA1234555623212</CUSTID>
<NAME>AMERICAN EXPRESS</NAME>
<STREET>EXPRESS STREET</STREET>
<CITY>REDWOOD CITY</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
<COUNTRY>USA</COUNTRY>

</CUSTOMER>
<PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
<ITEMS>

<ITEMS_ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>

<TITLE>Perl</TITLE>
<AUTHORS>Randal</AUTHORS>
<ISBN>ISBN20200</ISBN>
<PRICE>19</PRICE>

</ITEM>
<SUBTOTAL>190</SUBTOTAL>

</ITEMS_ITEM>
<ITEMS_ITEM>

<QUANTITY>20</QUANTITY>
<ITEM>

<TITLE>XML</TITLE>
<AUTHORS>Micheal</AUTHORS>
<ISBN>ISBN20212</ISBN>
<PRICE>59</PRICE>

</ITEM>
<SUBTOTAL>590</SUBTOTAL>

</ITEMS_ITEM>
</ITEMS>
Internet Access to Advanced Queuing 17-13

The Internet Data Access Presentation (IDAP)
<CCNUMBER>NUMBER01</CCNUMBER>
<ORDER_DATE>2000-08-23 0:0:0</ORDER_DATE>

</ORDER_TYP>
</message_payload>

</message>
</message_set>

</AQXmlSend>
</Body>

</Envelope>

Enqueue Request Example—Publishing an ADT Message to a Multiconsumer
Queue
The multiconsumer queue AQUSER.EMP_TOPIC has a payload of type EMP_TYP.
EMP_TYP has the following structure:

create or replace type emp_typ as object (
empno NUMBER(4),
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2)
deptno NUMBER(2));

 A PUBLISH request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlPublish xmlns = "http://ns.oracle.com/AQ/schemas/access">

<producer_options>
<destination>AQUSER.EMP_TOPIC</destination>

</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>NEWEMP</correlation>
<sender_id>
17-14 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
<agent_name>scott</agent_name>
</sender_id>

</message_header>

<message_payload>
<EMP_TYP>

<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>
</message_payload>

</message>
</message_set>

</AQXmlPublish>
</Body>

</Envelope>

Enqueue Request Example—Sending a Message to a JMS Queue
The JMS queue AQUSER.JMS_TEXTQ has payload type JMS Text message
(SYS.AQ$_JMS_TEXT_MESSAGE). The send request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>

<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
<producer_options>

<destination>AQUSER.JMS_TEXTQ</destination>
</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>text_msg</correlation>

<sender_id>
<agent_name>john</agent_name>
Internet Access to Advanced Queuing 17-15

The Internet Data Access Presentation (IDAP)
</sender_id>
</message_header>

<message_payload>

<jms_text_message>
<oracle_jms_properties>

<appid>AQProduct</appid>
<groupid>AQ</groupid>

</oracle_jms_properties>

<user_properties>
<property>

<name>Country</name>
<string_value>USA</string_value>

</property>
<property>

<name>State</name>
<string_value>California</string_value>

</property>
</user_properties>

<text_data>All things bright and beautiful</text_data>
</jms_text_message>

</message_payload>
</message>

</message_set>
</AQXmlSend>

</Body>
</Envelope>

Enqueue Request Example—Publishing a Message to a JMS Topic
The JMS topic AQUSER.JMS_MAP_TOPIC has payload type JMS Map message
(SYS.AQ$_JMS_MAP_MESSAGE). The publish request has the following format:

<?xml version="1.0"?>

<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlPublish xmlns = "http://ns.oracle.com/AQ/schemas/access">

<producer_options>
<destination>AQUSER.JMS_MAP_TOPIC</destination>
17-16 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>toyota</correlation>
<sender_id >

<agent_name>john</agent_name>
</sender_id>
<recipient_list>

<recipient>
<agent_name>scott</agent_name>

</recipient>
<recipient>

<agent_name>aquser</agent_name>
</recipient>
<recipient>

<agent_name>jmsuser</agent_name>
</recipient>

</recipient_list>
</message_header>

<message_payload>

<jms_map_message>
<oracle_jms_properties>

<reply_to>
<agent_name>oracle</agent_name>

</reply_to>
<groupid>AQ</groupid>

</oracle_jms_properties>

<user_properties>
<property>

<name>Country</name>
<string_value>USA</string_value>

</property>
<property>

<name>State</name>
<string_value>California</string_value>

</property>
Internet Access to Advanced Queuing 17-17

The Internet Data Access Presentation (IDAP)
</user_properties>

<map_data>
<item>

<name>Car</name>
<string_value>Toyota</string_value>

</item>
<item>

<name>Color</name>
<string_value>Blue</string_value>

</item>
<item>

<name>Price</name>
<int_value>20000</int_value>

</item>
</map_data>

</jms_map_message>
</message_payload>

</message>
</message_set>

</AQXmlPublish>
</Body>

</Envelope>

Enqueue Request Example—Sending a Message to a Queue with a RAW Payload
The queue AQUSER.RAW_MSGQ has a payload of type RAW. The SEND request has
the following format:

<?xml version="1.0"?>
<Envelope xmlns = "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
<producer_options>

<destination>AQUSER.RAW_MSGQ</destination>
</producer_options>
<message_set>

<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>TKAXAS11</correlation>
<sender_id>
17-18 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
<agent_name>scott</agent_name>
</sender_id>

</message_header>
<message_payload>

<RAW>426C6F622064617461202D20626C6F622064617461202D20626C6F62206461746120426C6F6
22064617461202D20626C6F622064617461202D20626C6F62206461746120426</RAW>

</message_payload>
</message>

</message_set>
</AQXmlSend>

</Body>
</Envelope>

Enqueue Request Example—Sending/Publishing and Committing the
Transaction
<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlPublish xmlns = "http://ns.oracle.com/AQ/schemas/access">

<producer_options>
<destination>AQUSER.EMP_TOPIC</destination>

</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>

<message_header>
<correlation>NEWEMP</correlation>
<sender_id>

<agent_name>scott</agent_name>
</sender_id>

</message_header>

<message_payload>
<EMP_TYP>

<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
Internet Access to Advanced Queuing 17-19

The Internet Data Access Presentation (IDAP)
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>
</message_payload>

</message>
</message_set>

<AQXmlCommit/>

</AQXmlPublish>
</Body>

</Envelope>

Client Requests for Dequeue
Client requests for dequeue use the AQXmlReceive method, which takes the
arguments and argument attributes shown in Table 17–3. Required arguments are
shown in bold.
17-20 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
Table 17–3 Client Requests for Dequeue—Arguments and Attributes for AQXmlReceive

Argument Attribute

consumer_options destination —specify the queue/topic from which messages are to be
received. The destination element has an attribute lookup_type which
determines how the destination element value is interpreted

� DATABASE (default) —destination is interpreted as
schema.queue_name

� LDAP—the LDAP server is used to resolve the destination

- consumer_name —Name of the consumer. Only those messages matching
the consumer name are accessed. If a queue is not set up for multiple
consumers, then this field should not be specified

- wait_time —the time (in seconds) to wait if there is currently no message
available which matches the search criteria

- selector —criteria used to select the message, specified as one of:

� correlation —the correlation identifier of the message to be
dequeued.

� message_id — the message identifier of the message to be dequeued

� condition —dequeue message that satisfy this condition.

A condition is specified as a Boolean expression using syntax similar to the
WHERE clause of a SQL query. This Boolean expression can include
conditions on message properties, user data properties (object payloads
only), and PL/SQL or SQL functions (as specified in the where clause of a
SQL query). Message properties include priority , corrid and other
columns in the queue table

To specify dequeue conditions on a message payload (object payload), use
attributes of the object type in clauses. You must prefix each attribute with
tab .user_data as a qualifier to indicate the specific column of the queue
table that stores the payload. The deq_condition parameter cannot exceed
4000 characters.

- visibility

� ON_COMMIT (default)—The dequeue is part of the current transaction.
The operation is complete when the transaction commits.

� IMMEDIATE—effects of the dequeue are visible immediately after the
request is completed. The dequeue is not part of the current transaction.
The operation constitutes a transaction on its own.
Internet Access to Advanced Queuing 17-21

The Internet Data Access Presentation (IDAP)
The following examples show dequeue requests using different attributes of
AQXmlReceive .

Dequeue Request Example—Receiving Messages from a Single-Consumer
Queue
Using the single-consumer queue QS.NEW_ORDERS_QUE, the receive request has
the following format:

- dequeue_mode —Specifies the locking behavior associated with the
dequeue. The dequeue_mode can be specified as one of:

� REMOVE (default): Read the message and update or delete it. This is the
default. The message can be retained in the queue table based on the
retention properties.

� BROWSE: Read the message without acquiring any lock on the message.
This is equivalent to a select statement.

� LOCKED: Read and obtain a write lock on the message. The lock lasts for
the duration of the transaction. This is equivalent to a select for update
statement.

- navigation_mode —Specifies the position of the message that will be
retrieved. First, the position is determined. Second, the search criterion is
applied. Finally, the message is retrieved. The navigation_mode can be
specified as one of:

� FIRST_MESSAGE: Retrieves the first message which is available and
matches the search criteria. This resets the position to the beginning of
the queue.

� NEXT_MESSAGE (default) : Retrieve the next message which is
available and matches the search criteria. If the previous message
belongs to a message group, then AQ retrieves the next available
message which matches the search criteria and belongs to the message
group. This is the default.

� NEXT_TRANSACTION: Skip the remainder of the current transaction
group (if any) and retrieve the first message of the next transaction
group. This option can only be used if message grouping is enabled for
the current queue.

- transformation —the PL/SQL transformation to be invoked after the
message is dequeued

AQXmlCommit this is an empty element—if specified, the user transaction is committed at
the end of the request

Table 17–3 Client Requests for Dequeue—Arguments and Attributes for AQXmlReceive

Argument Attribute
17-22 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
<?xml version="1.0"?>

<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
<consumer_options>

<destination>QS.NEW_ORDERS_QUE</destination>
<wait_time>0</wait_time>

</consumer_options>
</AQXmlReceive>

</Body>
</Envelope>

Dequeue Request Example—Receiving Messages from a Multiconsumer Queue
Using the multiconsumer queue AQUSER.EMP_TOPIC with subscriber APP1, the
receive request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">

<consumer_options>
<destination>AQUSER.EMP_TOPIC</destination>
<consumer_name>APP1</consumer_name>
<wait_time>0</wait_time>
<navigation_mode>FIRST_MESSAGE</navigation_mode>

</consumer_options>
</AQXmlReceive>

</Body>
</Envelope>

Dequeue Request Example—Receiving Messages from a Specific Correlation ID
Using the single consumer queue QS.NEW_ORDERS_QUE, to receive messages with
correlation ID NEW, the receive request has the following format:

<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
<consumer_options>

<destination>QS.NEW_ORDERS_QUE</destination>
<wait_time>0</wait_time>
<selector>

<correlation>NEW</correlation>
</selector>
Internet Access to Advanced Queuing 17-23

The Internet Data Access Presentation (IDAP)
</consumer_options>
</AQXmlReceive>

</Body>
</Envelope>

Dequeue Request Example—Receiving Messages that Satisfy a Specific
Condition
Using the multiconsumer queue AQUSER.EMP_TOPIC with subscriber APP1 and
condition deptno=60 , the receive request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">

<consumer_options>
<destination>AQUSER.EMP_TOPIC</destination>
<consumer_name>APP1</consumer_name>
<wait_time>0</wait_time>
<selector>

<condition>tab.user_data.deptno=60</condition>
</selector>

</consumer_options>
</AQXmlReceive>

</Body>
</Envelope>

Dequeue Request Example—Receiving Messages and Committing
In the dequeue request examples, if you include AQXmlCommit at the end of the
RECEIVE request, the transaction is committed upon completion of the operation.
In "Dequeue Request Example—Receiving Messages from a Multiconsumer Queue"
on page 17-23, the receive request can include the commit flag as follows:

<?xml version="1.0"?>

<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
<consumer_options>

<destination>QS.NEW_ORDERS_QUE</destination>
<wait_time>0</wait_time>

</consumer_options>

<AQXmlCommit/>
17-24 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
</AQXmlReceive>
</Body>

</Envelope>

Dequeue Request Example—Browsing Messages
Messages are dequeued in REMOVE mode by default. To receive messages from
QS.NEW_ORDERS_QUE in BROWSE mode, modify the receive request as follows:

<?xml version="1.0"?>

<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlReceive xmlns = "http://ns.oracle.com/AQ/schemas/access">
<consumer_options>

<destination>QS.NEW_ORDERS_QUE</destination>
<wait_time>0</wait_time>
<dequeue_mode>BROWSE</dequeue_mode>

</consumer_options>
</AQXmlReceive>

</Body>
</Envelope>

Client Requests for Registration
Client requests for registration use the AQXmlRegister method, which takes the
arguments and argument attributes shown in Table 17–4. Required arguments are
shown in bold.
.

Table 17–4 Client Registration—Arguments and Attributes for AQXmlRegister

Argument Attribute

register_options destination —specify the queue or topic on which notifications are
registered. The destination element has an attribute lookup_type which
determines how the destination element value is interpreted

� DATABASE (default) —destination is interpreted as
schema.queue_name

� LDAP—the LDAP server is used to resolve the destination

- consumer_name —the consumer name for multiconsumer queues or topics.
For single consumer queues, this parameter must not be specified

- notify_url —where notification is sent when a message is enqueued. The
form can be http://<url> or mailto://<email address> or
plsql://<pl/sql procedure> .
Internet Access to Advanced Queuing 17-25

The Internet Data Access Presentation (IDAP)
Register Request Example—Registering for Notification at an E-mail Address
To notify an e-mail address of messages enqueued for consumer APP1 in queue
AQUSER.EMP_TOPIC, the register request has the following format:

<?xml version="1.0"?>
<Envelope xmlns= "http://schemas.xmlsoap.org/soap/envelope/">

<Body>

<AQXmlRegister xmlns = "http://ns.oracle.com/AQ/schemas/access">

<register_options>
<destination>AQUSER.EMP_TOPIC</destination>
<consumer_name>APP1</consumer_name>
<notify_url>mailto:app1@hotmail.com</notify_url>

</register_options>

<AQXmlCommit/>

</AQXmlRegister>
</Body>

</Envelope>

Client Requests to Commit a Transaction
A request to commit all actions performed by the user in a session uses the
AQXmlCommit method.

Commit Request Example
A commit request has the following format.

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlCommit xmlns="http://ns.oracle.com/AQ/schemas/access"/>

</Body>
</Envelope>

Client Requests to Rollback a Transaction
A request to roll back all actions performed by the user in a session uses the
AQXmlRollback method. Actions performed with IMMEDIATE visibility are not
rolled back.
17-26 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
Rollback Request Example
A rollback request has the following format:

<?xml version="1.0"?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlRollback xmlns="http://ns.oracle.com/AQ/schemas/access"/>

</Body>
</Envelope>

Server Response to Enqueue
The response to an enqueue request to a single-consumer queue uses the
AQXmlSendResponse method. The components of the response are shown in
Table 17–5.
.

Server Request Example—Enqueuing a Single Message to a Single-Consumer
Queue
The result of a SEND request to the single consumer queue QS.NEW_ORDERS_QUE
has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlSendResponse xmlns="http://ns.oracle.com/AQ/schemas/access">

<status_response>
<status_code>0</status_code>

</status_response>
<send_result>

<destination>QS.NEW_ORDERS_QUE</destination>
<message_id>12341234123412341234</message_id>

</send_result>
</AQXmlSendResponse>

Table 17–5 Server Response to an Enqueue to a Single-Consumer Queue (AQXmlSendResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

send_result destination —where the message was sent

message_id —identifier for every message sent
Internet Access to Advanced Queuing 17-27

The Internet Data Access Presentation (IDAP)
</Body>
</Envelope>

The response to an enqueue request to a multiconsumer queue or topic uses the
AQXmlPublishResponse method. The components of the response are shown in
Table 17–6.
.

Server Request Example—Enqueuing to a Multiconsumer Queue
The result of a SEND request to the multiconsumer queue AQUSER.EMP_TOPIC has
the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlPublishResponse xmlns="http://ns.oracle.com/AQ/schemas/access">

<status_response>
<status_code>0</status_code>

</status_response>
<publish_result>

<destination>AQUSER.EMP_TOPIC</destination>
<message_id>23434435435456546546546546</message_id>

</publish_result>
</AQXmlPublishResponse>

</Body>
</Envelope>

Server Response to a Dequeue Request
The response to a dequeue request uses the AQXmlReceiveResponse method. The
components of the response are shown in Table 17–7.

Table 17–6 Server Response to an Enqueue to a Multiconsumer Queue or Topic
(AQXmlPublishResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

publish_result destination —where the message was sent

message_id —identifier for every message sent
17-28 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
.

Dequeue Response Example—Receiving Messages from an ADT Queue
(AQXmlReceiveResponse)
The result of a RECEIVE request on the queue AQUSER.EMP_TOPIC with a payload
of type EMP_TYP has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlReceiveResponse xmlns="http://ns.oracle.com/AQ/schemas/access">

<status_response>
<status_code>0</status_code>

</status_response>
<receive_result>

<destination>AQUSER.EMP_TOPIC</destination>
<message_set>

<message_count>1</message_count>
<message>

<message_number>1</message_number>
<message_header>

<message_id>1234344545565667</message_id>
<correlation>TKAXAP10</correlation>
<priority>1</priority>
<delivery_count>0</delivery_count>
<sender_id>

<agent_name>scott</agent_name>
</sender_id>
<message_state>0</message_state>

</message_header>
<message_payload>

<EMP_TYP>
<EMPNO>1111</EMPNO>
<ENAME>Mary</ENAME>
<MGR>5000</MGR>

Table 17–7 Server Response to a Dequeue from a Queue or Topic (AQXmlReceiveResponse)

Response Attribute

status_response status_code —indicates success (0) or failure (-1)

error_code —Oracle code for the error

error_message —description of the error

receive_result destination —where the message was sent

message_set —the set of messages dequeued
Internet Access to Advanced Queuing 17-29

The Internet Data Access Presentation (IDAP)
<HIREDATE>1996-01-01 0:0:0</HIREDATE>
<SAL>10000</SAL>
<COMM>100.12</COMM>
<DEPTNO>60</DEPTNO>

</EMP_TYP>
</message_payload>

</message>
</message_set>

</receive_result>
</AQXmlReceiveResponse>

</Body>
</Envelope>

Dequeue Response Example—Receiving Messages from a JMS Queue
The result of a RECEIVE request on a queue with a payload of type JMS Text
message has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlReceiveResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
<status_response>

<status_code>0</status_code>
</status_response>
<receive_result>

<destination>AQUSER.JMS_TEXTQ</destination>
<message_set>

<message_count>1</message_count>
<message>

<message_number>1</message_number>
<message_header>

<message_id>12233435454656567</message_id>
<correlation>TKAXAP01</correlation>
<delay>0</delay>
<priority>1</priority>
<message_state>0</message_state>
<sender_id>

<agent_name>scott</agent_name>
</sender_id>

</message_header>
<message_payload>

<jms_text_message>
<oracle_jms_properties>

<reply_to>
17-30 Oracle9i Application Developer’s Guide - Advanced Queuing

The Internet Data Access Presentation (IDAP)
<agent_name>oracle</agent_name>
<address>redwoodshores</address>
<protocol>100</protocol>

</reply_to>
<userid>AQUSER</userid>
<appid>AQProduct</appid>
<groupid>AQ</groupid>
<timestamp>01-12-2000</timestamp>
<recv_timestamp>12-12-2000</recv_timestamp>

</oracle_jms_properties>
<user_properties>

<property>
<name>Country</name>
<string_value>USA</string_value>

</property>
<property>

<name>State</name>
<string_value>California</string_value>

</property>
</user_properties>
<text_data>All things bright and beautiful</text_data>

</jms_text_message>
</message_payload>

</message>
</message_set>

</receive_result>
</AQXmlReceiveResponse>

</Body>
</Envelope>

Server Response to a Register Request
The response to a register request uses the AQXmlRegisterResponse method,
which consists of status_response . (See Table 17–7 for a description of status_
response .)

Commit Response
The response to a commit request uses the AQXmlCommitResponse method, which
consists of status_response . (See Table 17–7 for a description of status_
response .)

Example
The response to a commit request has the following format:
Internet Access to Advanced Queuing 17-31

The Internet Data Access Presentation (IDAP)
<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<AQXmlCommitResponse xmlns="http://ns.oracle.com/AQ/schemas/access">

<status_response>
<status_code>0</status_code>

</status_response>
</AQXmlCommitResponse>

</Body>
</Envelope>

Rollback Response
The response to a rollback request uses the AQXmlRollbackResponse method,
which consists of status_response . (See Table 17–7 for a description of status_
response .)

Notification
When an event for which a client has registered occurs, a notification is sent to the
client at the URL specified in the REGISTER request. AQXmlNotification
consists of:

� notification_options , which has

� destination —the destination queue/topic on which the event occurred

� consumer_name —in case of multiconsumer queues/topics, this refers to
the consumer name for which the event occurred

� message_set —the set of message properties.

Response in Case of Error
In case of an error in any of the preceding requests, a FAULT is generated. The
FAULT element consists of:

� faultcode - error code for fault

� faultstring - indicates a client error or a server error. A client error means
that the request is not valid. Server error indicates that the AQ servlet has not
been set up correctly

� detail , which consists of

� status_response
17-32 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
Example
A FAULT message has the following format:

<?xml version = ’1.0’?>
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<Body>
<Fault xmlns="http://schemas.xmlsoap.org/soap/envelope/">

<faultcode>100</faultcode>
<faultstring>Server Fault</faultstring>
<detail>

<status_response>
<status_code>-1</status_code>
<error_code>410</error_code>
<error_message>JMS-410: XML SQL Excetpion

ORA-24031: invalid value, OWNER_NAME should be non-NULL
ORA-06512: at "SYS.DBMS_AQJMS", line 177
ORA-06512: at line 1
</error_message>

</status_response>
</detail>

</Fault>
</Body>

</Envelope>

SOAP and AQ XML Schemas
IDAP exposes the SOAP schema and the AQ XML schema to the client. All
documents sent are validated against these schemas:

� SOAP schema—http://schemas.xmlsoap.org/soap/envelope/

� AQ XML schema—http://ns.oracle.com/AQ/schemas/access

The SOAP Schema
The SOAP schema describes the structure of a document: envelope, header, and
body.

<?xml version='1.0'?>
<!-- XML Schema for SOAP v 1.1 Envelope -->
<schema xmlns='http://www.w3.org/2001/XMLSchema'

xmlns:tns='http://schemas.xmlsoap.org/soap/envelope/'
targetNamespace='http://schemas.xmlsoap.org/soap/envelope/'>

<!-- SOAP envelope, header and body -->
Internet Access to Advanced Queuing 17-33

SOAP and AQ XML Schemas
<element name="Envelope" type="tns:Envelope"/>
<complexType name='Envelope'>

<sequence>
<element ref='tns:Header' minOccurs='0'/>
<element ref='tns:Body' minOccurs='1'/>
<any minOccurs='0' maxOccurs='*'/>

</sequence>
<anyAttribute/>

</complexType>

<element name="Header" type="tns:Header"/>
<complexType name='Header'>

<sequence>
<any minOccurs='0' maxOccurs='*'/>

</sequence>
<anyAttribute/>

</complexType>

<element name="Body" type="tns:Body"/>
<complexType name='Body'>

<sequence>
<any minOccurs='0' maxOccurs='*'/>

</sequence>
<anyAttribute/>

</complexType>

<!-- Global Attributes. The following attributes are intended
to be usable via qualified attribute names on any complex type
referencing them. -->

<attribute name="mustUnderstand" type="tns:mutype" use="optional" value="0"/>
</attribute>

<simpleType name="mutype">
<restriction base="string">

<enumeration value="0"/>
<enumeration value="1"/>

</restriction>
</simpleType>

<attribute name='actor' type='anyURI'/>

<!-- 'encodingStyle' indicates any canonicalization conventions followed
in the contents of the containing element. For example, the value
17-34 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
'http://schemas.xmlsoap.org/soap/encoding/' indicates
the pattern described in SOAP specification. -->

<simpleType name='encodingStyle'>
<list itemType='anyURI'/>

</simpleType>
<attributeGroup name='encodingStyle'>

<attribute name='encodingStyle' type='tns:encodingStyle'/>
</attributeGroup>

<!-- SOAP fault reporting structure -->
<complexType name='Fault' final='extension'>

<sequence>
<element name='faultcode' type='QName'/>
<element name='faultstring' type='string'/>
<element name='faultactor' type='anyURI' minOccurs='0'/>
<element name='detail' type='tns:detail' minOccurs='0'/>

</sequence>
</complexType>

<complexType name='detail'>
<sequence>

<any minOccurs='0' maxOccurs='*'/>
</sequence>

<anyAttribute/>
</complexType>

</schema>

IDAP Schema
The IDAP schema describes the contents of the IDAP body for Internet access to AQ
features.

<?xml version="1.0"?>

<!-- ****************** AQ xml schema ****************** -->

<schema xmlns = "http://www.w3.org/2001/XMLSchema"
targetNamespace = "http://ns.oracle.com/AQ/schemas/access"
xmlns:aq = "http://ns.oracle.com/AQ/schemas/access"
xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

<import namespace = "http://schemas.xmlsoap.org/soap/envelope/"
schemaLocation = "soap_env.xsd" />
Internet Access to Advanced Queuing 17-35

SOAP and AQ XML Schemas
<!-- ****************** AQ xml client operations ****************** -->

<element name="AQXmlSend">
<complexType mixed="true">

<sequence>
<element ref="aq:producer_options" minOccurs="1" maxOccurs="1" />
<element ref="aq:message_set" minOccurs="1" maxOccurs="1"/>
<element ref="aq:AQXmlCommit" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlPublish">
<complexType mixed="true">

<sequence>
<element ref="aq:producer_options" minOccurs="1" maxOccurs="1" />
<element ref="aq:message_set" minOccurs="1" maxOccurs="1"/>
<element ref="aq:AQXmlCommit" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlReceive">
<complexType mixed="true">

<sequence>
<element ref="aq:consumer_options" minOccurs="1" maxOccurs="1" />
<element ref="aq:AQXmlCommit" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlRegister">
<complexType mixed="true">

<sequence>
<element ref="aq:register_options" minOccurs="1" maxOccurs="1" />
<element ref="aq:AQXmlCommit" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>
17-36 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
<element name="AQXmlCommit">
<complexType>
</complexType>

</element>

<element name="AQXmlRollback">
<complexType>
</complexType>

</element>

<!-- ****************** AQ xml server responses ****************** -->

<element name="AQXmlSendResponse">
<complexType mixed="true">

<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>
<element ref="aq:send_result" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlPublishResponse">
<complexType mixed="true">

<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>
<element ref="aq:publish_result" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlReceiveResponse">
<complexType mixed="true">

<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>
<element ref="aq:receive_result" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlRegisterResponse">
<complexType mixed="true">
Internet Access to Advanced Queuing 17-37

SOAP and AQ XML Schemas
<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlCommitResponse">
<complexType mixed="true">

<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="AQXmlRollbackResponse">
<complexType mixed="true">

<sequence>
<element ref="aq:status_response" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="destination">
<complexType>

<simpleContent>
<extension base='string'>

<attribute name="lookup_type" type="aq:dest_lookup_type"
default="DATABASE"/>

</extension>
</simpleContent>

</complexType>
</element>

<!-- **** destination lookup type ******* -->
<!-- lookup_type can be specified to either lookup LDAP or use -->
<simpleType name="dest_lookup_type">

<restriction base="string">
<enumeration value="DATABASE"/>
<enumeration value="LDAP"/>

</restriction>
</simpleType>

<!-- ****************** Producer Options ****************** -->
<element name="producer_options">
17-38 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
<complexType mixed="true">
<sequence>
<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:visibility" minOccurs="0" maxOccurs="1"/>
<element ref="aq:transformation" minOccurs="0" maxOccurs="1"/>
</sequence>

</complexType>
</element>

<!-- ****************** Consumer Options ****************** -->
<element name="consumer_options">

<complexType mixed="true">
<sequence>

<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:consumer_name" minOccurs="0" maxOccurs="1"/>
<element ref="aq:wait_time" minOccurs="0" maxOccurs="1"/>
<element ref="aq:selector" minOccurs="0" maxOccurs="1"/>
<element ref="aq:batch_size" minOccurs="0" maxOccurs="1"/>
<element ref="aq:visibility" minOccurs="0" maxOccurs="1"/>
<element ref="aq:dequeue_mode" minOccurs="0" maxOccurs="1"/>
<element ref="aq:navigation_mode" minOccurs="0" maxOccurs="1"/>
<element ref="aq:transformation" minOccurs="0" maxOccurs="1"/>
</sequence>

</complexType>
</element>

<!-- ****************** Register Options ****************** -->
<element name="register_options">

<complexType mixed="true">
<sequence>
<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:consumer_name" minOccurs="0" maxOccurs="1"/>
<element ref="aq:notify_url" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>
</element>

<element name="recipient_list">
<complexType mixed="true">

<sequence>
<element ref="aq:recipient" minOccurs="1" maxOccurs="*"/>

</sequence>
</complexType>

</element>
Internet Access to Advanced Queuing 17-39

SOAP and AQ XML Schemas
<!-- ****************** Message Set ************************* -->
<element name="message_set">

<complexType mixed="true">
<sequence>

<element ref="aq:message_count" minOccurs="0" maxOccurs="1"/>
<element ref="aq:message" minOccurs="0" maxOccurs="*"/>

</sequence>
</complexType>

</element>

<!-- ****************** Message ************************* -->
<element name="message">

<complexType mixed="true">
<sequence>

<element ref="aq:message_number" minOccurs="0" maxOccurs="1"/>
<element ref="aq:message_header" minOccurs="1" maxOccurs="1"/>
<element ref="aq:message_payload" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<!-- ****************** Message header ****************** -->
<element name="message_header">

<complexType mixed="true">
<sequence>

<element ref="aq:message_id" minOccurs="0" maxOccurs="1"/>
<element ref="aq:correlation" minOccurs="0" maxOccurs="1"/>
<element ref="aq:delay" minOccurs="0" maxOccurs="1"/>
<element ref="aq:expiration" minOccurs="0" maxOccurs="1"/>
<element ref="aq:priority" minOccurs="0" maxOccurs="1"/>
<element ref="aq:delivery_count" minOccurs="0" maxOccurs="1"/>
<element ref="aq:sender_id" minOccurs="1" maxOccurs="1"/>
<element ref="aq:recipient_list" minOccurs="0" maxOccurs="1"/>
<element ref="aq:message_state" minOccurs="0" maxOccurs="1"/>
<element ref="aq:exception_queue" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<!-- ****************** Oracle JMS properties ****************** -->
17-40 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
<element name="oracle_jms_properties">
<complexType mixed="true">

<sequence>
<element ref="aq:type" minOccurs="0" maxOccurs="1"/>
<element ref="aq:reply_to" minOccurs="0" maxOccurs="1"/>
<element ref="aq:userid" minOccurs="0" maxOccurs="1"/>
<element ref="aq:appid" minOccurs="0" maxOccurs="1"/>
<element ref="aq:groupid" minOccurs="0" maxOccurs="1"/>
<element ref="aq:group_sequence" minOccurs="0" maxOccurs="1"/>
<element ref="aq:timestamp" minOccurs="0" maxOccurs="1"/>
<element ref="aq:recv_timestamp" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<!-- ****************** Message payload ****************** -->
<element name="message_payload">

<complexType>
<choice>

<element ref="aq:raw" minOccurs="0" maxOccurs="1"/>
<element ref="aq:jms_text_message" minOccurs="0" maxOccurs="1"/>
<element ref="aq:jms_map_message" minOccurs="0" maxOccurs="1"/>
<element ref="aq:jms_bytes_message" minOccurs="0" maxOccurs="1"/>
<element ref="aq:jms_object_message" minOccurs="0" maxOccurs="1"/>

<any minOccurs="0" maxOccurs="*" processContents="skip"/>
</choice>

</complexType>
</element>

<!-- ****************** User-defined properties ****************** -->
<element name="user_properties">

<complexType mixed="true">
<sequence>
<element ref="aq:property" minOccurs="0" maxOccurs="*"/>
</sequence>

</complexType>
</element>

<!-- ****************** Property ****************** -->
<element name="property">

<complexType mixed="true">
<sequence>

<element ref="aq:name" minOccurs="1" maxOccurs="1"/>
Internet Access to Advanced Queuing 17-41

SOAP and AQ XML Schemas
<choice>
<element ref="aq:int_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:string_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:long_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:double_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:boolean_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:float_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:short_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:byte_value" minOccurs="1" maxOccurs="1"/>

</choice>
</sequence>

</complexType>
</element>

<!-- ****************** Status response ****************** -->
<element name="status_response">

<complexType mixed="true">
<sequence>

<element ref="aq:acknowledge" minOccurs="0" maxOccurs="1"/>
<element ref="aq:status_code" minOccurs="0" maxOccurs="1"/>
<element ref="aq:error_code" minOccurs="0" maxOccurs="1"/>
<element ref="aq:error_message" minOccurs="0" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<!-- ****************** Send result ****************** -->
<element name="send_result">

<complexType mixed="true">
<sequence>

<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>

</sequence>
</complexType>

</element>

<!-- ****************** Publish result ****************** -->
<element name="publish_result">

<complexType mixed="true">
<sequence>

<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:message_id" minOccurs="0" maxOccurs="*"/>

</sequence>
17-42 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
</complexType>
</element>

<!-- ****************** Receive result ****************** -->
<element name="receive_result">

<complexType mixed="true">
<sequence>

<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:message_set" minOccurs="0" maxOccurs="*"/>

</sequence>
</complexType>

</element>

<!-- ****************** Notification *************************** -->
<element name="notification_options">

<complexType mixed="true">
<sequence>

<element ref="aq:destination" minOccurs="1" maxOccurs="1"/>
<element ref="aq:consumer_name" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="priority" type="integer"/>
<element name="expiration" type="integer"/>
<element name="consumer_name" type="string"/>
<element name="wait_time" type="integer"/>
<element name="batch_size" type="integer"/>

<element name="notify_url" type="string"/>
<element name="message_id" type="string"/>
<element name="message_state" type="string"/>

<element name="message_number" type="integer"/>
<element name="message_count" type="integer"/>

<element name="correlation" type="string"/>
<element name="delay" type="integer"/>
<element name="delivery_count" type="integer"/>
<element name="exception_queue" type="string"/>
<element name="agent_alias" type="string"/>
Internet Access to Advanced Queuing 17-43

SOAP and AQ XML Schemas
<element name="type" type="string"/>
<element name="userid" type="string"/>
<element name="appid" type="string"/>
<element name="groupid" type="string"/>
<element name="group_sequence" type="integer"/>
<element name="timestamp" type="date"/>
<element name="recv_timestamp" type="date"/>

<element name="recipient">
<complexType>

<choice>
<sequence>

<element ref="aq:agent_name" minOccurs="0" maxOccurs="1"/>
<element ref="aq:address" minOccurs="0" maxOccurs="1"/>

<element ref="aq:protocol" minOccurs="0" maxOccurs="1"/>
</sequence>
<element ref="aq:agent_alias" minOccurs="1" maxOccurs="1"/>

</choice>
</complexType>

</element>

<element name="sender_id">
<complexType>

<choice>
<sequence>

<element ref="aq:agent_name" minOccurs="0" maxOccurs="1"/>
<element ref="aq:address" minOccurs="0" maxOccurs="1"/>

<element ref="aq:protocol" minOccurs="0" maxOccurs="1"/>
</sequence>
<element ref="aq:agent_alias" minOccurs="1" maxOccurs="1"/>

</choice>
</complexType>

</element>

<element name="reply_to">
<complexType>

<choice>
<sequence>

<element ref="aq:agent_name" minOccurs="1" maxOccurs="1"/>
<element ref="aq:address" minOccurs="0" maxOccurs="1"/>

<element ref="aq:protocol" minOccurs="0" maxOccurs="1"/>
</sequence>
17-44 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
<element ref="aq:agent_alias" minOccurs="1" maxOccurs="1"/>
</choice>

</complexType>
</element>

<element name="selector">
<complexType>

<choice>
<element ref="aq:correlation" minOccurs="0" maxOccurs="1"/>
<element ref="aq:message_id" minOccurs="0" maxOccurs="1"/>
<element ref="aq:condition" minOccurs="0" maxOccurs="1"/>

</choice>
</complexType>

</element>

<element name="condition" type="string"/>

<element name="visibility">
<simpleType>

<restriction base="string">
<enumeration value="ON_COMMIT"/>
<enumeration value="IMMEDIATE"/>

</restriction>
</simpleType>
</element>

<simpleType name="del_mode_type">
<restriction base="string">

<enumeration value="PERSISTENT"/>
<enumeration value="NONPERSISTENT"/>

</restriction>
</simpleType>

<element name="dequeue_mode">
<simpleType>

<restriction base="string">
<enumeration value="BROWSE"/>
<enumeration value="LOCKED"/>
<enumeration value="REMOVE"/>
<enumeration value="REMOVE_NODATA"/>

</restriction>
</simpleType>

</element>
Internet Access to Advanced Queuing 17-45

SOAP and AQ XML Schemas
<element name="navigation_mode">
<simpleType>

<restriction base="string">
<enumeration value="FIRST_MESSAGE"/>
<enumeration value="NEXT_MESSAGE"/>
<enumeration value="NEXT_TRANSACTION"/>

</restriction>
</simpleType>

</element>

<element name="transformation" type="string"/>

<element name="acknowledge">
<complexType>
</complexType>

</element>
<element name="status_code" type="string"/>
<element name="error_code" type="string"/>
<element name="error_message" type="string"/>

<element name="name" type="string"/>
<element name="int_value" type="integer"/>
<element name="string_value" type="string"/>
<element name="long_value" type="long"/>
<element name="double_value" type="double"/>
<element name="boolean_value" type="boolean"/>
<element name="float_value" type="float"/>
<element name="short_value" type="short"/>
<element name="byte_value" type="byte"/>

<element name="agent_name" type="string"/>
<element name="address" type="string"/>
<element name="protocol" type="integer"/>

<!-- ****************** RAW message *********************** -->
<element name="raw" type="string"/>

<!-- ****************** JMS text message ****************** -->
<element name="jms_text_message">

<complexType mixed="true">
<sequence>

<element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
17-46 Oracle9i Application Developer’s Guide - Advanced Queuing

SOAP and AQ XML Schemas
<element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:text_data" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="text_data" type="string"/>

<!-- ****************** JMS map message ****************** -->
<element name="jms_map_message">

<complexType mixed="true">
<sequence>

<element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:map_data" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<!-- ****************** Map data ****************** -->
<element name="map_data">

<complexType mixed="true">
<sequence>
<element ref="aq:item" minOccurs="0" maxOccurs="*"/>
</sequence>

</complexType>
</element>

<!-- ****************** Map Item ****************** -->
<element name="item">

<complexType mixed="true">
<sequence>

<element ref="aq:name" minOccurs="1" maxOccurs="1"/>
<choice>

<element ref="aq:int_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:string_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:long_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:double_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:boolean_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:float_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:short_value" minOccurs="1" maxOccurs="1"/>
<element ref="aq:byte_value" minOccurs="1" maxOccurs="1"/>

</choice>
</sequence>
Internet Access to Advanced Queuing 17-47

Deploying the AQ XML Servlet
</complexType>
</element>

<!-- ****************** JMS bytes message ****************** -->
<element name="jms_bytes_message">

<complexType mixed="true">
<sequence>

<element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:bytes_data" minOccurs="1" maxOccurs="1"/>

</sequence>
</complexType>

</element>

<element name="bytes_data" type="string"/>

<!-- ****************** JMS object message ****************** -->
<element name="jms_object_message">

<complexType mixed="true">
<sequence>
<element ref="aq:oracle_jms_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:user_properties" minOccurs="0" maxOccurs="1"/>
<element ref="aq:ser_object_data" minOccurs="1" maxOccurs="1"/>
</sequence>

</complexType>
</element>

<element name="ser_object_data" type="string"/>

</schema>

Deploying the AQ XML Servlet
The AQ XML servlet is a Java class that extends the
oracle.AQ.xml.AQxmlServlet class. The AQxmlServlet class extends the
javax.servlet.http.HttpServlet class.

Note: Demos for the AQ XML servlet can be found in $ORACLE_
HOME/rdbms/demo/ . Check the aqxmlREADME.txt file for
details.
17-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying the AQ XML Servlet
The AQ XML Servlet accepts requests with Content-Type "text/xml" or
application/x-www-form-urlencoded . When the Content-Type request is set
to application/x-www-form-urlencoded , you must set the parameter name
to aqxmldoc and the value must be the URL-encoded AQ XML document.

Creating the AQ XML Servlet Class
The AQ servlet creates a JDBC OCI connection pool to connect to the Oracle9i
server. The init() method of the servlet must specify an AQxmlDataSource
object that encapsulates the database connection parameters and the username and
password. See the Oracle9i Supplied Java Packages Reference for information on the
AQxmlDataSource class.

The user specified in the AQxmlDataSource is the AQ servlet super-user. This
user must have CREATE SESSION privilege and EXECUTE privilege on the DBMS_
AQIN package.

Example:
Create a user AQADM as the AQ servlet superuser as follows:

connect sys/change_on_install as sysdba;
grant connect, resource to aqadm identified by aqadm;
grant create session to aqadm;
grant execute on dbms_aqjms to aqadm;

A sample servlet can be created using this superuser as follows:

import javax.servlet.*;
import javax.servlet.http.*;
import oracle.AQ.xml.*;

/**
* This is a sample AQ Servlet.
*/

public class AQTestServlet extends oracle.AQ.xml.AQxmlServlet
{

/* The init method must be overloaded to specify the AQxmlDataSource */
public void init()
{

AQxmlDataSource db_drv = null;

try
{

Internet Access to Advanced Queuing 17-49

Deploying the AQ XML Servlet
/* Create data source with username, password, sid, host, port */
db_drv = new AQxmlDataSource("AQADM", "AQADM", "test_db", "sun-248",

"5521");

this.setAQDataSource(db_drv);
}
catch (Exception ex)
{

System.out.println("Exception in init: " + ex);
}

}

The superclass oracle.AQ.xml.AQxmlServlet implements the doPost() and
doGet() methods in javax.servlet.http.HttpServlet. The doPost()
method handles incoming SOAP requests and performs the requested AQ
operations.

Compiling the AQ XML Servlet
The AQ servlet can be deployed with any Web server or servlet-runner that
implements Javasoft’s Servlet2.0 or Servlet2.2 interfaces (for example, Apache Jserv
or Tomcat). Note the following considerations:

� Because the servlet uses JDBC OCI drivers to connect to the Oracle9i server, the
Oracle9i client libraries must be installed on the machine hosting the servlet, as
follows:

The LD_LIBRARY_PATH must contain $ORACLE_HOME/lib

� The servlet can be compiled using JDK 1.1.x or JDK 1.2.x libraries.

� For JDK 1.1.x, the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classes111.zip
$ORACLE_HOME/jdbc/lib/jta.zip
$ORACLE_HOME/jdbc/lib/nls_charset11.zip
$ORACLE_HOME/jdbc/lib/jndi.zip

Note: The example assumes that the AQ servlet is installed in a
Web server that implements Javasoft’s Servlet2.2 specification (such
as Tomcat 3.1). For a Web server that implements the Servlet 2.0
specification (such as Apache Jserv), you should extend the
oracle.AQ.xml.AQxmlServlet20 class instead of the
AQxmlServlet class and override the appropriate write() method.
17-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying the AQ XML Servlet
$ORACLE_HOME/lib/lclasses11.zip
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE HOME/rdbms/jlib/aqapi11.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqxml.jar
$ORACLE_HOME/rdbms/jlib/xsu111.jar
$ORACLE_HOME/jis/lib/servlet.jar

� For JDK 1.2.x, the CLASSPATH must contain:

$ORACLE_HOME/jdbc/lib/classes12.zip
$ORACLE_HOME/jdbc/lib/jta.zip
$ORACLE_HOME/jdbc/lib/nls_charset12.zip
$ORACLE_HOME/jdbc/lib/jndi.zip
$ORACLE_HOME/lib/lclasses12.zip
$ORACLE_HOME/lib/xmlparserv2.jar
$ORACLE_HOME/lib/xschema.jar
$ORACLE_HOME/rdbms/jlib/aqapi.jar
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbms/jlib/aqxml.jar
$ORACLE_HOME/rdbms/jlib/xsu12.jar
$ORACLE_HOME/jis/lib/servlet.jar

� After setting the CLASSPATH, compile the servlet using javac or any other
Java compiler.

User Authentication
After the servlet is installed, the Web server must be configured to authenticate all
users that send POST requests to the AQ servlet. The AQ servlet allows only
authenticated users to access the servlet. If the user is not authenticated, an error is
returned by the servlet.

The Web server can be configured in multiple ways to restrict access. Some of the
common techniques are basic authentication (username/password) over SSL and
client certificates. Consult your Web server documentation to see how you can
restrict access to servlets.

Note: If you are using the AQ XML Servlet or the AQ JMS API
with JDK1.2, versions 1.2.2_05a or higher, you must turn off the JIT
compiler. Set JAVA_COMPILER = none to avoid problems in
multithreaded applications.
Internet Access to Advanced Queuing 17-51

Deploying the AQ XML Servlet
Using HTTP
In the context of the AQ servlet, the user name that is used to connect to the Web
server is known as the AQ HTTP agent or AQ Internet user.

Example: In Apache, the following can be used to restrict access (using basic
authentication) to servlets installed under aqserv/servlet . In this example, all
users sending POST requests to the servlet are authenticated using the users file in
/apache/htdocs/userdb .

<Location /aqserv/servlet>
<Limit POST>

AuthName "AQ restricted stuff"
AuthType Basic
AuthUserFile /apache/htdocs/userdb/users
require valid-user

</Limit>
</Location>

User Authorization
After authenticating the users who connect to the AQ servlet, you establish which
operations the users are authorized to perform by doing the following:

1. Register the AQ agent for Internet access.

2. Map the AQ agent to one or more database users.

Registering the AQ Agent
To register the AQ agent for Internet access, use DBMS_AQADM.CREATE_AQ_AGENT.
The CREATE_AQ_AGENT procedure takes an agent_name. You specify which
protocols the user can use to access the servlet—HTTP, SMTP, or both. For agents
accessing the AQ servlet using SMTP, an LDAP certificate_location must
also be specified. See "Setup for Receiving AQ XML Requests Using SMTP (E-mail)"
on page 17-55 for more information.

Example
Create an AQ agent JOHN to access the AQ servlet using HTTP.

DBMS_AQADM.CREATE_AQ_AGENT(agent_name => ’JOHN’, enable_http => true);

The procedures ALTER_AQ_AGENT and DROP_AQ_AGENT for altering and dropping
AQ agents function similarly to CREATE_AQ_AGENT. These procedures are
documented in the Oracle9i Supplied PL/SQL Packages and Types Reference.
17-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying the AQ XML Servlet
Mapping the AQ Agent to Database Users
To map an AQ agent to one or more database users, use DBMS_AQADM.ENABLE_
DB_ACCESS. With the ENABLE_DB_ACCESS procedure, you give an AQ agent the
privileges of a particular database user. This allows the agent to access all queues
that are visible to the database users to which the agent is mapped.

Example
Map the AQ Internet agent JOHN to database users OE (overseas shipping) and
CBADM (customer billing administrator).

DBMS_AQADM.ENABLE_DB_ACCESS(agent_name =>’JOHN’, db_username => ’OE’);
DBMS_AQADM.ENABLE_DB_ACCESS(agent_name =>’JOHN’, db_username => ’CBADM’);

Database Sessions
When the user sends a POST request to the servlet, the servlet parses the request to
determine which queue/topic the user is trying to access. Accordingly, the AQ
servlet creates a database session as one of the database users (db_user) t hat
maps to the AQ agent. The db_user selected has privileges to access the queue
specified in the request.

Example
AQ agent JOHN sends an enqueue request to OE.OE_NEW_ORDERS_QUE. The
servlet sees that JOHN can map to db_users OE and CBADM. Since OE.OE_NEW_
ORDERS_QUE is in the OE schema, it does a CREATE SESSION as OE to perform
the requested operation.

The AQ servlet creates a connection pool to the Oracle server using the AQ servlet
super-user . This super-user creates sessions on behalf of db_users that the
AQ Internet agent maps to. Hence the super-user must have privileges to create
proxy sessions for all the users specified in the ENABLE_DB_ACCESS call. See
"Creating the AQ XML Servlet Class" on page 17-49 for how to create the AQ servlet
super-user .

The AQ servlet super-user can be granted CREATE PROXY session privileges as
follows:

connect sys/change_on_install as sysdba
rem grant super-user AQADM privileges to create proxy sessions as OE
alter user OE grant CONNECT THROUGH AQADM;

rem grant super-user AQADM privileges to create proxy sessions as CBADM
alter user CBADM grant CONNECT THROUGH AQADM;
Internet Access to Advanced Queuing 17-53

Deploying the AQ XML Servlet
If an AQ Internet agent is mapped to more than one db_user , then all the db_
users must have the FORCE ANY TRANSACTION privilege:

grant FORCE ANY TRANSACTION to OE;
grant FORCE ANY TRANSACTION to CBADM;

To disable the mapping between an agent and a database user, use DBMS_
AQADM.DISABLE_DB_ACCESS.

The SYSTEM.AQ$INTERNET_USERS view lists AQ agents, the protocols they are
enabled for, and the mapping between AQ agents and database users. Example
entries in this view are shown in Table 17–8.

Table 17–8 The SYSTEM.AQ$INTERNET_USERS View

Using an LDAP Server with an AQ XML Servlet
An LDAP server is required if:

� The AQ agent is accessing the AQ servlet using SMTP. (See "Setup for Receiving
AQ XML Requests Using SMTP (E-mail)" on page 17-55 for details.)

� The lookup_type destination attribute is specified as LDAP. In this case the
destination name is resolved to a schema.queue_name using the LDAP
server.

� You use agent_alias instead of (agent_name, address, protocol) . If
an agent_alias is specified in a client request, it is resolved to agent_name,
address, protocol using the LDAP server.

The LDAP context must be specified by the setLDAPContext(DirContext) call,
as follows:

public void init()
{

agent_name db_username http_enabled smtp_enabled

scott cbadmin YES NO

scott buyer YES NO

aqadmin OE YES YES

aqadmin seller YES YES

bookstore - NO YES
17-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying the AQ XML Servlet
Hashtable env = new Hashtable(5, 0.75f);
AQxmlDataSource db_drv = null;

try
{

/* Create data source with username, password, sid, host, port */
db_drv = new AQxmlDataSource("AQADM", "AQADM", "test_db",

"sun-248", "5521");
this.setAQDataSource(db_drv);

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");

env.put(Context.PROVIDER_URL, "ldap://yow:389");
env.put(SEARCHBASE, "cn=server1,cn=dbservers,cn=wei");
env.put(Context.SECURITY_AUTHENTICATION, "simple");
env.put(Context.SECURITY_PRINCIPAL, "cn=orcladmin");
env.put(Context.SECURITY_CREDENTIALS, "welcome");

DirContext inictx = new InitialDirContext(env);
String searchbase = (String)env.get("server_dn");
lctx = (DirContext)inictx.lookup(searchbase);

// Set up LDAP context
setLdapContext(lctx);

// Set the EMAIL server address (if any)
setEmailServerAddr("144.25.186.236");

}
catch (Exception ex)
{

System.err.println("Servlet init exception: " +ex) ;
}

}

Setup for Receiving AQ XML Requests Using SMTP (E-mail)
You must set up the database, Web server, LDAP server, and e-mail server to receive
AQ XML requests using SMTP.

Database and LDAP Server Setup

To store AQ agents in the LDAP server, the database must be registered to the
LDAP server using the Database Configuration Assistant (DBCA), and the value of
GLOBAL_TOPIC_ENABLED must be set to TRUE (default is FALSE; reset using
alter system set global_topic_enabled=TRUE).
Internet Access to Advanced Queuing 17-55

Deploying the AQ XML Servlet
To create AQ agents that can access the servlet using SMTP, use the DBMS_
AQADM.CREATE_AQ_AGENT procedure.

Example
Create an AQ agent for the appl application to access the AQ servlet using SMTP
and the digital certificate of the application owner, Kurt:

DBMS_AQADM.CREATE_AQ_AGENT(
agent_name => ’appl’,
enable_http => true,
enable_smtp => true,
certificate_location => ’cn=kurt,cn=acme,cn=com’);

The certificate_location parameter is required to authenticate the appl
application when a message is received.

Web Server Setup
1. Establish a user called ORACLE_SMTP_AGENT on the Web server that is allowed

to access the AQ servlet.

The Oracle e-mail server will connect to the servlet using user ORACLE_SMTP_
AGENT.

2. Specify the e-mail server host name or the IP address in the servlet’s init()
method.

Use setEmailServerHost(hostname) or setEmailServerAddr(ip_
address) in the AQxmlServlet to do this.

Example: Specify the e-mail server host as follows:

setEmailServerAddr("144.25.186.236"); or
setEmailServerHost("email-srv.us.oracle.com");

3. Set up an LDAP context in the servlet, as described in "Using an LDAP Server
with an AQ XML Servlet" on page 17-54.

The LDAP server is used to retrieve certificates for the AQ agent and verify the
signature in the incoming message.

E-mail Server Setup
Internet access to AQ using SMTP requires Oracle Email Server 5.5. Do the
following:

1. Check that DBMS_AQST is installed on the e-mail server.
17-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying the AQ XML Servlet
2. Create an e-mail account for the destination database, that is, the database
against which AQ operations are to be performed using the AQ servlet.

3. Set up an e-mail rule for the destination database e-mail account so that it can
handle AQ XML client requests by sending them to the AQ servlet.

 The following information is required:

� The e-mail account of the destination database, for example, 'aqdb1' ;

� The password of the e-mail account, for example, 'welcome'

� The domain in which this e-mail account resides, for example,
'acme.com'

� The complete e-mail address of the destination e-mail address, for example,
'aqdb1@acme.com'

� The name of the destination database, for example, 'aqdb1'

� The URL of the destination database servlet, for example,

http://aq-sun.us.oracle.com:8000/aqserv/servlet/AQTestServlet

� The user name and password to access the destination database servlet
(user name is ORACLE_SMTP_AGENT; password is established in "Web
Server Setup" on page 17-56).

� The host and port for LDAP lookup. For example, host=ldaphost ,
port=389.

� The base distinguished name (DN) for LDAP lookup, that is, the DN of the
destination database in the LDAP server, for example, 'cn=aqdb1,
cn=oraclecontext,cn=acme,cn=com' .

� The login DN and password for LDAP lookup, for example NULL for
anonymous binds.

4. Register the rule using dbms_aqst :

declare
status binary_integer;

begin
status := dbms_aqst.register_db(

'aqdb1', -- email user account for aqdb1

See Also: Oracle eMail Server 5.5 Administration Guide for how to
create an e-mail account on the e-mail server.
Internet Access to Advanced Queuing 17-57

Using HTTP to Access the AQ XML Servlet
'welcome', -- email user password
'acme.com', -- email user domain
'aqdb1@acme.com', -- complete email address
'aqdb1', -- name of destination database
'http://aq-sun:8000/aqserv/servlet/AQTestServlet', -- URL to access

the destination database servlet
'welcome', -- password of ORACLE_SMTP_AGENT
'ldaphost', -- LDAP host for lookup client certificates
'389', -- LDAP port for LDAP lookup
'cn=aqdb1,cn=oraclecontext,cn=acme,cn=com', -- base DN of LDAP lookup
NULL, NULL -- anonymous bind
);

dbms_output.put_line('register DB status: ' || status);
end;

5. Make sure the operation returns status 0.

After the setup is complete, an AQ agent can send e-mail messages to the database
e-mail address to perform AQ operations. The AQ operations should be constructed
according to IDAP, signed using the Oracle e-mail S/MIME toolkit, and sent as a
binary attachment with the name including IDAP_MESSAGE.

Using HTTP to Access the AQ XML Servlet
The procedures for an AQ client to make a request to the AQ servlet using HTTP
and for the AQ servlet to process the request are as follows:

AQ Client Request to the AQ Servlet Using HTTP
1. The client opens an HTTP(S) connection to the server.

For example,
https://aq.us.oracle.com:8000/aqserv/servlet/AQTestServlet

This opens a connection to port 8000 on aq.us.oracle.com.

2. The client logs in to the server by either:

� HTTP basic authentication (with or without SSL)

� SSL certificate-based client authentication

3. The client constructs the XML message representing the Send, Publish, Receive
or Register request.

Example:

<?xml version="1.0"?>
17-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Using HTTP to Access the AQ XML Servlet
<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlSend xmlns = "http://ns.oracle.com/AQ/schemas/access">
<producer_options>

<destination>OE.OE_NEW_ORDERS_QUE</destination>
</producer_options>

<message_set>
<message_count>1</message_count>
<message>

<message_number>1</message_number>
<message_header>

<correlation>XML_ADT_SINGLE_ENQ</correlation>
<sender_id>

<agent_name>john</agent_name>
</sender_id>

</message_header>
<message_payload>
<ORDER_TYP>

<ORDERNO>100</ORDERNO>
<STATUS>NEW</STATUS>
<ORDERTYPE>NORMAL</ORDERTYPE>
<ORDERREGION>EAST</ORDERREGION>
<CUSTOMER>

<CUSTNO>1001233</CUSTNO>
<CUSTID>JOHN</CUSTID>
<NAME>AMERICAN EXPRESS</NAME>
<STREET>EXPRESS STREET</STREET>
<CITY>REDWOOD CITY</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
<COUNTRY>USA</COUNTRY>

</CUSTOMER>
<PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
<ITEMS>

<ITEMS_ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>

<TITLE>Perl</TITLE>
<AUTHORS>Randal</AUTHORS>
<ISBN>ISBN20200</ISBN>
<PRICE>19</PRICE>

</ITEM>
<SUBTOTAL>190</SUBTOTAL>
Internet Access to Advanced Queuing 17-59

Using HTTP to Access the AQ XML Servlet
</ITEMS_ITEM>
</ITEMS>

<CCNUMBER>NUMBER01</CCNUMBER>
<ORDER_DATE>2000-08-23 0:0:0</ORDER_DATE>

</ORDER_TYP>
</message_payload>

</message>
</message_set>
</AQXmlSend>

</Body>
</Envelope>

4. The client sends an HTTP POST to the servlet at the remote server.

See the $ORACLE_HOME/demo directory for sample code of POST requests
using HTTP.

AQ Servlet Processes a Request Using HTTP
1. The server accepts the client HTTP(S) connection.

2. The server authenticates the user (AQ agent) specified by the client.

3. The server receives the POST request.

4. The AQ servlet is invoked.

If this is the first request being serviced by this servlet, the servlet is
initialized—its init() method is invoked. The init () method creates a
connection pool to the Oracle server using the AQxmlDataSource parameters
(SID, host, port, AQ servlet super-user name, password) provided by the client.

5. The servlet processes the message as follows:

� If this is the first request from this client, a new HTTP session is created.
The XML message is parsed and its contents are validated. If a session ID is
passed by the client in the HTTP headers, then this operation is performed
in the context of that session. This is described in detail in the next section.

� The servlet determines which object (queue and topic) the agent is trying to
perform operations on:

For example, in the client request (step 3 in "AQ Client Request to the AQ
Servlet Using HTTP"), the agent JOHN is trying to access OE.OE_NEW_
ORDERS_QUE.

� The servlet looks through the list of database users that map to this AQ
agent (using the AQ$INTERNET_USERS view). If any one of these db_
17-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Using HTTP to Access the AQ XML Servlet
users has privileges to access the queue/topic specified in the request, the
AQ servlet super-user creates a session on behalf of this db_user .

For example, where the agent JOHN is mapped to the database user OE
using the DBMS_AQADM.ENABLE_DB_ACCESS call, the servlet will create a
session for the agent JOHN with the privileges of database user OE. (See
"Mapping the AQ Agent to Database Users" for information on ENABLE_
DB_ACCESS.)

� A new database transaction is started if no transaction is active in the HTTP
session. Subsequent requests in the session will be part of the same
transaction until an explicit COMMIT or ROLLBACK request is made.

� The requested operation
(SEND/PUBLISH/RECEIVE/REGISTER/COMMIT/ROLLBACK) is
performed.

� The response is formatted as an XML message and sent back the client.

For example, the response for the preceding request may be as follows:

<Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
<Body>

<AQXmlSendResponse xmlns="http://ns.oracle.com/AQ/schemas/access">
<status_response>

<status_code>0</status_code>
</status_response>
<send_result>

<destination>OE.OE_NEW_ORDERS_QUE</destination>
<message_id>12341234123412341234123412341234</message_id>

</send_result>
</AQXmlSendResponse>

</Body>
</Envelope>

� The response also includes the session id in the HTTP headers as a cookie.
For example, Tomcat sends back session IDs as JSESSIONID=239454ds2343.
If the operation does not commit the transaction, the transaction will
remain active until an explicit commit/rollback call is received. The effects
of the transaction are visible only after it is committed. If the transaction
remains inactive for 120 seconds, it is automatically aborted.
Internet Access to Advanced Queuing 17-61

Using HTTP and HTTPS for Advanced Queuing Propagation
User Sessions and Transactions
After a client is authenticated and connects to the AQ servlet, an HTTP session is
created on behalf of the user. The first request in the session also implicitly starts a
new database transaction. This transaction remains open until it is explicitly
committed or aborted. The responses from the servlet includes the session ID in the
HTTP headers as cookies.

If the client wishes to continue work in the same transaction, it must include this
HTTP header containing the session ID cookie in subsequent requests. This is
automatically done by most Web browsers. However, if you are using a Java or C
client to post requests, this has to be done programmatically. An example of a Java
program used to post requests as part of the same session is given in $ORACLE_
HOME/demo directory.

An explicit commit or rollback must be issued to end the transaction. The commit or
rollback requests can also be included as part of other AQ operations (Send,
Publish, Receive, Register).

Each HTTP session has a default timeout of 120 seconds. If the user does not
commit or rollback the transaction in 120 seconds after the last request that session,
the transaction is automatically aborted. This timeout can be modified in the init()
method of the servlet by using setSessionMaxInactiveTime() . See
"Customizing the AQ Servlet" on page 17-65 for more information.

Using HTTP and HTTPS for Advanced Queuing Propagation
Using Advanced Queuing propagation in Oracle9i, you can propagate over HTTP
and HTTPS (HTTP over SSL) instead of Oracle Net Services (formerly Net8). HTTP,
unlike Oracle Net Services, is easy to configure for firewalls.

High-Level Architecture
HTTP AQ propagation uses the infrastructure for Internet access to AQ as its basis.
The background process doing propagation pushes messages to an AQ Servlet that
enqueues them into the destination database, as shown in Figure 17–3.
17-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Using HTTP and HTTPS for Advanced Queuing Propagation
Figure 17–3 HTTP Advanced Queuing Propagation

Since HTTP propagation is different from Net Services in only the transport, most of
the setup is the same as for Net Services propagation. The additional steps and
differences are outlined in the following section.

Setting Up for HTTP Propagation (and the Differences from Net Services
Propagation)
1. The dblink at the source database must be created differently. The connect

string should specify the protocol as HTTP and specify the host and port of the
Web server running the AQ servlet. The username and password of the dblink
will be used for authentication with the Web server/servlet runner.

2. An AQ servlet that connects to the destination database should be deployed.

3. The source database must be enabled for running Java and XML.

The rest of the steps for propagation remain the same. The administrator must use
dbms_aqadm.schedule_propagation to start propagation. Propagation can be
disabled with the dbms_aqadm.disable_propagation_schedule and re-enabled
using dbms_aqadm.enable_propagation_schedule. The background processes, the
job queue processes propagate the messages to the destination database.The job_
queue_processes parameters must be at least 2 for propagation to take place.

Any application can be easily set up to use AQ HTTP propagation without any
change to the existing code, by following steps 1-3. Similarly an application using
AQ http propagation can easily switch back to Net Services propagation just by
re-creating the dblink with a Net Services connection string, without any other
changes.

Setting Up for AQ propagation over HTTP
1. The source database must be created for running Java and XML.

Source
Database

Oracle9i
Server

Oracle9i
Server

AQ Queue

Web
Server

Job queue
process

Destination
Database

AQ QueueAQ
Servlet
Internet Access to Advanced Queuing 17-63

Using HTTP and HTTPS for Advanced Queuing Propagation
2. Create the dblink with protocol as HTTP and the host and port of the Web
server running the AQ servlet, with the username and password for
authentication with the webserver/servlet runner.

For example, if the webserver is running on the machine
webdest.oracle.com and listening for requests on port 8081, then the
connect string of the database is as follows:

(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.com)(PORT=8081))

If SSL is used, then specify HTTPS as the protocol in the connect string.

The database link is created as follows:

create public database link dba connect to john identified by welcome using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.com)(PORT=8081))'
;

Where user john with password welcome is used to authenticate with the Web
server and is also known by the term AQ HTTP agent.

3. You can optionally set a proxy to use for all HTTP requests from the database.
Use the UTL_HTTP.SET_PROXY procedure, as described in Oracle9i Supplied
PL/SQL Packages and Types Reference.

4. If HTTP over SSL is used, then a database wallet must be created for the source
database. The wallet must be open for the duration of propagation. If HTTPS is
used for propagation, communication between the source database and the AQ
servlet is encrypted and the HTTPS server is authenticated with the source
database. The database uses the database link username-password to
authenticate itself with the HTTPS server.

5. Deploy the AQ Servlet.

Create a class AQPropServlet that extends AQxmlServlet as described in [create
the AQ XML Servlet Class]. This servlet must connect to the destination
database. The servlet must be deployed on the Web server in the path
aqserv/servlet.

In Oracle9i, the propagation servlet name and deployment path are fixed; that
is, they must be AQPropServlet and the servlet, respectively.

6. Make sure that the AQ HTTP agent (John) is authorized to perform AQ
operations. This is done at the destination database:

a. Register the AQ agent as follows:

dbms_aqadm.create_aq_agent(agent_name => 'John', enable_http => true);
17-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Customizing the AQ Servlet
b. Map the AQ agent to a database user as follows:

dbms_aqadm.enable_db_access(agent_name =>'John', db_username =>'CBADM')'

7. Start propagation at the source site by calling:

dbms_aqdm.schedule_propagation.
dbms_aqadm.schedule_propagation('src_queue', 'dba');

Using SMTP to Access the AQ Servlet
The general procedure for an AQ client to make a request to the AQ servlet using
SMTP is as follows:

1. The client creates a message with the AQ XML client request. The client signs
the message with its private key using the Oracle S/MIME toolkit.

2. The client names the message with a substring, IDAP_MESSAGE, and sends it as
a binary attachment to the database e-mail address.

3. The e-mail server receives the message.

4. The e-mail server triggers the rule registered for the database e-mail address,
which does the following:

a. Connects to the LDAP server and retrieves the certificate of the sending AQ
agent

b. Verifies the signature of the message

c. Connects to the Web server as user ORACLE_SMTP_AGENT if authentication
succeeds, and sends an HTTP POST message containing the client request

The procedure for the AQ servlet to process a request is described in "AQ Servlet
Processes a Request Using HTTP" on page 17-60. When the servlet sends a response,
the e-mail server sends an e-mail message containing the XML response to the
address specified in the reply-to field of the original e-mail message.

Customizing the AQ Servlet
The oracle.AQ.xml.AQxmlServlet provides the API to set the connection pool size,
session timeout, style sheet, and callbacks before and after AQ operations.
Internet Access to Advanced Queuing 17-65

Customizing the AQ Servlet
Setting the Connection Pool Size
The AQ data source is used the specify the backend database to which the servlet
connects to perform AQ operations. It contains the database SID, host name, listener
port and the username/password of the AQ servlet super-user.

The data source is represented by the AQxmlDataSource class, which can be set
using the setAQDataSource method in the servlet. See the Oracle9i Supplied Java
Packages Reference for more information.

The AQ data source creates a pool of connections to the database server. By default
the maximum size of the pool is set to 50 and the minimum is set to 1. The number
of connections in the pool grows and shrinks dynamically based on the number of
incoming requests. If you want to change the maximum limit on the number of
connections, you must specify a cache size using the
AQxmlDataSource.setCacheSize(size) method.

Setting the Session Timeout
After a client is authenticated and connects to the AQ servlet, an HTTP session is
created on behalf of the user. The first request in the session also implicitly starts a
new database transaction. This transaction remains open until it is explicitly
committed or aborted.

Each HTTP session has a default timeout of 120 seconds. If the user does not
commit or rollback the transaction in 120 seconds after the last request that session,
the transaction is automatically aborted. This timeout can be specified in the init()
method of the servlet by using setSessionMaxInactiveTime() method.

The servlet is initialized as follows:

public class AQTestServlet extends oracle.AQ.xml.AQxmlServlet
{

/* The init method must be overloaded to specify the AQxmlDataSource */
public void init()
{

AQxmlDataSource db_drv = null;

try
{

/* Create data source with username, password, sid, host, port */
db_drv = new AQxmlDataSource("AQADM", "AQADM",

"test_db", "sun-248", "5521");

/* Set the minimum cache size to 10 connections */
17-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Customizing the AQ Servlet
db_drv.getCacheSize(10);

this.setAQDataSource(db_drv);

/* Set the transaction timeout to 180 seconds */
this.setSessionMaxInactiveTime(180);

}
catch (Exception ex)
{

System.out.println("Exception in init: " + ex);
}

}

Setting the Style Sheet for All Responses from the Servlet
The AQ servlet sends back responses in XML. The servlet administrator can specify
a style sheet that is to be set for all responses sent back from this servlet. This can be
done by invoking the setStyleSheet(type,href) or the
setStyleSheetProcessingInstr(proc_instr) in init() method of the
servlet.

For example, to include the following style sheet instruction for all responses, do
the following:

<?xml-stylesheet type="text/xsl"
href="http://sun-248/stylesheets/bookOrder.xsl"?>

The servlet is initialized as follows:

public class AQTestServlet extends oracle.AQ.xml.AQxmlServlet
{

/* The init method must be overloaded to specify the AQxmlDataSource */
public void init()
{

AQxmlDataSource db_drv = null;

try
{

/* Create data source with username, password, sid, host, port */
db_drv = new AQxmlDataSource("AQADM", "AQADM",

"test_db", "sun-248", "5521");

this.setAQDataSource(db_drv);

/* Set the bookOrder.xsl style sheet for all responses */
Internet Access to Advanced Queuing 17-67

Customizing the AQ Servlet
setStyleSheet("text/xsl",
"http://sun-248:8000/stylesheets/bookOrder.xsl");

}
catch (Exception ex)
{

System.out.println("Exception in init: " + ex);
}

}

Callbacks Before and After AQ Operations
Using the AQ servlet, you can register callbacks that will be invoked before and
after AQ operations are performed. This allows users to perform AQ and non-AQ
operations in the same transaction.

To receive callbacks, users register an object that implements the
oracle.AQ.xml.AQxmlCallback interface. The AQxmlCallback interface has
the following methods:

public interface AQxmlCallback
{

/** Callback invoked before any AQ operations are performed by the servlet */
public void beforeAQOperation(HttpServletRequest request,HttpServletResponse

response,
AQxmlCallbackContext ctx);

/** Callback invoked after any AQ operations are performed by the servlet */
public void afterAQOperation(HttpServletRequest request, HttpServletResponse

response,
AQxmlCallbackContext ctx);

}

The callbacks are passed in the HTTP request and response streams and an
AQxmlCallbackContext object. The object has the following methods:

� The java.sql.Connection getDBConnection() method gives a handle
to the database connection that is used by the servlet for performing AQ
operations. Users can perform other SQL operations in the callback functions
using this connection object.

� Note that you cannot call close(), commit() or rollback() methods
on this connection object.

� org.w3c.org.Document parseRequestStream() gives a DOM document
representing the parsed request stream.
17-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Customizing the AQ Servlet
� The void setStyleSheet(String type,String href) method allows
the user to set the style sheet for a particular call. So instead of specifying a
single style sheet for all responses from this servlet, users can set style sheets for
specific responses.

The style sheet specified in the callback overrides the style sheet (if any)
specified for the servlet in the init() method

Example
Before any AQ operation in the servlet, you want to insert a row in the EMP table.
Do this by creating a callback class and associating it with a particular servlet as
follows:

import javax.servlet.*;
import javax.servlet.http.*;
import oracle.AQ.xml.*;
import java.sql.*;
import javax.jms.*;

/**
* This is a sample AQ Servlet callback
*/

public class TestCallback implements oracle.AQ.xml.AQxmlCallback
{

/** Callback invoked before any AQ operations are performed by the servlet */
public void beforeAQOperation(HttpServletRequest request,HttpServletResponse

response,
AQxmlCallbackContext ctx)

{
Connection conn = null;
System.out.println("Entering BeforeAQ Callback ...");

try
{

// Get the connection object from the callback context
conn = ctx.getDBConnection();

// Insert value in the EMP table
PreparedStatement pstmt =
conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (100,

’HARRY’)");
pstmt.execute ();
pstmt.close();
Internet Access to Advanced Queuing 17-69

Customizing the AQ Servlet
}
catch (Exception ex)
{

System.out.println("Exception ex: " + ex);
}

}

/** Callback invoked after any AQ operations are performed by the servlet */
public void afterAQOperation(HttpServletRequest request, HttpServletResponse

response,
AQxmlCallbackContext ctx)

{
System.out.println("Entering afterAQ Callback ...");

try
{

// Set style sheet for response
ctx.setStyleSheetProcessingInstr(

"type='text/xsl href='http://sun-248/AQ/xslt23.html'");

}
catch (Exception aq_ex)
{

System.out.println("Exception: " + ex);

}
}

}

/* Sample AQ servlet - using user-defined callbacks */
public class AQTestServlet extends oracle.AQ.xml.AQxmlServlet
{

/* The init method must be overloaded to specify the AQxmlDataSource */
public void init()
{

AQxmlDataSource db_drv = null;
AQxmlCallback serv_cbk = new TestCallback();

try
{

/* Create data source with username, password, sid, host, port */
db_drv = new AQxmlDataSource("AQADM", "AQADM", "test_db", "sun-248",

"5521");
17-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Customizing the AQ Servlet
this.setAQDataSource(db_drv);

/* Set Callback */
setUserCallback(serv_cbk);

}
catch (Exception ex)
{

System.out.println("Exception in init: " + ex);
}

}

Internet Access to Advanced Queuing 17-71

Customizing the AQ Servlet
17-72 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging G
18

Messaging Gateway

Messaging Gateway, an Oracle9i Advanced Queuing feature, enables
communication between applications based on non-Oracle messaging systems and
Oracle's Advanced Queuing (AQ) feature. Advanced Queuing provides the
propagation between two AQ queues to enable e-business (HTTP via IDAP).
Messaging Gateway extends that propagation to legacy applications based on
non-Oracle messaging systems.

Because Messaging Gateway is integrated with Advanced Queuing and Oracle9i, it
offers fully transactional and secure message delivery. Messaging Gateway
guarantees that messages are delivered once and only once between AQ and
non-Oracle messaging systems that support persistence. The AQ-like PL/SQL
interface provides an easy-to-learn administrative API, especially for developers
already proficient in using AQ.

This release of Messaging Gateway supports the integration of Oracle9i Advanced
Queuing with IBM MQSeries 5.1- and MQSeries 5.2-based applications.

This chapter discusses the following topics:

� Messaging Gateway Functionality

� Messaging Gateway Architecture

� Propagation Processing Overview

� Setting Up Messaging Gateway

� Working with Messaging Gateway

� Converting Messages

� The mgw.ora Initialization File
ateway 18-1

Messaging Gateway Functionality
Messaging Gateway Functionality
Messaging Gateway provides the following functionality:

� Extends AQ message propagation

Messaging Gateway propagates messages between Advanced Queuing and
non-Oracle messaging systems. Messages sent by Advanced Queuing
applications can be received by non-Oracle message system applications.
Conversely, messages published by non-Oracle message system applications
can be consumed by Advanced Queuing applications.

� Native message format support

Messaging Gateway supports the native message formats of messaging
systems. AQ messages can have RAW or any ADT payload. MQSeries messages
can be TEXT or byte messages of any type. This enables integration of existing
applications of messaging systems.

� Message conversion

Messaging Gateway facilitates message conversion between AQ messages and
non-Oracle message system messages. Messages are converted through either
automatic message conversion routines provided by Messaging Gateway or
customized message transformation functions that you provide.

� Integration with the Oracle database

Messaging Gateway is managed through an AQ-like PL/SQL interface.
Configuration information is stored in Oracle database tables. Message
propagation is carried out by an external process of the Oracle database server.

� Guaranteed message delivery

Messaging Gateway guarantees that persistent messages are propagated exactly
once if both the message system at the propagation source and the message
system at the propagation destination support transactions.

If messages are not persistent or the transaction is not supported by the
messaging systems at the propagation source and propagation destination,
at-most-once propagation is guaranteed.

� Security support

Messaging Gateway supports client authentication of Oracle database and
non-Oracle messaging systems.
18-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Architecture
For Oracle database administrators to control access to the tables, views, and
procedures created by the gateway, Messaging Gateway defines two roles, MGW_
ADMINISTRATOR_ROLE and MGW_AGENT_ROLE, for gateway administration and
propagation processing. Refer to "Loading Database Objects into the Database" on
page 18-7, "Creating a Messaging Gateway Administration User" on page 18-11, and
"Creating a Messaging Gateway Agent User" on page 18-11.

Messaging Gateway Architecture
Messaging Gateway has the following main components: an administration
package named DBMS_MGWADM for gateway configuration and management, and a
gateway agent that processes propagation, as shown in Figure 18–1. The gateway
agent consists of a propagation engine and a set of drivers that communicate with
non-Oracle messaging systems.

Figure 18–1 Messaging Gateway Architecture

Administration Package
The Messaging Gateway administration package, DBMS_MGWADM, provides an
interface for gateway administrators to manage the gateway agent, set up
propagation, and monitor propagation processing.

Propagation
Engine

MQ
Driver

MQSeries MQSeries

AQ Messaging
System Link

Messaging
System Link

Messaging
Gateway Agent

table

table

Oracle 9 i

Messaging
Gateway Administration

PL/SQL Interface

JDBC
Messaging Gateway 18-3

Messaging Gateway Architecture
Through the administration package, you configure the gateway agent with the
proper user name, password, and database connect string of the Oracle database in
order for the agent to create connections to the database. You can also call
procedures in the package to assign the maximum number of database connections
and the size of the memory heap to the agent.

For the gateway agent to propagate messages to and from a non-Oracle messaging
system, a messaging system link, which represents a communication channel
between the agent and the non-Oracle messaging system, must be created using the
administration package. Multiple messaging system links can be configured in the
agent.

All non-Oracle queues that are involved in propagation must be registered using
the administration package. Registering a non-Oracle queue in the gateway
configuration does not create the physical queue in the non-Oracle messaging
system, but only records information about the queue, such as the messaging
system link to access it, its native name, and its domain (queue or topic). The
physical queue must be created through the administration interfaces of the
non-Oracle messaging system.

With messaging system links and non-Oracle queues configured, you can create
propagation jobs to set up message propagation. A propagation job in Messaging
Gateway consists of a propagation subscriber and a propagation schedule. A
propagation subscriber is created to define the source queue and the destination
queue of a propagation job. You manipulate the propagation schedule associated
with the propagation job to control when the propagation job is processed.

Messaging Gateway provides database views for gateway administrators to query
and check the current configuration information, the gateway agent running status,
and the propagation job status and statistics.

Gateway configuration can be changed independent of whether the gateway agent
is running or shut down. If the agent is running, the administration procedures
send notifications to the agent for configuration changes. The agent will
dynamically alter its configuration for most configuration changes, although some
require that the agent be shut down and restarted before they take effect. All the
procedures in the administration package are serialized to guarantee that the
gateway agent receives notifications for the configuration changes in the same order
they are made.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information on DBMS_MGWADM
18-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Processing Overview
Gateway Agent
The gateway agent schedules and processes propagation jobs. The agent executes in
an external process of the Oracle database server. The agent is started and
terminated by calling the STARTUP and SHUTDOWN procedures in the
administration package. Like all external processes of Oracle database server, the
agent runs only when the database server that it resides in is up and running.

The agent contains a propagation engine and a set of drivers for the non-Oracle
messaging systems. The multithreaded propagation engine fairly schedules
propagation jobs and provides parallel interjob and intrajob propagation
processing. A polling thread in the agent periodically polls the source queues of
enabled propagation jobs and wakes up worker threads to process propagation jobs
if messages are available. The drivers in the gateway agent are instantiated when
messaging links are created. The drivers run as clients of messaging systems for all
messaging operations.

The agent writes log messages into its log files, which contain information about
agent configuration, agent status, actions taken by the agent upon receiving
dynamic notifications, status of propagation jobs, and all error messages.

Propagation Processing Overview
You create propagation jobs to set up message propagation. A propagation job
conceptually consists of a propagation subscriber and a propagation schedule.

After a propagation subscriber is created, the gateway creates a subscription on the
propagation source if the source is a topic (publish-subscribe). The gateway moves
all messages that are published to the topic after the subscriber is created. If the
propagation source is a point-to-point queue, the gateway moves all messages in
the queue to the destination.

A propagation job is not processed until an associated propagation schedule is
created. The gateway agent processes enabled propagation jobs. Disabling a
propagation job stops the transfer of messages from the source queue to the
destination queue, but does not stop subscription.

When a propagation job is processed, messages are dequeued in priority order from
the source queue and enqueued to the destination queue. If a message fails to be
converted from the source format to the destination format, the message is moved
to the exception queue. Messages that have expired in a propagation source queue
are not propagated to the destination queue.
Messaging Gateway 18-5

Setting Up Messaging Gateway
Using Messaging Gateway, you can specify a propagation message selector for a
propagation job if the source messaging system of the propagation job supports
message selectors. Only messages satisfying the message selector are propagated.

If a propagation job runs into failures during processing, the agent retries up to 16
times in an exponential backoff scheme before disabling the job.

When a message is propagated, it is converted from its native format in the source
messaging system to its native format in the destination messaging system. The
gateway provides automatic message conversions between simple and commonly
used message formats. You can provide your own message transformation
functions for customized message conversions.

Setting Up Messaging Gateway
This section describes the steps for loading and setting up Messaging Gateway.

Oracle9 i Database Prerequisites
In the init<sid>.ora file, where <sid> is the Oracle system ID of the database
instance used for Messaging Gateway, the following parameters must be specified:

� At least one job queue process must be specified:

JOB_QUEUE_PROCESSES = <num_of_processes>

� At least one AQ time monitoring process must be specified:

AQ_TM_PROCESSES = <num_of_processes>

Non-Oracle Messaging System Prerequisites
Install the non-Oracle messaging system before loading and setting up Messaging
Gateway. Messaging Gateway uses the shared libraries and Java class files of the
non-Oracle system.

Loading and Setup Tasks
You must do the following procedures before Messaging Gateway can run. These
tasks apply to both Unix and Windows NT, except where "Windows NT Only" or
"Unix Only" is indicated.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
information on DBMS_TRANSFORM
18-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting Up Messaging Gateway
1. Loading Database Objects into the Database

2. Modifying listener.ora for the External Procedure

3. Modifying tnsnames.ora for the External Procedure

4. Modifying the mgw.ora Initialization File

5. Creating a Messaging Gateway Administration User

6. Creating a Messaging Gateway Agent User

7. Configuring Messaging Gateway Connection Information

Loading Database Objects into the Database
Using SQL*Plus, run catmgw.sql , located in the $ORACLE_HOME/mgw/admin
directory. Run as user: SYS as SYSDBA.

The SQL script catmgw.sql loads the necessary database objects for Messaging
Gateway, including roles, tables, views, object types, and the PL/SQL packages. It
creates public synonyms for Messaging Gateway PL/SQL packages and types. It
creates two roles, MGW_ADMINISTRATOR_ROLE and MGW_AGENT_ROLE, with
certain privileges granted. It also creates a library alias for the agent's external
procedure. All objects are owned by SYS.

Modifying listener.ora for the External Procedure
Windows NT Only: You can ignore this step. Static service information for the
listener is not necessary on Windows NT.

You must modify listener.ora so that the Messaging Gateway PL/SQL package
can call the external procedure.

1. In listener.ora , verify that the default IPC protocol address for the external
procedures is set.

Protocol Address for the External Procedure: Example
LISTENER = (ADDRESS_LIST=
(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC))

.

.

.

2. In listener.ora , add static service information for the listener in step 1. This
involves setting a SID_DESC for the listener. Within the SID_DESC, the
Messaging Gateway 18-7

Setting Up Messaging Gateway
following parameters are important to Messaging Gateway and must be
specified according to your own situation.

a. SID_NAME: provide the SID that is specified in the net service name in
tnsnames.ora, for example, "mgwextproc".

b. ORACLE_HOME: provide your ORACLE_HOME directory.

c. PROGRAM: provide the name of the external procedure agent, which is
"extproc".

d. ENVS: set up the LD_LIBRARY_PATH environment needed for the external
procedure to run.

The LD_LIBRARY_PATH must contain the following paths:

[ORACLE_HOME]/jdk/jre/lib/[PLATFORM_TYPE]

[ORACLE_HOME]/lib

Replace the bracketed item with the appropriate, spelled-out value (using
$ORACLE_HOME does not work, for example). PLATFORM_TYPE is your
platform type, for example, sparc .

Example 5 Adding Static Service Information for the Listener: Example
Add a SID_DESC
SID_LIST_LISTENER= (SID_LIST=
(SID_DESC =

(SID_NAME= mgwextproc)
(ENVS="LD_LIBRARY_PATH=/private/oracle/orcl9i/jdk/jre/lib/

sparc:/private/oracle/orcl9i/lib")
(ORACLE_HOME=/private/oracle/orcl9i)
(PROGRAM = extproc))

.

.

.

Modifying tnsnames.ora for the External Procedure
Windows NT Only: You can ignore this step.

For the external procedure, configure a net service name MGW_AGENT in
tnsnames.ora whose connect descriptor matches the information configured in
listener.ora . The net service name must be MGW_AGENT (this value is fixed).
The KEY value must match the KEY value specified for the IPC protocol in
listener.ora . The SID value must match the value specified for SID_NAME of
the SID_DESC entry in listener.ora .
18-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting Up Messaging Gateway
Modifying tnsnames.ora: Example
MGW_AGENT =
(DESCRIPTION=

(ADDRESS_LIST= (ADDRESS= (PROTOCOL=IPC)(KEY=EXTPROC)))
(CONNECT_DATA= (SID=mgwextproc) (PRESENTATION=RO)))

Modifying the mgw.ora Initialization File
The Messaging Gateway initialization file $ORACLE_HOME/mgw/admin/mgw.ora
is a TEXT file that the gateway external procedure uses to get initialization
parameters to start the agent. Copy $ORACLE_HOME/mgw/admin/sample_
mgw.ora to mgw.ora and modify it according to your situation.

The following procedure sets environment variables and other parameters:

1. Set environment variables for the external procedure to start the gateway agent.

a. Set the following environment variables:

Unix Only: Set LD_LIBRARY_PATH. Replace the brackets with
appropriate, spelled-out values (using $ORACLE_HOME does not work, for
example). PLATFORM_TYPE is your platform type, for example, sparc .

LD_LIBRARY_PATH must contain at least the following paths:

* [ORACLE_HOME]/jdk/jre/lib/[PLATFORM_TYPE]

* [ORACLE_HOME]/rdbms/lib

* [ORACLE_HOME]/oracle/lib

* [ORACLE_HOME]/mgw/lib

* Any additional libraries needed for the Messaging Gateway agent to
access non-Oracle messaging systems, for example, the MQSeries
libraries must be included in LD_LIBRARY_PATH.

Windows NT Only: Set the MGW_PRE_PATH variable. Its value is the path
to the jvm.dll library. For JDK resources, use the JDK package under
%ORACLE_HOME%. For example, if %ORACLE_HOME% is D:\oracle, then
add a line such as:

set MGW_PRE_PATH = D:\oracle\jdk\jre\bin\classic

This varible is prepended to the path inherited by the Messaging Gateway
agent process.
Messaging Gateway 18-9

Setting Up Messaging Gateway
b. Set CLASSPATH. (Windows NT users must set CLASSPATH using Windows
NT path syntax.)

CLASSPATH must contain at least the following. Replace the brackets with
appropriate, spelled-out values (using $ORACLE_HOME does not work, for
example).

* Messaging Gateway classes:

[ORACLE_HOME]/mgw/classes/mgw.jar

* JDK internationalization classes: [ORACLE_
HOME]/jdk/jre/lib/i18n.jar

* JDK runtime classes: [ORACLE_HOME]/jdk/jre/lib/rt.jar

* Oracle JDBC classes: [ORACLE_HOME]/jdbc/lib/classes12.zip

* Oracle internationalization classes: [ORACLE_HOME]/jdbc/lib/nls_
charset12.zip

* [ORACLE_HOME]/sqlj/lib/translator.zip

* [ORACLE_HOME]/sqlj/lib/runtime12.zip

* Any additional classes needed for Messaging Gateway to access
non-Oracle messaging systems, for example, MQSeries classes

2. Set the log_directory and log_level parameters.

Setting these parameters is not required. They influence the logging of
Messaging Gateway. If they are not set, the default values are used. For log_
directory , the default value is $ORACLE_HOME/mgw/log. For log_level ,
the default value is 0 for basic logging.

3. Set the oracle_sid parameter.

Set the oracle_sid parameter in mgw.ora to avoid providing the database
connect string when configuring Messaging Gateway connection information.
Refer to "Configuring Messaging Gateway Connection Information" on
page 18-11.

The mgw.ora File: Example
#an example of mgw.ora file
log_directory=/private/mgwlog
log_level=2
set CLASSPATH=<proper value>
set LD_LIBRARY_PATH=<proper value>
18-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Setting Up Messaging Gateway
Creating a Messaging Gateway Administration User
To perform gateway administration work, a database user with MGW_
ADMINISTRATOR_ROLE privileges must be created.

Creating an Administration User: Example
CREATE USER <admin_user> IDENTIFED BY <admin_password>;
GRANT CONNECT, RESOURCE to <admin_user>;
GRANT MGW_ADMINISTRATOR_ROLE to <admin_user>;

Creating a Messaging Gateway Agent User
To establish the gateway agent’s connection back to the database, a database user
with MGW_AGENT_ROLE privileges must be created.

Creating an Agent User: Example
CREATE USER <agent_user> IDENTIFED BY <agent_password>;
GRANT CONNECT, RESOURCE to <agent_user>;
GRANT MGW_AGENT_ROLE to <agent_user>;

Configuring Messaging Gateway Connection Information
After the agent user is created, the administration user uses DBMS_MGWADM.DB_
CONNECT_INFO to configure Messaging Gateway with the user name, password,
and database connect string used by the gateway agent to connect back to database.
Use the agent user name and password that are created in "Creating an Agent User:
Example" on page 18-11. The database connect string parameter can be set to either
a new service name in tnsnames.ora (with IPC protocol for better performance)
or null. If null, the oracle_sid parameter must be set in mgw.ora .

For release 9.2, always specify a nonnull value for the database connect string
parameter when calling DBMS_MGW_DB_CONNECT_INFO().

Using DBMS_MGWADM.DB_CONNECT_INFO: Example
connect <admin_user>/<admin_password>
exec dbms_mgwadm.db_connect_info('<agent_user>','<agent_password>', '<agent_
database>');

Setup Verification
The following procedure verifies the installation and includes a simple startup and
shutdown of the Messaging Gateway agent.
Messaging Gateway 18-11

Working with Messaging Gateway
1. Start the database listeners.

Start the listener for the external procedure and other listeners for the regular
database connection.

2. Test the database connect string for the gateway agent user.

Run sqlplus <agent_user>/<agent_password>@<agent_database >.

 If successful, the gateway agent is able to connect to the database.

3. Start the gateway agent.

a. Connect as <admin_user> and call DBMS_MGWADM.STARTUP to start the
gateway agent.

b. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to
RUNNING and AGENT_PING to change to REACHABLE.

4. Shut down the gateway agent.

a. Connect as <admin_user> and call DBMS_MGWADM.SHUTDOWN.

b. Using the MGW_GATEWAY view, wait for AGENT_STATUS to change to NOT_
STARTED.

Unloading Messaging Gateway
To unload Messaging Gateway, do the following:

1. Shut down Messaging Gateway.

2. Remove any user-created queues whose payload is a Messaging Gateway
canonical type (for example, MGW_BASIC_MSG_T).

3. Using SQL*Plus, as user SYS as SYSDBA, run catnomgw.sql , located in the
$ORACLE_HOME/mgw/admin directory.

This drops the database objects used by Messaging Gateway, including the
roles, tables, views, packages, object types, and synonyms.

4. Remove entries for Messaging Gateway created in listener.ora and
tnsnames.ora .

Working with Messaging Gateway
After Messaging Gateway is loaded and set up, it is ready to be configured and run.
This chapter describes how to configure, start, and stop Messaging Gateway. It also
18-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
describes how to monitor the Messaging Gateway agent. An example configuration
is provided to illustrate propagating messages from an AQ queue with payload
type RAW to an MQSeries queue. All commands in the examples must be run as a
user who has been granted MGW_ADMINISTRATOR_ROLE, except for the commands
to create transformations.

Managing the Messaging Gateway Agent
The Messaging Gateway agent runs as a process external to the database. To access
Advanced Queuing and the Messaging Gateway administration packages, the
Messaging Gateway agent needs to establish connections back to the database.

Before starting, configuration information must be registered, including information
used to connect to the database and set resource limits.

Configuration
The DBMS_MGWADM.DB_CONNECT_INFO procedure is used to configure Messaging
Gateway with the name and password of the user that the Messaging Gateway
agent will use for database connections, and the database connect string used to
make the connection. The user must have been granted MGW_AGENT_ROLE before
the Messaging Gateway agent can be started. If the database connect string is not
specified, local connections are used by the Messaging Gateway agent.

You can also call DBMS_MGWADM.DB_CONNECT_INFO to set new connection
information when the Messaging Gateway agent is running.

Setting New Connection Information: Example
SQL> exec dbms_mgwadm.db_connect_info(‘mgwagent’, ‘mgwagent_password’,
‘mydatabase’)

The maximum number of connections in a connection pool available for the
Messaging Gateway agent to connect to the database and the heap size, in
megabytes, of the Messaging Gateway agent process can be set using DBMS_
MGWADM.ALTER_AGENT. The number of connections in the connection pool can
impact performance. The default values are 1 connection and 64 MB of memory.

The following sets the number of database connections to 2 and the heap size to
64M.

SQL> exec dbms_mgwadm.alter_agent(2, 64)

You can alter the maximum number of connections when the Messaging Gateway
agent is running, but the value can only be increased. The maximum memory
Messaging Gateway 18-13

Working with Messaging Gateway
cannot be altered when Messaging Gateway is running. Entering a value of NULL
does not alter the maximum memory attribute.

The following example, when executed with the Messaging Gateway agent
running, updates the maximum number of connections to 3. The maximum
memory is unchanged.

SQL> exec dbms_mgwadm.alter_agent(3, NULL)

Startup and Shutdown
After Messaging Gateway is installed and configured, start it as follows:

SQL> exec dbms_mgwadm.startup

You can determine the status of the Messaging Gateway agent by using the MGW_
GATEWAY view and by monitoring the log file. Refer to "Monitoring the Messaging
Gateway Log File" on page 18-26.

Monitor the Messaging Gateway agent using the MGW_GATEWAY view as follows:

SQL> select * from mgw_gateway;

AGENT_STATUS AGENT_PING AGENT_JOB AGENT_USER AGENT_DATABASE LAST_ERRO
--
RUNNING REACHABLE 213 MGWAGENT

(Continued) LAST_ERR LAST_ERROR_MSG MAX_CONNECTIONS MAX_MEMORY

3 64

When Messaging Gateway has completed initialization, the AGENT_STATUS
column shows the value RUNNING and the AGENT_PING column shows the value
REACHABLE.

The first column, AGENT_STATUS, shows the status of the gateway agent. This
column has the following possible values: NOT_STARTED, START_SCHEDULED,
INITIALIZING , STARTING, RUNNING, and SHUTTING_DOWN. The second column,
AGENT_PING, pings the Messaging Gateway agent. Its value is either REACHABLE
or UNREACHABLE. The columns LAST_ERROR_MSG, LAST_ERROR_DATE, and
LAST_ERROR_TIME give valuable information if an error in starting or running the
Messaging Gateway agent occurs.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference,
DBMS_MGWADM,for database view information
18-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
The following command shuts down the Messaging Gateway agent:

SQL> exec dbms_mgwadm.shutdown

When Messaging Gateway completes the shutdown procedure, the AGENT_STATUS
column indicates NOT_STARTED.

By monitoring the MGW_GATEWAY view and the log file, you can determine the
success of the shutdown procedure. If problems occur during shutdown or
unexpected events occur that leave the Messaging Gateway administration in an
inconsistent state, you can reset status information, as follows:

SQL> exec dbms_mgwadm.cleanup_gateway(dbms_gmwadm.CLEAN_STARTUP_STATE)

The Messaging Gateway agent process must not be running when this command is
executed.

Configuring Messaging Gateway Links
You can use SQL scripts to configure Messaging Gateway, as illustrated in the
following script examples. Full examples are found in the samples directory of the
Messaging Gateway installation.

Creating a Messaging Gateway Link
A Messaging Gateway link is a set of connection information to a non-Oracle
messaging system. It is used whenever a connection is needed for either messaging
or administrative work.

You can set the following information for a link to an MQSeries queue manager: the
queue manager name, channel, host, port, username, and password for an
MQSeries client connection. Log queues for inbound or outbound propagation must
also be set for use by the Messaging Gateway agent in guaranteeing exactly-once
delivery. The two queues can refer to the same physical queue, but better
performance is achieved if they refer to different physical queues.

An options argument, a set of {name, value} pairs, both of which are strings,
represents arguments specific to a non-Oracle messaging system interface. For
MQSeries-recognized property names, these include:

� ‘MQ_ccsid’ for the corresponding MQEnvironment.CCSID property

� ‘MQ_SendExit’ for MQEnvironment.SEND_EXIT

� ‘MQ_ReceiveExit’ for MQEnvironment.RECEIVE_EXIT
Messaging Gateway 18-15

Working with Messaging Gateway
� ‘MQ_SecurityExit’ for MQEnvironment.SECURITY_EXIT

The following example configures a Messaging Gateway link to an MQSeries queue
manager. The link is named ‘mqlink’ and is configured to use the MQSeries
queue manager ‘my.queue.manager’ on host ‘myhost.mydomain’ and port
1414 , using MQSeries channel ‘mychannel’ . This example also uses the options
parameter to register an MQSeries SendExit class. The class ’mySendExit’ must
be in the classpath of the Messaging Gateway agent (set in the mgw.ora file). Refer
to "Modifying the mgw.ora Initialization File" on page 18-9 for information on
setting the classpath of the Messaging Gateway agent.

declare
v_options sys.mgw_properties;
v_prop sys.mgw_mqseries_properties;

begin
-- Set options.
-- Specify an MQSeries send exit class ‘mySendExit’ to be associated with the

queue.
v_options := sys.mgw_properties(sys.mgw_property('MQ_SendExit', 'mySendExit’')

);

-- set certain MQSeries properties used for MQSeries
v_prop := sys.mgw_mqseries_properties.construct();

v_prop.max_connections := 1;
v_prop.username := 'mqm'; -- username given to queue manager
v_prop.password := 'mqm'; -- password given to queue manager
v_prop.hostname := 'myhost.mydomain' -- hostname for queue manager host
v_prop.port := 1414; -- port (1414 is MQSeries default)
v_prop.channel := 'mychannel'; -- MQSeries channel name
v_prop.outbound_log_queue := 'mylogq'; -- name of MQSeries queue to be

-- used for MGW logging on
-- outbound jobs.

v_prop.queue_manager := 'my.queue.manager'; -- queue manager name

dbms_mgwadm.create_msgsystem_link(
linkname => 'mqlink', -- link name
properties => v_prop, -- MQSeries driver properties
options => v_options); -- options

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference,
DBMS_MGWADM, for information on MQSeries system properties
and supported options
18-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
end;

Messaging Gateway does not impose a restriction on the number of links that you
can configure.

Altering a Messaging Gateway Link
Some link information can be altered. For an MQSeries link, the max_
connections , username , password , inbound_log_queue , and outbound_
log_queue properties can be altered after creation. In the following example, the
‘mqlink’ link created in "Creating a Messaging Gateway Link" is altered so that
the max_connections and password properties are changed.

If the type of a property is VARCHAR2, a value of DBMS_MGWADM.NO_CHANGE leaves
the property unchanged. For properties of other types, a value of NULL leaves the
property unchanged. Use the mgw_mqseries_properties.alter_construct
function when altering an MQSeries link. This sets the appropriate values
automatically. Then set the values that need to be changed.

declare
v_options sys.mgw_properties;
v_prop sys.mgw_mqseries_properties;

begin

-- Alter certain MQSeries properties used for MQSeries.
v_prop := sys.mgw_mqseries_properties.alter_construct();

v_prop.max_connections := 2; -- max_connections increased
v_prop.password := ‘newpasswd'; -- change password given to queue manager

dbms_mgwadm.alter_msgsystem_link(
linkname => 'mqlink', -- link name
properties => v_prop, -- MQSeries driver properties

-- options will not be changed
comment => ‘link to queue manager, my.queue.manager. on my.host ‘);

-- add comment
end;

You can alter link information when the Messaging Gateway agent is running or
when it is not.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference,
DBMS_MGWADM, for restrictions on changes when the Messaging
Gateway agent is running
Messaging Gateway 18-17

Working with Messaging Gateway
Removing a Messaging Gateway Link
You can remove a Messaging Gateway link to a non-Oracle messaging system only
if all registered queues associated with this link have already been removed.

begin
dbms_mgwadm.remove_msgsystem_link(‘mqlink’);

end;
The link can be removed whether or not the Messaging Gateway agent is running.

Monitoring the Status of a Messaging Gateway Link
The MGW_LINKS view can be used to check which links have been configured. It
lists the name and link type (which non-Oracle messaging system it applies to). To
check configured link information, non-Oracle messaging system-specific views are
available. For MQSeries, the MGW_MQSERIES_LINKS view has columns for most
configurable information.

Checking Link Information: Example
SQL> select * from MGW_LINKS;

LINK_NAME LINK_TYPE LINK_COMMENT

MQLINK MQSERIES

SQL> select link_name, queue_manager, channel, hostname from MGW_MQSERIES_LINKS;

LINK_NAME QUEUE_MANAGER CHANNEL HOSTNAME
--
MQLINK my.queue.manager mychannel myhost.mydomain

Registering Non-Oracle Messaging System Queues
All non-Oracle messaging system queues involved in propagation must be
registered through the Messaging Gateway administration interface. Messaging
Gateway does not create non-Oracle queues; it only uses the configured information
to access them.

Registering a Non-Oracle Queue
The following information is used to register a non-Oracle queue:

� The Messaging Gateway link name used to connect to the non-Oracle
messaging system
18-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
� The native name of the non-Oracle queue (its name in the non-Oracle
messaging system)

� Whether it is a queue (point-to-point) or topic (publish-subscribe)

� A set of options specific to the non-Oracle messaging system. These options are
a set of {name, value} pairs, both of which are strings.

For MQSeries the only option is ‘MQ_openOptions’ . This property corresponds
to the openOptions argument of the MQSeries Base Java
MQQueueManager.accessQueue method. If not specified, the value of
openOptions defaults to MQC.MQOO_OUTPUT on enqueue and MQC.MQOO_
INPUT_SHARED on dequeue.

-- Registering non-Oracle queue
--
declare

v_options sys.mgw_properties;
begin

-- No options set for this foreign queue. Below is a sample of how one would
be set.

-- v_options := sys.mgw_properties(sys.mgw_property(‘MQ_openOptions’,
‘2066’));

-- Register the queue
dbms_mgwadm.register_foreign_queue(

name => 'destq', -- MGW non-Oracle queue name
linkname => 'mqlink', -- name of link to use
provider_queue => 'my_mq_queue', -- name of MQSeries queue
domain => dbms_mgwadm.DOMAIN_QUEUE, -- single consumer queue
options => v_options);

end;

The domain parameter is set to DBMS_MGWADM.DOMAIN_QUEUE for point-to-point
queues and DBMS_MGWADM.DOMAIN_TOPIC for publish-subscribe queues. Only
point-to-point queues are supported for MQSeries.

Altering a Registered Queue
After a non-Oracle queue is configured and registered, it cannot be altered. The
registration information must be deleted and re-created.

Unregistering a Non-Oracle Queue
A non-Oracle queue can be unregistered only if there are no subscribers or
schedules referencing it.
Messaging Gateway 18-19

Working with Messaging Gateway
Unregistering a Queue: Example
begin

dbms_mwgadm.unregister_foreign_queue(‘destq’, ‘mqlink’);
end;

Monitoring the Status of a Registered Non-Oracle Queue
You can use the MGW_FOREIGN_QUEUES view to check which non-Oracle queues
are registered.

Checking Which Queues Are Registered: Example
SQL> select name, link_name, provider_queue from MGW_FOREIGN_QUEUES;

NAME LINK_NAME PROVIDER_QUEUE

DESTQ MQLINK my_mq_queue

AQ Queues
You do not need to register AQ queues. When AQ queues are referenced,
Messaging Gateway accesses them directly.

Configuring Propagation Jobs
Propagating messages from one queue to another queue requires a propagation job.
A propagation job consists of a propagation subscriber and a propagation schedule,
hereafter called a subscriber and a schedule. The subscriber specifies the source and
destination queues, while the schedule specifies when the propagation job is
processed. A subscriber without an associated schedule is not processed. For a
schedule to be associated with a subscriber, it must have the same propagation
source and propagation destination.

A Messaging Gateway subscriber does not necessarily correspond to a subscriber in
a non-Oracle messaging system, unless that system has such a notion. Note that a
Messaging Gateway subscriber for an AQ queue is not the same thing as an AQ
subscriber on that queue. However, creating a Messaging Gateway subscriber
results in the creation of a corresponding AQ subscriber.

Creating a Messaging Gateway Subscriber
 A Messaging Gateway subscriber consists of the following information:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference,
DBMS_MGWADM, for information on adding subscribers
18-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
� The propagation type (inbound or outbound)

� The source queue

� The destination queue

� An optional selection rule

� An optional transformation name

� An optional exception queue

Creating a Messaging Gateway Subscriber: Example
begin

dbms_mgwadm.add_subscriber(
subscriber_id => 'sub_aq2mq', -- MGW subscriber name
propagation_type => dbms_mgwadm.outbound_propagation, -- outbound propaga
queue_name => 'mgwuser.srcq', -- AQ queue name (source queue)
destination => 'destq@mqlink'); -- MGW foreign queue with link

--(destination queue)
end;

This example does not specify a subscriber rule for selecting messages when
dequeuing from the AQ queue. Refer to "Using Transformations" on page 18-23 for
an example in which a transformation is specified.

Creating Messaging Gateway Schedules
A Messaging Gateway schedule must be configured for a propagation job to be
processed. The schedule determines when the propagation of messages occurs. In
release 9.2, a schedule is used only for enabling and disabling propagation jobs. The
scheduling parameters are not used in release 9.2.

Creating a Propagation Schedule: Example
begin

dbms_mgwadm.schedule_propagation(
schedule_id => 'sch_aq2mq', -- schedule name
propagation_type => dbms_mgwadm.outbound_propagation, -- outbound propaga
source => 'mgwuser.srcq', -- AQ queue name
destination => 'destq@mqlink'); -- MGW foreign queue with link

end;
Messaging Gateway 18-21

Working with Messaging Gateway
Enabling and Disabling Propagation Jobs
When a schedule is created, it is in an enabled state. This means that if there is an
associated subscriber, the corresponding propagation job will be active. That is, it
will be polling for messages in the source queue. To disable (or enable) a
propagation job, the associated schedule must be disabled (or enabled).

The following examples disable and enable the schedule ‘sch_aq2mq’ .

begin
dbms_mgwadm.disable_propagation_schedule(‘sch_aq2mq’);

end;

begin
dbms_mgwadm.enable_propagation_schedule(‘sch_aq2mq’);

end;

Resetting Propagation Jobs
When a problem occurs in propagation, the Messaging Gateway agent retries the
failed operation up to 16 times before the propagation job stops. To restart the
propagation job with the error count reset to zero, use the reset_subscriber()
procedure.

Restarting a Propagation Job: Example
begin

dbms_mgwadm.reset_subscriber(‘sub_aq2mq’);
end;

Altering Subscribers and Schedules
The following parameters can be altered after the subscriber is created: the selection
rule, the transformation, and the exception queue. The value DBMS_MGWADM.NO_
CHANGE indicates that the value of the parameter has not changed.

Altering Subscribers and Schedules: Example
begin

dbms_mgwadm.alter_subscriber(
subscriber_id => 'sub_aq2mq', -- MGW subscriber name
rule => dbms_mgwadm.NO_CHANGE, -- selection rule not changed

-- not used with MQSeries
transformation => dbms_mgwadm.NO_CHANGE, -- transformation invoked on

-- dequeue not changed
exception_queue => ‘mgwuser.my_ex_queue’); -- register exception

-- queue: same type as source
18-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
end;

Subscribers and schedules can be altered whether or not the Messaging Gateway
agent is running.

Removing Subscribers and Schedules
In general, you should remove subscribers when the Messaging Gateway agent is
running so that it can perform cleanup activities such as cleaning log queues and
removing non-Oracle messaging system subscribers.

Removing a Schedule and Subscriber: Example
begin

dbms_mgwadm.unschedule_propagation(‘sch_aq2mq’);
end;

begin
dbms_mgwadm.remove_subscriber(‘sub_aq2mq’, dbms_mgwadm.NO_FORCE);

end;

The second argument specifies whether this procedure should succeed even if the
gateway is not able to perform all cleanup actions pertaining to this subscriber.
Valid values are DBMS_MGWADM.NO_FORCE and DBMS_MGWADM.FORCE. If DBMS_
MGWADM.NO_FORCE is specified, and the Messaging Gateway agent is not running,
the subscriber is placed in a DELETE_PENDING state. Cleanup actions will occur
when the Messaging Gateway agent is started. If DBMS_MGWADM.FORCE is
specified, the procedure will succeed, although all cleanup actions may not be done.

Selection Rules
A selection rule specifies an optional subscriber rule for selecting which messages
are dequeued from the messaging system. For Advanced Queuing, the rule
corresponds to the AQ subscriber rule. Selection rules are not used for MQSeries.

Using Transformations
Many applications of Messaging Gateway require you to provide a transformation.
For Messaging Gateway to propagate messages from an AQ queue with an
arbitrary ADT payload, a mapping must be provided to a Messaging Gateway
canonical ADT. Likewise, for Messaging Gateway to propagate messages to an AQ
queue with an arbitrary ADT payload, a mapping must be provided from a
Messaging Gateway canonical ADT. This is the job of the transformation. A
transformation registered with an outbound subscriber is invoked by AQ when
Messaging Gateway 18-23

Working with Messaging Gateway
Messaging Gateway dequeues from the AQ source queue during propagation. A
transformation registered with an inbound subscriber is invoked by Advanced
Queuing when Messaging Gateway enqueues to the AQ destination queue during
propagation.

For example, trans_sampleadt_to_mgw_basic is a stored procedure
representing a transformation function with the following signature:

Transformation Function Signature: Example
FUNCTION trans_sampleadt_to_mgw_basic(in_msg IN mgwuser.sampleADT)
RETURN sys.mgw_basic_msg_t;

Create a transformation using DBMS_TRANSFORM.CREATE as follows:

begin
dbms_transform.create_transformation(

schema => 'mgwuser',
name => 'sample_adt_to_mgw_basic',
from_schema => 'mgwuser',
from_type => 'sampleadt',
to_schema => 'sys',
to_type => 'mgw_basic_msg_t',
transformation => 'mgwuser.trans_sampleadt_to_mgw_basic(user_data)');

end;

Once created, this transformation can be registered with Messaging Gateway when
creating a subscriber.

begin
dbms_mgwadm.add_subscriber(

subscriber_id => 'sub_aq2mq', -- MGW subscriber name
propagation_type => dbms_mgwadm.outbound_propagation, -- outbound propaga
queue_name => 'mgwuser.srcq', -- AQ queue name (source queue)
destination =>'destq@mqlink', -- MGW foreign queue with link

-- (destination queue)
transformation => ‘mgwuser.sample_adt_to_mgw_basic’); -- transformation

-- invoked on dequeue
end;

Exception Queues
The exception queue stores messages for which conversion has failed. This queue
must be on the same messaging system as the propagation source queue. If
specified, a message for which conversion fails is moved to the exception queue
18-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Working with Messaging Gateway
instead of the destination queue. If a subscriber does not have an exception queue
specified, the propagation job stops when message conversion fails.

For outbound propagation, the exception queue must refer to an already existing
AQ queue. The payload type of the source and exception queue must match. The
exception queue must be created as a queue type of NORMAL_QUEUE rather than
EXCEPTION_QUEUE.

For inbound propagation, the exception queue must be a registered non-Oracle
messaging system queue, and the source and exception queues must use the same
messaging system link.

Monitoring Propagation Jobs
You can use the MGW_SUBSCRIBERS view to check the existing configuration of
subscribers and to monitor the status of propagation jobs. In addition to the
configured information, columns in the view indicate the total number of messages
propagated for the job (since the Messaging Gateway agent started), the number of
propagation failures, the status of the propagation job, and error information.

The subscriber status value of ENABLED indicates that the subscriber is enabled.
(Note that this does not mean that the propagation job is enabled. For a propagation
job to be enabled, both the subscriber and an associated schedule must be enabled).
DELETE_PENDING indicates that subscriber removal is pending. This can occur
when DBMS_MGWADM.REMOVE_SUBSCRIBER is called, but certain cleanup tasks
pertaining to this subscriber are still outstanding. In release 9.2, a subscriber’s status
is always ENABLED unless it is DELETE_PENDING.

Error information includes the number of delivery failures, last error message, the
last error date, and the last error time. If the number of failures reaches 16,
propagation stops. Refer to "Resetting Propagation Jobs" on page 18-22.

Checking Propagated Messages: Example
SQL> select subscriber_id, queue_name, propagated_msgs, exceptionq_msgs from
mgw_subscribers;

SUBSCRIBER_ID QUEUE_NAME PROPAGATED_MSGS EXCEPTIONQ_MSGS
--
SUB_AQ2MQ MGWUSER.SRCQ 1014 10

Checking for Errors: Example
SQL> select queue_name, failures, last_error_msg from mgw_subscribers where
subscriber_id = ‘SUB_AQ2MQ’;
Messaging Gateway 18-25

Working with Messaging Gateway
QUEUE_NAME FAILURES LAST_ERROR_MSG

MGWUSER.SRCQ 0

You can use the MGW_SCHEDULES view to check which schedules are configured
and which are enabled.

Checking for Configured and Enabled Schedules: Example
SQL> select schedule_id, schedule_disabled from MGW_SCHEDULES;

SCHEDULE_ID SCH

SCH_AQ2MQ N
(N = not disabled; that is, enabled)

Monitoring the Messaging Gateway Log File
Messaging Gateway agent status, history, and errors are recorded in the Messaging
Gateway log file. By default, it is located in the $ORACLE_HOME/mgw/log directory.
You should monitor the log file because it is where both updates and errors are
reported. A different log file is created each time the Messaging Gateway agent is
started.

Sample Log File
The following sample log file shows the Messaging Gateway agent starting. Tracing
information and errors are logged to this file.

Mon Sep 10 10:27:35 2001
MGW C-Bootstrap 0 process-id=4313

Bootstrap program starting
Mon Sep 10 10:27:36 2001

MGW C-Bootstrap 0 process-id=4313
JVM created -- heapsize = 64
>>2001-09-10 10:27:38 MGW AdminMgr 0 LOG
Connecting to database using connect string = jdbc:oracle:oci8:@
>>2001-09-10 10:27:55 MGW Engine 0 1
Agent is initializing...
>>2001-09-10 10:27:56 MGW MQD 0 LOG
Creating MQSeries messaging link:

link : MQLINK
queue manager : mars.queue.manager
channel : kbchannel
18-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
host : pdsun-dev10.us.oracle.com
port : 1414
user :
connections : 1
inbound logQ :
outbound logQ : kblogqueue

>>2001-09-10 10:27:56 MGW AQD 0 LOG
Creating AQ messaging link:

link : oracleMgwAq
database :
user : MGWAGENT
connections : 10
inbound logQ : sys.mgw_recv_log
outbound logQ : sys.mgw_send_log

>>2001-09-10 10:27:56 MGW Engine 0 7
Queue DESTQ@MQLINK has been registered.
>>2001-09-10 10:27:56 MGW Engine 0 9
Propagation Schedule SCH_AQ2MQ has been added.
>>2001-09-10 10:27:56 MGW Engine 0 13
MGW subscriber SUB_AQ2MQ has been created.
>>2001-09-10 10:27:56 MGW Engine 0 18
MGW subscriber SUB_AQ2MQ has been activated.
>>2001-09-10 10:27:56 MGW Engine 0 13
MGW subscriber SUB_AQ2MQ(MGWUSER.SRCQ --> DESTQ@MQLINK) has been created.
>>2001-09-10 10:27:56 MGW Engine 0 2
Agent is up and running.

When configuration information is read at startup time or when dynamic
configuration occurs, the information is written to the log. In the sample log file you
can see that a link, a registered foreign queue, a subscriber, and a schedule have
been created. The log shows that the subscriber has been activated. Any errors also
appear in the log. The last line indicates that the Messaging Gateway agent is up
and running.

Converting Messages
Messaging Gateway converts the native message format of the source messaging
system to the native message format of the destination messaging system during
propagation. Messaging Gateway uses canonical types and an AQ-centric model for
the conversion.
Messaging Gateway 18-27

Converting Messages
The Message Conversion Process
When a message is propagated by the gateway, the message is converted from the
native format of the source queue to the native format of the destination queue.

A native message contains a message header and a message body. The header
contains the fixed header fields that all messages in a messaging system have, such
as message properties in Advanced Queuing and the fixed header in MQSeries. The
body contains message contents, such as the AQ payload and the MQSeries
message body. Messaging Gateway converts both message header and message
body components.

Message conversion is done in two stages, as shown in Figure 18–2. A message is
converted from the native format of the source queue to the gateway internal
message format first, and then from the internal message format to the native
format of the destination queue.

Figure 18–2 Message Conversion

The gateway agent uses an internal message format consisting of a header that is
the same as the AQ message properties and a body that is an object of the gateway
canonical types.

AQ Property

AQ Payload

Advanced Queuing
Message

AQ Property

Canonical Type

Messaging Gateway
Message

Message

Non-Oracle
Message

Outbound
Propagation

Inbound
Propagation
18-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
Messaging Gateway Canonical Types
Messaging Gateway defines canonical types to support message conversion
between Advanced Queuing and non-Oracle messaging systems. A canonical type
is a message type representation in the form of a PL/SQL abstract data type (ADT)
in the Oracle9i database. In release 9.2, the canonical type MGW_BASIC_MSG_T
supports conversion between Advanced Queuing and MQSeries.

MGW_BASIC_MSG_T is used to represent messages that have a message header and
a TEXT or RAW (bytes) message body. The message header is represented as a set of
{name,value} pairs, which are objects of the MGW_NAME_VALUE_T type.

Message Conversion for Advanced Queuing
Native AQ messages consist of AQ message properties and a message payload of
either RAW or a user-defined ADT type.

The Messaging Gateway agent converts messages between the native AQ message
format and the internal message format. Figure 18–3 illustrates the message
conversion performed by the AQ driver.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference,
DBMS_MGWMSG, for

� Syntax and attribute information for MGW_BASIC_MSG_T

� Syntax and attribute information for MGW_NAME_VALUE_T

� A list of constants for the MGW_NAME_VALUE_T value types

� Helper routines for MGW_NAME_VALUE_ARRAY_T
Messaging Gateway 18-29

Converting Messages
Figure 18–3 AQ Message Conversion

For outbound propagation, after dequeuing a message from an AQ queue, the
gateway agent constructs an internal message by mapping the AQ message
properties of the AQ message to the AQ message properties of the internal message
and converting the AQ payload to an object of the canonical type.

For inbound propagation, after receiving an internal message from a non-Oracle
driver, the gateway agent converts the canonical message to the AQ payload and
then enqueues a message with that payload and the internal AQ message
properties.

The agent can directly enqueue and dequeue messages with a payload of RAW or
SYS.MGW_BASIC_MSG_T to and from AQ queues. The agent provides automatic
mapping between the two payload types and the canonical type. For a payload type
other than RAW or SYS.MGW_BASIC_MSG_T type, a user-supplied transformation
must be provided for conversion between the AQ payload type and the canonical
type.

In general, for outbound propagation, the AQ payload type or output of a
user-supplied transformation must be either RAW or SYS.MGW_BASIC_MSG_T. For
inbound propagation, the AQ payload or input type of a user-supplied
transformation must be either RAW or SYS.MGW_BASIC_MSG_T.

Converting RAW AQ Payload Types
For outbound propagation, the following rules apply:

Advanced Queuing
Message

Messaging Gateway
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

AQ Payload

Transformation
Function

Transformation
Function

AQ Property

Canonical Type
18-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
� An AQ payload of type RAW is always mapped to an MGW_BASIC_MSG_T
canonical message with a RAW body. MGW_BASIC_MSG_T.header is set to
NULL. This never results in a message conversion failure.

For inbound propagation, the following rules apply:

� An MGW_BASIC_MSG_T canonical message is mapped as follows:

� For a RAW body of size <= 32k, the RAW body is mapped directly to the RAW
payload. This never results in a message conversion failure.

� For a RAW body of size > 32k, message conversion fails.

� For a TEXT body, message conversion fails.

� For a canonical message with both a TEXT and RAW body, message
conversion fails.

Converting MGW_BASIC_MSG_T AQ Payload Types
For outbound propagation, the following rules apply:

� An AQ payload of type SYS.MGW_BASIC_MSG_T is always mapped to an MGW_
BASIC_MSG_T canonical message.

� For a RAW body, if both small and large values are set, message conversion fails.

� For a TEXT body, if both small and large values are set, message conversion
fails.

For inbound propagation, the following rules apply:

� An MGW_BASIC_MSG_T canonical message is mapped directly. This never
results in a message conversion failure.

Using Transformations
Messaging Gateway can use AQ message transformation to convert between an AQ
queue payload and a gateway canonical type. After a transformation is created
using the DBMS_TRANSFORM package, a Messaging Gateway administrator can use
DBMS_MGWADM.ADD_SUBSCRIBER and DBMS_MGWADM.ALTER_SUBSCRIBER to
configure a gateway subscriber to use the transformation.

For outbound propagation, the transformation is invoked when the gateway agent
dequeues messages from the AQ queue. For inbound propagation, the
transformation is invoked when the gateway agent enqueues messages to the AQ
queue.
Messaging Gateway 18-31

Converting Messages
The transformation is always in the context of the gateway agent, which means that
the gateway agent user must have execute privileges on the transformation function
and the AQ payload type. This can be accomplished by granting the EXECUTE
privilege to PUBLIC, or by granting the EXECUTE privilege directly to the gateway
agent user.

Message Conversion for MQSeries
The Messaging Gateway MQSeries driver converts between the internal message
format and the MQSeries native message format. MQSeries native messages consist
of a fixed message header and a message body. The message body is treated as
either a TEXT value or RAW (bytes) value.

Figure 18–4 illustrates the message conversion performed by the MQSeries driver.
For outbound propagation, the driver maps the AQ message properties and
canonical message to a native message having a fixed header and message body.
For inbound propagation, the driver maps a native message to a set of AQ message
properties and a canonical message.

Figure 18–4 MQSeries Message Conversion

For outbound propagation, an MGW_BASIC_MSG_T canonical message is mapped to
an MQSeries native message as follows:

Messaging Gateway
Message

MQSeries
Message

Outbound
Propagation

Inbound
Propagation

AQ Property

Canonical Header

Canonical Body

Header

Body
18-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
� The MQSeries fixed header fields are based on the internal AQ message
properties and the MGW_BASIC_MSG_T.header attribute of the canonical
message.

Refer to Table 18–1 for the default mapping for certain MQSeries header fields
based on the AQ message properties, if a value is not specified.

The driver looks in MGW_BASIC_MSG_T.header for the {name,value} pairs
described in Table 18–4 and, for each one found, uses that value for the
MQSeries header field. Any {name,value} pairs with an unrecognized name or
incorrect value type are ignored.

� If the canonical message has a TEXT body, the MQSeries format header field is
set to MQFMT_STRING and the message body is set to the TEXT value.

� If the canonical message has a RAW body, the MQSeries format header field is set
to "MGW_Byte" and the message body is set to the RAW value.

� If the canonical message has both a TEXT and RAW body, message conversion
fails.

� If the canonical message has neither a TEXT nor RAW body, no message body is
set and the MQSeries format header field is MQFMT_NONE.

For inbound propagation, the MQSeries native message is mapped to an MGW_
BASIC_MSG_T canonical message as follows:

� Specific MQSeries header fields are mapped to AQ message properties as
described in Table 18–1.

� The MGW_BASIC_MSG_T.header attribute of the canonical message is set to
{name,value} pairs based on the MQSeries header fields, as described in
Table 18–4.

� If the MQSeries format header field is MQFMT_STRING, the MQSeries message
body is treated as TEXT and its value is mapped to MGW_BASIC_MSG_T.text_
body . For any other format value, the message body is treated as RAW and its
value is mapped to MGW_BASIC_MSG_T.raw_body.

Message Header Conversions
Messaging Gateway provides default mappings between AQ message properties
and non-Oracle message header fields that have a counterpart in AQ message
properties with the same semantics. Where Messaging Gateway does not provide a
mapping, the message header fields are set to a default value, usually the default
value defined by the messaging system.
Messaging Gateway 18-33

Converting Messages
Messaging Gateway defines {name, value} pairs for AQ message properties and the
header fields of non-Oracle messaging systems to convert native message headers
and allow users to override the default values. The {name, value} pairs are called
header properties. Whether or not you can access the header properties for a given
propagation job depends on the messaging systems involved and the AQ payload
type or transformation.

Default Message Header Mapping
Table 18–1 describes the default mapping between AQ message properties and
MQSeries header fields. (Refer to "Notes on Table 18–1" on page 18-34 for an
explanation of the numbers in parentheses.)

Notes on Table 18–1
1. For outbound propagation, the AQ expiration value is used to calculate the

remaining time-to-live because the AQ expiration value represents the
expiration time specified when the message is enqueued. For inbound
propagation, a direct mapping is done because the MQSeries expiration value
already represents the remaining time-to-live.

Table 18–1 Default Mapping Between AQ Message Properties and MQSeries Header
Fields

AQ Message
Property

MQSeries
Header Field

Outbound Mapping (AQ
Value to MQSeries Value)

Inbound Mapping
(MQSeries Value to AQ
Value)

priority priority AQ values 0,1,2,3,4,5,6,
7,8,9 are mapped
respectively to MQSeries
values 9,8,7,6,5,4,3,2,
1,0

AQ values < 0 are mapped as
MQSeries value 9

AQ values >=10 are mapped
to MQSeries value 0

MQSeries values 0,1,2,3,
4,5,6,7,8,9 are mapped
respectively to AQ values
9,8,7,6,5,4,3,2,1,0

expiration expiry Time unit is mapped to tenths
of a second (1)

AQ value NEVER is mapped
to MQEI_UNLIMITED

Time unit is mapped to
seconds (1)

MQEI_UNLIMITED is mapped
to NEVER
18-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
Advanced Queuing Header Properties
Table 18–2 defines the Messaging Gateway {name,value} pairs used to describe the
AQ message properties. The header property names for the AQ properties are
prefixed with "MGW_AQ_".

When a message is dequeued from an AQ queue, the AQ driver generates
{name,value} pairs based on the dequeued message header. When a message is
enqueued, the AQ driver sets the AQ message properties from {name,value} pairs
for these properties.

When a message is enqueued to an AQ queue, the AQ driver sets the default values
for the AQ message properties that have no default mappings (refer to Table 18–1).
Corresponding header properties are set as shown in Table 18–3.

Table 18–2 Messaging Gateway Names for AQ Message Properties

MGW Name

MGW_NAME_VALUE_T.name

MGW Type

MGW_NAME_VALUE_T.type AQ Message Property Used For

"MGW_AQ_priority" INTEGER_VALUE priority Enqueue

Dequeue

"MGW_AQ_expiration" INTEGER_VALUE expiration Enqueue

Dequeue

"MGW_AQ_delay" INTEGER_VALUE delay Enqueue

Dequeue

"MGW_AQ_correlation" TEXT_VALUE (size 128) correlation Enqueue

Dequeue

"MGW_AQ_exception_queue" TEXT_VALUE (size 61) exception_queue Enqueue

Dequeue

"MGW_AQ_enqueue_time" DATE_VALUE enqueue_time Dequeue

"MGW_AQ_original_msgid" RAW_VALUE (size 16) original_msgid Dequeue

Table 18–3 AQ Message Property Default Values

AQ Message Property Name Default Value

priority 1

expiration NEVER
Messaging Gateway 18-35

Converting Messages
MQSeries Header Properties
This section describes the message properties supported for the MQSeries
messaging system. Table 18–4 defines the Messaging Gateway {name,value} pairs
used to describe the MQSeries header properties. (Refer to "Notes on Table 18–4" on
page 18-38 for an explanation of the numbers in parentheses.) The Messaging
Gateway names for the MQSeries properties are prefixed with "MGW_MQ_".

When a message is dequeued from the MQSeries messaging system, the MQSeries
driver generates {name,value} pairs based on the dequeued message header and
stores them in the header part of the canonical message of the MGW_BASIC_MSG_T
type. When a message is enqueued to MQSeries, the MQSeries driver sets the
message header and enqueue options from {name,value} pairs for these properties
stored in the header part of the MGW_BASIC_MSG_T canonical message.

delay NO_DELAY

correlation NULL

exception_queue NULL

Table 18–4 Messaging Gateway Names for MQSeries Header Values

Messaging Gateway Name

mgw_name_value_t.NAME

Messaging Gateway Type

MGW_NAME_VALUE_
T.type MQSeries Property Name Used For

"MGW_MQ_priority" INTEGER_VALUE priority Enqueue,
Dequeue

"MGW_MQ_expiry" INTEGER_VALUE expiry Enqueue,
Dequeue

"MGW_MQ_correlationId" RAW_VALUE (size 24) correlationId Enqueue (1),
Dequeue

"MGW_MQ_persistence" INTEGER_VALUE persistence Dequeue

"MGW_MQ_report" INTEGER_VALUE report Enqueue (1),
Dequeue

"MGW_MQ_messageType" INTEGER_VALUE messageType Enqueue,
Dequeue

"MGW_MQ_feedback" INTEGER_VALUE feedback Enqueue,
Dequeue

Table 18–3 AQ Message Property Default Values

AQ Message Property Name Default Value
18-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
"MGW_MQ_encoding" INTEGER_VALUE encoding Enqueue,
Dequeue

"MGW_MQ_characterSet" INTEGER_VALUE characterSet Enqueue,
Dequeue

"MGW_MQ_format" TEXT_VALUE (size 8) format Enqueue (1),
Dequeue

"MGW_MQ_backoutCount" INTEGER_VALUE backoutCount Dequeue

"MGW_MQ_
replyToQueueName"

TEXT_VALUE (size 48) replyToQueueName Enqueue,
Dequeue

"MGW_MQ_
replyToQueueManagerName"

TEXT_VALUE (size 48) replyToQueueManagerName Enqueue,
Dequeue

"MGW_MQ_userId" TEXT_VALUE (size 12) userId Enqueue,
Dequeue

"MGW_MQ_accountingToken" RAW_VALUE (size 32) accountingToken Enqueue (1),
Dequeue

"MGW_MQ_
applicationIdData"

TEXT_VALUE (size 32) applicationIdData Enqueue (1),
Dequeue

"MGW_MQ_
putApplicationType"

INTEGER_VALUE putApplicationType Enqueue (1),
Dequeue

"MGW_MQ_
putApplicationName"

TEXT_VALUE (size 28) putApplicationName Enqueue (1),
Dequeue

"MGW_MQ_putDateTime" DATE_VALUE putDateTime Dequeue

"MGW_MQ_
applicationOriginData"

TEXT_VALUE (size 4) applicationOriginData Enqueue (1),
Dequeue

"MGW_MQ_groupId" RAW_VALUE (size 24) groupId Enqueue (1),
Dequeue

"MGW_MQ_
messageSequenceNumber"

INTEGER_VALUE messageSequenceNumber Enqueue,
Dequeue

"MGW_MQ_offset" INTEGER_VALUE offset Enqueue,
Dequeue

Table 18–4 Messaging Gateway Names for MQSeries Header Values

Messaging Gateway Name

mgw_name_value_t.NAME

Messaging Gateway Type

MGW_NAME_VALUE_
T.type MQSeries Property Name Used For
Messaging Gateway 18-37

Converting Messages
Notes on Table 18–4
1. This use is subject to MQSeries restrictions. For example, if MGW_MQ_

accountingToken is set for an outgoing message, MQSeries overrides its
value unless MGW_MQ_putMessageOptions is set to the MQSeries constant
MQPMD_SET_ALL_CONTEXT.

2. MGW_MQ_putMessageOptions is used as the putMessageOptions
argument to the MQSeries Base Java Queue.put() method. It is not part of the
MQSeries header information and therefore is not an actual message property.

The value for the openOptions argument of the MQSeries Base Java
MQQueueManager.accessQueue method is specified when the MQSeries
queue is registered using the DBMS_MGWADM.REGISTER_FOREIGN_QUEUE
call. Dependencies may exist between the two. For instance, for MGW_MQ_
putMessageOptions to include MQPMD_SET_ALL_CONTEXT, the MQ_
openMessageOptions queue option must include MQOO_SET_CONTEXT.

The gateway agent adds the value MQPMO_SYNCPOINT to any value that you can
specify.

Table 18–5 describes the default values set by the gateway agent for the MQSeries
message header when a message is enqueued in an MQSeries queue. For all other
header fields, the gateway agent does not set a default value.

"MGW_MQ_messageFlags" INTEGER_VALUE messageFlags Enqueue,
Dequeue

"MGW_MQ_originalLength" INTEGER_VALUE originalLength Enqueue,
Dequeue

"MGW_MQ_
putMessageOptions"

INTEGER_VALUE putMessageOptions (2) Enqueue (1)

Table 18–5 MQSeries Header Default Values

MQSeries Property Name Default Value

messageType MQMT_DATAGRAM

Table 18–4 Messaging Gateway Names for MQSeries Header Values

Messaging Gateway Name

mgw_name_value_t.NAME

Messaging Gateway Type

MGW_NAME_VALUE_
T.type MQSeries Property Name Used For
18-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
Using Header Properties: Examples
The following propagation scenarios exemplify the use of header properties.

Using MGW_BASIC_MSG_T for Outbound Propagation: Example
Consider an outbound propagation job from an AQ queue to an MQSeries queue.
Because the MQSeries driver supports only the MGW_BASIC_MSG_T type, the
propagation job must be configured so that the AQ driver converts the AQ payload
to an MGW_BASIC_MSG_T canonical message. To accomplish this, either the source
queue payload type must be SYS.MGW_BASIC_MSG_T, or a transformation whose
output (to) type is SYS.MGW_BASIC_MSG_T must be supplied.

For outbound propagation, use the MGW_BASIC_MSG_T.header attribute to
specify native message header properties that are used when the message is
enqueued to the destination queue. In this example, it will contain {name,value}
pairs for MQSeries header properties, as described in Table 18–4.

Although the AQ driver generates {name,value} pairs for the AQ message
properties (refer to Table 18–2), the information is lost because the MQSeries
message format does not allow you to specify user-defined message property
information.

Using MGW_BASIC_MSG_T for Inbound Propagation: Example
For an inbound propagation job from an MQSeries queue to an AQ queue, the
MQSeries driver always converts its native message to an MGW_BASIC_MSG_T
canonical message. Therefore, the propagation job should be configured so that the
AQ driver converts the canonical message to a SYS.MGW_BASIC_MSG_T payload
type. To accomplish this, either the destination queue payload type must be
SYS.MGW_BASIC_MSG_T, or a transformation whose input (from) type is
SYS.MGW_BASIC_MSG_T must be supplied.

When used for inbound propagation, the MGW_BASIC_MSG_T.header attribute
contains {name,value} pairs for the native message header properties of the message
dequeued from the source queue. In this example, it will contain {name,value} pairs
for MQSeries header properties, as described in Table 18–4.

putMessageOption MQPMO_SYNCPOINT will always be added;
refer to (2) in "Notes on Table 18–4" on
page 18-38.

Table 18–5 MQSeries Header Default Values

MQSeries Property Name Default Value
Messaging Gateway 18-39

Converting Messages
Because the MQSeries native message format does not allow you to specify
user-defined message property information, you cannot specify values that the
gateway MQSeries driver interprets as values to use for AQ message properties. As
a result, the AQ message properties of the message enqueued to the destination
queue are based on the default mappings described in Table 18–1 and the default
values for the remaining (nonmapped) AQ properties.

Using XML Message Propagation: Examples
This section provides examples of how to set up propagation between AQ queues
with ADT payloads and foreign queues using XML messages.

The messages to propagate in the examples are book orders. The payload type of
the AQ queue, AQ_book_orders , is book_order_typ . The foreign queue, FQ_
book_orders , is capable of storing XML documents.

The following PL/SQL script creates entities in the Oracle database for the two
inbound and outbound propagation examples that follow. Assume that the script is
run by database user mgwuser .

-- create the type book_order_typ
CREATE OR REPLACE TYPE book_order_typ AS OBJECT
(

order_no number,
book_name varchar2(100),
book_isbn varchar2(15),
book_amount number,
payment varchar2(30),
ship_addr varchar2(160),
order_date date

);
/

-- grant privilege to PUBLIC
GRANT EXECUTE ON book_order_typ to PUBLIC;

BEGIN
-- create queue table
dbms_aqadm.create_queue_table(

queue_table => ‘book_order_qtab’,
queue_payload_type => ‘book_order_typ’,
multiple_consumers => TRUE,
compatible => ‘8.1’);

-- create the queue
dbms_aqadm.create_queue(
18-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
queue_name => ’AQ_book_orders’,
queue_table => ‘book_order_qtab’);

-- start the queue
dbms_aqadm.start_queue(‘AQ_book_orders’);

END;
/

The message system link called fqlink , which connects to a third-party messaging
system, should be created by calling dbms_mgwadm.create_msgsystem_link(
) . The foreign queue, FQ_book_orders , of the third-party messaging system
should be registered by calling dbms_mgwadm.register_foreign_queue() .

Propagating Outbound XML Messages: Example
This example sets up propagation to move book order messages from the AQ
queue, AQ_book_orders , to the foreign queue, FQ_book_orders , in the form of
XML documents. Users can use the package DBMS_XMLSCHEMA to generate an XML
schema from the ADT book_order_typ to parse and process the XML messages
at the third-party messaging system side.

The following script defines a function and a transformation to convert an AQ book
order message to an XML document that is stored in an object of the canonical type
sys.mgw_basic_msg_t . Run the script as user mgwuser .

-- create a transformation function
CREATE OR REPLACE FUNCTION fnc_order2basic (book_order IN book_order_typ)

RETURN sys.mgw_basic_msg_t
IS

v_xml XMLType;
v_text varchar(2000); -- assume book orders in XML document

-- are less than 2000 char long.
v_basic sys.mgw_basic_msg_t;

BEGIN
-- create a XMLType object from the book_order
v_xml := XMLType.createXML(book_order, null, null);

-- convert the XMLType object to XML document (text)
v_text := v_xml.getStringVal();

-- store the XML document in a mgw_basic_msg_t obejct
v_basic := sys.mgw_basic_msg_t.construct;
v_basic.text_body := sys.mgw_text_value_t(v_text, null);
Messaging Gateway 18-41

Converting Messages
return v_basic;
END fnc_order2basic;

/

-- grant execute privilege to PUBLIC in order for the agent to be able to call
it
GRANT EXECUTE on fnc_order2basic to PUBLIC;

-- create a transformation with the function
BEGIN

dbms_transform.create_transformation(
schema => ‘mgwuser’,
name => ‘order2basic’,
from_schema => ‘mgwuser’,
from_type => ‘book_order_typ’,
to_schema => ‘sys’,
to_type =>’mgw_basic_msg_t’,
transformation => ‘mgwuser.fnc_order2basic(source.user_data)’);

END;
/

Run the following script as a user that has MGW_ADMINSTRATOR_ROLE privilege to
create an outbound propagation job.

-- create an outbound propagation with the transformation
BEGIN

dbms_mgwadm.add_subscriber(
subscriber_id => ‘sub_aq2fq’,
propagation_type => dbms_mgwadm.outbound_propagation,
queue_name => ‘mgwuser.AQ_book_orders’,
destination => ‘FQ_book_orders@fqlink’,
transformation => ‘mgwuser.order2basic’);

dbms_mgwadm.schedule_propagation(
schedule_id => ‘sch_aq2fq’,
propagation_type => dbms_mgwadm.outbound_propagation,
source => ‘mgwuser.AQ_book_orders’,
destination => ‘mgwuser.order2basic’);

END;
/

After the preceding scripts run successfully, all book order messages sent to the AQ
queue are propagated to the third-party queue as XML documents conforming to
the XML schema associated with the PL/SQL type book_order_typ .
18-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Converting Messages
Propagating Inbound XML Messages: Example
This example sets up propagation to move book orders, which are XML documents
conforming to the XML schema associated with the PL/SQL type book_order_
typ , from the foreign queue, FQ_book_orders , to the AQ queue, AQ_book_
orders . Users should use the package DBMS_XMLSCHEMA to generate XML schema
from the ADT book_order_typ to generate valid XML book order messages.

The following script defines a function and a transformation to convert a book
order in the form of an XML document stored in an object of the canonical type
sys.mgw_basic_msg_t to an object of ADT book_order_typ . Run the script as
mgwuser .

-- create a transformation function
CREATE OR REPLACE FUNCTION fnc_basic2order(basic IN sys.mgw_basic_msg_t)

RETURN book_order_typ
IS

v_xml XMLType;
v_text varchar(2000); -- assume book orders in XML document

-- are less than 2000 char
long

v_order book_order_typ;
BEGIN

v_text := basic.text_body.small_value;

v_xml := XMLType.createXML(v_text);

v_xml.toObject(v_order);

return v_order;
END fnc_basic2order;

/

-- grant execute privilege to PUBLIC in order for the agent to be able to call
it
GRANT EXECUTE on fnc_basic2order to PUBLIC;

-- create a transformation with the function
BEGIN

dbms_transform.create_transformation(
schema => ‘mgwuser’,
name => ‘basic2order’,
from_schema => ‘sys’,
from_type => ‘mgw_basic_msg_t’,
to_schema => ‘mgwuser’,
Messaging Gateway 18-43

The mgw.ora Initialization File
to_type => ‘book_order_typ’,
transformation => ‘mgwuser.fnc_basic2order(source.user_data)’);

END;
/

Run the following script as a user with MGW_ADMINSTRATOR_ROLE privilege to
create an inbound propagation job.

-- create an inbound propagation with the transformation
BEGIN

dbms_mgwadm.add_subscriber(
subscriber_id => ‘sub_fq2aq’,
propagation_type => dbms_mgwadm.inbound_propagation,
queue_name => ‘FQ_book_orders@fqlink’',
destination => ‘mgwuser.AQ_book_orders’,
transformation => ‘mgwuser.basic2order’);

-- create a schedule for the inbound propagation
dbms_mgwadm.schedule_propagation(

schedule_id => ‘sch_fq2aq’,
propagation_type => dbms_mgwadm.inbound_propagation,
source => ‘FQ_book_orders@fqlink’,
destination => ‘mgwuser.AQ_book_orders’);

END;
/

After the preceding scripts run successfully, all book order messages sent to the
third-party queue as XML documents conforming to the XML schema associated
with the PL/SQL type book_order_typ are propagated to the AQ queue.

The mgw.ora Initialization File
Messaging Gateway can get additional initialization information from a text file that
is read when the Messaging Gateway agent starts. This initialization file is optional,
although it is recommended for setting the environment needed by the Messaging
Gateway agent. For example, it may be easier to use the initialization file to set the
library path and classpath since these typically need to include paths for shared
libraries and Java classes needed to access the Oracle database as well as the
non-Oracle messaging systems.

Name: mgw.ora

Location: <ORACLE_HOME>/mgw/admin
18-44 Oracle9i Application Developer’s Guide - Advanced Queuing

The mgw.ora Initialization File
File Contents
The Messaging Gateway initialization file contains lines for setting initialization
parameters, environment variables, and Java properties. Each entity must be
specified on one line; it is not possible, for example, for an initialization parameter
specification to span multiple lines. Leading whitespace is trimmed in all cases.

Note: Any example that follows must consist of only one line in the initialization
file, though in this document it may appear otherwise.

� Initialization parameters. The initialization parameters are typically specified
by lines having a "<name>=<value><NL> " format where <name> represents
the parameter name, <value> represents its value and <NL> represents a new
line. Example: log_level = 0

� Environment variables. Environment variables such as CLASSPATH and LD_
LIBRARY_PATH are set so the Messaging Gateway agent can find the required
libraries, shared objects, Java classes, and so on. Environment variables are
specified by lines having a "set <env var>= <value><NL>" or "setenv
<env var>=<value><NL>" format where <env var> represents the name
of the environment variable to set, <value> represents the value of the
environment variable, and <NL> represents a new line. For example: set
classpath = /myOracleHome/mgw/lib/mgw.jar:<plus_other_
required_files>

� Java properties. Java properties can be set when creating the JVM of the
Messaging Gateway agent. Java properties are specified by lines having a
"setJavaProp <prop name>=<value><NL>" format where <prop name>
represents the name of the Java property to set, <value> represents the value
of the Java property, and <NL> represents a new line character. For example:
setJavaProp java.compiler = none

� A comment line is designated with a # character as the first character of the line.

Initialization Parameters

log_directory

Usage: Specifies the directory where the Messaging Gateway log/trace file will be
created.

Format: log_directory = <value>
Messaging Gateway 18-45

The mgw.ora Initialization File
Default: <ORACLE_HOME>/mgw/log

Example: log_directory = /private/mgwlog

log_level

Usage: Specifies the level of logging detail recorded by the Messaging Gateway
agent. The logging level can be dynamically changed by the dbms_mgwadm.set_
log_level API while the agent is running. It is recommended that log level 0 be
used at all times.

Format: log_level = <value>

Values:

0 for basic logging; equivalent to dbms_mgwadm.BASIC_LOGGING

1 for lite tracing; equivalent to dbms_mgwadm.TRACE_LITE_LOGGING

2 for high tracing; equivalent to dbms_mgwadm.TRACE_HIGH_LOGGING

3 for debug tracing; equivalent to dbms_mgwadm.TRACE_DEBUG_LOGGING

Default: basic logging (0)

Example: log_level = 0

Environment Variables
Since the Messaging Gateway process environment is not under the direct control of
the user, certain environment variables should be set using the initialization file.
They are set using the set parameter as described in "Modifying the mgw.ora
Initialization File" on page 18-9. The environment variables currently used by the
Messaging Gateway agent are CLASSPATH, LD_LIBRARY_PATH, MGW_PRE_PATH,
and ORACLE_SID.

Each of the following examples must consist of only one line in the initialization
file, although in this document it may appear otherwise.

CLASSPATH

Usage: Used by the Java Virtual Machine to find Java classes needed by the MGW
agent.
18-46 Oracle9i Application Developer’s Guide - Advanced Queuing

The mgw.ora Initialization File
Format: set CLASSPATH=<value>

Example: The following example indicates classes that must be included for
Messaging Gateway propagation between Oracle AQ and MQSeries.

set CLASSPATH =
/myOracleHome/jdbc/lib/classes12.zip:/myOracleHome/jdk/jre/lib/i18n.jar:/myOracl
eHome/jdk/jre/lib/rt.jar:/myOracleHome/sqlj/lib/runtime12.zip/myOracleHome/sqlj/
lib/translator.zip:/myOracleHome/jdbc/lib/nls_
charset12.zip:/myOracleHome/mgw/classes/mgw.jar:/opt/mqm/java/lib/com.ibm.mq.jar
:/opt/mqm/java/lib

LD_LIBRARY_PATH

Usage: Used by the MGW process to find external libraries. Not needed for
WINDOWS NT.

Format: set LD_LIBRARY_PATH=<value>

Example: The following example indicates paths to libraries that may be needed by
the Messaging Gateway for propagation between Oracle AQ and MQSeries

set LD_LIBRARY_PATH =
/myOracleHome/jdk/jre/lib/sparc:/myOracleHome/rdbms/ib:/myOracleHome/lib:/opt/mq
m/java/lib

MGW_PRE_PATH

Usage: Appended to the front of the path inherited by the Messaging Gateway
process. For WINDOWS NT, this variable must be set to indicate where the library
jvm.dll is found. It is not currently necessary for other operating systems.

Format: set MGW_PRE_PATH=<value>

Example: The following example indicates where the library may be found.

set MGW_PRE_PATH=\myOracleHome\jdk\jre\bin\classic

ORACLE_SID

Usage: May be used when a service name is not specified when configuring the
Messaging Gateway.
Messaging Gateway 18-47

The mgw.ora Initialization File
Format: set ORACLE_SID=<value>

Example: set ORACLE_SID=my_sid

Java Properties
None are currently used.
18-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle Advanced Queuing by Exa
A

Oracle Advanced Queuing by Example

In this appendix we provide examples of operations using different programmatic
environments:

� Creating Queue Tables and Queues

– Creating a Queue Table and Queue of Object Type

– Creating a Queue Table and Queue of Raw Type

– Creating a Prioritized Message Queue Table and Queue

– Creating a Multiconsumer Queue Table and Queue

– Creating a Queue to Demonstrate Propagation

– Setting Up Java AQ Examples

– Creating an Java AQ Session

– Creating a Queue Table and Queue Using Java

– Creating a Queue and Start Enqueue/Dequeue Using Java

– Creating a Multiconsumer Queue and Add Subscribers Using Java

� Enqueuing and Dequeuing Messages

– Enqueuing and Dequeuing of Object Type Messages Using PL/SQL

– Enqueuing and Dequeuing of Object Type Messages Using Pro*C/C++

– Enqueuing and Dequeuing of Object Type Messages Using OCI

– Enqueuing and Dequeuing of Object Type Messages (CustomDatum
interface) Using Java
mple A-1

– Enqueuing and Dequeuing of Object Type Messages (using SQLData
interface) Using Java

– Enqueuing and Dequeuing of RAW Type Messages Using PL/SQL

– Enqueuing and Dequeuing of RAW Type Messages Using Pro*C/C++

– Enqueuing and Dequeuing of RAW Type Messages Using OCI

– Enqueue of RAW Messages using Java

– Dequeue of Messages Using Java

– Dequeue of Messages in Browse Mode Using Java

– Enqueuing and Dequeuing of Messages by Priority Using PL/SQL

– Enqueue of Messages with Priority Using Java

– Dequeue of Messages after Preview by Criterion Using PL/SQL

– Enqueuing and Dequeuing of Messages with Time Delay and Expiration
Using PL/SQL

– Enqueuing and Dequeuing of Messages by Correlation and Message ID
Using Pro*C/C++

– Enqueuing and Dequeuing of Messages by Correlation and Message ID
Using OCI

– Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue
Using PL/SQL

– Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue
using OCI

– Enqueuing and Dequeuing of Messages Using Message Grouping Using
PL/SQL

– Enqueuing and Dequeuing Object Type Messages That Contain LOB
Attributes Using PL/SQL

– Enqueuing and Dequeuing Object Type Messages That Contain LOB
Attributes Using Java

� Propagation

– Enqueue of Messages for remote subscribers/recipients to a Multiconsumer
Queue and Propagation Scheduling Using PL/SQL
A-2 Oracle9i Application Developer’s Guide - Advanced Queuing

– Managing Propagation From One Queue To Other Queues In The Same
Database Using PL/SQL

– Manage Propagation From One Queue To Other Queues In Another
Database Using PL/SQL

– Unscheduling Propagation Using PL/SQL

� Dropping AQ Objects

� Revoking Roles and Privileges

� Deploying AQ with XA

� AQ and Memory Usage

– Enqueuing Messages (Free Memory After Every Call) Using OCI

– Enqueuing Messages (Reuse Memory) Using OCI

– Dequeuing Messages (Free Memory After Every Call) Using OCI

– Dequeuing Messages (Reuse Memory) Using OCI
Oracle Advanced Queuing by Example A-3

Creating Queue Tables and Queues
Creating Queue Tables and Queues

Creating a Queue Table and Queue of Object Type
/* Creating a message type: */
CREATE type aq.Message_typ as object (
subject VARCHAR2(30),
text VARCHAR2(80));

/ * Creating a object type queue table and queue: */
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.objmsgs80_qtab’,
queue_payload_type => ’aq.Message_typ’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’msg_queue’,
queue_table => ’aq.objmsgs80_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name => ’msg_queue’);

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager;
DROP USER aqadm CASCADE;
GRANT CONNECT, RESOURCE TO aqadm;
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT Aq_administrator_role TO aqadm;
DROP USER aq CASCADE;
CREATE USER aq IDENTIFIED BY aq;
GRANT CONNECT, RESOURCE TO aq;
GRANT EXECUTE ON dbms_aq TO aq;
A-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating Queue Tables and Queues
Creating a Queue Table and Queue of Raw Type
/* Creating a RAW type queue table and queue: */
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.RawMsgs_qtab’,
queue_payload_type => ’RAW’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’raw_msg_queue’,
queue_table => ’aq.RawMsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name => ’raw_msg_queue’);

Creating a Prioritized Message Queue Table and Queue
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.priority_msg’,
sort_list => ’PRIORITY,ENQ_TIME’,
queue_payload_type => ’aq.Message_typ’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’priority_msg_queue’,
queue_table => ’aq.priority_msg’);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name => ’priority_msg_queue’);

Creating a Multiconsumer Queue Table and Queue
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.MultiConsumerMsgs_qtab’,
multiple_consumers => TRUE,
queue_payload_type => ’aq.Message_typ’);

EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’msg_queue_multiple’,
queue_table => ’aq.MultiConsumerMsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name => ’msg_queue_multiple’);
Oracle Advanced Queuing by Example A-5

Creating Queue Tables and Queues
Creating a Queue to Demonstrate Propagation
EXECUTE DBMS_AQADM.CREATE_QUEUE (
queue_name => ’another_msg_queue’,
queue_table => ’aq.MultiConsumerMsgs_qtab’);

EXECUTE DBMS_AQADM.START_QUEUE (
queue_name => ’another_msg_queue’);

Setting Up Java AQ Examples
CONNECT system/manager

DROP USER aqjava CASCADE;
GRANT CONNECT, RESOURCE, AQ_ADMINISTRATOR_ROLE TO aqjava IDENTIFIED BY aqjava;
GRANT EXECUTE ON DBMS_AQADM TO aqjava;
GRANT EXECUTE ON DBMS_AQ TO aqjava;
CONNECT aqjava/aqjava

/* Set up main class from which we will call subsequent examples and handle
exceptions: */

import java.sql.*;
import oracle.AQ.*;

public class test_aqjava
{

public static void main(String args[])
{

AQSession aq_sess = null;
try
{

aq_sess = createSession(args);

/* now run the test: */
runTest(aq_sess);

}
catch (Exception ex)
{

System.out.println("Exception-1: " + ex);
ex.printStackTrace();

}
}

}

A-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating Queue Tables and Queues
Creating an Java AQ Session
/* Creating an Java AQ Session for the ’aqjava’ user as shown in the

AQDriverManager section above: */
public static AQSession createSession(String args[])

{
Connection db_conn;
AQSession aq_sess = null;

try
{

Class.forName("oracle.jdbc.driver.OracleDriver");
/* your actual hostname, port number, and SID will
vary from what follows. Here we use ’dlsun736,’ ’5521,’
and ’test,’ respectively: */

db_conn =
DriverManager.getConnection(
"jdbc:oracle:thin:@dlsun736:5521:test",
"aqjava", "aqjava");

System.out.println("JDBC Connection opened ");
db_conn.setAutoCommit(false);

/* Load the Oracle8i AQ driver: */
Class.forName("oracle.AQ.AQOracleDriver");

/* Creating an AQ Session: */
aq_sess = AQDriverManager.createAQSession(db_conn);
System.out.println("Successfully created AQSession ");

}
catch (Exception ex)
{

System.out.println("Exception: " + ex);
ex.printStackTrace();

}
return aq_sess;

}

Oracle Advanced Queuing by Example A-7

Creating Queue Tables and Queues
Creating a Queue Table and Queue Using Java
public static void runTest(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

/* Creating a AQQueueTableProperty object (payload type - RAW): */
qtable_prop = new AQQueueTableProperty("RAW");

/* Creating a queue table called aq_table1 in aqjava schema: */
q_table = aq_sess.createQueueTable ("aqjava", "aq_table1", qtable_prop);
System.out.println("Successfully created aq_table1 in aqjava schema");

/* Creating a new AQQueueProperty object */
queue_prop = new AQQueueProperty();

/* Creating a queue called aq_queue1 in aq_table1: */
queue = aq_sess.createQueue (q_table, "aq_queue1", queue_prop);
System.out.println("Successfully created aq_queue1 in aq_table1");

}

/* Get a handle to an existing queue table and queue: */
public static void runTest(AQSession aq_sess) throws AQException
{

AQQueueTable q_table;
AQQueue queue;

/* Get a handle to queue table - aq_table1 in aqjava schema: */
q_table = aq_sess.getQueueTable ("aqjava", "aq_table1");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - aq_queue1 in aqjava schema: */
queue = aq_sess.getQueue ("aqjava", "aq_queue1");
System.out.println("Successful getQueue");

}

A-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Creating Queue Tables and Queues
Creating a Queue and Start Enqueue/Dequeue Using Java
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;

/* Creating a AQQueueTable property object (payload type - RAW): */
qtable_prop = new AQQueueTableProperty("RAW");

qtable_prop.setCompatible("8.1");

/* Creating a queue table called aq_table3 in aqjava schema: */
q_table = aq_sess.createQueueTable ("aqjava", "aq_table3", qtable_prop);
System.out.println("Successful createQueueTable");

/* Creating a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();

/* Creating a queue called aq_queue3 in aq_table3: */
queue = aq_sess.createQueue (q_table, "aq_queue3", queue_prop);
System.out.println("Successful createQueue");

/* Enable enqueue/dequeue on this queue: */
queue.start();
System.out.println("Successful start queue");

/* Grant enqueue_any privilege on this queue to user scott: */
queue.grantQueuePrivilege("ENQUEUE", "scott");
System.out.println("Successful grantQueuePrivilege");

}

Creating a Multiconsumer Queue and Add Subscribers Using Java
public static void runTest(AQSession aq_sess) throws AQException
{

AQQueueTableProperty qtable_prop;
AQQueueProperty queue_prop;
AQQueueTable q_table;
AQQueue queue;
AQAgent subs1, subs2;

/* Creating a AQQueueTable property object (payload type - RAW): */
qtable_prop = new AQQueueTableProperty("RAW");
System.out.println("Successful setCompatible");
Oracle Advanced Queuing by Example A-9

Creating Queue Tables and Queues
/* Set multiconsumer flag to true: */
qtable_prop.setMultiConsumer(true);

/* Creating a queue table called aq_table4 in aqjava schema: */
q_table = aq_sess.createQueueTable ("aqjava", "aq_table4", qtable_prop);
System.out.println("Successful createQueueTable");

/* Creating a new AQQueueProperty object: */
queue_prop = new AQQueueProperty();
/* Creating a queue called aq_queue4 in aq_table4 */
queue = aq_sess.createQueue (q_table, "aq_queue4", queue_prop);
System.out.println("Successful createQueue");

/* Enable enqueue/dequeue on this queue: */
queue.start();
System.out.println("Successful start queue");

/* Add subscribers to this queue: */
subs1 = new AQAgent("GREEN", null, 0);
subs2 = new AQAgent("BLUE", null, 0);

queue.addSubscriber(subs1, null); /* no rule */
System.out.println("Successful addSubscriber 1");

queue.addSubscriber(subs2, "priority < 2"); /* with rule */
System.out.println("Successful addSubscriber 2");

}

A-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing of Object Type Messages Using PL/SQL

To enqueue a single message without any other parameters specify the queue name
and the payload.

/* Enqueue to msg_queue: */
DECLARE

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
message := message_typ(’NORMAL MESSAGE’,
’enqueued to msg_queue first.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;

/* Dequeue from msg_queue: */
DECLARE

dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
DBMS_AQ.DEQUEUE(queue_name => ’msg_queue’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;
END;
Oracle Advanced Queuing by Example A-11

Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing of Object Type Messages Using Pro*C/C++

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>
/* The header file generated by processing
object type ’aq.Message_typ’: */
#include "pceg.h"

void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
Message_typ *message = (Message_typ*)0; /* payload */
message_type_ind *imsg; /*payload indicator*/
char user[60]="aq/AQ"; /* user logon password */
char subject[30]; /* components of the */
char txt[80]; /* payload type */

/ * ENQUEUE and DEQUEUE to an OBJECT QUEUE */

/ * Connect to database: */

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >> message.typ
case=lower
type aq.message_typ
$
$ ott userid=aq/aq intyp=message.typ outtyp=message_o.typ \
code=c hfile=demo.h
$
$ proc intyp=message_o.typ iname=<program name> \
config=<config file> SQLCHECK=SEMANTICS userid=aq/aq
A-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
EXEC SQL CONNECT :user;

/* On an oracle error print the error number :*/
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

/* Allocate memory for the host variable from the object cache : */
EXEC SQL ALLOCATE :message;

/* ENQUEUE */

strcpy(subject, "NORMAL ENQUEUE");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/ * Initialize the components of message : */
EXEC SQL OBJECT SET subject, text OF :message TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/* Bind the host variable ’message’ to the payload: */
dbms_aq.enqueue(queue_name => ’msg_queue’,
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message:imsg, /* indicator has to be specified */
msgid => msgid);
END;
END-EXEC;
/* Commit work */
EXEC SQL COMMIT;

printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/ * Dequeue */

/ * Embedded PLSQL call to the AQ dequeue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
Oracle Advanced Queuing by Example A-13

Enqueuing and Dequeuing Of Messages
msgid RAW(16);
BEGIN
/* Return the payload into the host variable ’message’: */
dbms_aq.dequeue(queue_name => ’msg_queue’,
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;

/* Commit work :*/
EXEC SQL COMMIT;

/ * Extract the components of message: */
EXEC SQL OBJECT GET SUBJECT,TEXT FROM :message INTO :subject,:txt;

printf("Dequeued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);
}

Enqueuing and Dequeuing of Object Type Messages Using OCI
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message
{

OCIString *subject;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_subject;
OCIInd null_data;

};
typedef struct null_message null_message;

int main()
A-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
message msg;
null_message nmsg;
message *mesg = &msg;
null_message *nmesg = &nmsg;
message *deqmesg = (message *)0;
null_message *ndeqmesg = (null_message *)0;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain TDO of message_typ */
OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),

(CONST text *)"MESSAGE_TYP", strlen("MESSAGE_TYP"),
(text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* Prepare the message payload */
mesg->subject = (OCIString *)0;
mesg->data = (OCIString *)0;
Oracle Advanced Queuing by Example A-15

Enqueuing and Dequeuing Of Messages
OCIStringAssignText(envhp, errhp,
(CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),

&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
&mesg->data);

nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

/* Enqueue into the msg_queue */
OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,

mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
OCITransCommit(svchp, errhp, (ub4) 0);

/* Dequeue from the msg_queue */
OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,

mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueuing and Dequeuing of Object Type Messages (CustomDatum interface) Using
Java

To enqueue and dequeue of object type messages follow the lettered steps:

a. Create the SQL type for the Queue Payload

connect aquser/aquser
create type ADDRESS as object (street VARCHAR (30), city VARCHAR(30));
create type PERSON as object (name VARCHAR (30), home ADDRESS);
b. Generate the java class that maps to the PERSON ADT and implements the
CustomDatum interface (using Jpublisher tool)

jpub -user=aquser/aquser -sql=ADDRESS,PERSON -case=mixed -usertypes=oracle
-methods=false -compatible=CustomDatum
This creates two classes - PERSON.java and ADDRESS.java corresponding to the
PERSON and ADDRESS Adt types.

c. Create the queue table and queue with ADT payload

d. Enqueue and dequeue messages containing object payloads
A-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
public static void AQObjectPayloadTest(AQSession aq_sess)
throws AQException, SQLException, ClassNotFoundException

{
Connection db_conn = null;
AQQueue queue = null;
AQMessage message = null;
AQObjectPayload payload = null;
AQEnqueueOption eq_option = null;
AQDequeueOption dq_option = null;
PERSON pers = null;
PERSON pers2= null;
ADDRESS addr = null;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

queue = aq_sess.getQueue("aquser", "test_queue2");

/* Enable enqueue/dequeue on this queue */
queue.start();

/* Enqueue a message in test_queue2 */
message = queue.createMessage();

pers = new PERSON();
pers.setName("John");
addr = new ADDRESS();
addr.setStreet("500 Easy Street");
addr.setCity("San Francisco");
pers.setHome(addr);

payload = message.getObjectPayload();
payload.setPayloadData(pers);
eq_option = new AQEnqueueOption();

/* Enqueue a message into test_queue2 */
queue.enqueue(eq_option, message);

db_conn.commit();

/* Dequeue a message from test_queue2 */
dq_option = new AQDequeueOption();
message = ((AQOracleQueue)queue).dequeue(dq_option, PERSON.getFactory());
Oracle Advanced Queuing by Example A-17

Enqueuing and Dequeuing Of Messages
payload = message.getObjectPayload();
pers2 = (PERSON) payload.getPayloadData();

System.out.println("Object data retrieved: [PERSON]");
System.out.println("Name: " + pers2.getName());
System.out.println("Address ");
System.out.println("Street: " + pers2.getHome().getStreet());
System.out.println("City: " + pers2.getHome().getCity());

db_conn.commit();
}

Enqueuing and Dequeuing of Object Type Messages (using SQLData interface) Using
Java

To enqueue and dequeue of object type messages follow the lettered steps:

a. Create the SQL type for the Queue Payload

connect aquser/aquser
create type EMPLOYEE as object (empname VARCHAR (50), empno INTEGER);

b. Creating a java class that maps to the EMPLOYEE ADT and implements the
SQLData interface. This class can also be generated using JPublisher using the
following syntax

jpub -user=aquser/aquser -sql=EMPLOYEE -case=mixed -usertypes=jdbc
-methods=false

import java.sql.*;
import oracle.jdbc2.*;

public class Employee implements SQLData
{

private String sql_type;
public String empName;
public int empNo;
public Employee()
{}
public Employee (String sql_type, String empName, int empNo)
{

this.sql_type = sql_type;
this.empName = empName;
A-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
this.empNo = empNo;
}

////// implements SQLData //////
public String getSQLTypeName() throws SQLException
{ return sql_type;
}
public void readSQL(SQLInput stream, String typeName)

throws SQLException
{

sql_type = typeName;
empName = stream.readString();
empNo = stream.readInt();

}

public void writeSQL(SQLOutput stream)
throws SQLException

{
stream.writeString(empName);
stream.writeInt(empNo);

}

public String toString()
{

String ret_str = ““;
ret_str += “[Employee]\n”;
ret_str += “Name: “ + empName + “\n”;
ret_str += “Number: “ + empNo + “\n”;

return ret_str;
}

}
c. Create the queue table and queue with ADT payload

public static void createEmployeeObjQueue(AQSession aq_sess)
throws AQException

{
AQQueueTableProperty qt_prop = null;
AQQueueProperty q_prop = null;
AQQueueTable q_table = null;
AQQueue queue = null;

/* Message payload type is aquser.EMPLOYEE */
qt_prop = new AQQueueTableProperty(“AQUSER.EMPLOYEE”);
Oracle Advanced Queuing by Example A-19

Enqueuing and Dequeuing Of Messages
qt_prop.setComment(“queue-table1”);

/* Creating aQTable1 */
System.out.println(“\nCreate QueueTable: [aqtable1]”);
q_table = aq_sess.createQueueTable(“aquser”, “aqtable1”, qt_prop);

/* Create test_queue1 */
q_prop = new AQQueueProperty();
queue = q_table.createQueue(“test_queue1”, q_prop);

/* Enable enqueue/dequeue on this queue */
queue.start();

}

d. Enqueue and dequeue messages containing object payloads

public static void AQObjectPayloadTest2(AQSession aq_sess)
throws AQException, SQLException, ClassNotFoundException

{
Connection db_conn = null;
AQQueue queue = null;
AQMessage message = null;
AQObjectPayload payload = null;
AQEnqueueOption eq_option = null;
AQDequeueOption dq_option = null;
Employee emp = null;
Employee emp2 = null;
Hashtable map;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get the Queue object */
queue = aq_sess.getQueue(“aquser”, “test_queue1”);

/* Register Employee class (corresponding to EMPLOYEE Adt)
* in the connection type map
*/

try
{

map = (java.util.Hashtable)(((OracleConnection)db_conn).getTypeMap());
map.put(“AQUSER.EMPLOYEE”, Class.forName(“Employee”));

}
catch(Exception ex)
{

System.out.println(“Error registering type: “ + ex);
A-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
}

/* Enqueue a message in test_queue1 */
message = queue.createMessage();
emp = new Employee(“AQUSER.EMPLOYEE”, “Mark”, 1007);

/* Set the object payload */
payload = message.getObjectPayload();
payload.setPayloadData(emp);

/* Enqueue a message into test_queue1*/
eq_option = new AQEnqueueOption();
queue.enqueue(eq_option, message);
db_conn.commit();

/* Dequeue a message from test_queue1 */
dq_option = new AQDequeueOption();

message = queue.dequeue(dq_option, Class.forName(“Employee”));
payload = message.getObjectPayload();
emp2 = (Employee) payload.getPayloadData();
System.out.println(“\nObject data retrieved: [EMPLOYEE]”);
System.out.println(“Name : “ + emp2.empName);
System.out.println(“EmpId : “ + emp2.empNo);

db_conn.commit();
}

Enqueuing and Dequeuing of RAW Type Messages Using PL/SQL
DECLARE

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message RAW(4096);

BEGIN
message := HEXTORAW(RPAD(’FF’,4095,’FF’));
DBMS_AQ.ENQUEUE(queue_name => ’raw_msg_queue’,

enqueue_options => enqueue_options,
message_properties => message_properties,

payload => message,
msgid => message_handle);
Oracle Advanced Queuing by Example A-21

Enqueuing and Dequeuing Of Messages
COMMIT;
END;

/* Dequeue from raw_msg_queue: */
/* Dequeue from raw_msg_queue: */
DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message RAW(4096);

BEGIN
DBMS_AQ.DEQUEUE(queue_name => ’raw_msg_queue’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

Enqueuing and Dequeuing of RAW Type Messages Using Pro*C/C++

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >> message.typ
case=lower
type aq.message_typ
$
$ ott userid=aq/aq intyp=message.typ outtyp=message_o.typ \
code=c hfile=demo.h
$
$ proc intyp=message_o.typ iname=<program name> \
config=<config file> SQLCHECK=SEMANTICS userid=aq/aq
A-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
LNOCIEnv *oeh; /* OCI Env handle */
LNOCIError *err; /* OCI Err handle */
LNOCIRaw *message= (OCIRaw*)0; /* payload */
ub1 message_txt[100]; /* data for payload */
char user[60]="aq/AQ"; /* user logon password */
int status; /* returns status of the OCI call */

/* Enqueue and dequeue to a RAW queue */

/* Connect to database: */
EXEC SQL CONNECT :user;

/* On an oracle error print the error number: */
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

/* Get the OCI Env handle: */
if (SQLEnvGet(SQL_SINGLE_RCTX, &oeh) != OCI_SUCCESS)
{
printf(" error in SQLEnvGet \n");
exit(1);
}
/* Get the OCI Error handle: */
if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0))
{
printf(" error in OCIHandleAlloc %d \n", status);
exit(1);
}

/ * Enqueue */
/* The bytes to be put into the raw payload:*/
strcpy(message_txt, "Enqueue to a Raw payload queue ");
Oracle Advanced Queuing by Example A-23

Enqueuing and Dequeuing Of Messages
/* Assign bytes to the OCIRaw pointer :
Memory needs to be allocated explicitly to OCIRaw*: */
if (status=OCIRawAssignBytes(oeh, err, message_txt, 100,

&message))
{
printf(" error in OCIRawAssignBytes %d \n", status);
exit(1);
}

/ * Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/* Bind the host variable message to the raw payload: */
dbms_aq.enqueue(queue_name => ’raw_msg_queue’,
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;

/ * Dequeue */
/* Embedded PLSQL call to the AQ dequeue procedure :*/
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/ * Return the raw payload into the host variable ’message’:*/
dbms_aq.dequeue(queue_name => ’raw_msg_queue’,
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;
A-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
}

Enqueuing and Dequeuing of RAW Type Messages Using OCI
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

int main()
{

OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
char msg_text[100];
OCIRaw *mesg = (OCIRaw *)0;
OCIRaw *deqmesg = (OCIRaw *)0;
OCIInd ind = 0;
dvoid *indptr = (dvoid *)&ind;
int i;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);
Oracle Advanced Queuing by Example A-25

Enqueuing and Dequeuing Of Messages
OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain the TDO of the RAW data type */
OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQADM", strlen("AQADM"),

(CONST text *)"RAW", strlen("RAW"),
(text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* Prepare the message payload */
strcpy(msg_text, "Enqueue to a RAW queue");
OCIRawAssignBytes(envhp, errhp, msg_text, strlen(msg_text), &mesg);

/* Enqueue the message into raw_msg_queue */
OCIAQEnq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,

mesg_tdo, (dvoid **)&mesg, (dvoid **)&indptr, 0, 0);
OCITransCommit(svchp, errhp, (ub4) 0);

/* Dequeue the same message into C variable deqmesg */
OCIAQDeq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,

mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, 0, 0);
for (i = 0; i < OCIRawSize(envhp, deqmesg); i++)

printf("%c", *(OCIRawPtr(envhp, deqmesg) + i));
OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueue of RAW Messages using Java
public static void runTest(AQSession aq_sess) throws AQException
{

AQQueueTable q_table;
AQQueue queue;
AQMessage message;
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data = "new message";
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to queue table - aq_table4 in aqjava schema: */
q_table = aq_sess.getQueueTable ("aqjava", "aq_table4");
System.out.println("Successful getQueueTable");
A-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
/* Get a handle to a queue - aq_queue4 in aquser schema: */
queue = aq_sess.getQueue ("aqjava", "aq_queue4");
System.out.println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data: */
b_array = test_data.getBytes();

raw_payload = message.getRawPayload();

raw_payload.setStream(b_array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();
/* Enqueue the message: */
queue.enqueue(enq_option, message);

db_conn.commit();
}

Dequeue of Messages Using Java
public static void runTest(AQSession aq_sess) throws AQException

{
AQQueueTable q_table;
AQQueue queue;
AQMessage message;
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data = "new message";
AQDequeueOption deq_option;
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to queue table - aq_table4 in aqjava schema: */
q_table = aq_sess.getQueueTable ("aqjava", "aq_table4");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - aq_queue4 in aquser schema: */
queue = aq_sess.getQueue ("aqjava", "aq_queue4");
Oracle Advanced Queuing by Example A-27

Enqueuing and Dequeuing Of Messages
System.out.println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data: */
b_array = test_data.getBytes();

raw_payload = message.getRawPayload();

raw_payload.setStream(b_array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue(enq_option, message);
System.out.println("Successful enqueue");

db_conn.commit();

/* Creating a AQDequeueOption object with default options: */
deq_option = new AQDequeueOption();

/* Dequeue a message: */
message = queue.dequeue(deq_option);
System.out.println("Successful dequeue");

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload();

b_array = raw_payload.getBytes();

db_conn.commit();
}

Dequeue of Messages in Browse Mode Using Java
public static void runTest(AQSession aq_sess) throws AQException

{
AQQueueTable q_table;
AQQueueTable q_table;
AQQueue queue;
AQMessage message;
A-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data = "new message";
AQDequeueOption deq_option;
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to queue table - aq_table4 in aqjava schema: */
q_table = aq_sess.getQueueTable ("aqjava", "aq_table4");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - aq_queue4 in aquser schema: */
queue = aq_sess.getQueue ("aqjava", "aq_queue4");
System.out.println("Successful getQueue");

/* Creating a message to contain raw payload: */
message = queue.createMessage();

/* Get handle to the AQRawPayload object and populate it with raw data: */
b_array = test_data.getBytes();

raw_payload = message.getRawPayload();

raw_payload.setStream(b_array, b_array.length);

/* Creating a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue(enq_option, message);
System.out.println("Successful enqueue");

db_conn.commit();

/* Creating a AQDequeueOption object with default options: */
deq_option = new AQDequeueOption();

/* Set dequeue mode to BROWSE: */
deq_option.setDequeueMode(AQDequeueOption.DEQUEUE_BROWSE);

/* Set wait time to 10 seconds: */
deq_option.setWaitTime(10);
Oracle Advanced Queuing by Example A-29

Enqueuing and Dequeuing Of Messages
/* Dequeue a message: */
message = queue.dequeue(deq_option);

/* Retrieve raw data from the message: */
raw_payload = message.getRawPayload();
b_array = raw_payload.getBytes();

String ret_value = new String(b_array);
System.out.println("Dequeued message: " + ret_value);

db_conn.commit();
}

Enqueuing and Dequeuing of Messages by Priority Using PL/SQL
When two messages are enqued with the same priority, the message which was
enqued earlier will be dequeued first. However, if two messages are of different
priorities, the message with the lower value (higher priority) will be dequeued first.

/* Enqueue two messages with priority 30 and 5: */
DECLARE

enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
message := message_typ(’PRIORITY MESSAGE’,
’enqued at priority 30.’);

message_properties.priority := 30;

DBMS_AQ.ENQUEUE(queue_name => ’priority_msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_typ(’PRIORITY MESSAGE’,
’Enqueued at priority 5.’);

message_properties.priority := 5;
A-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
DBMS_AQ.ENQUEUE(queue_name => ’priority_msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

END;

/* Dequeue from priority queue: */
DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
DBMS_AQ.DEQUEUE(queue_name => ’priority_msg_queue’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;

DBMS_AQ.DEQUEUE(queue_name => ’priority_msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);
COMMIT;

END;

/* On return, the second message with priority set to 5 will be retrieved before
the message with priority set to 30 since priority takes precedence over enqueue
time. */
Oracle Advanced Queuing by Example A-31

Enqueuing and Dequeuing Of Messages
Enqueue of Messages with Priority Using Java
public static void runTest(AQSession aq_sess) throws AQException
{

AQQueueTable q_table;
AQQueue queue;
AQMessage message;
AQMessageProperty m_property;
AQRawPayload raw_payload;
AQEnqueueOption enq_option;
String test_data;
byte[] b_array;
Connection db_conn;

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

/* Get a handle to queue table - aq_table4 in aqjava schema: */
qtable = aq_sess.getQueueTable ("aqjava", "aq_table4");
System.out.println("Successful getQueueTable");

/* Get a handle to a queue - aq_queue4 in aqjava schema: */
queue = aq_sess.getQueue ("aqjava", "aq_queue4");
System.out.println("Successful getQueue");

/* Enqueue 5 messages with priorities with different priorities: */
for (int i = 0; i < 5; i++)

{
/* Creating a message to contain raw payload: */
message = queue.createMessage();

test_data = "Small_message_" + (i+1); /* some test data */

/* Get a handle to the AQRawPayload object and
populate it with raw data: */

b_array = test_data.getBytes();

raw_payload = message.getRawPayload();

raw_payload.setStream(b_array, b_array.length);

/* Set message priority: */
m_property = message.getMessageProperty();

if(i < 2)
m_property.setPriority(2);
A-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
else
m_property.setPriority(3);

/* Creating a AQEnqueueOption object with default options: */
enq_option = new AQEnqueueOption();

/* Enqueue the message: */
queue.enqueue(enq_option, message);
System.out.println("Successful enqueue");

}

db_conn.commit();
}

Dequeue of Messages after Preview by Criterion Using PL/SQL
An application can preview messages in browse mode or locked mode without
deleting the message. The message of interest can then be removed from the queue.

/* Enqueue 6 messages to msg_queue
— GREEN, GREEN, YELLOW, VIOLET, BLUE, RED*/

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
message := message_typ(’GREEN’,
’GREEN enqueued to msg_queue first.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_typ(’GREEN’,
’GREEN also enqueued to msg_queue second.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
Oracle Advanced Queuing by Example A-33

Enqueuing and Dequeuing Of Messages
payload => message,
msgid => message_handle);

message := message_typ(’YELLOW’,
’YELLOW enqueued to msg_queue third.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message handle: ’ || message_handle);

message := message_typ(’VIOLET’,
’VIOLET enqueued to msg_queue fourth.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_typ(’BLUE’,
’BLUE enqueued to msg_queue fifth.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_typ(’RED’,
’RED enqueued to msg_queue sixth.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

/* Dequeue in BROWSE mode until RED is found,
A-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
and remove RED from queue: */
DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN
dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;

LOOP
DBMS_AQ.DEQUEUE(queue_name => ’msg_queue’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

EXIT WHEN message.subject = ’RED’;

END LOOP;

dequeue_options.dequeue_mode := DBMS_AQ.REMOVE;
dequeue_options.msgid := message_handle;

DBMS_AQ.DEQUEUE(queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;
END;

/* Dequeue in LOCKED mode until BLUE is found,
and remove BLUE from queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
Oracle Advanced Queuing by Example A-35

Enqueuing and Dequeuing Of Messages
message aq.message_typ;

BEGIN
dequeue_options.dequeue_mode := dbms_aq.LOCKED;

LOOP

dbms_aq.dequeue(queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
’ ... ’ || message.text);

EXIT WHEN message.subject = ’BLUE’;
END LOOP;

dequeue_options.dequeue_mode := dbms_aq.REMOVE;
dequeue_options.msgid := message_handle;

dbms_aq.dequeue(queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;
END;
A-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing of Messages with Time Delay and Expiration Using
PL/SQL

/* Enqueue message for delayed availability: */
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.Message_typ;

BEGIN
message := Message_typ(’DELAYED’,
’This message is delayed one week.’);
message_properties.delay := 7*24*60*60;
message_properties.expiration := 2*7*24*60*60;

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

Note: Expiration is calculated from the earliest dequeue time. So,
if an application wants a message to be dequeued no earlier than a
week from now, but no later than 3 weeks from now, this requires
setting the expiration time for 2 weeks. This scenario is described in
the following code segment.
Oracle Advanced Queuing by Example A-37

Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing of Messages by Correlation and Message ID Using
Pro*C/C++

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>
/* The header file generated by processing
object type ’aq.Message_typ’: */
#include "pceg.h"

void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
LNOCIEnv *oeh; /* OCI Env Handle */
LNOCIError *err; /* OCI Error Handle */
Message_typ *message = (Message_typ*)0; /* queue payload */
message_type_ind *imsg; /*payload indicator*/
LNOCIRaw *msgid = (OCIRaw*)0; /* message id */
ub1 msgmem[16]=""; /* memory for msgid */
char user[60]="aq/AQ"; /* user login password */

Note: You may need to set up data structures similar to the
following for certain examples to work:

$ cat >> message.typ
case=lower
type aq.message_typ
$
$ ott userid=aq/aq intyp=message.typ outtyp=message_o.typ \
code=c hfile=demo.h
$
$ proc intyp=message_o.typ iname=<program name> \
config=<config file> SQLCHECK=SEMANTICS userid=aq/aq
A-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
char subject[30]; /* components of */
char txt[80]; /* Message_typ */
char correlation1[30]; /* message correlation */
char correlation2[30];
int status; /* code returned by the OCI calls */

/ * Dequeue by correlation and msgid */

/* Connect to the database: * /
EXEC SQL CONNECT :user;
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

/ * Allocate space in the object cache for the host variable: */
EXEC SQL ALLOCATE :message;

/* Get the OCI Env handle: */
if (SQLEnvGet(SQL_SINGLE_RCTX, &oeh) != OCI_SUCCESS)
{

printf(" error in SQLEnvGet \n");
exit(1);

}
/ * Get the OCI Error handle: */
if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0))
{
printf(" error in OCIHandleAlloc %d \n", status);
exit(1);
}

/* Assign memory for msgid:
Memory needs to be allocated explicitly to OCIRaw*: */
if (status=OCIRawAssignBytes(oeh, err, msgmem, 16, &msgid))
{
printf(" error in OCIRawAssignBytes %d \n", status);
exit(1);
}

/ * First enqueue * /

strcpy(correlation1, "1st message");
strcpy(subject, "NORMAL ENQUEUE1");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/ * Initialize the components of message: */
Oracle Advanced Queuing by Example A-39

Enqueuing and Dequeuing Of Messages
EXEC SQL OJECT SET subject, text OF :message TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
BEGIN
/ * Bind the host variable ’correlation1’: to message correlation*/
message_properties.correlation := :correlation1;

/ * Bind the host variable ’message’ to payload and
return message id into host variable ’msgid’: */

dbms_aq.enqueue(queue_name => ’msg_queue’,
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message:imsg, /* indicator has to be specified */
msgid => :msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;

printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* Second enqueue */

strcpy(correlation2, "2nd message");
strcpy(subject, "NORMAL ENQUEUE2");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/* Initialize the components of message: */
EXEC SQL OBJECT SET subject, text OF :messsage TO :subject,:txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/ * Bind the host variable ’correlation2’: to message correlaiton */
message_properties.correlation := :correlation2;
A-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
/ * Bind the host variable ’message’: to payload */
dbms_aq.enqueue(queue_name => ’msg_queue’,
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: * /
EXEC SQL COMMIT;
printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* First dequeue - by correlation * /

EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/* Dequeue by correlation in host variable ’correlation2’: */
dequeue_options.correlation := :correlation2;

/ * Return the payload into host variable ’message’: */
dbms_aq.dequeue(queue_name => ’msg_queue’,
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work : */
EXEC SQL COMMIT;

/ * Extract the values of the components of message: */
EXEC SQL OBJECT GET subject, text FROM :message INTO :subject,:txt;

printf("Dequeued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* SECOND DEQUEUE - by MSGID */
Oracle Advanced Queuing by Example A-41

Enqueuing and Dequeuing Of Messages
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/ * Dequeue by msgid in host variable ’msgid’: * /
dequeue_options.msgid := :msgid;

/* Return the payload into host variable ’message’: */
dbms_aq.dequeue(queue_name => ’msg_queue’,
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;
}

Enqueuing and Dequeuing of Messages by Correlation and Message ID Using OCI
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

struct message
{

OCIString *subject;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_subject;
OCIInd null_data;

};
typedef struct null_message null_message;
A-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
int main()
{

OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
message msg;
null_message nmsg;
message *mesg = &msg;
null_message *nmesg = &nmsg;
message *deqmesg = (message *)0;
null_message *ndeqmesg = (null_message *)0;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain TDO of message_typ */
OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),

(CONST text *)"MESSAGE_TYP", strlen("MESSAGE_TYP"),
(text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* Prepare the message payload */
mesg->subject = (OCIString *)0;
Oracle Advanced Queuing by Example A-43

Enqueuing and Dequeuing Of Messages
mesg->data = (OCIString *)0;
OCIStringAssignText(envhp, errhp,

(CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),
&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
&mesg->data);

nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

/* Enqueue into the msg_queue */
OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,

mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
OCITransCommit(svchp, errhp, (ub4) 0);

/* Dequeue from the msg_queue */
OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,

mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue Using
PL/SQL

/* Create subscriber list: */
DECLARE

subscriber aq$_agent;

/* Add subscribers RED and GREEN to the suscriber list: */
BEGIN

subscriber := aq$_agent(’RED’, NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

subscriber := aq$_agent(’GREEN’, NULL, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

END;

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
A-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
recipients DBMS_AQ.aq$_recipient_list_t;
message_handle RAW(16);
message aq.message_typ;

/* Enqueue MESSAGE 1 for subscribers to the queue
i.e. for RED and GREEN: */

BEGIN
message := message_typ(’MESSAGE 1’,
’This message is queued for queue subscribers.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE. */
message := message_typ(’MESSAGE 2’,
’This message is queued for two recipients.’);
recipients(1) := aq$_agent(’RED’, NULL, NULL);
recipients(2) := aq$_agent(’BLUE’, NULL, NULL);
message_properties.recipient_list := recipients;

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

Note that RED is both a subscriber to the queue, as well as being a specified
recipient of MESSAGE 2. By contrast, GREEN is only a subscriber to those messages
in the queue (in this case, MESSAGE) for which no recipients have been specified.
BLUE, while not a subscriber to the queue, is nevertheless specified to receive
MESSAGE 2.

/* Dequeue messages from msg_queue_multiple: */
DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;
no_messages exception;
Oracle Advanced Queuing by Example A-45

Enqueuing and Dequeuing Of Messages
pragma exception_init (no_messages, -25228);

BEGIN

dequeue_options.wait := DBMS_AQ.NO_WAIT;
BEGIN
/* Consumer BLUE will get MESSAGE 2: */
dequeue_options.consumer_name := ’BLUE’;
dequeue_options.navigation := FIRST_MESSAGE;

LOOP

DBMS_AQ.DEQUEUE(queue_name => ’msg_queue_multiple’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

dequeue_options.navigation := NEXT_MESSAGE;

END LOOP;
EXCEPTION
WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (’No more messages for BLUE’);
COMMIT;

END;

BEGIN
/* Consumer RED will get MESSAGE 1 and MESSAGE 2: */

dequeue_options.consumer_name := ’RED’;
dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE

LOOP
DBMS_AQ.DEQUEUE(queue_name => ’msg_queue_multiple’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

dequeue_options.navigation := NEXT_MESSAGE;
END LOOP;
EXCEPTION
A-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (’No more messages for RED’);

COMMIT;
END;

BEGIN
/* Consumer GREEN will get MESSAGE 1: */
dequeue_options.consumer_name := ’GREEN’;
dequeue_options.navigation := FIRST_MESSAGE;
LOOP

DBMS_AQ.DEQUEUE(queue_name => ’msg_queue_multiple’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

dequeue_options.navigation := NEXT_MESSAGE;
END LOOP;
EXCEPTION
WHEN no_messages THEN

DBMS_OUTPUT.PUT_LINE (’No more messages for GREEN’);
COMMIT;

END;

Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue using OCI

#include <stdio.h>
#include <stdlib.h>

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT aqadm/aqadm
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table => ’aq.qtable_multi’,
multiple_consumers => true,
queue_payload_type => ’aq.message_typ’);

EXECUTE DBMS_AQADM.START_QUEUE(’aq.msg_queue_multiple’);
CONNECT aq/aq
Oracle Advanced Queuing by Example A-47

Enqueuing and Dequeuing Of Messages
#include <string.h>
#include <oci.h>

struct message
{

OCIString *subject;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_subject;
OCIInd null_data;

};
typedef struct null_message null_message;

int main()
{

OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *tmp;
OCIType *mesg_tdo = (OCIType *) 0;
message msg;
null_message nmsg;
message *mesg = &msg;
null_message *nmesg = &nmsg;
message *deqmesg = (message *)0;
null_message *ndeqmesg = (null_message *)0;
OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
OCIAQAgent *agents[2];
OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
ub4 wait = OCI_DEQ_NO_WAIT;
ub4 navigation = OCI_DEQ_FIRST_MSG;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);
A-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* Obtain TDO of message_typ */
OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),

(CONST text *)"MESSAGE_TYP", strlen("MESSAGE_TYP"),
(text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* Prepare the message payload */
mesg->subject = (OCIString *)0;
mesg->data = (OCIString *)0;
OCIStringAssignText(envhp, errhp,

(CONST text *)"MESSAGE 1", strlen("MESSAGE 1"),
&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)"mesg for queue subscribers",
strlen("mesg for queue subscribers"), &mesg->data);

nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

/* Enqueue MESSAGE 1 for subscribers to the queue i.e. for RED and GREEN */
OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, 0,

mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE */
/* prepare message payload */

OCIStringAssignText(envhp, errhp,
(CONST text *)"MESSAGE 2", strlen("MESSAGE 2"),
&mesg->subject);

OCIStringAssignText(envhp, errhp,
(CONST text *)"mesg for two recipients",
Oracle Advanced Queuing by Example A-49

Enqueuing and Dequeuing Of Messages
strlen("mesg for two recipients"), &mesg->data);

/* Allocate AQ message properties and agent descriptors */
OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,

OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
OCIDescriptorAlloc(envhp, (dvoid **)&agents[0],

OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
OCIDescriptorAlloc(envhp, (dvoid **)&agents[1],

OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

/* Prepare the recipient list, RED and BLUE */
OCIAttrSet(agents[0], OCI_DTYPE_AQAGENT, "RED", strlen("RED"),

OCI_ATTR_AGENT_NAME, errhp);
OCIAttrSet(agents[1], OCI_DTYPE_AQAGENT, "BLUE", strlen("BLUE"),

OCI_ATTR_AGENT_NAME, errhp);
OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)agents, 2,

OCI_ATTR_RECIPIENT_LIST, errhp);

OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, msgprop,
mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

/* Now dequeue the messages using different consumer names */
/* Allocate dequeue options descriptor to set the dequeue options */
OCIDescriptorAlloc(envhp, (dvoid **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,

(dvoid **)0);

/* Set wait parameter to NO_WAIT so that the dequeue returns immediately */
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&wait, 0,

OCI_ATTR_WAIT, errhp);

/* Set navigation to FIRST_MESSAGE so that the dequeue resets the position */
/* after a new consumer_name is set in the dequeue options */
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, 0,

OCI_ATTR_NAVIGATION, errhp);

/* Dequeue from the msg_queue_multiple as consumer BLUE */
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"BLUE", strlen("BLUE"),

OCI_ATTR_CONSUMER_NAME, errhp);

while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
== OCI_SUCCESS)

{

A-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));

}
OCITransCommit(svchp, errhp, (ub4) 0);

/* Dequeue from the msg_queue_multiple as consumer RED */
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"RED", strlen("RED"),

OCI_ATTR_CONSUMER_NAME, errhp);
while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,

mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
== OCI_SUCCESS)

{
printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));

}
OCITransCommit(svchp, errhp, (ub4) 0);

/* Dequeue from the msg_queue_multiple as consumer GREEN */
OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(dvoid *)"GREEN",strlen("GREEN"),

OCI_ATTR_CONSUMER_NAME, errhp);
while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,

mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
== OCI_SUCCESS)

{
printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));

}
OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueuing and Dequeuing of Messages Using Message Grouping Using PL/SQL
CONNECT aq/aq

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (
queue_table => ’aq.msggroup’,
queue_payload_type => ’aq.message_typ’,
message_grouping => DBMS_AQADM.TRANSACTIONAL);

EXECUTE DBMS_AQADM.CREATE_QUEUE(
queue_name => ’msggroup_queue’,
queue_table => ’aq.msggroup’);

EXECUTE DBMS_AQADM.START_QUEUE(
Oracle Advanced Queuing by Example A-51

Enqueuing and Dequeuing Of Messages
queue_name => ’msggroup_queue’);

/* Enqueue three messages in each transaction */
DECLARE

enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

BEGIN

/* Loop through three times, committing after every iteration */
FOR txnno in 1..3 LOOP

/* Loop through three times, enqueuing each iteration */
FOR mesgno in 1..3 LOOP

message := message_typ(’GROUP#’ || txnno,
’Message#’ || mesgno || ’ in group’ || txnno);

DBMS_AQ.ENQUEUE(queue_name => ’msggroup_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

END LOOP;
/* Commit the transaction */
COMMIT;

END LOOP;
END;

/* Now dequeue the messages as groups */
DECLARE

dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
message_handle RAW(16);
message aq.message_typ;

no_messages exception;
end_of_group exception;

PRAGMA EXCEPTION_INIT (no_messages, -25228);
PRAGMA EXCEPTION_INIT (end_of_group, -25235);

BEGIN
dequeue_options.wait := DBMS_AQ.NO_WAIT;
A-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;

LOOP
BEGIN
DBMS_AQ.DEQUEUE(queue_name => ’msggroup_queue’,

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

DBMS_OUTPUT.PUT_LINE (’Message: ’ || message.subject ||
’ ... ’ || message.text);

dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;

EXCEPTION
WHEN end_of_group THEN

DBMS_OUTPUT.PUT_LINE (’Finished processing a group of messages’);
COMMIT;
dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;

END;
END LOOP;
EXCEPTION

WHEN no_messages THEN
DBMS_OUTPUT.PUT_LINE (’No more messages’);

END;

Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using
PL/SQL

/* Create the message payload object type with one or more LOB attributes. On
enqueue, set the LOB attribute to EMPTY_BLOB. After the enqueue completes,
before you commit your transaction. Select the LOB attribute from the
user_data column of the queue table or queue table view. You can now
use the LOB interfaces (which are available through both OCI and PL/SQL) to
write the LOB data to the queue. On dequeue, the message payload
will contain the LOB locator. You can use this LOB locator after
the dequeue, but before you commit your transaction, to read the LOB data.

*/
/* Setup the accounts: */

connect system/manager
Oracle Advanced Queuing by Example A-53

Enqueuing and Dequeuing Of Messages
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT CONNECT, RESOURCE TO aqadm;
GRANT aq_administrator_role TO aqadm;

CREATE USER aq IDENTIFIED BY aq;
GRANT CONNECT, RESOURCE TO aq;
GRANT EXECUTE ON DBMS_AQ TO aq;
CREATE TYPE aq.message AS OBJECT(id NUMBER,

subject VARCHAR2(100),
data BLOB,
trailer NUMBER);

CREATE TABLESPACE aq_tbs DATAFILE ’aq.dbs’ SIZE 2M REUSE;

/* create the queue table, queues and start the queue: */

CONNECT aqadm/aqadm
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table => ’aq.qt1’,
queue_payload_type => ’aq.message’);

EXECUTE DBMS_AQADM.CREATE_QUEUE(
queue_name => ’aq.queue1’,
queue_table => ’aq.qt1’);

EXECUTE DBMS_AQADM.START_QUEUE(queue_name => ’aq.queue1’);

/* End set up: */

/* Enqueue of Large data types: */

CONNECT aq/aq
CREATE OR REPLACE PROCEDURE blobenqueue(msgno IN NUMBER) AS
enq_userdata aq.message;
enq_msgid RAW(16);
enqopt DBMS_AQ.enqueue_options_t;
msgprop DBMS_AQ.message_properties_t;
lob_loc BLOB;
buffer RAW(4096);

BEGIN

buffer := HEXTORAW(RPAD(’FF’, 4096, ’FF’));
enq_userdata := aq.message(msgno, ’Large Lob data’, EMPTY_BLOB(), msgno);
DBMS_AQ.ENQUEUE(’aq.queue1’, enqopt, msgprop, enq_userdata, enq_msgid);

--select the lob locator for the queue table
A-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
SELECT t.user_data.data INTO lob_loc
FROM qt1 t
WHERE t.msgid = enq_msgid;

DBMS_LOB.WRITE(lob_loc, 2000, 1, buffer);
COMMIT;

END;

/* Dequeue lob data: */

CREATE OR REPLACE PROCEDURE blobdequeue AS
dequeue_options DBMS_AQ.dequeue_options_t;
message_properties DBMS_AQ.message_properties_t;
mid RAW(16);
pload aq.message;
lob_loc BLOB;
amount BINARY_INTEGER;
buffer RAW(4096);

BEGIN
DBMS_AQ.DEQUEUE(’aq.queue1’, dequeue_options, message_properties,

pload, mid);
lob_loc := pload.data;

-- read the lob data info buffer
amount := 2000;
DBMS_LOB.READ(lob_loc, amount, 1, buffer);
DBMS_OUTPUT.PUT_LINE(’Amount of data read: ’||amount);
COMMIT;

END;

/* Do the enqueues and dequeues: */
SET SERVEROUTPUT ON

BEGIN
FOR i IN 1..5 LOOP

blobenqueue(i);
END LOOP;

END;

BEGIN
FOR i IN 1..5 LOOP

blobdequeue();
END LOOP;

END;
Oracle Advanced Queuing by Example A-55

Enqueuing and Dequeuing Of Messages
Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using
Java

1. Create the message type (ADT with CLOB and blob)

connect aquser/aquser

create type LobMessage as object(id NUMBER,
subject varchar2(100),
data blob,
cdata clob,
trailer number);

2. Create the queue table and queue

connect aquser/aquser
execute dbms_aqadm.create_queue_table(

queue_table => 'qt_adt',
queue_payload_type => 'LOBMESSAGE',
comment => 'single-consumer, default sort ordering, ADT Message',
compatible => '8.1.0'

);

execute dbms_aqadm.create_queue(
queue_name => 'q1_adt',
queue_table => 'qt_adt'

);

execute dbms_aqadm.start_queue(queue_name => 'q1_adt');

3. Run jpublisher to generate the java class that maps to the LobMessage

Oracle object type

jpub -user=aquser/aquser -sql=LobMessage -case=mixed -methods=false
-usertypes=oracle -compatible=CustomDatum

4. Enqueuing and Dequeuing Messages

public static void runTest(AQSession aq_sess)
{

A-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
Connection db_conn = null;
AQEnqueueOption eq_option = null;
AQDequeueOption dq_option = null;
AQQueue queue1 = null;
AQMessage adt_msg = null;
AQMessage adt_msg2 = null;
AQObjectPayload sPayload = null;
AQObjectPayload sPayload2 = null;
LobMessage sPayl = null;
LobMessage sPayl2 = null;
AQObjectPayload rPayload = null;
LobMessage rPayl = null;
byte[] smsgid;
AQMessage rMessage = null;
int i = 0;
int j = 0;
int id = 0;
boolean more = false;
byte[] b_array;
char[] c_array;
String mStr = null;
BLOB b1 = null;
CLOB c1 = null;
BLOB b2 = null;
CLOB c2 = null;
BLOB b3 = null;
CLOB c3 = null;
int b_len = 0;
int c_len = 0;
OracleCallableStatement blob_stmt0= null;
OracleCallableStatement clob_stmt0= null;
OracleResultSet rset0 = null;
OracleResultSet rset1 = null;
OracleCallableStatement blob_stmt = null;
OracleResultSet rset2 = null;
OracleCallableStatement clob_stmt = null;
OracleResultSet rset3 = null;

try
{

db_conn = ((AQOracleSession)aq_sess).getDBConnection();

queue1 = aq_sess.getQueue("aquser", "q1_adt");
Oracle Advanced Queuing by Example A-57

Enqueuing and Dequeuing Of Messages
b_array = new byte[5000];
c_array = new char[5000];
for (i = 0; i < 5000; i++)
{

b_array[i] = 67;
c_array[i] = 'c';

}
sPayl = new LobMessage();

System.out.println("Enqueue Long messages");

eq_option = new AQEnqueueOption();

/* Enqueue messages with LOB attributes */
for (i = 0; i < 10; i++)
{

adt_msg = queue1.createMessage();

sPayload = adt_msg.getObjectPayload();

/* Get Empty BLOB handle */
blob_stmt0 = (OracleCallableStatement)db_conn.prepareCall(

"select empty_blob() from dual");
rset0 = (OracleResultSet) blob_stmt0.executeQuery ();
try
{

if (rset0.next())
{

b1 = (oracle.sql.BLOB)rset0.getBlob(1);
}
if (b1 == null)
{

System.out.println("select empty_blob() from dual failed");
}

}
catch (Exception ex)
{

System.out.println("Exception during select from dual " + ex);
ex.printStackTrace();

}

/* Get Empty CLOB handle */
clob_stmt0 = (OracleCallableStatement)db_conn.prepareCall(
A-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
"select empty_clob() from dual");
rset1 = (OracleResultSet) clob_stmt0.executeQuery ();
try
{

if (rset1.next())
{

c1 = (oracle.sql.CLOB)rset1.getClob(1);
}
if (c1 == null)
{

System.out.println("select empty_clob() from dual failed");
}

}
catch (Exception ex)
{

System.out.println("Exception2 during select from dual " + ex);
ex.printStackTrace();

}
id = i+1;
mStr = "Message #" + id;
sPayl.setId(new BigDecimal(id));
sPayl.setTrailer(new BigDecimal(id));
sPayl.setSubject(mStr);
sPayl.setData(b1);
sPayl.setCdata(c1);

/* Set Object Payload data */
sPayload.setPayloadData(sPayl);

/* Enqueue the message */
queue1.enqueue(eq_option, adt_msg);
System.out.println("Enqueued Message: " + id);
smsgid = adt_msg.getMessageId();

/*
* Note: The message is initially enqueued with an EMPTY BLOB and CLOB
* After enqueuing the message, we need to get the lob locators and
* then populate the LOBs
*/

blob_stmt = (OracleCallableStatement)db_conn.prepareCall(
"SELECT user_data FROM qt_adt where msgid = ?");

blob_stmt.setBytes(1,smsgid);
rset2 = (OracleResultSet) blob_stmt.executeQuery ();
try
{

Oracle Advanced Queuing by Example A-59

Enqueuing and Dequeuing Of Messages
if (rset2.next())
{

/* Get message contents */
sPayl2 = (LobMessage)rset2.getCustomDatum(1,

((CustomDatumFactory)LobMessage.getFactory()));

/* Get BLOB locator */
b2 = sPayl2.getData();

/* Popuate the BLOB */
if (b2 == null)
{

System.out.println("Blob select null");
}
if ((i % 3) == 0)
{

b_len = b2.putBytes(1000,b_array);
}
else
{

b_len = b2.putBytes(1,b_array);
}

/* Get CLOB locator */
c2 = sPayl2.getCdata();

/* Populate the CLOB */
if (c2 == null)
{

System.out.println("Clob select null");
}
if ((i % 4) == 0)
{

c_len = c2.putChars(2500,c_array);
}
else
{

c_len = c2.putChars(1,c_array);
}

}
}
catch (Exception ex)
{

System.out.println("Blob or Clob exception: " + ex);
}

A-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueuing and Dequeuing Of Messages
}

Thread.sleep(30000);

// dequeue messages
dq_option = new AQDequeueOption();
dq_option.setWaitTime(AQDequeueOption.WAIT_NONE);

for (i = 0 ; i < 10 ; i++)
{

/* Dequeue the message */
adt_msg2 = ((AQOracleQueue)queue1).dequeue(dq_option,

LobMessage.getFactory());

/* Get payload containing LOB data */
rPayload = adt_msg2.getObjectPayload();
rPayl = (LobMessage) rPayload.getPayloadData();

System.out.println("\n Message: #" + (i+1));
System.out.println(" Id: " + rPayl.getId());
System.out.println(" Subject: " + rPayl.getSubject());

/* Get BLOB data */
b3 = rPayl.getData();
System.out.println(" " + b3.length() + " bytes of data");

/* Get CLOB data */
c3 = rPayl.getCdata();
System.out.println(" " + c3.length() + " chars of data");
System.out.println(" Trailer: " + rPayl.getTrailer());
db_conn.commit();

}

}
catch (java.sql.SQLException sql_ex)
{

System.out.println("SQL Exception: " + sql_ex);
sql_ex.printStackTrace();

}
catch (Exception ex)
{

Oracle Advanced Queuing by Example A-61

Propagation
System.out.println("Exception-2: " + ex);
ex.printStackTrace();

}

}

Propagation

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue
and Propagation Scheduling Using PL/SQL

/* Create subscriber list: */
DECLARE

subscriber aq$_agent;

/* Add subscribers RED and GREEN with different addresses to the suscriber
list: */

BEGIN
BEGIN

/* Add subscriber RED that will dequeue messages from another_msg_queue
queue in the same datatbase */
subscriber := aq$_agent(’RED’, ’another_msg_queue’, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

/* Schedule propagation from msg_queue_multiple to other queues in the
same
database: */
DBMS_AQADM.SCHEDULE_PROPAGATION(queue_name => ’msg_queue_multiple’);

/* Add subscriber GREEN that will dequeue messages from the msg_queue
queue
in another database reached by the database link another_db.world */
subscriber := aq$_agent(’GREEN’, ’msg_queue@another_db.world’, NULL);
DBMS_AQADM.ADD_SUBSCRIBER(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

/* Schedule propagation from msg_queue_multiple to other queues in the
database "another_database": */

Caution: You may need to create queues or queue tables, or start
or enable queues, for certain examples to work:
A-62 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation
END;
BEGIN

DBMS_AQADM.SCHEDULE_PROPAGATION(queue_name => ’msg_queue_multiple’,
destination => ’another_db.world’);

END;
END;

DECLARE
enqueue_options DBMS_AQ.enqueue_options_t;
message_properties DBMS_AQ.message_properties_t;
recipients DBMS_AQ.aq$_recipient_list_t;
message_handle RAW(16);
message aq.message_typ;

/* Enqueue MESSAGE 1 for subscribers to the queue
i.e. for RED at address another_msg_queue and GREEN at address msg_
queue@another_db.world: */
BEGIN

message := message_typ(’MESSAGE 1’,
’This message is queued for queue subscribers.’);

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED at address
another_msg_queue and BLUE. */
message := message_typ(’MESSAGE 2’,
’This message is queued for two recipients.’);
recipients(1) := aq$_agent(’RED’, ’another_msg_queue’, NULL);
recipients(2) := aq$_agent(’BLUE’, NULL, NULL);
message_properties.recipient_list := recipients;

DBMS_AQ.ENQUEUE(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;
Oracle Advanced Queuing by Example A-63

Propagation
Managing Propagation From One Queue To Other Queues In The Same Database
Using PL/SQL

/* Schedule propagation from queue q1def to other queues in the same database */
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(queue_name => ’q1def’);

/* Disable propagation from queue q1def to other queues in the same
database */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

queue_name => ’q1def’);

/* Alter schedule from queue q1def to other queues in the same database */
EXECUTE DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(

queue_name => ’q1def’,
duration => ’2000’,
next_time => ’SYSDATE + 3600/86400’,
latency => ’32’);

/* Enable propagation from queue q1def to other queues in the same database */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

queue_name => ’q1def’);

/* Unschedule propagation from queue q1def to other queues in the same database
*/
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(

queue_name => ’q1def’);

Manage Propagation From One Queue To Other Queues In Another Database Using
PL/SQL

/* Schedule propagation from queue q1def to other queues in another database
reached by the database link another_db.world */
EXECUTE DBMS_AQADM.SCHEDULE_PROPAGATION(

Note: RED at address another_msg_queue is both a subscriber
to the queue, as well as being a specified recipient of MESSAGE 2.
By contrast, GREEN at address msg_queue@another_db .world
is only a subscriber to those messages in the queue (in this case,
MESSAGE 1) for which no recipients have been specified. BLUE,
while not a subscriber to the queue, is nevertheless specified to
receive MESSAGE 2.
A-64 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation
queue_name => ’q1def’,
destination => ’another_db.world’);

/* Disable propagation from queue q1def to other queues in another database
reached by the database link another_db.world */
EXECUTE DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE(

queue_name => ’q1def’,
destination => ’another_db.world’);

/* Alter schedule from queue q1def to other queues in another database reached
by the database link another_db.world */
EXECUTE DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE(

queue_name => ’q1def’,
destination => ’another_db.world’,
duration => ’2000’,
next_time => ’SYSDATE + 3600/86400’,
latency => ’32’);

/* Enable propagation from queue q1def to other queues in another database
reached by the database link another_db.world */
EXECUTE DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE(

queue_name => ’q1def’,
destination => ’another_db.world’);

/* Unschedule propagation from queue q1def to other queues in another database
reached by the database link another_db.world */
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(

queue_name => ’q1def’,
destination => ’another_db.world’);

Unscheduling Propagation Using PL/SQL
/* Unschedule propagation from msg_queue_multiple to the destination another_
db.world */
EXECUTE DBMS_AQADM.UNSCHEDULE_PROPAGATION(

queue_name => ’msg_queue_multiple’,
destination => ’another_db.world’);
Oracle Advanced Queuing by Example A-65

Dropping AQ Objects
Dropping AQ Objects

/* Cleans up all objects related to the object type: */
CONNECT aq/aq

EXECUTE DBMS_AQADM.STOP_QUEUE (
queue_name => ’msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name => ’msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => ’aq.objmsgs80_qtab’);

/* Cleans up all objects related to the RAW type: */
EXECUTE DBMS_AQADM.STOP_QUEUE (

queue_name => ’raw_msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name => ’raw_msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => ’aq.RawMsgs_qtab’);

/* Cleans up all objects related to the priority queue: */
EXECUTE DBMS_AQADM.STOP_QUEUE (

queue_name => ’priority_msg_queue’);

For additional examples of Alter Propagation, Enable Propagation
and Disable Propagation, see:

� "Example: Alter a Propagation Schedule Using PL/SQL
(DBMS_AQADM)" on page 9-76

� "Example: Enable a Propagation Using PL/SQL (DBMS_
AQADM)" on page 9-79

� "Example: Disable a Propagation Using PL/SQL (DBMS_
AQADM)" on page 82

Caution: You may need to create queues or queue tables, or start,
stop, or enable queues, for certain examples to work:
A-66 Oracle9i Application Developer’s Guide - Advanced Queuing

Revoking Roles and Privileges
EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name => ’priority_msg_queue’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => ’aq.priority_msg’);

/* Cleans up all objects related to the multiple-consumer queue: */
EXECUTE DBMS_AQADM.STOP_QUEUE (

queue_name => ’msg_queue_multiple’);

EXECUTE DBMS_AQADM.DROP_QUEUE (
queue_name => ’msg_queue_multiple’);

EXECUTE DBMS_AQADM.DROP_QUEUE_TABLE (
queue_table => ’aq.MultiConsumerMsgs_qtab’);

DROP TYPE aq.message_typ;

Revoking Roles and Privileges
CONNECT sys/change_on_install
DROP USER aq;
Oracle Advanced Queuing by Example A-67

Deploying AQ with XA
Deploying AQ with XA

/*
* The program uses the XA interface to enqueue 100 messages and then
* dequeue them.
* Login: aq/aq
* Requires: AQ_USER_ROLE to be granted to aq
* a RAW queue called "aqsqueue" to be created in aqs schema
* (above steps can be performed by running aqaq.sql)
* Message Format: Msgno: [0-1000] HELLO, WORLD!
* Author: schandra@us.oracle.com
*/

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <xa.h>

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager;
DROP USER aqadm CASCADE;
GRANT CONNECT, RESOURCE TO aqadm;
CREATE USER aqadm IDENTIFIED BY aqadm;
GRANT EXECUTE ON DBMS_AQADM TO aqadm;
GRANT Aq_administrator_role TO aqadm;
DROP USER aq CASCADE;
CREATE USER aq IDENTIFIED BY aq;
GRANT CONNECT, RESOURCE TO aq;
GRANT EXECUTE ON dbms_aq TO aq;
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table => 'aq.qtable',
queue_payload_type => 'RAW');

EXECUTE DBMS_AQADM.CREATE_QUEUE(
queue_name => 'aq.aqsqueue',
queue_table => 'aq.qtable');

EXECUTE DBMS_AQADM.START_QUEUE(queue_name =>
'aq.aqsqueue');
A-68 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying AQ with XA
/* XA open string */
char xaoinfo[] = "oracle_xa+ACC=P/AQ/AQ+SESTM=30+Objects=T";

/* template for generating XA XIDs */
XID xidtempl = { 0x1e0a0a1e, 12, 8, "GTRID001BQual001" };

/* Pointer to Oracle XA function table */
extern struct xa_switch_t xaosw; /* Oracle XA switch */
static struct xa_switch_t *xafunc = &xaosw;

/* dummy stubs for ax_reg and ax_unreg */
int ax_reg(rmid, xid, flags)
int rmid;
XID *xid;
long flags;
{

xid->formatID = -1;
return 0;

}

int ax_unreg(rmid, flags)
int rmid;
long flags;
{

return 0;
}

/* generate an XID */
void xidgen(xid, serialno)
XID *xid;
int serialno;
{

char seq [11];

sprintf(seq, "%d", serialno);
memcpy((void *)xid, (void *)&xidtempl, sizeof(XID));
strncpy((&xid->data[5]), seq, 3);

}

/* check if XA operation succeeded */
#define checkXAerr(action, funcname) \

if ((action) != XA_OK) \
{ \

printf("%s failed!\n", funcname); \
exit(-1); \
Oracle Advanced Queuing by Example A-69

Deploying AQ with XA
} else

/* check if OCI operation succeeded */
static void checkOCIerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

if (status == OCI_ERROR)
{

OCIErrorGet((dvoid *) errhp, 1, (text *)0, &errcode, errbuf,
(ub4)sizeof(errbuf), OCI_HTYPE_ERROR);

printf("Error - %s\n", errbuf);
}
else

printf("Error - %d\n", status);
exit (-1);

}

void main(argc, argv)
int argc;
char **argv;
{

int msgno = 0; /* message being enqueued */
OCIEnv *envhp; /* OCI environment handle */
OCIError *errhp; /* OCI Error handle */
OCISvcCtx *svchp; /* OCI Service handle */
char message[128]; /* message buffer */
ub4 mesglen; /* length of message */
OCIRaw *rawmesg = (OCIRaw *)0; /* message in OCI RAW format */
OCIInd ind = 0; /* OCI null indicator */
dvoid *indptr = (dvoid *)&ind; /* null indicator pointer */
OCIType *mesg_tdo = (OCIType *) 0; /* TDO for RAW datatype */
XID xid; /* XA's global transaction id */
ub4 i; /* array index */

checkXAerr(xafunc->xa_open_entry(xaoinfo, 1, TMNOFLAGS), "xaoopen");

svchp = xaoSvcCtx((text *)0); /* get service handle from XA */
A-70 Oracle9i Application Developer’s Guide - Advanced Queuing

Deploying AQ with XA
envhp = xaoEnv((text *)0); /* get enviornment handle from XA */

if (!svchp || !envhp)
{

printf("Unable to obtain OCI Handles from XA!\n");
exit (-1);

}

OCIHandleAlloc((dvoid *)envhp, (dvoid **)&errhp,
OCI_HTYPE_ERROR, 0, (dvoid **)0); /* allocate error handle */

/* enqueue 1000 messages, 1 message per XA transaction */
for (msgno = 0; msgno < 1000; msgno++)
{

sprintf((const char *)message, "Msgno: %d, Hello, World!", msgno);
mesglen = (ub4)strlen((const char *)message);
xidgen(&xid, msgno); /* generate an XA xid */

checkXAerr(xafunc->xa_start_entry(&xid, 1, TMNOFLAGS), "xaostart");

checkOCIerr(errhp, OCIRawAssignBytes(envhp, errhp, (ub1 *)message, mesglen,
&rawmesg));

if (!mesg_tdo) /* get Type descriptor (TDO) for RAW type */
checkOCIerr(errhp, OCITypeByName(envhp, errhp, svchp,

(CONST text *)"AQADM", strlen("AQADM"),
(CONST text *)"RAW", strlen("RAW"),

(text *)0, 0, OCI_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesg_tdo));

checkOCIerr(errhp, OCIAQEnq(svchp, errhp, (CONST text *)"aqsqueue",
0, 0, mesg_tdo, (dvoid **)&rawmesg, &indptr,

0, 0));

checkXAerr(xafunc->xa_end_entry(&xid, 1, TMSUCCESS), "xaoend");
checkXAerr(xafunc->xa_commit_entry(&xid, 1, TMONEPHASE), "xaocommit");
printf("%s Enqueued\n", message);

}

/* dequeue 1000 messages within one XA transaction */
xidgen(&xid, msgno); /* generate an XA xid */
checkXAerr(xafunc->xa_start_entry(&xid, 1, TMNOFLAGS), "xaostart");
for (msgno = 0; msgno < 1000; msgno++)
{

checkOCIerr(errhp, OCIAQDeq(svchp, errhp, (CONST text *)"aqsqueue",
Oracle Advanced Queuing by Example A-71

AQ and Memory Usage
0, 0, mesg_tdo, (dvoid **)&rawmesg, &indptr,
0, 0));

if (ind)
printf("Null Raw Message");

else
for (i = 0; i < OCIRawSize(envhp, rawmesg); i++)

printf("%c", *(OCIRawPtr(envhp, rawmesg) + i));
printf("\n");

}
checkXAerr(xafunc->xa_end_entry(&xid, 1, TMSUCCESS), "xaoend");
checkXAerr(xafunc->xa_commit_entry(&xid, 1, TMONEPHASE), "xaocommit");

}

AQ and Memory Usage

Create_types.sql: Create Payload Types and Queues in Scott's Schema

Enqueuing Messages (Free Memory After Every Call) Using OCI
This program, enqnoreuse.c , dequeues each line of text from a queue 'msgqueue '
that has been created in scott's schema using create_types.sql. Messages are
enqueued using enqnoreuse.c or enqreuse.c (see below). If there are no
messages, it waits for 60 seconds before timing out. In this program, the dequeue
subroutine does not reuse client side objects' memory. It allocates the required
memory before dequeue and frees it after the dequeue is complete.

#ifndef OCI_ORACLE

Note: You may need to set up data structures for certain examples
to work, such as:

/* Create_types.sql */
CONNECT system/manager
GRANT AQ_ADMINISTRATOR_ROLE, AQ_USER_ROLE TO scott;
CONNECT scott/tiger
CREATE TYPE MESSAGE AS OBJECT (id NUMBER, data VARCHAR2(80));
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table => 'qt',
queue_payload_type => 'message');

EXECUTE DBMS_AQADM.CREATE_QUEUE('msgqueue', 'qt');
EXECUTE DBMS_AQADM.START_QUEUE('msgqueue');
A-72 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

LNOCIEnv *envhp;
LNOCIError *errhp;
LNOCISvcCtx *svchp;

struct message
{

OCINumber id;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_id;
OCIInd null_data;

};
typedef struct null_message null_message;

static void deqmesg(buf, buflen)
text *buf;
ub4 *buflen;
{

OCIType *mesgtdo = (OCIType *)0; / * type descr of SCOTT.MESSAGE */
message *mesg = (dvoid *)0; /* instance of SCOTT.MESSAGE */
null_message *mesgind = (dvoid *)0; /* null indicator */
OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ_FIRST_MSG; /* always get head of q */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr(errhp, OCITypeByName(envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),
(CONST text *)"MESSAGE", strlen("MESSAGE"),
(text *)0, 0, OCI_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));
Oracle Advanced Queuing by Example A-73

AQ and Memory Usage
/* Allocate an instance of SCOTT.MESSAGE, and get its null indicator: */
checkerr(errhp, OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_OBJECT,

mesgtdo, (dvoid *)0, OCI_DURATION_SESSION,
TRUE, (dvoid **)&mesg));

checkerr(errhp, OCIObjectGetInd(envhp, errhp, (dvoid *)mesg,
(dvoid **)&mesgind));

/* Allocate a descriptor for dequeue options and set wait time, navigation: */
checkerr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,

OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0));
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&wait, 0, OCI_ATTR_WAIT, errhp));
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&navigation, 0,
OCI_ATTR_NAVIGATION, errhp));

/* Dequeue the message and commit: */
checkerr(errhp, OCIAQDeq(svchp, errhp, (CONST text *)"msgqueue",

deqopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null_data)

*buflen = 0;
else

memcpy((dvoid *)buf, (dvoid *)OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));

/* Free the dequeue options descriptor: */
checkerr(errhp, OCIDescriptorFree((dvoid *)deqopt, OCI_DTYPE_AQDEQ_OPTIONS));

/* Free the memory for the objects: */
Checkerr(errhp, OCIObjectFree(envhp, errhp, (dvoid *)mesg,

OCI_OBJECTFREE_FORCE));
} /* end deqmesg */

void main()
{

OCIServer *srvhp;
OCISession *usrhp;
dvoid *tmp;
text buf[80]; /* payload text */
A-74 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
ub4 buflen;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* Allocate a user context handle: */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR_PASSWORD, errhp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
OCI_DEFAULT));

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

do {
deqmesg(buf, &buflen);
printf("%.*s\n", buflen, buf);

} while(1);
} /* end main */
Oracle Advanced Queuing by Example A-75

AQ and Memory Usage
static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:

OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);

printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

default:
printf("Error - %d\n", status);
break;

}
exit(-1);

} /* end checkerr */

Enqueuing Messages (Reuse Memory) Using OCI
This program, enqreuse.c , enqueues each line of text into a queue 'msgqueue'
that has been created in scott's schema by executing create_types.sql . Each line
of text entered by the user is stored in the queue until user enters EOF. In this
program the enqueue subroutine reuses the memory for the message payload, as
well as the AQ message properties descriptor.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIError *errhp, sword status);
static void enqmesg(ub4 msgno, text *buf);
A-76 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
struct message
{

OCINumber id;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_id;
OCIInd null_data;

};
typedef struct null_message null_message;

/* Global data reused on calls to enqueue: */
LNOCIEnv *envhp;
LNOCIError *errhp;
LNOCISvcCtx *svchp;
message msg;
null_message nmsg;
LNOCIAQMsgProperties *msgprop;

static void enqmesg(msgno, buf)
ub4 msgno;
text *buf;
{

OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
message *mesg = &msg; /* instance of SCOTT.MESSAGE */
null_message *mesgind = &nmsg; /* null indicator */
text corrid[128]; /* correlation identifier */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr(errhp, OCITypeByName(envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),
(CONST text *)"MESSAGE", strlen("MESSAGE"),
(text *)0, 0, OCI_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));

/* Fill in the attributes of SCOTT.MESSAGE: */
checkerr(errhp, OCINumberFromInt(errhp, &msgno, sizeof(ub4), 0, &mesg->id));
checkerr(errhp, OCIStringAssignText(envhp, errhp, buf, strlen(buf),

&mesg->data));
mesgind->null_adt = mesgind->null_id = mesgind->null_data = 0;
Oracle Advanced Queuing by Example A-77

AQ and Memory Usage
/* Set the correlation id in the message properties descriptor: */
sprintf((char *)corrid, "Msg#: %d", msgno);
checkerr(errhp, OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,

(dvoid *)&corrid, strlen(corrid),
OCI_ATTR_CORRELATION, errhp));

/* Enqueue the message and commit: */
checkerr(errhp, OCIAQEnq(svchp, errhp, (CONST text *)"msgqueue",

0, msgprop, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));
} /* end enqmesg */

void main()
{

OCIServer *srvhp;
OCISession *usrhp;
dvoid *tmp;
text buf[80]; /* user supplied text */
int msgno = 0;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* Allocate a user context handle: */
A-78 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR_PASSWORD, errhp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
OCI_DEFAULT));

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

/* Allocate a message properties descriptor to fill in correlation id :*/
checkerr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,

OCI_DTYPE_AQMSG_PROPERTIES,
0, (dvoid **)0));

do {
printf("Enter a line of text (max 80 chars):");
if (!gets((char *)buf))

break;
enqmesg((ub4)msgno++, buf);

} while(1);

/* Free the message properties descriptor: */
checkerr(errhp, OCIDescriptorFree((dvoid *)msgprop,

OCI_DTYPE_AQMSG_PROPERTIES));

} /* end main */

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:
Oracle Advanced Queuing by Example A-79

AQ and Memory Usage
OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);

printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

default:
printf("Error - %d\n", status);
break;

}
exit(-1);

} /* end checkerr */

Dequeuing Messages (Free Memory After Every Call) Using OCI
This program, deqnoreuse.c , dequeues each line of text from a queue 'msgqueue '
that has been created in scott's schema by executing create_types.sql . Messages
are enqueued using enqnoreuse or enqreuse . If there are no messages, it waits
for 60 seconds before timing out. In this program the dequeue subroutine does not
reuse client side objects' memory. It allocates the required memory before dequeue
and frees it after the dequeue is complete.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

LNOCIEnv *envhp;
LNOCIError *errhp;
LNOCISvcCtx *svchp;

struct message
{

OCINumber id;
OCIString *data;

};
typedef struct message message;

struct null_message
{

A-80 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
OCIInd null_adt;
OCIInd null_id;
OCIInd null_data;

};
typedef struct null_message null_message;

static void deqmesg(buf, buflen)
text *buf;
ub4 *buflen;
{

OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
message *mesg = (dvoid *)0; /* instance of SCOTT.MESSAGE */
null_message *mesgind = (dvoid *)0; /* null indicator */
OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ_FIRST_MSG; /* always get head of q */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr(errhp, OCITypeByName(envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),
(CONST text *)"MESSAGE", strlen("MESSAGE"),
(text *)0, 0, OCI_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));

/* Allocate an instance of SCOTT.MESSAGE, and get its null indicator: */
checkerr(errhp, OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_OBJECT,

mesgtdo, (dvoid *)0, OCI_DURATION_SESSION,
TRUE, (dvoid **)&mesg));

checkerr(errhp, OCIObjectGetInd(envhp, errhp, (dvoid *)mesg,
(dvoid **)&mesgind));

/* Allocate a descriptor for dequeue options and set wait time, navigation: */
checkerr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,

OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0));
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&wait, 0, OCI_ATTR_WAIT, errhp));
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&navigation, 0,
OCI_ATTR_NAVIGATION, errhp));

/* Dequeue the message and commit: */
checkerr(errhp, OCIAQDeq(svchp, errhp, (CONST text *)"msgqueue",

deqopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));
Oracle Advanced Queuing by Example A-81

AQ and Memory Usage
checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null_data)

*buflen = 0;
else

memcpy((dvoid *)buf, (dvoid *)OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));

/* Free the dequeue options descriptor: */
checkerr(errhp, OCIDescriptorFree((dvoid *)deqopt, OCI_DTYPE_AQDEQ_OPTIONS));

/* Free the memory for the objects: */
checkerr(errhp, OCIObjectFree(envhp, errhp, (dvoid *)mesg,

OCI_OBJECTFREE_FORCE));
} /* end deqmesg */

void main()
{

OCIServer *srvhp;
OCISession *usrhp;
dvoid *tmp;
text buf[80]; /* payload text */
ub4 buflen;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

/* Set attribute server context in the service context: */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
A-82 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* Allocate a user context handle: */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR_PASSWORD, errhp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
OCI_DEFAULT));

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

do {
deqmesg(buf, &buflen);
printf("%.*s\n", buflen, buf);

} while(1);
} /* end main */

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:

OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);

printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

default:
Oracle Advanced Queuing by Example A-83

AQ and Memory Usage
printf("Error - %d\n", status);
break;

}
exit(-1);

} /* end checkerr */

Dequeuing Messages (Reuse Memory) Using OCI
This program, deqreuse.c , dequeues each line of text from a queue 'msgqueue '
that has been created in scott's schema by executing create_types.sql .
Messages are enqueued using enqnoreuse.c or enqreuse.c . If there are no
messages, it waits for 60 seconds before timing out. In this program, the dequeue
subroutine reuses client side objects' memory between invocation of LNOCIAQDeq.
During the first call to LNOCIAQDeq, OCI automatically allocates the memory for
the message payload. During subsequent calls to LNOCIAQDeq, the same payload
pointers are passed and OCI will automatically resize the payload memory if
necessary.

#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <stdio.h>

static void checkerr(OCIError *errhp, sword status);
static void deqmesg(text *buf, ub4 *buflen);

struct message
{

OCINumber id;
OCIString *data;

};
typedef struct message message;

struct null_message
{

OCIInd null_adt;
OCIInd null_id;
OCIInd null_data;

};
typedef struct null_message null_message;

/* Global data reused on calls to enqueue: */
LNOCIEnv *envhp;
A-84 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
LNOCIError *errhp;
LNOCISvcCtx *svchp;
LNOCIAQDeqOptions *deqopt;
message *mesg = (message *)0;
null_message *mesgind = (null_message *)0;

static void deqmesg(buf, buflen)
text *buf;
ub4 *buflen;
{

OCIType *mesgtdo = (OCIType *)0; /* type descr of SCOTT.MESSAGE */
ub4 wait = 60; /* timeout after 60 seconds */
ub4 navigation = OCI_DEQ_FIRST_MSG;/* always get head of q */

/* Get the type descriptor object for the type SCOTT.MESSAGE: */
checkerr(errhp, OCITypeByName(envhp, errhp, svchp,

(CONST text *)"SCOTT", strlen("SCOTT"),
(CONST text *)"MESSAGE", strlen("MESSAGE"),
(text *)0, 0, OCI_DURATION_SESSION,
OCI_TYPEGET_ALL, &mesgtdo));

/* Set wait time, navigation in dequeue options: */
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&wait, 0, OCI_ATTR_WAIT, errhp));
checkerr(errhp, OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,

(dvoid *)&navigation, 0,
OCI_ATTR_NAVIGATION, errhp));

/*
* Dequeue the message and commit. The memory for the payload will be
* automatically allocated/resized by OCI:
*/

checkerr(errhp, OCIAQDeq(svchp, errhp, (CONST text *)"msgqueue",
deqopt, 0, mesgtdo, (dvoid **)&mesg,
(dvoid **)&mesgind, 0, 0));

checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

/* Copy the message payload text into the user buffer: */
if (mesgind->null_data)

*buflen = 0;
else

memcpy((dvoid *)buf, (dvoid *)OCIStringPtr(envhp, mesg->data),
(size_t)(*buflen = OCIStringSize(envhp, mesg->data)));
Oracle Advanced Queuing by Example A-85

AQ and Memory Usage
} /* end deqmesg */

void main()
{

OCIServer *srvhp;
OCISession *usrhp;
dvoid *tmp;
text buf[80]; /* payload text */
ub4 buflen;

OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
52, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
52, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
52, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
52, (dvoid **) &tmp);

/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,

(ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* allocate a user context handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,

(size_t) 0, (dvoid **) 0);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"scott", (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);

OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
(dvoid *)"tiger", (ub4)strlen("tiger"), OCI_ATTR_PASSWORD, errhp);

checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
OCI_DEFAULT));
A-86 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ and Memory Usage
OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
(dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

/* allocate the dequeue options descriptor */
checkerr(errhp, OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,

OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0));

do {
deqmesg(buf, &buflen);
printf("%.*s\n", buflen, buf);

} while(1);

/*
* This program never reaches this point as the dequeue timesout & exits.
* If it does reach here, it will be a good place to free the dequeue
* options descriptor using OCIDescriptorFree and free the memory allocated
* by OCI for the payload using OCIObjectFree
*/

} /* end main */

static void checkerr(errhp, status)
LNOCIError *errhp;
sword status;
{

text errbuf[512];
ub4 buflen;
sb4 errcode;

if (status == OCI_SUCCESS) return;

switch (status)
{
case OCI_ERROR:

OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);

printf("Error - %s\n", errbuf);
break;

case OCI_INVALID_HANDLE:
printf("Error - OCI_INVALID_HANDLE\n");
break;

default:
printf("Error - %d\n", status);
break;

}
exit(-1);
Oracle Advanced Queuing by Example A-87

AQ and Memory Usage
} /* end checkerr */
A-88 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Interfaces, Classes, and Except
B

Oracle JMS Interfaces, Classes, and

Exceptions

This chapter discusses the JMS interfaces, classes, and exceptions shown in
Table B–1.

Table B–1 Interfaces, Classes, and Exceptions

Interface / Class / Exception

Oracle JMSClasses (part 1) on page B-5

Oracle JMS Classes (part 2) on page B-7

Oracle JMS Classes (part 3) on page B-8

Oracle JMS Classes (part 4) on page B-9

Oracle JMS Classes (part 5) on page B-10

Oracle JMS Classes (part 6) on page B-11

Oracle JMS Classes (part 7) on page B-14

Oracle JMS Classes (part 8) on page B-16

Oracle JMS Classes (part 9) on page B-18

Oracle JMS Classes (part 10) on page B-20

Interface - javax.jms.BytesMessage on page B-22

Interface - javax.jms.Connection on page B-24

Interface - javax.jms.ConnectionFactory on page B-24

Interface - javax.jms.ConnectionMetaData on page B-25

Interface - javax.jms.DeliveryMode on page B-25
ions B-1

Interface - javax.jms.Destination on page B-26

Interface - javax.jms.MapMessage on page B-26

Interface - javax.jms.Message on page B-27

Interface - javax.jms.MessageConsumer on page B-29

Interface - javax.jms.MessageListener on page B-30

Interface - javax.jms.MessageProducer on page B-30

Interface - javax.jms.ObjectMessage on page B-31

Interface - javax.jms.Queue on page B-31

Interface - javax.jms.QueueBrowser on page B-31

Interface - javax.jms.QueueConnection on page B-32

Interface - javax.jms.QueueConnectionFactory on page B-32

Interface - javax.jms.QueueReceiver on page B-33

Interface - javax.jms.QueueSender on page B-33

Interface - javax.jms.QueueSession on page B-34

Interface - javax.jms.Session on page B-34

Interface - javax.jms.StreamMessage on page B-36

Interface - javax.jms.TextMessage on page B-37

Interface - javax.jms.Topic on page B-37

Interface - javax.jms.TopicConnection on page B-37

Interface - javax.jms.TopicConnectionFactory on page B-38

Interface - javax.jms.TopicPublisher on page B-38

Interface - javax.jms.TopicSession on page B-39

Interface - javax.jms.TopicSubscriber on page B-39

Exception javax.jms.InvalidDestinationException on page B-40

Exception javax.jms.InvalidSelectorException on page B-40

Exception javax.jms.JMSException on page B-40

Exception javax.jms.MessageEOFException on page B-41

Table B–1 (Cont.) Interfaces, Classes, and Exceptions

Interface / Class / Exception
B-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Exception javax.jms.MessageFormatException on page B-41

Exception javax.jms.MessageNotReadableException on page B-42

Exception javax.jms.MesageNotWriteableException on page B-42

Interface - oracle.jms.AdtMessage on page B-42

Interface - oracle.jms.AQjmsQueueReceiver on page B-42

Interface - oracle.jms.AQjmsQueueSender on page B-43

Interface - oracle.jms.AQjmsTopicPublisher on page B-43

Interface - oracle.jms.TopicReceiver on page B-43

Interface - oracle.jms.AQjmsTopicSubscriber on page B-44

Interface - oracle.jms.AQjmsTopicReceiver on page B-44

Class - oracle.jms.AQjmsAdtMessage on page B-44

Class - oracle.jms.AQjmsAgent on page B-45

Class - oracle.jms.AQjmsBytesMessage on page B-45

Class - oracle.jms.AQjmsConnection on page B-46

Interface - oracle.jms.AQjmsConnectionMetadata on page B-46

Class - oracle.jms.AQjmsConstants on page B-46

Interface - oracle.jms.AQjmsConsumer on page B-47

Class - oracle.jms.AQjmsDestination on page B-47

Class - oracle.jms.AQjmsDestinationProperty on page B-48

Class - oracle.jms.AQjmsFactory on page B-49

Class - oracle.jms.AQjmsMapMessage on page B-50

Class - oracle.jms.AQjmsMessage on page B-50

Class - oracle.jms.AQjmsObjectMessage on page B-51

Class - oracle.jms.AQjmsOracleDebug on page B-51

Class - oracle.jms.AQjmsProducer on page B-52

Class - oracle.jms.AQjmsQueueBrowser on page B-52

Class - oracle.jms.AQjmsQueueConnectionFactory on page B-52

Table B–1 (Cont.) Interfaces, Classes, and Exceptions

Interface / Class / Exception
Oracle JMS Interfaces, Classes, and Exceptions B-3

Class - oracle.jms.AQjmsSession on page B-53

Class - oracle.jms.AQjmsStreamMessage on page B-55

Class - oracle.jms.AQjmsTextMessage on page B-55

Class - oracle.jms.AQjmsTopicConnectionFactory on page B-55

Exception oracle.jms.AQjmsInvalidDestinationException on page B-56

Exception oracle.jms.AQjmsInvalidSelectorException on page B-56

Exception oracle.jms.AQjmsMessageEOFException on page B-57

Exception oracle.jms.AQjmsMessageFormatException on page B-57

Exception oracle.jms.AQjmsMessageNotReadableException on page B-57

Exception oracle.jms.AQjmsMesssageNotWriteableException on page B-57

Interface - oracle.AQ.AQQueueTable on page B-57

Class - oracle.AQ.AQQueueTableProperty on page B-58

Interface - oracle.jms.TopicBrowser on page B-59

Class - oracle.jms.AQjmsTopicBrowser on page B-59

Table B–1 (Cont.) Interfaces, Classes, and Exceptions

Interface / Class / Exception
B-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMSClasses (part 1)
Oracle JMSClasses (part 1)

Figure B–1 Class Diagram: Oracle Class Classes (part 1)

<< interface >>

<< interface >>

javax.jms
QueueConnection-
Factory

<< class >>

oracle.jms
AQjmsQueue-
ConnectionFactory

<< interface >>

javax.jms
TopicConnection-
Factory

<< class >>

oracle.jms
AQjmsTopic-
ConnectionFactory

<< class >>

oracle.jms
AQjmsFactory

javax.jms
ConnectionFactory
Oracle JMS Interfaces, Classes, and Exceptions B-5

Oracle JMSClasses (part 1)
See Also:

� "Interface - javax.jms.ConnectionFactory" on page B-24

� "Class - oracle.jms.AQjmsFactory"

� "Interface - javax.jms.QueueConnectionFactory" on page B-32

� "Interface - javax.jms.TopicConnectionFactory" on page B-38

� "Class - oracle.jms.AQjmsQueueConnectionFactory" on
page B-52

� "Class - oracle.jms.AQjmsTopicConnectionFactory" on
page B-55
B-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 2)
Oracle JMS Classes (part 2)

Figure B–2 Class Diagram: Oracle Class Classes (part 2)

See Also:

� "Interface - javax.jms.Connection" on page B-24

� "Interface - javax.jms.QueueConnection" on page B-32

� "Interface - javax.jms.TopicConnection" on page B-37

� "Class - oracle.jms.AQjmsConnection" on page B-46

<< interface >>

<< interface >>

javax.jms
QueueConnection

<< class >>

oracle.jms
AQjmsConnection

<< interface >>

javax.jms
TopicConnection

javax.jms
Connection
Oracle JMS Interfaces, Classes, and Exceptions B-7

Oracle JMS Classes (part 3)
Oracle JMS Classes (part 3)

Figure B–3 Class Diagram: Oracle Class Classes (part 3)

See Also:

� "Interface - javax.jms.ConnectionMetaData" on page B-25

� "Interface - oracle.jms.AQjmsConnectionMetadata" on
page B-46

� "Class - oracle.jms.AQjmsConstants" on page B-46

� "Interface - javax.jms.DeliveryMode" on page B-25

<< interface >>

<< class >>

oracle.jms
AQjmsConnection-
MetaData

<< class >>

oracle.AQ
AQConstants

<< class >>

oracle.jms
AQjmsConstants

<< interface >>

javax.jms
DeliveryMode

javax.jms
ConnectionMetaData
B-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 4)
Oracle JMS Classes (part 4)

Figure B–4 Class Diagram: Oracle Class Classes (part 4)

See Also:

� "Interface - javax.jms.Session" on page B-34

� "Interface - javax.jms.QueueSession" on page B-34

� "Interface - javax.jms.TopicSession" on page B-39

� "Class - oracle.jms.AQjmsSession" on page B-53

<< interface >>

<< interface >>

javax.jms
QueueSession

<< class >>

oracle.jms
AQjmsSession

<< interface >>

javax.jms
TopicSession

javax.jms
Session
Oracle JMS Interfaces, Classes, and Exceptions B-9

Oracle JMS Classes (part 5)
Oracle JMS Classes (part 5)

Figure B–5 Class Diagram: Oracle Class Classes (part 5)

See Also:

� "Interface - javax.jms.Destination" on page B-26

� "Interface - javax.jms.Queue" on page B-31

� "Interface - javax.jms.Topic" on page B-37

� "Class - oracle.jms.AQjmsDestination" on page B-47

� "Class - oracle.jms.AQjmsAgent" on page B-45

<< interface >>

<< interface >>

javax.jms
Queue

<< class >>

oracle.jms
AQjmsDestination

<< interface >>

javax.jms
Topic

<< class >>

oracle.jms
AQjmsAgent

javax.jms
Destination
B-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 6)
Oracle JMS Classes (part 6)

Figure B–6 Class Diagram: Oracle Class Classes (part 6)

continued on next page

<< interface >>

javax.jms
Message

<< interface >>

javax.jms
BytesMessage

<< class >>

oracle.jms
AQjmsBytes-
Message

<< interface >>

javax.jms
TextMessage

<< class >>

oracle.jms
AQjmsText-
Message

<< interface >>

javax.jms
MapMessage

<< class >>

oracle.jms
AQjmsMap-
Message

<< class >>

oracle.jms
AQjmsMessage
Oracle JMS Interfaces, Classes, and Exceptions B-11

Oracle JMS Classes (part 6 continued)
Oracle JMS Classes (part 6 continued)

Figure B–7 Class Diagram: Oracle Class Classes (part 8)

<< interface >>

javax.jms
StreamMessage

<< class >>

oracle.jms
AQjmsStream-
Message

<< interface >>

javax.jms
ObjectMessage

<< class >>

oracle.jms
AQjmsObject-
Message

<< interface >>

oracle.jms
AdtMessage

<< class >>

oracle.jms
AQjmsAdt-
Message
B-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 6 continued)
See Also:

� "Interface - javax.jms.Message" on page B-27

� "Interface - javax.jms.MapMessage" on page B-26

� "Interface - javax.jms.TextMessage" on page B-37

� "Interface - javax.jms.BytesMessage" on page B-22

� "Class - oracle.jms.AQjmsMessage" on page B-50

� "Class - oracle.jms.AQjmsMapMessage" on page B-50

� "Class - oracle.jms.AQjmsTextMessage" on page B-55

� "Class - oracle.jms.AQjmsBytesMessage" on page B-45

� "Interface - javax.jms.StreamMessage" on page B-36

� "Interface - javax.jms.ObjectMessage" on page B-31

� "Interface - oracle.jms.AdtMessage" on page B-42

� "Class - oracle.jms.AQjmsStreamMessage" on page B-55

� "Class - oracle.jms.AQjmsObjectMessage" on page B-51

� "Class - oracle.jms.AQjmsAdtMessage" on page B-44
Oracle JMS Interfaces, Classes, and Exceptions B-13

Oracle JMS Classes (part 7)
Oracle JMS Classes (part 7)

Figure B–8 Class Diagram: Oracle Class Classes (part 7)

<< interface >>

<< interface >>

javax.jms
QueueSender

<< interface >>

oracle.jms
AQjmsQueueSender

<< interface >>

javax.jms
TopicPublisher

<< interface >>

oracle.jms
AQjmsTopicPublisher

javax.jms
MessageProducer

<< class >>

oracle.jms
AQjmsProducer
B-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 7)
See Also:

� "Interface - javax.jms.MessageProducer" on page B-30

� "Interface - javax.jms.QueueSender" on page B-33

� "Interface - javax.jms.TopicPublisher" on page B-38

� "Interface - oracle.jms.AQjmsQueueSender" on page B-43

� "Interface - oracle.jms.AQjmsTopicPublisher" on page B-43

� "Class - oracle.jms.AQjmsProducer" on page B-52
Oracle JMS Interfaces, Classes, and Exceptions B-15

Oracle JMS Classes (part 8)
Oracle JMS Classes (part 8)

Figure B–9 Class Diagram: Oracle Class Classes (part 8)

<< interface >>

<< interface >>

javax.jms
Queue-
Receiver

<< interface >>

oracle.jms
AQjmsQueue-
Receiver

<< interface >>

javax.jms
TopicSub-
scriber

<< interface >>

oracle.jms
AQjmsTopic-
Subscriber

<< interface >>

oracle.jms
TopicReceiver

<< interface >>

oracle.jms
AQjmsTopic-
Receiver

javax.jms
Message-
Consumer

<< class >>

oracle.jms
AQjmsConsumer
B-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 8)
See Also:

� "Interface - javax.jms.MessageConsumer" on page B-29

� "Interface - javax.jms.QueueReceiver" on page B-33

� "Interface - javax.jms.TopicSubscriber" on page B-39

� "Interface - oracle.jms.TopicReceiver" on page B-43

� "Interface - oracle.jms.AQjmsQueueReceiver" on page B-42

� "Interface - oracle.jms.AQjmsTopicSubscriber" on page B-44

� "Interface - oracle.jms.AQjmsTopicReceiver" on page B-44

� "Interface - oracle.jms.AQjmsConsumer" on page B-47
Oracle JMS Interfaces, Classes, and Exceptions B-17

Oracle JMS Classes (part 9)
Oracle JMS Classes (part 9)

Figure B–10 Class Diagram: Oracle Class Classes (part 9)

<< class >>

oracle.jms
AQjmsQueueBrowser

<< interface >>

oracle.AQ
AQQueueTable

<< interface >>

javax.jms
MessageListener

<< class >>

oracle.jms
AQjmsTopicBrowser

<< interface >>

oracle.jms
TopicBrowser

<< class >>

oracle.AQ
AQQueueTable-
Property

<< class >>

oracle.jms
AQjmsDestination-
Property

<< interface >>

javax.jms
QueueBrowser

<< class >>

oracle.jms
AQjmsOracleDebug
B-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 9)
See Also:

� "Interface - javax.jms.QueueBrowser" on page B-31

� "Class - oracle.jms.AQjmsQueueBrowser" on page B-52

� "Interface - javax.jms.MessageListener" on page B-30

� "Interface - oracle.jms.TopicBrowser" on page B-59

� "Class - oracle.jms.AQjmsTopicBrowser" on page B-59

� "Interface - oracle.AQ.AQQueueTable" on page B-57

� "Class - oracle.AQ.AQQueueTableProperty" on page B-58

� "Class - oracle.jms.AQjmsDestinationProperty" on page B-48

� "Class - oracle.jms.AQjmsOracleDebug" on page B-51
Oracle JMS Interfaces, Classes, and Exceptions B-19

Oracle JMS Classes (part 10)
Oracle JMS Classes (part 10)

Figure B–11 Class Diagram: Oracle Class Classes (part 10)

continued on next page

<< exception >>

javax.jms
JMSException

<< exception >>

javax.jms
MessageNot-
Readable-
Exception

<< exception >>

oracle.jms
AQjmsMessage-
NotReadable-
Exception

<< exception >>

javax.jms
MessageNot-
Writeable-
Exception

<< exception >>

oracle.jms
AQjmsMessage-
NotWriteable-
Exception

<< exception >>

oracle.jms
AQjmsMessage-
Format-
Exception

<< exception >>

javax.jms
MessageFormat-
Exception

<< exception >>

oracle.jms
AQjmsException
B-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle JMS Classes (part 10 continued)
Oracle JMS Classes (part 10 continued)

Figure B–12 Class Diagram: Oracle Class Classes (part 8)

<< exception >>

javax.jms
MessageEOF-
Exception

<< exception >>

oracle.jms
AQjmsMessage-
EOFException

<< exception >>

javax.jms
InvalidSelector-
Exception

<< exception >>

oracle.jms
AQjmsInvalid-
Selector-
Exception

<< exception >>

javax.jms
InvalidDestination-
Exception

<< exception >>

oracle.jms
AQjmsInvalid-
Destination-
Exception
Oracle JMS Interfaces, Classes, and Exceptions B-21

Interfaces, Classes, and Exceptions
Interfaces, Classes, and Exceptions

Interface - javax.jms.BytesMessage

<< interface >>
javax.jms.BytesMessage

See Also:

� "Exception javax.jms.JMSException" on page B-40

� "Exception javax.jms.MesageNotWriteableException" on
page B-42

� "Exception oracle.jms.AQjmsMesssageNotWriteableException"
on page B-57

� "Exception javax.jms.MessageNotReadableException" on
page B-42

� "Exception oracle.jms.AQjmsMessageNotReadableException"
on page B-57

� "Exception javax.jms.MessageFormatException" on page B-41

� "Exception oracle.jms.AQjmsMessageFormatException" on
page B-57

� "Exception oracle.jms.AQjmsException" on page B-56

� "Exception javax.jms.MessageEOFException" on page B-41

� "Exception oracle.jms.AQjmsMessageEOFException" on
page B-57

� "Exception javax.jms.InvalidSelectorException" on page B-40

� "Exception oracle.jms.AQjmsInvalidSelectorException" on
page B-56

� "Exception javax.jms.InvalidDestinationException" on
page B-40

� "Exception oracle.jms.AQjmsInvalidDestinationException" on
page B-56
B-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
<< methods >>
readBoolean()

readByte()

readBytes(byte[])

readBytes(byte[], int)

readChar()

readDouble()

readFloat()

readInt()

readLong()

readShort()

readUnsignedByte()

readUnsignedShort()

readUTF()

reset()

writeBoolean(boolean)

writeByte(byte)

writeBytes(byte[])

writeBytes(byte[], int, int)

writeChar(char)

writeDouble(double)

writeFloat(float)

writeInt(int)

writeLong(long)

writeObject(Object)

writeShort(short)

writeUTF(String)
Oracle JMS Interfaces, Classes, and Exceptions B-23

Interfaces, Classes, and Exceptions
Interface - javax.jms.Connection

<< interface >>
javax.jms.Connection

<< methods >>
close()

getClientID()

getMetaData()

start()

stop()

getExceptionListener()

setExceptionListener(ExceptionListener)

Interface - javax.jms.ConnectionFactory

<< interface >>
javax.jms.ConnectionFactory

See Also: "Oracle JMS Classes (part 6)" on page B-11

See Also:

� "Oracle JMS Classes (part 2)" on page B-7

Use Cases:

� Starting a JMS Connection

� Stopping a JMS Connection

� Closing a JMS Connection
B-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Interface - javax.jms.ConnectionMetaData

<< interface >>
javax.jms.ConnectionMetaData

<< methods >>
getJMSMajorVersion()

getJMSMinorVersion()

getJMSProviderName()

getJMSVersion()

getProviderMajorVersion()

getProviderMinorVersion()

getProviderVersion()

Interface - javax.jms.DeliveryMode

<< interface >>
javax.jms.DeliveryMode

<< constants >>
NON_PERSISTENT (not currently supported)

PERSISTENT

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

Use Cases:

� Creating a Queue Connection with Username/Password

� Creating a Queue Connection with an Open JDBC Connection

See Also: "Oracle JMS Classes (part 3)" on page B-8

See Also: "Oracle JMS Classes (part 3)" on page B-8
Oracle JMS Interfaces, Classes, and Exceptions B-25

Interfaces, Classes, and Exceptions
Interface - javax.jms.Destination

<< interface >>
javax.jms.Destination

Interface - javax.jms.MapMessage

<< interface >>
javax.jms.MapMessage

<< methods >>
getBoolean(String)

getByte(String)

getBytes(String)

getChar(String)

getDouble(String)

getFloat(String)

getInt(String)

getLong(String)

getMapNames()

getObject(String)

getShort(String)

getString(String)

itemExists(String)

setBoolean(String, boolean)

setByte(String, byte)

setBytes(String, byte[])

setBytes(String, byte[], int, int)

setChar(String, char)

See Also: "Oracle JMS Classes (part 5)" on page B-10
B-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
setDouble(String, double)

setFloat(String, float)

setInt(String, int)

setLong(String, long)

setObject(String, Object)

setShort(String, short)

setString(String, String)

Interface - javax.jms.Message

<< interface >>
javax.jms.Message

<< methods >>
clearBody()

clearProperties()

getBooleanProperty(String)

getByteProperty(String)

getDoubleProperty(String)

getFloatProperty(String)

getIntProperty(String)

getJMSCorrelationID()

getJMSCorrelationIDAsBytes()

getJMSDeliveryMode()

getJMSDestination()

getJMSExpiration()

getJMSMessageID()

getJMSPriority()

See Also: "Oracle JMS Classes (part 6)" on page B-11
Oracle JMS Interfaces, Classes, and Exceptions B-27

Interfaces, Classes, and Exceptions
getJMSReplyTo()

getJMSTimestamp()

getJMSType()

getLongProperty(String)

getObjectProperty(String)

getPropertyNames()

getShortProperty(String)

getStringProperty(String)

propertyExists(String)

setBooleanProperty(String, boolean)

setByteProperty(String, byte)

<< methods >>
setDoubleProperty(String, double)

setFloatProperty(String, float)

setIntProperty(String, int)

setJMSCorrelationID(String)

setJMSCorrelation(IDAsBytes(byte[])

setJMSReplyTo(Destination)

setJMSType(String)

setLongProperty(String, long)

setObjectProperty(String, Object)

setShortProperty(String, short)

setStringProperty(String, String)
B-28 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Interface - javax.jms.MessageConsumer

<< interface >>
javax.jms.MessageConsumer

<< methods >>
close()

getMessageListener()

getMessageSelector()

receive()

receive(long)

receiveNoWait()

setMessageListener(MessageListener)

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

Use Cases:

� Specifying Message Correlation ID

� Specifying JMS Message Property

� Specifying JMS Message Property as Boolean

� Specifying JMS Message Property as String

� Specifying JMS Message Property as Int

� Specifying JMS Message Property as Double

� Specifying JMS Message Property as Float

� Specifying JMS Message Property as Byte

� Specifying JMS Message Property as Long

� Specifying JMS Message Property as Object
Oracle JMS Interfaces, Classes, and Exceptions B-29

Interfaces, Classes, and Exceptions
Interface - javax.jms.MessageListener

<< interface >>
javax.jms.MessageListener

<< methods >>
onMessage(Message)

Interface - javax.jms.MessageProducer

<< interface >>
javax.jms.MessageProducer

<< methods >>
close()

getDeliveryMode()

getDisableMessageID()

getPriority()

getTimeToLive()

setDisableMessageID(boolean)

setPriority(int)

setTimeToLive(int)

See Also:

� "Oracle JMS Classes (part 8)" on page B-16

Use Cases:

� Receiving a Message Synchronously Using a Message
Consumer by Specifying Timeout

� Receiving a Message Synchronously Using a Message
Consumer Without Waiting

See Also: "Oracle JMS Classes (part 9)" on page B-18
B-30 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Interface - javax.jms.ObjectMessage

<< interface >>
javax.jms.bjectMessage

<< methods >>
getObject()

setObject(Serializable)

Interface - javax.jms.Queue

<< interface >>
javax.jms.Queue

<< methods >>
getQueueName()

toString()

Interface - javax.jms.QueueBrowser

<< interface >>
javax.jms.Queue Browser

See Also:

� "Oracle JMS Classes (part 7)" on page B-14

Use Cases:

� Setting Default TimeToLive for All Messages Sent by a Message
Producer

� Setting Default Priority for All Messages Sent by a Message
Producer

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12

See Also: "Oracle JMS Classes (part 9)" on page B-18
Oracle JMS Interfaces, Classes, and Exceptions B-31

Interfaces, Classes, and Exceptions
<< methods >>
close()

getEnumeration()

getMessageSelector()

getQueue()

Interface - javax.jms.QueueConnection

<< interface >>
javax.jms.QueueConnection

<< methods >>
createQueueSession(boolean, int)

Interface - javax.jms.QueueConnectionFactory

<< interface >>
javax.jms.QueueConnectionFactory

<< methods >>
createQueueConnection()

createQueueConnection(String, String)

See Also: "Oracle JMS Classes (part 9)" on page B-18

See Also:

� "Oracle JMS Classes (part 2)" on page B-7

� Use Case: Creating a Queue Session
B-32 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Interface - javax.jms.QueueReceiver

<< interface >>
javax.jms.QueueReceiver

<< methods >>
getQueue()

Interface - javax.jms.QueueSender

<< interface >>
javax.jms.QueueSender

<< methods >>
getQueue()

send(Message)

send(Message, int, int, long)

send(Queue, Message)

send(Queue, Message, int, int, long)

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

Use Cases:

� "Creating a Queue Connection with Username/Password" on
page 14-3

� "Creating a Queue Connection with an Open JDBC Connection"
on page 14-4

� "Creating a Queue Connection with Default Connection
Factory Parameters" on page 14-6

� "Creating a Queue Connection with an Open
OracleOCIConnection Pool" on page 14-7

See Also: "Oracle JMS Classes (part 8)" on page B-16
Oracle JMS Interfaces, Classes, and Exceptions B-33

Interfaces, Classes, and Exceptions
Interface - javax.jms.QueueSession

<< interface >>
javax.jms.QueueSession

<< methods >>
createBrowser(Queue)

createBrowser(Queue, String)

createQueue(String)

createReceiver(Queue)

createReceiver(Queue, String)

createSender(Queue)

Interface - javax.jms.Session

<< interface >>
javax.jms.Session

<< constants >>
AUTO_ACKNOWLEDGE

CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

See Also:

� "Oracle JMS Classes (part 7)" on page B-14

Use Cases:

� Creating a Queue Sender

� Sending a Message Using a Queue Sender with Default Send
Options

� Sending a Message Using a Queue Sender with Default Send
Options

See Also: "Oracle JMS Classes (part 4)" on page B-9
B-34 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
<< methods >>
close()

commit()

createBytesMessage()

createMapMessage()

createMessage()

createObjectMessage()

createObjectMessage(Serializable)

createStreamMessage()

createTextMessage()

createTextMessage(StringBuffer)

getMessageListener()

getTransacted()

rollback()

setMessageListener(MessageListener)

Refer to the following use cases:

� "Creating a Queue Sender" on page 14-10

� "Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map
Messages"

� "Creating a Queue Receiver for Queues of Standard JMS Type Messages"

� "Creating a Queue Connection with an Open JDBC Connection"

� "Creating a Map Message" on page 16-13

� "Creating a Stream Message" on page 16-15

� Creating an Object Message on page 16-16

� "Creating a Text Message" on page 16-17

See Also: "Oracle JMS Classes (part 4)" on page B-9
Oracle JMS Interfaces, Classes, and Exceptions B-35

Interfaces, Classes, and Exceptions
Interface - javax.jms.StreamMessage

<< interface >>
javax.jms.StreamMessage

<< methods >>
readBoolean()

readByte()

readBytes(byte[])

readChar()

readDouble()

readFloat()

readInt()

readLong()

readObject()

readShort()

readString()

reset()

writeBoolean(boolean)

writeByte(byte)

writeBytes(byte[])

writeBytes(byte[], int, int)

writeChar(char)

writeDouble(double)

writeFloat(float)

writeInt(int)

writeLong(long)

writeObject(Object)

writeShort(short)
B-36 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
writeString(String)

Interface - javax.jms.TextMessage

<< interface >>
javax.jms.TextMessage

<< methods >>
getText()

setText(String)

Interface - javax.jms.Topic

<< interface >>
javax.jms.Topic

<< methods >>
getTopicName()

toString()

Interface - javax.jms.TopicConnection

<< interface >>
javax.jms.TopicConnection

<< methods >>
createTopicSession(boolean, int)

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12

See Also: "Oracle JMS Classes (part 6)" on page B-11

See Also: "Oracle JMS Classes (part 5)" on page B-10
Oracle JMS Interfaces, Classes, and Exceptions B-37

Interfaces, Classes, and Exceptions
Interface - javax.jms.TopicConnectionFactory

<< interface >>
javax.jms.TopicConnectionFactory

<< methods >>
createTopicConnection()

createTopicConnection(String, String)

Interface - javax.jms.TopicPublisher

<< interface >>
javax.jms.TopicPublisher

<< methods >>
getTopic()

publish(Message)

publish(Message, int, int, long)

publish(Topic, Message)

publish(Topic, Message, int, int, long)

See Also:

� "Oracle JMS Classes (part 2)" on page B-7

� Use Case: Creating a Topic Connection with
Username/Password on page 15-4

See Also: "Oracle JMSClasses (part 1)" on page B-5
B-38 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Interface - javax.jms.TopicSession

<< interface >>
javax.jms.TopicSession

<< methods >>
createDurableSubscriber(Topic, String)

createDurableSubscriber(Topic, String, String, boolean)

createPublisher(Topic)

Interface - javax.jms.TopicSubscriber

<< interface >>
javax.jms.TopicSubscriber

See Also:

� "Oracle JMS Classes (part 7)" on page B-14

Use Cases:

� Publishing a Message Using a Topic Publisher—with Minimal
Specification

� Publishing a Message Using a Topic Publisher—Specifying
Correlation and Delay

� Publishing a Message Using a Topic Publisher—Specifying
Priority and Time-To-Live

� Publishing a Message Using a Topic Publisher—Specifying a
Recipient List Overriding Topic Subscribers

See Also:

� "Oracle JMS Classes (part 4)" on page B-14

Use Cases:

� Creating a Durable Subscriber for a JMS Topic without Selector

� Creating a Durable Subscriber for a JMS Topic with Selector
Oracle JMS Interfaces, Classes, and Exceptions B-39

Interfaces, Classes, and Exceptions
<< methods >>
getNoLocal()

getTopic()

Exception javax.jms.InvalidDestinationException

<< exception >>
javax.jms.InvalidDestination-Exception

<< constructors >>
InvalidDestinationException(String)

InvalidDestinationException(String, String)

Exception javax.jms.InvalidSelectorException

<< exception >>
javax.jms.InvalidSelector-Exception

<< constructors >>
InvalidSelectorException(String)

InvalidSelectorException(String, String)

Exception javax.jms.JMSException

<< exception >>
javax.jms.JMSException

<< constructors >>
JMSException(String)

JMSException(String, String)

See Also: "Oracle JMS Classes (part 8)" on page B-16

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21
B-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
<< methods >>
getErrorCode()

getLinkedException()

setLinkedException(Exception)

Exception javax.jms.MessageEOFException

<< exception >>
javax.jms.MessageEOFException

<< constructors >>
MessageEOFException(String)

MessageEOFException(String, String)

Exception javax.jms.MessageFormatException

<< exception >>
javax.jms.MessageFormatException

<< constructors >>
MessageFormatException(String)

MessageFormatException(String, String)

See Also:

� "Oracle JMS Classes (part 10)" on page B-20

Use Cases:

� Getting the Error Code for the JMS Exception

� Getting the Error Message for the JMS Exception

� Getting the Exception Linked to the JMS Exception

� Printing the Stack Trace for the JMS Exception

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21

See Also: "Oracle JMS Classes (part 10)" on page B-20
Oracle JMS Interfaces, Classes, and Exceptions B-41

Interfaces, Classes, and Exceptions
Exception javax.jms.MessageNotReadableException

<< exception >>
javax.jms.MessageNotReadable-Exception

<< constructors >>
MessageNotReadableException(String)

MessageNotReadableException(String, String)

Exception javax.jms.MesageNotWriteableException

<< exception >>
javax.jms.MessageNotWriteable-Exception

<< constructors >>
MessageNotWriteableException(String)

MessageNotWriteableException(String, String)

Interface - oracle.jms.AdtMessage

<< interface >>
oracle.jms.AdtMessage

<< methods >>
getAdtPayload()

setAdtPayload(CustomDatum)

Interface - oracle.jms.AQjmsQueueReceiver

<< interface >>
oracle.jms.AQjmsQueueReceiver

See Also: "Oracle JMS Classes (part 10)" on page B-20

See Also: "Oracle JMS Classes (part 10)" on page B-20

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12
B-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
<< methods >>
getNavigationMode()

receiveNoData()

receiveNoData(long)

setNavigationMode(int)

Interface - oracle.jms.AQjmsQueueSender

<< interface >>
oracle.jms.AQjmsQueueSender

Interface - oracle.jms.AQjmsTopicPublisher

<< interface >>
oracle.jms.AQjmsTopicPublisher

<< methods >>
publish(Message, AQjmsAgent[])

publish(Message, AQjmsAgent[], int, int, long)

publish(Topic, Message, AQjmsAgent[])

publish(Topic, Message, AQjmsAgent[], int, int, long)

Interface - oracle.jms.TopicReceiver

<< interface >>
oracle.jms.AQjmsTopicReceiver

See Also:

� "Oracle JMS Classes (part 8)" on page B-16

� Use Case: Specifying the Navigation Mode for Receiving
Messages

See Also: "Oracle JMS Classes (part 7)" on page B-14

See Also: "Oracle JMS Classes (part 7)" on page B-14
Oracle JMS Interfaces, Classes, and Exceptions B-43

Interfaces, Classes, and Exceptions
<< methods >>
getNavigationMode()

receiveNoData()

receiveNoData(long)

setNavigationMode(int)

Interface - oracle.jms.AQjmsTopicSubscriber

<< interface >>
oracle.jms.AQjmsTopicSubscriber

<< methods >>
getNavigationMode()

receiveNoData()

receiveNoData(long)

setNavigationMode(int)

Interface - oracle.jms.AQjmsTopicReceiver

<< interface >>
oracle.jms.TopicReceiver

<< methods >>
getTopic()

Class - oracle.jms.AQjmsAdtMessage

<< class >>
oracle.jms.AQjmsAdtMessage

See Also: "Oracle JMS Classes (part 8)" on page B-16

See Also: "Oracle JMS Classes (part 8)" on page B-16

See Also: "Oracle JMS Classes (part 8)" on page B-16
B-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
<< methods >>
getAdtPayload()

setAdtPayload(CustomDatum)

Class - oracle.jms.AQjmsAgent

<< class >>
oracle.jms.AQjmsAgent

<< constructors >>
AQjmsAgent(String, String)

AQjmsAgent(String, String, int)

<< methods >>
getAddress()

getName()

getProtocol()

setAddress(String)

setName(String)

setProtocol(int)

toString()

Class - oracle.jms.AQjmsBytesMessage

<< class >>
oracle.jms.AQjmsBytesMessage

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12

See Also:

� "Oracle JMS Classes (part 5)" on page B-10

� Use Case: Creating an AQjms Agent

See Also: "Oracle JMS Classes (part 6)" on page B-11
Oracle JMS Interfaces, Classes, and Exceptions B-45

Interfaces, Classes, and Exceptions
Class - oracle.jms.AQjmsConnection

<< class >>
oracle.jms.AQjmsConnection

<< methods >>
getCurrentJmsSession()

getOCIConnectionPool()

Interface - oracle.jms.AQjmsConnectionMetadata

<< interface >>
oracle.jms.AQjmsConnectionMeta-Data

Class - oracle.jms.AQjmsConstants

<< class >>
oracle.jms.AQjmsConstants

<< constants >>
EXCEPTION

NAVIGATION_FIRST_MESSAGE

NAVIGATION_NEXT_MESSAGE

NAVIGATION_NEXT_

TRANSACTION

NONE

NORMAL

STATE_EXPIRED

STATE_PROCESSED

STATE_READY

See Also: "Oracle JMS Classes (part 2)" on page B-7

See Also: "Oracle JMS Classes (part 3)" on page B-8
B-46 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
STATE_WAITING

TRANSACTIONAL

WAIT_FOREVER

WAIT_NONE

Interface - oracle.jms.AQjmsConsumer

<< interface >>
oracle.jms.AQjmsConsumer

Class - oracle.jms.AQjmsDestination

<< class >>
oracle.jms.AQjmsDestination

<< methods >>
alter(Session, AQjmsDestinationProperty)

alterPropagationSchedule(Session, String, Double, String, Double)

disablePropagationSchedule(Session, String)

drop(Session)

enablePropagationSchedule(Session, String)

getCompleteName()

getCompleteTableName()

getQueueName()

getQueueOwner()

getTopicName()

getTopicOwner()

grantQueuePrivilege(Session, String, String, boolean)

See Also: "Oracle JMS Classes (part 3)" on page B-8

See Also: "Oracle JMS Classes (part 8)" on page B-16
Oracle JMS Interfaces, Classes, and Exceptions B-47

Interfaces, Classes, and Exceptions
grantTopicPrivilege(Session, String, String, boolean)

revokeQueuePrivilege(Session, String, String)

<< methods >>
revokeTopicPrivilege(Session, String, String)

schedulePropagation(Session, String, Date, Double, String, Double)

start(Session, boolean, boolean)

stop(Session, boolean, boolean, boolean)

toString()

unschedulePropagation(Session, String)

Refer to the following use cases:

� Granting Topic Privileges—Publish-Subscribe

� Starting a Destination

� Stopping a Destination

� Altering a Destination

� Dropping a Destination

� Scheduling a Propagation

� Enabling a Propagation Schedule

� Altering a Propagation Schedule

� Disabling a Propagation Schedule

� Unscheduling a Propagation

Class - oracle.jms.AQjmsDestinationProperty

<< class >>
oracle.jms.AQjmsDestinationProperty

<< constants >>
EXCEPTION_QUEUE

See Also: "Oracle JMS Classes (part 5)" on page B-10
B-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
INFINITE

NORMAL_QUEUE

<< constructors >>
AQjmsDestinationProperty()

<< methods >>
getComment()

getMaxRetries()

getQueueType()

getRetentionTime()

getRetryInterval()

setComment(java.lang.String qt_comment)

setMaxRetries(int retries)

setMaxRetries(java.lang.Integer retries)

setQueueType(int q_type)

setRetentionTime(double r_time)

setRetentionTime(java.lang.Double r_time)

setRetryInterval(double interval)

setRetryInterval(java.lang.Double interval)

toString()

Class - oracle.jms.AQjmsFactory

<< class >>
oracle.jms.AQjmsFactory

See Also:

� "Oracle JMS Classes (part 9)" on page B-18

� Use Cases: Specifying Destination Properties
Oracle JMS Interfaces, Classes, and Exceptions B-49

Interfaces, Classes, and Exceptions
<< static >>
getQueueConnectionFactory(String, Properties)

getQueueConnectionFactory(String, String, int, String)

getTopicConnectionFactory(String, Properties)

getTopicConnectionFactory(String, String, int, String)

Class - oracle.jms.AQjmsMapMessage

<< class >>
oracle.jms.AQjmsMapMessage

Class - oracle.jms.AQjmsMessage

<< class >>
oracle.jms.AQjmsMessage

<< methods >>
getJMSMessageIDAsBytes()

getSenderID()

setSenderID(AQjmsAgent)

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

Use Cases:

� Getting a Queue Connection Factory with JDBC URL

� Getting a Queue Connection Factory with JDBC Connection
Parameters

� Getting a Topic Connection Factory with JDBC URL

� Getting a Topic Connection Factory with JDBC Connection
Parameters

See Also: "Oracle JMS Classes (part 6)" on page B-11
B-50 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Class - oracle.jms.AQjmsObjectMessage

<< class >>
oracle.jms.AQjmsObjectMessage

Class - oracle.jms.AQjmsOracleDebug

<< class >>
oracle.jms.AQjmsOracleDebug

<< constants >>
AQ_ORA_TR1

AQ_ORA_TR2

AQ_ORA_TR3

AQ_ORA_TR4

AQ_ORA_TR5

<< methods >>
getLogStream()

setLogStream(OutputStream)

setTraceLevel(int)

See Also:

� "Oracle JMS Classes (part 6)" on page B-11

Use Cases:

� Getting the Message ID of a Message as Bytes

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12

See Also: "Oracle JMS Classes (part 9)" on page B-18
Oracle JMS Interfaces, Classes, and Exceptions B-51

Interfaces, Classes, and Exceptions
Class - oracle.jms.AQjmsProducer

<< class >>
oracle.jms.AQjmsProducer

Class - oracle.jms.AQjmsQueueBrowser

<< class >>
oracle.jms.AQjmsQueueBrowser

Class - oracle.jms.AQjmsQueueConnectionFactory

<< class >>
oracle.jmsAQjmsQueueConnection-Factory

<< static >>
createQueueConnection(Connection)

createQueueConnection(OracleOCIConnectionPool)

<< methods >>
createQueueConnection()

createQueueConnection(String, String)

See Also: "Oracle JMS Classes (part 7)" on page B-14

See Also:

� "Oracle JMS Classes (part 9)" on page B-18

� Use Case: Browsing Messages Using a Queue Browser

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

� Use Case: Creating a Queue Connection with Default
Connection Factory Parameters
B-52 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Class - oracle.jms.AQjmsSession

<< class >>
oracle.jms.AQjmsSession

<< methods >>
createAdtMessage()

createAdtMessage(CustomDatum)

createBrowser(Queue, CustomDatumFactory)

createBrowser(Queue, String, boolean)

createBrowser(Queue, String, CustomDatumFactory)

createBrowser(Queue, String, CustomDatumFactory, boolean)

createBrowser(Topic, String)

createBrowser(Topic, String, boolean)

createBrowser(Topic, String, CustomDatumFactory)

createBrowser(Topic, String, CustomDatumFactory, boolean)

createBrowser(Topic, String, String)

createBrowser(Topic, String, String, boolean)

createBrowser(Topic, String, String, CustomDatumFactory)

createBrowser(Topic, String, String, CustomDatumFactory, boolean)

createDurableSubscriber(Topic, String, CustomDatumFactory)

createDurableSubscriber(Topic, String, String, boolean, CustomDatumFactory)

createQueue(AQQueueTable, String, AQjmsDestinationProperty)

createQueueTable(String, String, AQQueueTableProperty)

createReceiver(Queue, CustomDatumFactory)

createReceiver(Queue, String, CustomDatumFactory)

createRemoteSubscriber(Topic, AQjmsAgent, String)

createRemoteSubscriber(Topic, AQjmsAgent, String, CustomDatumFactory)

createTopic(AQQueueTable, String, AQjmsDestinationProperty)
Oracle JMS Interfaces, Classes, and Exceptions B-53

Interfaces, Classes, and Exceptions
createTopicReceiver(Topic, String, String)

createTopicReceiver(Topic, String, String, CustomDatumFactory)

getDBConnection()

getJmsConnection()

getQueue(String, String)

getQueueTable(String, String)

getTopic(String, String)

grantSystemPrivilege(String, String, boolean)

revokeSystemPrivilege(String, String)

unsubscribe(Topic, AQjmsAgent)

unsubscribe(Topic, String)

Use Cases
Creating a Queue Table

Getting a Queue Table

Creating a Topic—Publish-Subscribe

Granting System Privileges

Revoking System Privileges

Granting Queue Privileges—Point-to-Point

Revoking Queue Privileges—Point-to-Point

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages

Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages,
Locking Messages While Browsing

Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages

Creating a Durable Subscriber for an ADT Topic without Selector

Creating a Durable Subscriber for an ADT Topic with Selector

Creating a Remote Subscriber for Topics of JMS Messages

See Also: "Oracle JMS Classes (part 4)" on page B-9
B-54 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages

Unsubscribing a Durable Subscription for a Local Subscriber

Unsubscribing a Durable Subscription for a Remote Subscriber

Creating a Topic Receiver for a Topic of Standard JMS Type Messages

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages

Getting the JMS Connection from a Session

Getting the Underlying JDBC Connection from a JMS Session

Creating an ADT Message

Class - oracle.jms.AQjmsStreamMessage

<< class >>
oracle.jms.AQjmsStreamMessage

Class - oracle.jms.AQjmsTextMessage

<< class >>
oracle.jms.AQjmsTextMessage

Class - oracle.jms.AQjmsTopicConnectionFactory

<< class >>
oracle.jms.AQjmsTopicConnection-Factory

<< static >>
createTopicConnection(Connection)

createTopicConnection(OracleOCIConnectionPool)

<< methods >>
createTopicConnection()

See Also: "Oracle JMS Classes (part 6 continued)" on page B-12

See Also: "Oracle JMS Classes (part 6)" on page B-11
Oracle JMS Interfaces, Classes, and Exceptions B-55

Interfaces, Classes, and Exceptions
createTopicConnection(String, String)

Exception oracle.jms.AQjmsException

<< exception >>
oracle.jms.AQjmsException

<< methods >>
getErrorNumber()

Exception oracle.jms.AQjmsInvalidDestinationException

<< exception >>
oracle.jms.AQjmsInvalidDestination-Exception

Exception oracle.jms.AQjmsInvalidSelectorException

<< exception >>
oracle.jms.AQjmsInvalidSelector-Exception

See Also:

� "Oracle JMSClasses (part 1)" on page B-5

Use Cases:

� Creating a Topic Connection with Open JDBC Connection

� Creating a Topic Connection with Default Connection Factory
Parameters

See Also:

� "Oracle JMS Classes (part 10)" on page B-20

Use Cases:

� Getting the Error Number for the JMS Exception

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21
B-56 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
Exception oracle.jms.AQjmsMessageEOFException

<< exception >>
oracle.jms.AQjmsMessageEOF-Exception

Exception oracle.jms.AQjmsMessageFormatException

<< exception >>
oracle.jms.AQjmsMessageFormatException

Exception oracle.jms.AQjmsMessageNotReadableException

<< exception >>
oracle.jms.AQjmsMessageNotReadableException

Exception oracle.jms.AQjmsMesssageNotWriteableException

<< exception >>
oracle.jms.AQjmsMessageNotWriteableException

Interface - oracle.AQ.AQQueueTable

<< interface >>
oracle.AQ.AQQueueTable

<< methods >>
alter(java.lang.String comment)

alter(java.lang.String comment, int primary_instance, int secondary_instance)

drop(boolean force)

See Also: "Oracle JMS Classes (part 10 continued)" on page B-21

See Also: "Oracle JMS Classes (part 10)" on page B-20

See Also: "Oracle JMS Classes (part 10)" on page B-20

See Also: "Oracle JMS Classes (part 10)" on page B-20
Oracle JMS Interfaces, Classes, and Exceptions B-57

Interfaces, Classes, and Exceptions
getName()

getOwner()

getProperty()

Class - oracle.AQ.AQQueueTableProperty

<< class >>
oracle.AQ.AQQueueTableProperty

<< constants >>
NONE

TRANSACTIONAL

<< constructors >>

AQQueueTableProperty(java.lang.String p_type)

<< methods >>
getComment()

getCompatible()

getMessageGrouping()

getPayloadType()

getPrimaryInstance()

getSecondaryInstance()

getSortOrder()

isMulticonsumerEnabled()

setComment(java.lang.String qt_comment)

setCompatible(java.lang.String qt_compatible)

setMessageGrouping(int message_grouping)

setMultiConsumer(boolean enable)

setPayloadType(java.lang.String p_type)

See Also: "Oracle JMS Classes (part 9)" on page B-18
B-58 Oracle9i Application Developer’s Guide - Advanced Queuing

Interfaces, Classes, and Exceptions
setPrimaryInstance(int inst)

setSecondaryInstance(int inst)

setSortOrder(java.lang.String s_order)

setStorageClause(java.lang.String s_clause)

toString()

Interface - oracle.jms.TopicBrowser

<< interface >>
oracle.jms.TopicBrowser

<< methods >>
close()

get Enumeration()

getTopic()

getMessageSelector()

purgeSeen()

Class - oracle.jms.AQjmsTopicBrowser

<< class >>
oracle.jms.AQjmsTopicBrowser

See Also:

� "Oracle JMS Classes (part 9)" on page B-18

� Use Case: Creating a Queue Table [Specify Queue Table
Property]

See Also: "Oracle JMS Classes (part 9)" on page B-18

See Also: "Oracle JMS Classes (part 9)" on page B-18
Oracle JMS Interfaces, Classes, and Exceptions B-59

Interfaces, Classes, and Exceptions
B-60 Oracle9i Application Developer’s Guide - Advanced Queuing

Scripts for Implementing BooksOnL
C

Scripts for Implementing BooksOnLine

This Appendix contains the following scripts:

� tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues &
Subscribers

� tkaqdocd.sql: Examples of Administrative and Operational Interfaces

� tkaqdoce.sql: Operational Examples

� tkaqdocp.sql: Examples of Operational Interfaces

� tkaqdocc.sql: Clean-Up Script
ine C-1

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues &
Subscribers

Rem $Header: tkaqdoca.sql 26-jan-99.17:50:37 aquser1 Exp $
Rem
Rem tkaqdoca.sql
Rem
Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem
Rem NAME
Rem tkaqdoca.sql - TKAQ DOCumentation Admin examples file

Rem Set up a queue admin account and individual accounts for each application
Rem
connect system/manager
set serveroutput on;
set echo on;

Rem Create a common admin account for all BooksOnLine applications
Rem
create user BOLADM identified by BOLADM;
grant connect, resource, aq_administrator_role to BOLADM;
grant execute on dbms_aq to BOLADM;
grant execute on dbms_aqadm to BOLADM;
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','BOLADM',FALSE);
execute dbms_aqadm.grant_system_privilege('DEQUEUE_ANY','BOLADM',FALSE);

Rem Create the application schemas and grant appropriate permission
Rem to all schemas

Rem Create an account for Order Entry
create user OE identified by OE;
grant connect, resource to OE;
grant execute on dbms_aq to OE;
grant execute on dbms_aqadm to OE;

Rem Create an account for WR Shipping
create user WS identified by WS;
grant connect, resource to WS;
grant execute on dbms_aq to WS;
grant execute on dbms_aqadm to WS;

Rem Create an account for ER Shipping
create user ES identified by ES;
grant connect, resource to ES;
C-2 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
grant execute on dbms_aq to ES;
grant execute on dbms_aqadm to ES;

Rem Create an account for Overseas Shipping
create user OS identified by OS;
grant connect, resource to OS;
grant execute on dbms_aq to OS;
grant execute on dbms_aqadm to OS;

Rem Create an account for Customer Billing
Rem Customer Billing, for security reason, has an admin schema that
Rem hosts all the queue tables and an application schema from where
Rem the application runs.
create user CBADM identified by CBADM;
grant connect, resource to CBADM;
grant execute on dbms_aq to CBADM;
grant execute on dbms_aqadm to CBADM;

create user CB identified by CB;
grant connect, resource to CB;
grant execute on dbms_aq to CB;
grant execute on dbms_aqadm to CB;

Rem Create an account for Customer Service
create user CS identified by CS;
grant connect, resource to CS;
grant execute on dbms_aq to CS;
grant execute on dbms_aqadm to CS;

Rem All object types are created in the administrator schema.
Rem All application schemas that host any propagation source
Rem queues are given the ENQUEUE_ANY system level privilege
Rem allowing the application schemas to enqueue to the destination
Rem queue.
Rem
connect BOLADM/BOLADM;

Rem Create objects

create or replace type customer_typ as object (
custno number,
name varchar2(100),
street varchar2(100),
city varchar2(30),
Scripts for Implementing BooksOnLine C-3

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
state varchar2(2),
zip number,
country varchar2(100));

/

create or replace type book_typ as object (
title varchar2(100),
authors varchar2(100),
ISBN number,
price number);

/

create or replace type orderitem_typ as object (
quantity number,
item book_typ,
subtotal number);

/

create or replace type orderitemlist_vartyp as varray (20) of orderitem_typ;
/

create or replace type order_typ as object (
orderno number,
status varchar2(30),
ordertype varchar2(30),
orderregion varchar2(30),
customer customer_typ,
paymentmethod varchar2(30),
items orderitemlist_vartyp,
total number);

/

grant execute on order_typ to OE;
grant execute on orderitemlist_vartyp to OE;
grant execute on orderitem_typ to OE;
grant execute on book_typ to OE;
grant execute on customer_typ to OE;
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','OE',FALSE);

grant execute on order_typ to WS;
grant execute on orderitemlist_vartyp to WS;
grant execute on orderitem_typ to WS;
grant execute on book_typ to WS;
grant execute on customer_typ to WS;
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','WS',FALSE);
C-4 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
grant execute on order_typ to ES;
grant execute on orderitemlist_vartyp to ES;
grant execute on orderitem_typ to ES;
grant execute on book_typ to ES;
grant execute on customer_typ to ES;
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','ES',FALSE);

grant execute on order_typ to OS;
grant execute on orderitemlist_vartyp to OS;
grant execute on orderitem_typ to OS;
grant execute on book_typ to OS;
grant execute on customer_typ to OS;
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','OS',FALSE);

grant execute on order_typ to CBADM;
grant execute on orderitemlist_vartyp to CBADM;
grant execute on orderitem_typ to CBADM;
grant execute on book_typ to CBADM;
grant execute on customer_typ to CBADM;

grant execute on order_typ to CB;
grant execute on orderitemlist_vartyp to CB;
grant execute on orderitem_typ to CB;
grant execute on book_typ to CB;
grant execute on customer_typ to CB;

grant execute on order_typ to CS;
grant execute on orderitemlist_vartyp to CS;
grant execute on orderitem_typ to CS;
grant execute on book_typ to CS;
grant execute on customer_typ to CS;

Rem Create queue tables, queues for OE
Rem
connect OE/OE;
begin
dbms_aqadm.create_queue_table(

queue_table => 'OE_orders_sqtab',
comment => 'Order Entry Single Consumer Orders queue table',
queue_payload_type => 'BOLADM.order_typ',
message_grouping => DBMS_AQADM.TRANSACTIONAL,
compatible => '8.1',
primary_instance => 1,
secondary_instance => 2);
Scripts for Implementing BooksOnLine C-5

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
end;
/

Rem Create a priority queue table for OE
begin
dbms_aqadm.create_queue_table(

queue_table => 'OE_orders_pr_mqtab',
sort_list =>'priority,enq_time',
comment => 'Order Entry Priority MultiConsumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1',
primary_instance => 2,
secondary_instance => 1);

end;
/

begin
dbms_aqadm.create_queue (

queue_name => 'OE_neworders_que',
queue_table => 'OE_orders_sqtab');

end;
/

begin
dbms_aqadm.create_queue (

queue_name => 'OE_bookedorders_que',
queue_table => 'OE_orders_pr_mqtab');

end;
/

Rem Orders in OE_bookedorders_que are being propagated to WS_bookedorders_que,
Rem ES_bookedorders_que and OS_bookedorders_que according to the region
Rem the books are shipped to. At the time an order is placed, the customer
Rem can request Fed-ex shipping (priority 1), priority air shipping (priority
Rem 2) and ground shipping (priority 3). A priority queue is created in
Rem each region, the shipping applications will dequeue from these priority
Rem queues according to the orders' shipping priorities, processes the orders
Rem and enqueue the processed orders into
Rem the shipped_orders queues or the back_orders queues. Both the shipped_
Rem orders queues and the back_orders queues are FIFO queues. However,
Rem orders put into the back_orders_queues are enqueued with delay time
Rem set to 1 day, so that each order in the back_order_queues is processed
Rem only once a day until the shipment is filled.
C-6 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
Rem Create queue tables, queues for WS Shipping
connect WS/WS;

Rem Create a priority queue table for WS shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'WS_orders_pr_mqtab',
sort_list =>'priority,enq_time',
comment => 'West Shipping Priority MultiConsumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

Rem Create a FIFO queue tables for WS shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'WS_orders_mqtab',
comment => 'West Shipping Multi Consumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

Rem Booked orders are stored in the priority queue table
begin
dbms_aqadm.create_queue (

queue_name => 'WS_bookedorders_que',
queue_table => 'WS_orders_pr_mqtab');

end;
/

Rem Shipped orders and back orders are stored in the FIFO queue table
begin
dbms_aqadm.create_queue (

queue_name => 'WS_shippedorders_que',
queue_table => 'WS_orders_mqtab');

end;
/

begin
dbms_aqadm.create_queue (
Scripts for Implementing BooksOnLine C-7

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
queue_name => 'WS_backorders_que',
queue_table => 'WS_orders_mqtab');

end;
/

Rem
Rem In order to test history, set retention to 1 DAY for the queues
Rem in WS

begin
dbms_aqadm.alter_queue(

queue_name => 'WS_bookedorders_que',
retention_time => 86400);

end;
/

begin
dbms_aqadm.alter_queue(

queue_name => 'WS_shippedorders_que',
retention_time => 86400);

end;
/

begin
dbms_aqadm.alter_queue(

queue_name => 'WS_backorders_que',
retention_time => 86400);

end;
/

Rem Create queue tables, queues for ES Shipping
connect ES/ES;

Rem Create a priority queue table for ES shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'ES_orders_mqtab',
comment => 'East Shipping Multi Consumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

C-8 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
Rem Create a FIFO queue tables for ES shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'ES_orders_pr_mqtab',
sort_list =>'priority,enq_time',
comment => 'East Shipping Priority Multi Consumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

Rem Booked orders are stored in the priority queue table
begin
dbms_aqadm.create_queue (

queue_name => 'ES_bookedorders_que',
queue_table => 'ES_orders_pr_mqtab');

end;
/

Rem Shipped orders and back orders are stored in the FIFO queue table
begin
dbms_aqadm.create_queue (

queue_name => 'ES_shippedorders_que',
queue_table => 'ES_orders_mqtab');

end;
/

begin
dbms_aqadm.create_queue (

queue_name => 'ES_backorders_que',
queue_table => 'ES_orders_mqtab');

end;
/

Rem Create queue tables, queues for Overseas Shipping
connect OS/OS;

Rem Create a priority queue table for OS shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'OS_orders_pr_mqtab',
sort_list =>'priority,enq_time',
comment => 'Overseas Shipping Priority MultiConsumer Orders queue
Scripts for Implementing BooksOnLine C-9

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

Rem Create a FIFO queue tables for OS shipping
begin
dbms_aqadm.create_queue_table(

queue_table => 'OS_orders_mqtab',
comment => 'Overseas Shipping Multi Consumer Orders queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

end;
/

Rem Booked orders are stored in the priority queue table
begin
dbms_aqadm.create_queue (

queue_name => 'OS_bookedorders_que',
queue_table => 'OS_orders_pr_mqtab');

end;
/

Rem Shipped orders and back orders are stored in the FIFO queue table
begin
dbms_aqadm.create_queue (

queue_name => 'OS_shippedorders_que',
queue_table => 'OS_orders_mqtab');

end;
/

begin
dbms_aqadm.create_queue (

queue_name => 'OS_backorders_que',
queue_table => 'OS_orders_mqtab');

end;
/

Rem Create queue tables, queues for Customer Billing
connect CBADM/CBADM;
begin
C-10 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
dbms_aqadm.create_queue_table(
queue_table => 'CBADM_orders_sqtab',
comment => 'Customer Billing Single Consumer Orders queue table',
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

dbms_aqadm.create_queue_table(
queue_table => 'CBADM_orders_mqtab',
comment => 'Customer Billing Multi Consumer Service queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

dbms_aqadm.create_queue (
queue_name => 'CBADM_shippedorders_que',
queue_table => 'CBADM_orders_sqtab');

end;
/

Rem Grant dequeue privilege on the shopped orders queue to the Customer Billing
Rem application. The CB application retrieves shipped orders (not billed yet)
Rem from the shopped orders queue.
execute dbms_aqadm.grant_queue_privilege('DEQUEUE', 'CBADM_shippedorders_que',
'CB', FALSE);

begin
dbms_aqadm.create_queue (

queue_name => 'CBADM_billedorders_que',
queue_table => 'CBADM_orders_mqtab');

end;
/

Rem Grant enqueue privilege on the billed orders queue to Customer Billing
Rem application. The CB application is allowed to put billed orders into
Rem this queue.
execute dbms_aqadm.grant_queue_privilege('ENQUEUE', 'CBADM_billedorders_que',
'CB', FALSE);

Rem Customer support tracks the state of the customer request in the system
Rem
Rem At any point, customer request can be in one of the following states
Rem A. BOOKED B. SHIPPED C. BACKED D. BILLED
Rem Given the order number the customer support will return the state
Scripts for Implementing BooksOnLine C-11

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
Rem the order is in. This state is maintained in the order_status_table

connect CS/CS;

CREATE TABLE Order_Status_Table(customer_order boladm.order_typ,
status varchar2(30));

Rem Create queue tables, queues for Customer Service

begin
dbms_aqadm.create_queue_table(

queue_table => 'CS_order_status_qt',
comment => 'Customer Status multi consumer queue table',
multiple_consumers => TRUE,
queue_payload_type => 'BOLADM.order_typ',
compatible => '8.1');

dbms_aqadm.create_queue (
queue_name => 'CS_bookedorders_que',
queue_table => 'CS_order_status_qt');

dbms_aqadm.create_queue (
queue_name => 'CS_backorders_que',
queue_table => 'CS_order_status_qt');

dbms_aqadm.create_queue (
queue_name => 'CS_shippedorders_que',
queue_table => 'CS_order_status_qt');

dbms_aqadm.create_queue (
queue_name => 'CS_billedorders_que',
queue_table => 'CS_order_status_qt');

end;
/

Rem Create the Subscribers for OE queues
Rem Add the Subscribers for the OE booked_orders queue

connect OE/OE;

Rem Add a rule-based subscriber for West Shipping
Rem West Shipping handles Western region US orders
Rem Rush Western region orders are handled by East Shipping
declare
C-12 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
subscriber aq$_agent;
begin

subscriber := aq$_agent('West_Shipping', 'WS.WS_bookedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'OE.OE_bookedorders_que',

subscriber => subscriber,
rule => 'tab.user_data.orderregion =

''WESTERN'' AND tab.user_data.ordertype != ''RUSH''');
end;
/

Rem Add a rule-based subscriber for East Shipping
Rem East shipping handles all Eastern region orders
Rem East shipping also handles all US rush orders
declare

subscriber aq$_agent;
begin

subscriber := aq$_agent('East_Shipping', 'ES.ES_bookedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'OE.OE_bookedorders_que',

subscriber => subscriber,
rule => 'tab.user_data.orderregion =

''EASTERN'' OR (tab.user_data.ordertype = ''RUSH'' AND tab.user_
data.customer.country = ''USA'') ');
end;
/

Rem Add a rule-based subscriber for Overseas Shipping
Rem Intl Shipping handles all non-US orders
declare

subscriber aq$_agent;
begin

subscriber := aq$_agent('Overseas_Shipping', 'OS.OS_bookedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'OE.OE_bookedorders_que',

subscriber => subscriber,
rule => 'tab.user_data.orderregion =

''INTERNATIONAL''');
end;
/

Rem Add the Customer Service order queues as a subscribers to the
Rem corresponding queues in OrderEntry, Shipping and Billing

declare
subscriber aq$_agent;

begin
/* Subscribe to the booked orders queue */
Scripts for Implementing BooksOnLine C-13

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
subscriber := aq$_agent('BOOKED_ORDER', 'CS.CS_bookedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'OE.OE_bookedorders_que',

subscriber => subscriber);
end;
/

connect WS/WS;

declare
subscriber aq$_agent;

begin
/* Subscribe to the WS back orders queue */
subscriber := aq$_agent('BACK_ORDER', 'CS.CS_backorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'WS.WS_backorders_que',

subscriber => subscriber);
end;
/

declare
subscriber aq$_agent;

begin
/* Subscribe to the WS shipped orders queue */
subscriber := aq$_agent('SHIPPED_ORDER', 'CS.CS_shippedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'WS.WS_shippedorders_que',

subscriber => subscriber);
end;
/

connect CBADM/CBADM;
declare

subscriber aq$_agent;
begin

/* Subscribe to the BILLING billed orders queue */
subscriber := aq$_agent('BILLED_ORDER', 'CS.CS_billedorders_que', null);
dbms_aqadm.add_subscriber(queue_name => 'CBADM.CBADM_billedorders_que',

subscriber => subscriber);

end;
/

Rem
Rem BOLADM will Start all the queues
Rem
C-14 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
connect BOLADM/BOLADM
execute dbms_aqadm.start_queue(queue_name => 'OE.OE_neworders_que');
execute dbms_aqadm.start_queue(queue_name => 'OE.OE_bookedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'WS.WS_bookedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'WS.WS_shippedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'WS.WS_backorders_que');
execute dbms_aqadm.start_queue(queue_name => 'ES.ES_bookedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'ES.ES_shippedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'ES.ES_backorders_que');
execute dbms_aqadm.start_queue(queue_name => 'OS.OS_bookedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'OS.OS_shippedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'OS.OS_backorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CBADM.CBADM_shippedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CBADM.CBADM_billedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CS.CS_bookedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CS.CS_backorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CS.CS_shippedorders_que');
execute dbms_aqadm.start_queue(queue_name => 'CS.CS_billedorders_que');

connect system/manager

Rem
Rem Start job_queue_processes to handle AQ propagation
Rem

alter system set job_queue_processes=4;
Scripts for Implementing BooksOnLine C-15

tkaqdocd.sql: Examples of Administrative and Operational Interfaces
tkaqdocd.sql: Examples of Administrative and Operational Interfaces
Rem
Rem $Header: tkaqdocd.sql 26-jan-99.17:51:23 aquser1 Exp $
Rem
Rem tkaqdocd.sql
Rem
Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem
Rem NAME
Rem tkaqdocd.sql - <one-line expansion of the name>
Rem
Rem DESCRIPTION
Rem <short description of component this file declares/defines>
Rem
Rem NOTES
Rem <other useful comments, qualifications, etc.>
Rem
Rem

Rem
Rem Schedule propagation for the shipping, billing, order entry queues
Rem

connect OE/OE;

execute dbms_aqadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que');

connect WS/WS;
execute dbms_aqadm.schedule_propagation(queue_name => 'WS.WS_backorders_que');
execute dbms_aqadm.schedule_propagation(queue_name => 'WS.WS_shippedorders_
que');

connect CBADM/CBADM;
execute dbms_aqadm.schedule_propagation(queue_name => 'CBADM.CBADM_billedorders_
que');

Rem
Rem Customer service application
Rem
Rem This application monitors the status queue for messages and updates
Rem the Order_Status table.
C-16 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocd.sql: Examples of Administrative and Operational Interfaces
connect CS/CS

Rem
Rem Dequeus messages from the 'queue' for 'consumer'

CREATE OR REPLACE PROCEDURE DEQUEUE_MESSAGE(
queue IN VARCHAR2,
consumer IN VARCHAR2,
message OUT BOLADM.order_typ)

IS

dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_msgid raw(16);
BEGIN

dopt.dequeue_mode := dbms_aq.REMOVE;
dopt.navigation := dbms_aq.FIRST_MESSAGE;
dopt.consumer_name := consumer;

dbms_aq.dequeue(
queue_name => queue,
dequeue_options => dopt,
message_properties => mprop,
payload => message,
msgid => deq_msgid);

commit;
END;
/

Rem
Rem Updates the status of the order in the status table
Rem

CREATE OR REPLACE PROCEDURE update_status(
new_status IN VARCHAR2,
order_msg IN BOLADM.ORDER_TYP)

IS
old_status VARCHAR2(30);
dummy NUMBER;

BEGIN

BEGIN
Scripts for Implementing BooksOnLine C-17

tkaqdocd.sql: Examples of Administrative and Operational Interfaces
/* query old status from the table */
SELECT st.status INTO old_status from order_status_table st

where st.customer_order.orderno = order_msg.orderno;

/* Status can be 'BOOKED_ORDER', 'SHIPPED_ORDER', 'BACK_ORDER'
* and 'BILLED_ORDER'
*/

IF new_status = 'SHIPPED_ORDER' THEN
IF old_status = 'BILLED_ORDER' THEN

return; /* message about a previous state */
END IF;

ELSIF new_status = 'BACK_ORDER' THEN
IF old_status = 'SHIPPED_ORDER' OR old_status = 'BILLED_ORDER' THEN

return; /* message about a previous state */
END IF;

END IF;

/* update the order status */
UPDATE order_status_table st

SET st.customer_order = order_msg, st.status = new_status
where st.customer_order.orderno = order_msg.orderno;

COMMIT;

EXCEPTION
WHEN OTHERS THEN /* change to no data found */

/* first update for the order */
INSERT INTO order_status_table(customer_order, status)
VALUES (order_msg, new_status);
COMMIT;

END;
END;
/

Rem
Rem Monitors the customer service queues for 'time' seconds
Rem

CREATE OR REPLACE PROCEDURE MONITOR_STATUS_QUEUE(time IN NUMBER)
IS

agent_w_message aq$_agent;
agent_list dbms_aq.agent_list_t;
C-18 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocd.sql: Examples of Administrative and Operational Interfaces
wait_time INTEGER := 120;
no_message EXCEPTION;
pragma EXCEPTION_INIT(no_message, -25254);
order_msg boladm.order_typ;
new_status VARCHAR2(30);
monitor BOOLEAN := TRUE;
begin_time number;
end_time number;

BEGIN

begin_time := dbms_utility.get_time;
WHILE (monitor)
LOOP
BEGIN

agent_list(1) := aq$_agent('BILLED_ORDER', 'CS_billedorders_que', NULL);
agent_list(2) := aq$_agent('SHIPPED_ORDER', 'CS_shippedorders_que', NULL);
agent_list(3) := aq$_agent('BACK_ORDER', 'CS_backorders_que', NULL);
agent_list(4) := aq$_agent('Booked_ORDER', 'CS_bookedorders_que', NULL);

/* wait for order status messages */
dbms_aq.listen(agent_list, wait_time, agent_w_message);

dbms_output.put_line('Agent' || agent_w_message.name || ' Address '|| agent_
w_message.address);

/* dequeue the message from the queue */
dequeue_message(agent_w_message.address, agent_w_message.name, order_msg);

/* update the status of the order depending on the type of the message
* the name of the agent contains the new state
*/

update_status(agent_w_message.name, order_msg);

/* exit if we have been working long enough */
end_time := dbms_utility.get_time;
IF (end_time - begin_time > time) THEN

EXIT;
END IF;

EXCEPTION
WHEN no_message THEN

dbms_output.put_line('No messages in the past 2 minutes');
end_time := dbms_utility.get_time;

/* exit if we have done enough work */
IF (end_time - begin_time > time) THEN

EXIT;
Scripts for Implementing BooksOnLine C-19

tkaqdocd.sql: Examples of Administrative and Operational Interfaces
END IF;
END;

END LOOP;
END;
/

Rem
Rem History queries
Rem

Rem
Rem Average processing time for messages in western shipping:
Rem Difference between the ship- time and book-time for the order
Rem
Rem NOTE: we assume that order id is the correlation identifier
Rem Only processed messages are considered.

Connect WS/WS

SELECT SUM(SO.enq_time - BO.enq_time) / count (*) AVG_PRCS_TIME
FROM WS.AQ$WS_orders_pr_mqtab BO , WS.AQ$WS_orders_mqtab SO
WHERE SO.msg_state = 'PROCESSED' and BO.msg_state = 'PROCESSED'
AND SO.corr_id = BO.corr_id and SO.queue = 'WS_shippedorders_que';

Rem
Rem Average backed up time (again only processed messages are considered
Rem

SELECT SUM(BACK.deq_time - BACK.enq_time)/count (*) AVG_BACK_TIME
FROM WS.AQ$WS_orders_mqtab BACK
WHERE BACK.msg_state = 'PROCESSED' and BACK.queue = 'WS_backorders_que';
C-20 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdoce.sql: Operational Examples
tkaqdoce.sql: Operational Examples

Rem
Rem $Header: tkaqdoce.sql 26-jan-99.17:51:28 aquser1 Exp $
Rem
Rem tkaqdocl.sql
Rem
Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem

set echo on

Rem ==
Rem Demonstrate enqueuing a backorder with delay time set
Rem to 1 day. This will guarantee that each backorder will
Rem be processed only once a day until the order is filled.
Rem ==

Rem Create a package that enqueue with delay set to one day
connect BOLADM/BOLADM
create or replace procedure requeue_unfilled_order(sale_region varchar2,

backorder order_typ)
as

back_order_queue_name varchar2(62);
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid raw(16);

begin
-- Choose a back order queue based the the region
IF sale_region = 'WEST' THEN

back_order_queue_name := 'WS.WS_backorders_que';
ELSIF sale_region = 'EAST' THEN

back_order_queue_name := 'ES.ES_backorders_que';
ELSE

back_order_queue_name := 'OS.OS_backorders_que';
END IF;

-- Enqueue the order with delay time set to 1 day
msgprop.delay := 60*60*24;
dbms_aq.enqueue(back_order_queue_name, enqopt, msgprop,

backorder, enq_msgid);
end;
Scripts for Implementing BooksOnLine C-21

tkaqdocp.sql: Examples of Operational Interfaces
tkaqdocp.sql: Examples of Operational Interfaces
Rem
Rem $Header: tkaqdocp.sql 26-jan-99.17:50:54 aquser1 Exp $
Rem
Rem tkaqdocp.sql
Rem
Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem
Rem NAME
Rem tkaqdocp.sql - <one-line expansion of the name>
Rem

set echo on;

Rem ==
Rem Illustrating Support for Real Application Clusters
Rem ==

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem check instance affinity of OE queue tables from AQ administrative view

select queue_table, primary_instance, secondary_instance, owner_instance
from user_queue_tables;

Rem alter instance affinity of OE queue tables

begin
dbms_aqadm.alter_queue_table(

queue_table => 'OE.OE_orders_sqtab',
primary_instance => 2,
secondary_instance => 1);

end;
/

begin
dbms_aqadm.alter_queue_table(

queue_table => 'OE.OE_orders_pr_mqtab',
primary_instance => 1,
secondary_instance => 2);

end;
/

C-22 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
Rem check instance affinity of OE queue tables from AQ administrative view

select queue_table, primary_instance, secondary_instance, owner_instance
from user_queue_tables;

Rem ==
Rem Illustrating Propagation Scheduling
Rem ==

Rem Login into OE account

set echo on;
connect OE/OE;
set serveroutput on;

Rem
Rem Schedule Propagation from bookedorders_que to shipping
Rem

execute dbms_aqadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que');

Rem Login into boladm account
set echo on;
connect boladm/boladm;
set serveroutput on;

Rem create a procedure to enqueue an order
create or replace procedure order_enq(book_title in varchar2,

book_qty in number,
order_num in number,
shipping_priority in number,
cust_state in varchar2,
cust_country in varchar2,
cust_region in varchar2,
cust_ord_typ in varchar2) as

OE_enq_order_data BOLADM.order_typ;
OE_enq_cust_data BOLADM.customer_typ;
OE_enq_book_data BOLADM.book_typ;
OE_enq_item_data BOLADM.orderitem_typ;
OE_enq_item_list BOLADM.orderitemlist_vartyp;
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid raw(16);
Scripts for Implementing BooksOnLine C-23

tkaqdocp.sql: Examples of Operational Interfaces
begin

msgprop.correlation := cust_ord_typ;
OE_enq_cust_data := BOLADM.customer_typ(NULL, NULL, NULL, NULL,

cust_state, NULL, cust_country);
OE_enq_book_data := BOLADM.book_typ(book_title, NULL, NULL, NULL);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,

OE_enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(

BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE_enq_order_data := BOLADM.order_typ(order_num, NULL,
cust_ord_typ, cust_region,
OE_enq_cust_data, NULL,
OE_enq_item_list, NULL);

-- Put the shipping priority into message property before
-- enqueueing the message
msgprop.priority := shipping_priority;
dbms_aq.enqueue('OE.OE_bookedorders_que', enqopt, msgprop,

OE_enq_order_data, enq_msgid);
end;
/

show errors;

grant execute on order_enq to OE;

Rem now create a procedure to dequeue booked orders for shipment processing
create or replace procedure shipping_bookedorder_deq(

consumer in varchar2,
deqmode in binary_integer) as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
qname varchar2(30);
no_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;
C-24 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
begin

dopt.consumer_name := consumer;
dopt.wait := DBMS_AQ.NO_WAIT;
dopt.dequeue_mode := deqmode;
dopt.navigation := dbms_aq.FIRST_MESSAGE;

IF (consumer = 'West_Shipping') THEN
qname := 'WS.WS_bookedorders_que';

ELSIF (consumer = 'East_Shipping') THEN
qname := 'ES.ES_bookedorders_que';

ELSE
qname := 'OS.OS_bookedorders_que';

END IF;

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;
deq_cust_data := deq_order_data.customer;

dbms_output.put_line(' **** next booked order **** ');
dbms_output.put_line('order_num: ' || deq_order_data.orderno ||

' book_title: ' || deq_book_data.title ||
' quantity: ' || deq_item_data.quantity);

dbms_output.put_line('ship_state: ' || deq_cust_data.state ||
' ship_country: ' || deq_cust_data.country ||
' ship_order_type: ' || deq_order_data.ordertype);

dopt.navigation := dbms_aq.NEXT_MESSAGE;
EXCEPTION

WHEN no_messages THEN
dbms_output.put_line (' ---- NO MORE BOOKED ORDERS ---- ');
new_orders := FALSE;

END;
END LOOP;

end;
Scripts for Implementing BooksOnLine C-25

tkaqdocp.sql: Examples of Operational Interfaces
/
show errors;

Rem now create a procedure to dequeue rush orders for shipment
create or replace procedure get_rushtitles(consumer in varchar2) as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
qname varchar2(30);
no_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin

dopt.consumer_name := consumer;
dopt.wait := 1;
dopt.correlation := 'RUSH';

IF (consumer = 'West_Shipping') THEN
qname := 'WS.WS_bookedorders_que';

ELSIF (consumer = 'East_Shipping') THEN
qname := 'ES.ES_bookedorders_que';

ELSE
qname := 'OS.OS_bookedorders_que';

END IF;

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;

dbms_output.put_line(' rushorder book_title: ' ||
C-26 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
deq_book_data.title ||
' quantity: ' || deq_item_data.quantity);

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (' ---- NO MORE RUSH TITLES ---- ');
new_orders := FALSE;

END;
END LOOP;

end;
/
show errors;

Rem now create a procedure to dequeue orders for handling North American
Rem orders
create or replace procedure get_northamerican_orders as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
deq_order_nodata BOLADM.order_typ;
qname varchar2(30);
no_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN := TRUE;

begin

dopt.consumer_name := 'Overseas_Shipping';
dopt.wait := DBMS_AQ.NO_WAIT;
dopt.navigation := dbms_aq.FIRST_MESSAGE;
dopt.dequeue_mode := DBMS_AQ.LOCKED;

qname := 'OS.OS_bookedorders_que';

WHILE (new_orders) LOOP
BEGIN

dbms_aq.dequeue(
queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
Scripts for Implementing BooksOnLine C-27

tkaqdocp.sql: Examples of Operational Interfaces
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;
deq_cust_data := deq_order_data.customer;

IF (deq_cust_data.country = 'Canada' OR
deq_cust_data.country = 'Mexico') THEN

dopt.dequeue_mode := dbms_aq.REMOVE_NODATA;
dopt.msgid := deq_msgid;
dbms_aq.dequeue(

queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_nodata,
msgid => deq_msgid);

dbms_output.put_line(' **** next booked order **** ');
dbms_output.put_line('order_no: ' || deq_order_data.orderno ||

' book_title: ' || deq_book_data.title ||
' quantity: ' || deq_item_data.quantity);

dbms_output.put_line('ship_state: ' || deq_cust_data.state ||
' ship_country: ' || deq_cust_data.country ||
' ship_order_type: ' || deq_order_data.ordertype);

END IF;

commit;
dopt.dequeue_mode := DBMS_AQ.LOCKED;
dopt.msgid := NULL;
dopt.navigation := dbms_aq.NEXT_MESSAGE;

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (' ---- NO MORE BOOKED ORDERS ---- ');
new_orders := FALSE;

END;
END LOOP;

end;
/
show errors;

grant execute on shipping_bookedorder_deq to WS;
C-28 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
grant execute on shipping_bookedorder_deq to ES;
grant execute on shipping_bookedorder_deq to OS;
grant execute on shipping_bookedorder_deq to CS;

grant execute on get_rushtitles to ES;

grant execute on get_northamerican_orders to OS;

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem
Rem Enqueue some orders into OE_bookedorders_que
Rem

execute BOLADM.order_enq('My First Book', 1, 1001, 3,'CA', 'USA', 'WESTERN',
'NORMAL');
execute BOLADM.order_enq('My Second Book', 2, 1002, 3,'NY', 'USA', 'EASTERN',
'NORMAL');
execute BOLADM.order_enq('My Third Book', 3, 1003, 3, '', 'Canada',
'INTERNATIONAL', 'NORMAL');
execute BOLADM.order_enq('My Fourth Book', 4, 1004, 2, 'NV', 'USA', 'WESTERN',
'RUSH');
execute BOLADM.order_enq('My Fifth Book', 5, 1005, 2, 'MA', 'USA', 'EASTERN',
'RUSH');
execute BOLADM.order_enq('My Sixth Book', 6, 1006, 3,'' , 'UK',
'INTERNATIONAL', 'NORMAL');
execute BOLADM.order_enq('My Seventh Book', 7, 1007, 1,'', 'Canada',
'INTERNATIONAL', 'RUSH');
execute BOLADM.order_enq('My Eighth Book', 8, 1008, 3,'', 'Mexico',
'INTERNATIONAL', 'NORMAL');
execute BOLADM.order_enq('My Ninth Book', 9, 1009, 1, 'CA', 'USA', 'WESTERN',
'RUSH');
execute BOLADM.order_enq('My Tenth Book', 8, 1010, 3, '' , 'UK',
'INTERNATIONAL', 'NORMAL');
execute BOLADM.order_enq('My Last Book', 7, 1011, 3, '' , 'Mexico',
'INTERNATIONAL', 'NORMAL');
commit;
/

Rem
Rem Wait for Propagation to Complete
Rem
Scripts for Implementing BooksOnLine C-29

tkaqdocp.sql: Examples of Operational Interfaces
execute dbms_lock.sleep(100);

Rem ==
Rem Illustrating Dequeue Modes/Methods
Rem ==

connect WS/WS;
set serveroutput on;

Rem Dequeue all booked orders for West_Shipping
execute BOLADM.shipping_bookedorder_deq('West_Shipping', DBMS_AQ.REMOVE);
commit;
/

connect ES/ES;
set serveroutput on;

Rem Browse all booked orders for East_Shipping
execute BOLADM.shipping_bookedorder_deq('East_Shipping', DBMS_AQ.BROWSE);

Rem Dequeue all rush order titles for East_Shipping
execute BOLADM.get_rushtitles('East_Shipping');
commit;
/

Rem Dequeue all remaining booked orders (normal order) for East_Shipping
execute BOLADM.shipping_bookedorder_deq('East_Shipping', DBMS_AQ.REMOVE);
commit;
/

connect OS/OS;
set serveroutput on;

Rem Dequeue all international North American orders for Overseas_Shipping
execute BOLADM.get_northamerican_orders;
commit;
/

Rem Dequeue rest of the booked orders for Overseas_Shipping
execute BOLADM.shipping_bookedorder_deq('Overseas_Shipping', DBMS_AQ.REMOVE);
commit;
/

C-30 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
Rem ==
Rem Illustrating Enhanced Propagation Capabilities
Rem ==

connect OE/OE;
set serveroutput on;

Rem
Rem Get propagation schedule information & statistics
Rem

Rem get averages
select avg_time, avg_number, avg_size from user_queue_schedules;

Rem get totals
select total_time, total_number, total_bytes from user_queue_schedules;

Rem get status information of schedule (present only when active)
select process_name, session_id, instance, schedule_disabled

from user_queue_schedules;

Rem get information about last and next execution
select last_run_date, last_run_time, next_run_date, next_run_time

from user_queue_schedules;

Rem get last error information if any
select failures, last_error_msg, last_error_date, last_error_time

from user_queue_schedules;

Rem disable propagation schedule for booked orders

execute dbms_aqadm.disable_propagation_schedule(queue_name => 'OE_bookedorders_
que');
execute dbms_lock.sleep(30);
select schedule_disabled from user_queue_schedules;

Rem alter propagation schedule for booked orders to execute every
Rem 15 mins (900 seconds) for a window duration of 300 seconds

begin
dbms_aqadm.alter_propagation_schedule(

queue_name => 'OE_bookedorders_que',
duration => 300,
next_time => 'SYSDATE + 900/86400',
latency => 25);
Scripts for Implementing BooksOnLine C-31

tkaqdocp.sql: Examples of Operational Interfaces
end;
/

execute dbms_lock.sleep(30);
select next_time, latency, propagation_window from user_queue_schedules;

Rem enable propagation schedule for booked orders

execute dbms_aqadm.enable_propagation_schedule(queue_name => 'OE_bookedorders_
que');
execute dbms_lock.sleep(30);
select schedule_disabled from user_queue_schedules;

Rem unschedule propagation for booked orders

execute dbms_aqadm.unschedule_propagation(queue_name => 'OE.OE_bookedorders_
que');

set echo on;

Rem ==
Rem Illustrating Message Grouping
Rem ==

Rem Login into boladm account
set echo on;
connect boladm/boladm;
set serveroutput on;

Rem now create a procedure to handle order entry
create or replace procedure new_order_enq(book_title in varchar2,

book_qty in number,
order_num in number,
cust_state in varchar2) as

OE_enq_order_data BOLADM.order_typ;
OE_enq_cust_data BOLADM.customer_typ;
OE_enq_book_data BOLADM.book_typ;
OE_enq_item_data BOLADM.orderitem_typ;
OE_enq_item_list BOLADM.orderitemlist_vartyp;
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid raw(16);

begin
C-32 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
OE_enq_cust_data := BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust_state, NULL, NULL);

OE_enq_book_data := BOLADM.book_typ(book_title, NULL, NULL, NULL);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,

OE_enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(

BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE_enq_order_data := BOLADM.order_typ(order_num, NULL,
NULL, NULL,
OE_enq_cust_data, NULL,
OE_enq_item_list, NULL);

dbms_aq.enqueue('OE.OE_neworders_que', enqopt, msgprop,
OE_enq_order_data, enq_msgid);

end;
/
show errors;

Rem now create a procedure to handle order enqueue
create or replace procedure same_order_enq(book_title in varchar2,

book_qty in number) as

OE_enq_order_data BOLADM.order_typ;
OE_enq_book_data BOLADM.book_typ;
OE_enq_item_data BOLADM.orderitem_typ;
OE_enq_item_list BOLADM.orderitemlist_vartyp;
enqopt dbms_aq.enqueue_options_t;
msgprop dbms_aq.message_properties_t;
enq_msgid raw(16);

begin

OE_enq_book_data := BOLADM.book_typ(book_title, NULL, NULL, NULL);
OE_enq_item_data := BOLADM.orderitem_typ(book_qty,

OE_enq_book_data, NULL);
OE_enq_item_list := BOLADM.orderitemlist_vartyp(

BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));

OE_enq_order_data := BOLADM.order_typ(NULL, NULL,
NULL, NULL,
NULL, NULL,
OE_enq_item_list, NULL);

dbms_aq.enqueue('OE.OE_neworders_que', enqopt, msgprop,
OE_enq_order_data, enq_msgid);
Scripts for Implementing BooksOnLine C-33

tkaqdocp.sql: Examples of Operational Interfaces
end;
/
show errors;

grant execute on new_order_enq to OE;
grant execute on same_order_enq to OE;

Rem now create a procedure to get new orders by dequeuing
create or replace procedure get_new_orders as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;
deq_item_data BOLADM.orderitem_typ;
deq_msgid RAW(16);
dopt dbms_aq.dequeue_options_t;
mprop dbms_aq.message_properties_t;
deq_order_data BOLADM.order_typ;
qname varchar2(30);
no_messages exception;
end_of_group exception;
pragma exception_init (no_messages, -25228);
pragma exception_init (end_of_group, -25235);
new_orders BOOLEAN := TRUE;

begin

dopt.wait := 1;
dopt.navigation := DBMS_AQ.FIRST_MESSAGE;
qname := 'OE.OE_neworders_que';
WHILE (new_orders) LOOP

BEGIN
LOOP

BEGIN
dbms_aq.dequeue(

queue_name => qname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

deq_item_data := deq_order_data.items(1);
deq_book_data := deq_item_data.item;
deq_cust_data := deq_order_data.customer;

IF (deq_cust_data IS NOT NULL) THEN
C-34 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocp.sql: Examples of Operational Interfaces
dbms_output.put_line(' **** NEXT ORDER **** ');
dbms_output.put_line('order_num: ' ||

deq_order_data.orderno);
dbms_output.put_line('ship_state: ' ||

deq_cust_data.state);
END IF;
dbms_output.put_line(' ---- next book ---- ');
dbms_output.put_line(' book_title: ' ||

deq_book_data.title ||
' quantity: ' || deq_item_data.quantity);

EXCEPTION
WHEN end_of_group THEN

dbms_output.put_line ('*** END OF ORDER ***');
commit;
dopt.navigation := DBMS_AQ.NEXT_TRANSACTION;

END;
END LOOP;

EXCEPTION
WHEN no_messages THEN

dbms_output.put_line (' ---- NO MORE NEW ORDERS ---- ');
new_orders := FALSE;

END;
END LOOP;

end;
/

show errors;

grant execute on get_new_orders to OE;

Rem Login into OE account
connect OE/OE;
set serveroutput on;

Rem
Rem Enqueue some orders using message grouping into OE_neworders_que
Rem

Rem First Order
execute BOLADM.new_order_enq('My First Book', 1, 1001, 'CA');
execute BOLADM.same_order_enq('My Second Book', 2);
commit;
/

Scripts for Implementing BooksOnLine C-35

tkaqdocp.sql: Examples of Operational Interfaces
Rem Second Order
execute BOLADM.new_order_enq('My Third Book', 1, 1002, 'WA');
commit;
/

Rem Third Order
execute BOLADM.new_order_enq('My Fourth Book', 1, 1003, 'NV');
execute BOLADM.same_order_enq('My Fifth Book', 3);
execute BOLADM.same_order_enq('My Sixth Book', 2);
commit;
/

Rem Fourth Order
execute BOLADM.new_order_enq('My Seventh Book', 1, 1004, 'MA');
execute BOLADM.same_order_enq('My Eighth Book', 3);
execute BOLADM.same_order_enq('My Ninth Book', 2);
commit;
/

Rem
Rem Dequeue the neworders
Rem

execute BOLADM.get_new_orders;
C-36 Oracle9i Application Developer’s Guide - Advanced Queuing

tkaqdocc.sql: Clean-Up Script
tkaqdocc.sql: Clean-Up Script

Rem
Rem $Header: tkaqdocc.sql 26-jan-99.17:51:05 aquser1 Exp $
Rem
Rem tkaqdocc.sql
Rem
Rem Copyright (c) Oracle Corporation 1998, 1999. All Rights Reserved.
Rem
Rem NAME
Rem tkaqdocc.sql - <one-line expansion of the name>
Rem

set echo on;
connect system/manager
set serveroutput on;

drop user WS cascade;
drop user ES cascade;
drop user OS cascade;
drop user CB cascade;
drop user CBADM cascade;
drop user CS cascade;
drop user OE cascade;
drop user boladm cascade;
Scripts for Implementing BooksOnLine C-37

tkaqdocc.sql: Clean-Up Script
C-38 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS and AQ XML Servlet Error Messa
D

JMS and AQ XML Servlet Error Messages

A list of error messages is provided to aid you in troubleshooting problems.
ges D-1

JMS Error Messages
JMS Error Messages
JMS-101 Invalid delivery mode (string)

Cause: The delivery mode is not supported

Action: The valid delivery mode is AQjmsConstants.PERSISTENT

JMS-102 Feature not supported (string)
Cause: This feature is not supported in the current release

Action: Self-explanatory

JMS-104 Message Payload must be specified
Cause: The message payload was null

Action: Specify a non-null payload for the message

JMS-105 Agent must be specified
Cause: AQjmsAgent object was null

Action: Specify a valid AQjmsAgent representing the remote subscriber

JMS-106 Cannot have more than one open Session on a JMSConnection
Cause: There is already one open JMS session on the connection. Cannot have
more than one open session on a connection

Action: Close the open session and then open a new one

JMS-107 Operation not allowed on (string)
Cause: The specified operation is not allowed on this object

Action: Self-explanatory

JMS-108 Messages of type (string) not allowed with Destinations containing
payload of type (string)
Cause: There was a mismatch between the message type being used and the
payload type specified for the destination

Action: Use the message type that maps to the payload specified for the queue
table that contains this destination

JMS-109 Class not found: (string)
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class

JMS-110 Property (string) not writeable
D-2 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
Cause: An attempt was made to update a read-only message header field or
property

Action: Self-explanatory

JMS-111 Connection must be specified
Cause: The connection object was null

Action: Specify a non-null JDBC connection

JMS-112 Connection is invalid
Cause: The JDBC connection is invalid

Action: Specify a non-null oracle JDBC connection

JMS-113 Connection is in stopped state
Cause: An attempt was made to receive messages on a connection that is in
stopped state

Action: Start the connection

JMS-114 Connection is closed
Cause: An attempt was made to use a Connection that has been closed

Action: Create a new connection

JMS-115 Consumer is closed
Cause: An attempt was mode to use a Consumer that has been closed

Action: Create a new Message Consumer

JMS-116 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-117 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it

JMS-119 Invalid Property value
Cause: The property value specified is invalid

Action: Use the appropriate type of value for the property being set

JMS-120 Dequeue failed
JMS and AQ XML Servlet Error Messages D-3

JMS Error Messages
Cause: An error occurred while receiving the message

Action: See message inside the JMSException and linked SQLException for
more information

JMS-121 DestinationProperty must be specified
Cause: A null AQjmsDestinationProperty was specified while creating a
queue/topic

Action: Specify a non-null AQjmsDestinationProperty for the destination

JMS-122 Internal error (string)
Cause: Internal error occurred

Action: Call Support

JMS-123 Interval must be at least (integer) seconds
Cause: An invalid interval was specified

Action: The interval must be greater than 30 seconds

JMS-124 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQConstants.DEQUEUE_BROWSE,
AQConstants.DEQUEUE_REMOVE, AQConstants.DEQUEUE_LOCKED,
AQConstants.DEQUEUE_REMOVE_NODATA

JMS-125 Invalid Queue specified
Cause: An invalid Queue object was specified

Action: Specify a valid Queue handle

JMS-126 Invalid Topic specified
Cause: An invalid Topic object was specified

Action: Specify a valid Topic handle

JMS-127 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

JMS-128 Invalid Navigation mode
Cause: An invalid navigation mode was specified
D-4 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
Action: The valid navigation modes are AQjmsConstants.NAVIGATION_
FIRST_MESSAGE, AQjmsConstants.NAVIGATION_NEXT_MESSAGE, AQjm-
sConstants.NAVIGATION_NEXT_TRANSACTION

JMS-129 Invalid Payload type
Cause: There was a mismatch between the message type being used and the
payload type specified for the destination

Action: Use the message type that maps to the payload specified for the queue
table that contains this destination. For ADT messages, use the appropriate
CustomDatum factory to create the message consumer

JMS-130 JMS queue cannot be multi-consumer enabled
Cause: An attempt was made to get a AQ multi-consumer queue as a JMS
queue

Action: JMS queues cannot be multi-consumer enabled

JMS-131 Session is closed
Cause: An attempt was made to use a session that has been closed

Action: Open a new session

JMS-132 Maximum number of properties (integer) exceeded
Cause: Maximum number of user defined properties for the message has been
exceeded

Action: Self-explanatory

JMS-133 Message must be specified
Cause: Message specified was null

Action: Specify a non-null message

JMS-134 Name must be specified
Cause: Queue or Queue table Name specified was null

Action: Specify a non-null name

JMS-135 Driver (string) not supported
Cause: The specified driver is not supported

Action: Valid drivers are oci8 and thin. To use the kprb driver get the kprb con-
nection using getDefaultConnection() and use the static createTopicConnection
and createQueueConnection methods
JMS and AQ XML Servlet Error Messages D-5

JMS Error Messages
JMS-136 Payload factory can only be specified for destinations with ADT
payloads
Cause: A CustomDatumFactory was specified for consumers on destinations
not containing ADT payloads

Action: This field must be set to null for destinations containing payloads of
type SYS.AQ$_JMS_TEXT_MESSAGE, SYS.AQ$_JMS_BYTES_MESSAGE,
SYS.AQ$_JMS_MAP_MESSAGE, SYS.AQ$_JMS_OBJECT_MESSAGE,
SYS.AQ$_JMS_STREAM_MESSAGE

JMS-137 Payload factory must be specified for destinations with ADT payloads
Cause: CustomDatumFactory was not specified for destinations containing
ADT payloads

Action: For destinations containing ADT messages, a CustomDatumFactory for
a java class that maps to the SQL ADT type of the destination must be specified

JMS-138 Producer is closed
Cause: An attempt was made to use a producer that has been closed

Action: Create a new Message Producer

JMS-139 Property name must be specified
Cause: Property name was null

Action: Specify a non-null property name

JMS-140 Invalid System property
Cause: Invalid system property name specified.

Action: Specify one of the valid JMS system properties

JMS-142 JMS topic must be created in multi-consumer enabled queue tables
Cause: An attempt was made to create a JMS topic in a single-consumer queue
table

Action: JMS topics can only be created in queue tables that are multi-consumer
enabled

JMS-143 Queue must be specified
Cause: Null queue was specified

Action: Specify a non-null queue

JMS-144 JMS queue cannot be created in multiconsumer enabled queue tables
D-6 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
Cause: An attempt was made to create a JMS queue in a multi-consumer queue
table

Action: JMS queues can only be created in queue tables that are not multi-con-
sumer enabled

JMS-145 Invalid recipient list
Cause: The recipient list specified was empty

Action: Specify a recipient list with at least one recipient

JMS-146 Registration failed
Cause: An error occurred while registering the type in the type map

Action: Self-explanatory

JMS-147 Invalid ReplyTo destination type
Cause: The ReplyTo destination object type is invalid

Action: The ReplyTo destination must be of type AQjmsAgent

JMS-148 Property name size exceeded
Cause: The property name is greater than the maximum size

Action: Specify a property name that is less than 100 characters

JMS-149 Subscriber must be specified
Cause: Subscriber specified was null

Action: Specify a non-null subscriber

JMS-150 Property not supported
Cause: An attempt was made to use a property that is not supported

Action: Self-explanatory

JMS-151 Topics cannot be of type EXCEPTION
Cause: Topics cannot be of type AQjmsConstants.EXCEPTION

Action: Specify topics to be of type AQjmsConstants.NORMAL

JMS-153 Invalid System property type
Cause: The type of the value specified does not match the type defined for the
system property being set

Action: Use the correct type for the setting the system property
JMS and AQ XML Servlet Error Messages D-7

JMS Error Messages
JMS-154 Invalid value for sequence deviation
Cause: The sequence deviation is invalid

Action: Valid values are AQEnqueueOption.DEVIATION_BEFORE, AQEn-
queueOption.DEVIATION_TOP

JMS-155 AQ Exception (string)
Cause: An error occurred in the AQ java layer

Action: See the message inside the JMSException and the linked exception for
more information

JMS-156 Invalid Class (string)
Cause: Class specified is invalid

Action: Make sure your CLASSPATH has the specified class

JMS-157 IO Exception (string)
Cause: IO exception

Action: See message is JMSException for details

JMS-158 SQL Exception (string)
Cause: SQL Exception

Action: See message inside linked SQLException for details

JMS-159 Invalid selector (string)
Cause: The selector specified is either invalid or too long

Action: Check the syntax of the selector

JMS-160 EOF Exception (string)
Cause: EOF exception occurred while reading the byte stream

Action: Self-explanatory

JMS-161 MessageFormat Exception: (string)
Cause: An error occurred while converting the stream data to specified type

Action: Check the type of data expected on the stream and use the appropriate
read method

JMS-162 Message not Readable
Cause: Message is in write-only mode

Action: Call the reset method to make the message readable
D-8 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
JMS-163 Message not Writeable
Cause: Message is in read-only mode

Action: Use the clearBody method to make the message writeable

JMS-164 No such element
Cause: Element with specified name was not found in the map message

Action: Self-explanatory

JMS-165 Maximum size of property value exceeded
Cause: The property value exceeded the maximum length allowed

Action: Values for JMS defined properties can be a maximum of length of 100,
Values for User defined properties can have a maximum length of 2000

JMS-166 Topic must be specified
Cause: Topic specified was null

Action: Specify a non-null topic

JMS-167 Payload factory or Sql_data_class must be specified
Cause: Payload factory or Sql_data_class not specified for queues containing
object payloads

Action: Specify a CustomDatumFactory or the SQLData class of the java object
that maps to the ADT type defined for the queue.

JMS-168 Cannot specify both payload factory and sql_data_class
Cause: Both CustomDatumFactory and SQLData class were specified during
dequeue

Action: Specify either the CustomDatumFactory or the SQLData class of the
java object that maps to the ADT type defined for the queue.

JMS-169 Sql_data_class cannot be null
Cause: SQLData class specified is null

Action: Specify the SQLData class that maps to the ADT type defined for the
queue

JMS-171 Message is not defined to contain (string)
Cause: Invalid payload type in message

Action: Check if the queue is defined to contain RAW or OBJECT payloads and
use the appropriate payload type in the message
JMS and AQ XML Servlet Error Messages D-9

JMS Error Messages
JMS-172 More than one queue table matches query (string)
Cause: More than one queue table matches the query

Action: Specify both owner and queue table name

JMS-173 Queue Table (string) not found
Cause: The specified queue table was not found

Action: Specify a valid queue table

JMS-174 Class must be specified for queues with object payloads\n. Use
dequeue(deq_option,payload_fact) or dequeue(deq_option, sql_data_cl)
Cause: This dequeue method cannot be used to dequeue from queues with
OBJECT payloads

Action: Use the either dequeue(deq_option, payload_fact) or dequeue(deq_
option, sql_data_cl)

JMS-175 DequeueOption must be specified
Cause: DequeueOption specified is null

Action: Specify a non-null dequeue option

JMS-176 EnqueueOption must be specified
Cause: EnqueueOption specified is null

Action: Specify a non-null enqueue option

JMS-177 Invalid payload type: Use dequeue(deq_option) for raw payload
queues
Cause: This method cannot be used to dequeue from queues with RAW
payload

Action: Use the dequeue(deq_option) method

JMS-178 Invalid Queue name - (string)
Cause: The queue name specified is null or invalid

Action: Specify a queue name that is not null. The queue name must not be
qualified with the schema name. The schema name must be specified as the
value of the owner parameter

JMS-179 Invalid Queue Table name - (string)
Cause: The queue table name specified is null or invalid
D-10 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
Action: Specify a queue table name that is not null. The queue table name must
not be qualified with the schema name. The schema name must be specified as
the value of the owner parameter

JMS-180 Invalid Queue Type
Cause: Queue type is invalid

Action: Valid types are AQConstants.NORMAL or AQConstants.EXCEPTION

JMS-181 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER, AQDe-
queueOption.WAIT_NONE or any value greater than 0

JMS-182 More than one queue matches query
Cause: More than one queue matches query

Action: Specify both the owner and name of the queue

JMS-183 No AQ driver registered
Cause: No AQDriver registered

Action: Make sure that the AQ java driver is registered. Use Class.for-
Name("oracle.AQ.AQOracleDriver")

JMS-184 Queue object is invalid
Cause: The queue object is invalid

Action: The underlying JDBC connection may have been closed. Get the queue
handle again

JMS-185 QueueProperty must be specified
Cause: AQQueueProperty specified is null

Action: Specify a non-null AQQueueProperty

JMS-186 QueueTableProperty must be specified
Cause: QueueTableProperty specified is null

Action: Specify a non-null AQQueueTableProperty

JMS-187 Queue Table must be specified
Cause: Queue Table specified is null

Action: Specify a non-null queue table
JMS and AQ XML Servlet Error Messages D-11

JMS Error Messages
JMS-188 QueueTable object is invalid
Cause: The queue table object is invalid

Action: The underlying JDBC connection may have been closed. Get the queue
table handle again

JMS-189 Byte array too small
Cause: The byte array given is too small to hold the data requested

Action: Specify a byte array that is large enough to hold the data requested or
reduce the length requested

JMS-190 Queue (string) not found
Cause: The specified queue was not found

Action: Specify a valid queue

JMS-191 sql_data_cl must be a class that implements SQLData interface
Cause: The class specified does not support the java.sql.SQLData interface

Action: Self-explanatory

JMS-192 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values areAQConstants.VISIBILITY_ONCOMMIT, AQCon-
stants.VISIBILITY_IMMEDIATE

JMS-193 JMS queues cannot contain payload of type RAW
Cause: An attempt was made to create a JMS queue with RAW payload

Action: JMS queues/topics cannot contain RAW payload

JMS-194 Session object is invalid
Cause: Session object is invalid

Action: The underlying JDBC connection may have been closed. Create a new
session

JMS-195 Invalid object type: object must implement CustomDatum or
SQLData interface
Cause: Invalid object type specified

Action: Object must implement CustomDatum or SQLData interface

JMS-196 Cannot have more than one open QueueBrowser for the same
destination on a JMS Session
D-12 Oracle9i Application Developer’s Guide - Advanced Queuing

JMS Error Messages
Cause: There is already an open QueueBrowser for this queue on this session

Action: There cannot be more than one queue browser for the same queue in a
particular session. Close the existing QueueBrowser and then open a new one

JMS-197 Agent address must be specified for remote subscriber
Cause: Address field is null for remote subscriber

Action: The address field must contain the fully qualified name of the remote
topic

JMS-198 Invalid operation: Privileged message listener set for the Session
Cause: The client tried to use a message consumer to receive messages when
the session message listener was set.

Action: Use the session's message listener to consume messages. The con-
sumer's methods for receiving messages must not be used.

JMS-199 Registration for notification failed
Cause: Listener Registration failed

Action: See error message in linked Exception for details

JMS-200 Destination must be specified
Cause: Destination is null

Action: Specify a non-null destination

JMS-201 All Recipients in recipient_list must be specified
Cause: One or more elements in the recipient list are null

Action: All AQjmsAgents in the recipient list must be specified

JMS-202 Unregister for asynchronous receipt of messages failed
Cause: An error occurred while removing the registration of the consumer
with the database for asynchronous receipt

Action: Check error message in linked exception for details

JMS-203 Payload Factory must be specified
Cause: Null Payload Factory was specified

Action: Specify a non null payload factory

JMS-204 An error occurred in the AQ JNI layer
Cause: JNI Error
JMS and AQ XML Servlet Error Messages D-13

JMS Error Messages
Action: Check error message in linked exception for details

JMS-205 Naming Exception
Cause: Naming exception

Action: Check error message in linked exception for details

JMS-206 XA Exception XAError-{0} :: OracleError-{1}
Cause: An error occurred in the XA layer

Action: See the message inside the linked XAException for more information

JMS-207 JMS Exception {0}
Cause: An error occurred in the JMS layer

Action: See the message inside the linked JMSException for more information

JMS-208 XML SQL Exception
Cause: An error occurred in the XML SQL layer

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-209 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-210 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-220 Connection no longer available
Cause: Connection to the database no longer available.

Action: Comment: This may happen if the database/network/machine is not
accessible. This may be a transient failure.

JMS-221 Free physical database connection unavailable in connection pool
Cause: A free physical database connection was not available in the OCI
connection pool in order to perform the specified operation.

Action: Try performing the operation later
D-14 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ XML Servlet Error Messages
AQ XML Servlet Error Messages
JMS-400 Destination name must be specified

Cause: A null Destination name was specified

Action: Specify a non-null destination name

JMS-402 Class not found: {0}
Cause: The specified class was not found

Action: Make sure your CLASSPATH contains the class specified in the error
message

JMS-403 IO Exception {0}
Cause: IO exception

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-404 XML Parse Exception
Cause: An error occurred in the XML Parser layer

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-405 XML SAX Exception
Cause: An error occurred in the XML SAX layer

Action: See the message inside the linked AQxmlException for more informa-
tion

JMS-406 JMS Exception {0}
Cause: An error occurred in the JMS layer

Action: See the message inside the linked JMSException for more information

JMS-407 Operation not allowed on {0}
Cause: The specified operation is not allowed on this object

Action: Check that the user performing the operation has the required privi-
leges

JMS-408 Conversion failed - invalid property type
Cause: An error occurred while converting the property to the requested type

Action: Use the method corresponding to the property data type to retrieve it
JMS and AQ XML Servlet Error Messages D-15

AQ XML Servlet Error Messages
JMS-409 No such element
Cause: Element with specified name was not found in the map message

Action: Specify a valid element name

JMS-410 XML SQL Exception
Cause: An error occurred in the JDBC SQL layer

Action: See the message inside the linked SQLException for more information

JMS-411 Payload body cannot be null
Cause: An invalid body string or document was specified

Action: Specify a non-null body string or document for the payload

JMS-412 Byte conversion failed
Cause: An invalid username/password was specified

Action: Specify a non-null username and password

JMS-413 Autocommit not allowed for operation
Cause: The autocommit flag cannot be set for this operation

Action: Do not set the autocommit flag

JMS-414 Destination owner must be specified
Cause: A null Destination owner was specified

Action: Specify a non-null destination name

JMS-415 Invalid Visibility value
Cause: Visibility value specified is invalid

Action: Valid values are AQxmlConstants.VISIBILITY_ONCOMMIT, AQxml-
Constants.VISIBILITY_IMMEDIATE

JMS-416 Invalid Dequeue mode
Cause: Invalid dequeue mode was specified

Action: Valid Dequeue modes are AQxmlConstants.DEQUEUE_BROWSE,
AQxmlConstants.DEQUEUE_REMOVE, AQxmlConstants.DEQUEUE_
LOCKED, AQxmlConstants.DEQUEUE_REMOVE_NODATA

JMS-417 Invalid Navigation mode
Cause: An invalid navigation mode was specified
D-16 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ XML Servlet Error Messages
Action: The valid navigation modes are:
AQxmlConstants.NAVIGATION_FIRST_MESSAGE
AQxmlConstants.NAVIGATION_NEXT_MESSAGE
AQxmlConstants.NAVIGATION_NEXT_TRANSACTION

JMS-418 Invalid value for wait_time
Cause: Invalid value for wait type

Action: Wait time can be AQDequeueOption.WAIT_FOREVER, AQDe-
queueOption.WAIT_NONE, or any value greater than 0

JMS-419 Invalid ConnectionPoolDataSource
Cause: A null or invalid ConnectionPoolDataSource was specified

Action: Specify a valid OracleConnectionPoolDataSource object with the cor-
rect URL and user/password

JMS-420 Invalid value for cache_size
Cause: An invalid cache_size was specified

Action: Cache size must be greater than 0

JMS-421 Invalid value for cache_scheme
Cause: An invalid cache scheme was specified

Action: The valid cache schemes are:
OracleConnectionCacheImpl.DYNAMIC_SCHEME
OracleConnectionCacheImpl.FIXED_WAIT_SCHEME

JMS-422 Invalid tag - {0}
Cause: An invalid tag was encountered in the XML document

Action: Verify that the XML document conforms to the AQ schema

JMS-423 Invalid value
Cause: An invalid value was specified

Action: Verify that the value specified in the XML document conforms to those
specified in the AQ schema

JMS-424 Invalid message header
Cause: The message header specified is null or invalid

Action: Specify a valid message header

JMS-425 Property name must be specified
JMS and AQ XML Servlet Error Messages D-17

AQ XML Servlet Error Messages
Cause: Property name was null

Action: Specify a non-null property name

JMS-426 Property does not exist
Cause: Invalid property name specified. The property does not exist

Action: The property does not exist

JMS-427 Subscriber name must be specified
Cause: Subscriber name was null

Action: Specify a non-null subscription name

JMS-428 Valid message must be specified
Cause: Message was null

Action: Specify a non-null message

JMS-429 Register Option must be specified
Cause: Register option is null

Action: Specify a non-null Register Option

JMS-430 Database Link must be specified
Cause: DB Link is null

Action: Specify a non-null Register Option

JMS-431 Sequence Number must be specified
Cause: Register option is null

Action: Specify a non-null Register Option

JMS-432 Status must be specified
Cause: Status option is null

Action: Specify a non-null Register Option

JMS-433 User not authenticated
Cause: User is not authenticated

Action: Check that the user was authenticated by the webserver before con-
necting to the Servlet

JMS-434 Invalid data source
Cause: Data source is null or invalid
D-18 Oracle9i Application Developer’s Guide - Advanced Queuing

AQ XML Servlet Error Messages
Action: Specify a valid data source for connecting to the database

JMS-435 Invalid schema location
Cause: Schema location is null or invalid

Action: Specify a valid URL for the schema

JMS-436 AQ Exception
Cause: An error occurred in the AQ java layer

Action: See the message inside the AQxmlException and the linked exception
for more information

JMS-437 Invalid Destination
Cause: An invalid destination object was specified

Action: Specify a valid destination (Queue/Topic) object

JMS-438 AQ agent {0} not mapped to a valid database user
Cause: The AQ agent specified does not map to a database user which has
privileges to perform the requested operation

Action: Use dbms_aqadm.enable_db_access to map the agent to a database
user with the required queue privileges

JMS-439 Invalid schema document
Cause: The schema document specified is not valid

Action: Specify a valid URL for the schema document

JMS-440 Invalid operations - agent {0} maps to more than one database user
Cause: The AQ agent mapped to more than one database user in the same
session

Action: Map the AQ agent to only one database user. Check the
aq$internet_users view for database users that map to this agent.
JMS and AQ XML Servlet Error Messages D-19

AQ XML Servlet Error Messages
D-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Unified Modeling Language Diagr
E

Unified Modeling Language Diagrams

The Unified Modeling Language (UML) use case diagrams in this manual present a
representation of the technology used in Advanced Queuing. A brief explanation of
use case diagrams and UML notation follows.

This chapter discusses the following topics:

� Use Case Diagrams

� State Diagrams
ams E-1

Use Case Diagrams
Use Case Diagrams
In a use case diagram, the primary use case is instigated by an actor (stickman),
which can be a human user, an application, or a subprogram. The actor is connected
to the primary use case, which is depicted as an oval (bubble) enclosing the use case
action, as shown in Figure E–1.

Figure E–1 A Primary Use Case

Primary use cases may require other operations to complete them. In Figure E–2,

� specify queue name

is one of the suboperations, or secondary use cases, needed to complete

� ENQUEUEa message

The downward lines from the primary use case lead to the other required
operations (not shown).

Figure E–2 A Primary Use Case with Suboperations

User/
Program

DELETE
the row

AQ Operational Interface

User/
Program

specify
queue name

ENQUEUE
a message
E-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Diagrams
As shown in Figure E–3, a secondary use case with a drop shadow expands into its
own use case diagram, thus making it easier to:

� Understand the logic of the operation

� Continue a complex operation across multiple pages

In this example

� specify message properties

� specify options

� add payload

are all expanded in separate use case diagrams.

Figure E–3 A Use Case Diagram with Drop Shadows Representing Secondary Use
Cases

AQ Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message
Unified Modeling Language Diagrams E-3

Use Case Diagrams
The diagram fragment in Figure E–4 shows an expanded use case diagram. While
the standard diagram has the actor as the initiator, here the use case itself is the
point of departure for the suboperation. In this example, the expanded view of

� add payload

represents a constituent operation of

� ENQUEUEa message

Figure E–4 The Expanded Use Case Diagram

Figure E–5 shows how note boxes are used:

� Note boxes can present an alternative name. In this case, the action SELECT
propagation schedules in the user schema is represented by the view USER_
QUEUE_SCHEDULES.

� Note boxes can qualify the use case action. In this case, the list attribute names
action is qualified by the note that you must list at least one attribute if you do
not list all the attributes of the propagation schedule.

Figure E–5 Note Boxes

The dotted arrow in the use case diagram indicates dependency. In Figure E–6

� free a temporary LOB

AQ Operational Interface

add
payload

ENQUEUE
a message

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
E-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Use Case Diagrams
requires that you first

� create a temporary LOB

The target of the arrow shows the operation that must be performed first.

Figure E–6 Dependencies

Use cases and their suboperations can be linked in complex relationships. In the
example in Figure E–7, you must first

� REGISTER for notification

to later

� receive a notification

Figure E–7 Use Case and Suboperation Relationships

In Figure E–8, the branching paths of an OR condition are shown. In invoking the
view, you can choose to list all the attributes or view one or more attributes. The
grayed arrow indicates that you can stipulate which attributes you want to view.

User/
Program

create
a temporary

LOB

free
a temporary

LOB

REGISTER
for

notification

receive
notification
Unified Modeling Language Diagrams E-5

Use Case Diagrams
Figure E–8 The Branching Paths of an OR Condition

In Figure E–9, the black dashed line and arrow indicate that the targeted operation
is required. The gray dashed line and arrow indicate that the targeted operation is
optional. In this example, executing

� write append

on a LOB requires that you first

� SELECT a LOB

You may optionally choose to

� OPEN a LOB or get chunk size

The diagram shows that if you open a LOB, you must also close it.

User/
Program

OR

list
all propagation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
E-6 Oracle9i Application Developer’s Guide - Advanced Queuing

State Diagrams
Figure E–9 Required and Optional Operations

State Diagrams
A state diagram presents the attributes of a view. Attributes of a view have two
states—visible or invisible. In this example, a state diagram (the Queue, Name,
Address, and Protocol boxes in the gray area at the bottom of the figure) is added
below a use case diagram to show all the attributes of the view.

Figure E–10 shows that the view is for querying queue subscribers. You can
stipulate one attribute, some combination of the four attributes, or all four
attributes.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
Unified Modeling Language Diagrams E-7

State Diagrams
Figure E–10 Use Case and State Diagram to Show Attributes of a View

The class diagram in Figure E–11 shows:

� Whether classes, interfaces, and exceptions are entailed in the interrelationship
by means of the <<>>, stereotype, such as <<interface>>

� The name of the package in which the class is found, such as oracle.jms

� The name of the class, such as AQjmsConnection

AQ Administrative Interface

User/
Program

OR

list
all queue
subscriber
attributes

List at
least one
attribute

User view
AQ$<queue_table_name>_S

SELECT
queue

subscribers

list
attribute
names

NAMEQUEUE ADDRESS PROTOCOL
E-8 Oracle9i Application Developer’s Guide - Advanced Queuing

State Diagrams
Figure E–11 A Class Diagram Representing Classes, Interfaces, and Exceptions

<< interface >>

<< interface >>

javax.jms
QueueConnection

<< class >>

oracle.jms
AQjmsConnection

<< interface >>

javax.jms
TopicConnection

javax.jms
Connection
Unified Modeling Language Diagrams E-9

State Diagrams
E-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Index

A
access control. See system-level access control, 4-4,

8-2
adding a subscriber, 9-58
administration

Messaging Gateway, 18-3
See also DBMS_MGWADM package

administration user
creating, 18-11
example, 18-11

administrative interface, 4-4, 9-1
basic operations, 13-2
use cases, 13-2
views, 10-1, 10-2

AdtMessage, 12-29
Advanced Queuing

operations over the Internet, 17-2
agent, 1-22

identifying, 2-3, 2-4
agent. See AQ agent, 9-92
agent. See gateway agent
agent user

creating, 18-11
example, 18-11

altering
destination, 13-54
messaging gateway links, 18-17
registered non-Oracle queues, 18-19
schedules, 18-22
subscribers, 18-22

AQ agent
altering, 9-92
creating, 9-90

dropping, 9-94
registering, 17-52

AQ queues
registering, 18-20

AQ servlet, 17-2
AQ XML

requests, using SMTP, 17-55
schema, 17-33
servlet, 17-48, 17-54

AQ XML servlet
registering for notifications, 8-105

AQ_TM_PROCESSES, 2-10
AQjmsQueueConnectionFactory, B-52
AQXmlPublish method, 17-7
AQXmlReceive method, 17-20
AQXmlSend method, 17-7
asynchronous notification, 1-17, 8-97
asynchronously receiving message, 12-76

B
BooksOnLine sample application, 8-1

using JMS, 12-2
bytes message, 12-27

C
C. See Oracle Call Interface (OCI)
Class - AQjmsQueueConnectionFactory, B-52
Class - oracle.AQ.AQQueueTableProperty, B-58
Class - oracle.jms.AQjmsAdtMessage, B-44
Class - oracle.jms.AQjmsAgent, B-45
Class - oracle.jms.AQjmsBytesMessage, B-45
Class - oracle.jms.AQjmsConnection, B-46
Index-1

Class - oracle.jms.AQjmsConstants, B-46
Class - oracle.jms.AQjmsDestination, B-47
Class - oracle.jms.AQjmsDestinationProperty, B-48
Class - oracle.jms.AQjmsFactory, B-49
Class - oracle.jms.AQjmsMapMessage, B-50
Class - oracle.jms.AQjmsObjectMessage, B-51
Class - oracle.jms.AQjmsOracleDebug, B-51
Class - oracle.jms.AQjmsProducer, B-52
Class - oracle.jms.AQjmsQueueBrowser, B-52
Class - oracle.jms.AQjmsSession, B-53
Class - oracle.jms.AQjmsStreamMessage, B-55
Class - oracle.jms.AQjmsTextMessage, B-55
Class -

oracle.jms.AQjmsTopicConnectionFactory, B-
55

Class oracle.jms.AQjmsException, B-56
classes, B-1
Classes, JMS, B-5
commit response, 17-31
commit transaction, 17-26
commonly asked questions. See frequently asked

questions, 6-1
compositing, 7-14
configuring

connection information, 18-11
messaging gateway links, 18-15
propagation jobs, 18-20
See DBMS_MGWADM.DB_CONNECT_INFO

procedure
connection factory

queue/topic, LDAP, 13-25
topic, with JDBC URL, 13-21
unregistering in LDAP through database, 13-13
unregistering in LDAP through LDAP, 13-15

connection information
configuring, 18-11
example, 18-13

consumers, 7-5
correlation identifier, 1-15
creating

administration user, 18-11
agent user, 18-11
messaging gateway links, 18-15
point-to-point queue, 13-35
queue, 9-20

queue table, 13-28, 13-30
queue tables and queues, examples, A-4
schedules, 18-21
subscribers, 18-20

creating publish-subscribe topic, 13-37
creation of prioritized message queue table and

queue, A-5
creation of queue table and queue of object

type, A-4
creation of queue table and queue of RAW

type, A-5

D
database

design and modeling, 7-1
tuning, 5-2

database access
enabling, 9-96

database objects
loading, 18-7

database session, 17-53
DBA_ATTRIBUTE_TRANSFORMATIONS, 10-41
DBA_QUEUE_TABLES, 10-4, 10-6, 10-22
DBA_QUEUES, 10-8
DBA_TRANSFORMATIONS, 10-40
DBMS_AQADM package, 4-2
DBMS_AQADM.DROP_QUEUE, 9-18
DBMS_MGWADM package, 18-3
DBMS_MGWADM.DB_CONNECT_INFO

procedure
configuring Messaging Gateway, 18-13
example, 18-11

delay, 2-9
time specification, 12-59

delay interval
retry with, 8-77
time specification, 8-45

dequeue
client request for, 17-20

dequeue mode, 2-9
dequeue of messages after preview, A-33
dequeue request

server response, 17-28
dequeuing, 11-44
Index-2

features, 8-58
message navigation, 8-65
methods, 8-58
modes, 1-18, 8-69
multiple-consumer dequeuing of one

message, 7-7
navigation of messages, 1-18
same message, multiple-consumer, 7-7
using HTTP, 8-106

destination
altering, 13-54
dropping, 13-56
properties, specifying, 13-33
starting, 13-50
stopping, 13-52

destination-level access control, 12-17
disabling

propagation jobs, 18-22
propagation schedule, 9-87

dropping
destination, 13-56
queue table, 9-17

dropping AQ objects, A-66
durable subscriber, 12-45

E
e-mail server, 17-2

setup, 17-56
enabling

propagation jobs, 18-22
enqueue

client request for, 17-7
server response, 17-27

enqueue and dequeue of messages
by Correlation and Message Id Using

Pro*C/C++, A-38
by priority, A-14, A-16, A-18
examples, A-11
of object type, A-11
of RAW type, A-14, A-16, A-18
of RAW type using Pro*C/C++, A-22, A-25
to/from multiconsumer queues, A-44, A-47
with time delay and expiration, A-37

enqueuing, 11-4, 11-12

features, 8-36
specify message properties, 11-9
specify options, 11-6

enqueuing, priority and ordering of messages, 1-16
Enterprise Manager, 1-7
enumerated constants

administrative interface, 2-8
operational interface, 2-9

error messages, D-1
examples

AQ operations, A-1
exception handling, 1-19, 8-80, 12-80
Exception Handling During Propagation, 12-95,

12-96
exception handling during propagation, 12-92,

12-93
Exception

javax.jms.InvalidDestinationException, B-40
Exception javax.jms.InvalidSelectorException, B-40
Exception javax.jms.JMSException, B-40
Exception

javax.jms.MesageNotWriteableException, B-42
Exception javax.jms.MessageEOFException, B-41
Exception

javax.jms.MessageFormatException, B-41
Exception

javax.jms.MessageNotReadableException, B-4
2

Exception
oracle.jms.AQjmsInvalidDestinationException,

B-56
Exception

oracle.jms.AQjmsInvalidSelectorException, B-
56

Exception
oracle.jms.AQjmsMessageEOFException, B-57

Exception
oracle.jms.AQjmsMessageFormatException, B
-57

Exception
oracle.jms.AQjmsMessageNotReadableExceptio
n, B-57

Exception
oracle.jms.AQjmsMesssageNotWriteableExcepti
on, B-57
Index-3

exception queue, 1-22
exception queues, 18-24
exceptions, B-1
expiration, 2-9

time specification, 8-48
exporting

incremental, 4-6
queue table data, 4-5

F
fanning-out of messages, 7-14
FAQs. See frequently asked questions, 6-1
features, new, xxxvii
frequently asked questions, 6-1

general questions, 6-1
installation questions, 6-19
Internet access questions, 6-17
JMS questions, 6-16
Messaging Gateway questions, 6-6
Oracle Internet Directory, 6-18
performance questions, 6-19
transformation questions, 6-19

funneling-in of messages. See compositing, 7-14

G
gateway agent, 18-5

managing, 18-13
gateway links. See messaging gateway links or

messaging links
getting

queue table, 13-31
global agents, 6-18
global events, 6-18
global queues, 6-18
granting

system privilege, 9-48
system privileges, 13-39

grouping
message, 12-62

H
HTTP, 1-12, 17-2, 17-6, 17-52, 17-60

accessing AQ XML servlet, 17-58
AQ operations over, 17-2
headers, 17-5
propagation, 17-62
response, 17-6

HTTPS
propagation, 17-62

I
IDAP

message, 17-6
schema, 17-35
transmitted over Internet, 17-1

IDAP. See Internet Data Access Presentation, 1-13,
17-3

INIT.ORA parameter, 2-9
installing

Messaging Gateway
prerequisites for the Oracle database, 18-6
verification, 18-11

Interface - javax.jms.BytesMessage, B-22
Interface - javax.jms.Connection, B-24
Interface - javax.jms.ConnectionFactory, B-24
Interface - javax.jms.ConnectionMetaData, B-25
Interface - javax.jms.DeliveryMode, B-25
interface - javax.jms.Destination, B-26
Interface - javax.jms.MapMessage, B-26
Interface - javax.jms.Message, B-27
Interface - javax.jms.MessageConsumer, B-29
Interface - javax.jms.MessageListener, B-30
Interface - javax.jms.MessageProducer, B-30
Interface - javax.jms.ObjectMessage, B-31
Interface - javax.jms.Queue, B-31
Interface - javax.jms.QueueBrowser, B-31
Interface - javax.jms.QueueConnection, B-32
Interface -

javax.jms.QueueConnectionFactory, B-32
Interface - javax.jms.QueueReceiver, B-33
Interface - javax.jms.QueueSender, B-33
Interface - javax.jms.QueueSession, B-34
Interface - javax.jms.Session, B-34
Interface - javax.jms.StreamMessage, B-36
Interface - javax.jms.TextMessage, B-37
Interface - javax.jms.Topic, B-37
Index-4

Interface - javax.jms.TopicSession, B-39
Interface - javax.jms.TopicSubscriber, B-39
Interface - oracle.AQ.AQQueueTable, B-57
Interface - oracle.jms.AdtMessage, B-42
Interface -

oracle.jms.AQjmsConnectionMetadata, B-46
Interface - oracle.jms.AQjmsConsumer, B-47
Interface - oracle.jms.AQjmsQueueReceiver, B-42
Interface - oracle.jms.AQjmsQueueSender, B-43
Interface - oracle.jms.AQjmsTopicPublisher, B-43
Interface - oracle.jms.AQjmsTopicReceiver, B-44
Interface - oracle.jms.AQjmsTopicSubscriber, B-44
Interface - oracle.jms.TopicReceiver, B-43
interfaces, classes, and exceptions, B-1
Internet

access, 8-35
Advanced Queuing operations, 17-2
Advanced Queuing operations over, 17-1
AQ operations over, xxvii, 1-2, 1-11

Internet Data Access Presentation (IDAP), 1-13,
17-3

J
Java API, 2-10
Java. See JDBC
javax.jms.BytesMessage, B-22
javax.jms.Connection, B-24
javax.jms.ConnectionFactory, B-24
javax.jms.ConnectionMetaData, B-25
javax.jms.DeliveryMode, B-25
javax.jms.Destination, B-26
javax.jms.InvalidDestinationException, B-40
javax.jms.InvalidSelectorException, B-40
javax.jms.JMSException, B-40
javax.jms.MapMessage, B-26
javax.jms.MesageNotWriteableException, B-42
javax.jms.Message, B-27
javax.jms.MessageConsumer, B-29
javax.jms.MessageEOFException, B-41
javax.jms.MessageFormatException, B-41
javax.jms.MessageListener, B-30
javax.jms.MessageNotReadableException, B-42
javax.jms.MessageProducer, B-30
javax.jms.ObjectMessage, B-31

javax.jms.Queue, B-31
javax.jms.QueueBrowser, B-31
javax.jms.QueueConnection, B-32
javax.jms.QueueConnectionFactory, B-32
javax.jms.QueueReceiver, B-33
javax.jms.QueueSender, B-33
javax.jms.QueueSession, B-34
javax.jms.Session, B-34
javax.jms.StreamMessage, B-36
javax.jms.TextMessage, B-37
javax.jms.Topic, B-37
javax.jms.TopicConnection, B-37
javax.jms.TopicSession, B-39
javax.jms.TopicSubscriber, B-39
JDBC, 3-6

connection parameters, registering through
LDAP, 13-8

connection parameters, registering through the
database, 13-4

connection parameters, topic connection
factory, 13-23

JDBC URL
registering through LDAP, 13-11
registering through the database, 13-6

JMS
examples payload, 12-32

JMS classes, B-1
JMS exceptions, B-1
JMS Extension, 3-8
JMS interfaces, B-1
JMS Type queues/topics, 17-10
JMS types, 17-10
JMSClasses, B-5
JOB_QUEUE_PROCESSES parameter, 2-10

L
LDAP

queue/topic connection factory, 13-25
queue/topic, getting, 13-27
registering, 13-11
unregistering, 13-13, 13-15

LDAP server, 17-2
with an AQ XML Servlet, 17-54

links. See messaging gateway links
Index-5

listen capability, 8-90
listener.ora file

modifying, 18-7
loading

database objects, 18-7
Messaging Gateway

prerequisites for non-Oracle messaging
systems, 18-6

log file
monitoring, 18-26

M
managing

gateway agent, 18-13
map message, 12-28
message

error, AQ XML servlet, D-1
error, JMS, D-1
fanning-out, 7-14
grouping, 8-51
history, 8-27
navigation in dequeue, 8-65
ordering, 8-38, 12-56
priority and ordering, 8-38, 12-56
propagation, 7-14
recipient, 7-7

message enqueuing, 11-4
message format transformation, 1-7
message grouping, 1-16, 12-62
message history and retention, 12-18
message navigation in receive, 12-69
message payloads, 17-9
message producer features, 12-56, 12-93
message_grouping, 2-9
messages

producers and consumers, 1-22
messages, definition, 1-21
Messaging Gateway, 18-20

administration
architecture, 18-3
frequently asked questions, 6-6
functionality, 18-2
installing

prerequisites for non-Oracle messaging

systems, 18-6
prerequisites for the Oracle database, 18-6
verification, 18-11

subscribers
creating, 18-20

Messaging Gateway agent. See gateway agent
messaging gateway links

altering, 18-17
configuring, 18-15
creating, 18-15
example, 18-18
removing, 18-18

MGW_ADMINISTRATOR_ROLE role, 18-13
mgw.ora file, 18-9

example, 18-10
modeling

queue entity, 7-2
modeling and design, 7-1
modifying

listener.ora file, 18-7
tnsnames.ora file, 18-8

monitoring
log file, 18-26
registered non-Oracle queues, 18-20

multiple recipients, 1-18

N
navigation, 2-9
new features, xxxvii
non-Oracle queues

registering, 18-18
unregistering, 18-19

nonpersistent queue, 1-10, 1-22, 6-3
creating, 9-26

normal queues. See user queue, 1-22
notification, 17-32

asynchronous, 8-97

O
object message, 12-29
object types, 4-3, 4-17
object_name, 2-2
OO4O. See Oracle Objects for OLE (OO4O)
Index-6

operational interface
basic operations, 11-1
use cases, 11-2

optimization
arrival wait, 8-75

optimization of waiting for messages, 1-18
Oracle Extension, 3-8
Oracle Internet Directory, 6-18, 17-2
Oracle JMSClasses, B-5
Oracle object (ADT) type queues, 17-9
Oracle Real Application Clusters, 1-10, 8-30, 12-19
oracle.AQ.AQQueueTable, B-57
oracle.AQ.AQQueueTableProperty, B-58
oracle.jms.AdtMessage, B-42
oracle.jms.AQjmsAdtMessage, B-44
oracle.jms.AQjmsAgent, B-45
oracle.jms.AQjmsBytesMessage, B-45
oracle.jms.AQjmsConnection, B-46
oracle.jms.AQjmsConstants, B-46
oracle.jms.AQjmsConsumer, B-47
oracle.jms.AQjmsDestination, B-47
oracle.jms.AQjmsDestinationProperty, B-48
oracle.jms.AQjmsException, B-56
oracle.jms.AQjmsFactory, B-49
oracle.jms.AQjmsInvalidDestinationException, B-5

6
oracle.jms.AQjmsInvalidSelectorException, B-56
oracle.jms.AQjmsMapMessage, B-50
oracle.jms.AQjmsMessage, B-50
oracle.jms.AQjmsMessageEOFException, B-57
oracle.jms.AQjmsMessageFormatException, B-57
oracle.jms.AQjmsMessageNotReadableException,

B-57
oracle.jms.AQjmsMesssageNotWriteableException,

B-57
oracle.jms.AQjmsObjectMessage, B-51
oracle.jms.AQjmsOracleDebug, B-51
oracle.jms.AQjmsProducer, B-52
oracle.jms.AQjmsQueueBrowser, B-52
oracle.jms.AQjmsQueueReceiver, B-42
oracle.jms.AQjmsQueueSender, B-43
oracle.jms.AQjmsSession, B-53
oracle.jms.AQjmsStreamMessage, B-55
oracle.jms.AQjmsTextMessage, B-55
oracle.jms.AQjmsTopicBrowser, B-59

oracle.jms.AQjmsTopicConnectionFactory, B-55
oracle.jms.AQjmsTopicPublisher, B-43
oracle.jms.AQjmsTopicReceiver, B-44
oracle.jms.AQjmsTopicSubscriber, B-44
oracle.jms.TopicBrowser, B-59
oracle.jms.TopicReceiver, B-43

P
payload, 17-9

structured, 8-11
performance, 5-2
persistent queue, 1-22
ping period for Exception Listener, 16-93, 16-94
PL/SQL, 3-2
postinstallation tasks, 18-6
prerequisites

for non-Oracle messaging systems, 18-6
for the Oracle database, 18-6

priority and ordering of messages, 12-56
privileges, 4-4

revoking, A-67
privileges. See specific privilege, such as system

privilege, topic privilege, 13-42
producers, 7-4
programmatic environments, 2-7, 3-2
propagation, 1-16, 2-10, 8-107, 12-83, 17-62

exception handling, 12-92, 12-93, 12-95
exception handling during, 12-92
failures, 4-12
features, 8-106
issues, 4-11
LOB attributes, 8-111
message, 4-5, 7-14
messages with LOB attributes, 8-111
processing, 18-5
schedule, 12-88
schedule, altering, 13-61
schedule, disabling, 13-63
scheduling, 1-20, 8-108, 8-114, 13-57
scheduling, enabling, 13-59
unscheduling, 13-64
using HTTP, 8-118

propagation jobs
configuring, 18-20
Index-7

disabling, 18-22
enabling, 18-22
resetting, 18-22
restarting, 18-22

propagation schedule, 12-90
altering, 9-81
disabling, 9-87
enabling, 9-84
selecting, 10-9
selecting all, 10-9
selecting in user schema, 10-25

Propagation, Exception Handling During, 12-96
protocol address

example, 18-7
publish-subscribe, 7-12, 8-28

topic, 12-44

Q
QMN. See queue monitor (QMN), 1-24, 2-10
queue, 1-22

altering, 9-28
creating, 9-20
creating, example, A-4
dropping, 9-31
nonpersistent, 1-10, 6-3, 9-26
point-to-point, 12-38
point-to-point, creating, 13-35
selecting all, 10-7
selecting in user schema, 10-23
selecting, in user schema, 10-23
selecting, user has any privilege, 10-13
selecting, user has queue privilege, 10-15
staring, 9-42
starting, 9-42
stopping, 9-45
subscriber rules, 10-31
subscriber, selecting, 10-29
subscribers, 7-7
subscribers, selecting, 10-29

queue entity
modeling, 7-2

queue monitor, 1-24
queue monitor (QMN), 2-10
queue privilege

granting, 9-53
granting, point-to-point, 13-46
revoking, 9-55
revoking, point-to-point, 13-48

queue propagation
scheduling, 9-71
unscheduling, 9-75

queue subscribers
selecting, rules, 10-31

queue table, 1-22
altering, 9-14
creating, 9-4, 13-28, 13-30
creating prioritized message, 9-23
creating, example, 9-7, 9-8, 9-22, 9-23
creating, example, XMLType attributes, 9-8
dropping, 9-17
getting, 13-31
messages, selecting, 10-17
selecting all, 10-3, 10-17
selecting messages, 10-17
selecting user tables, 10-5

queue table data
exporting, 4-5

queue tables
creating, example, A-4
selecting all in user schema, 10-21

queue type
verifying, 9-78

queue_type, 2-9
queue-level access control, 1-10, 8-4
queues

AQ
registering, 18-20

exception, 18-24
non-Oracle

registering, 18-18
unregistering, 18-19

queue/topic
connection factory in LDAP, 13-25
connection factory, unregistering in LDAP

through the database, 13-13
connection factory, unregistering in LDAP

through the LDAP, 13-15
LDAP, 13-27

queuing
Index-8

basic, 7-3
basic, one producer, one consumer, 7-3

R
RAW queues, 17-9
Real Application Clusters. See Oracle Real

Application Clusters, 1-10
receiving messages, 12-66
recipient, 1-23, 7-7

list, 2-4, 8-36, 12-50
local and remote, 1-18, 8-64
multiple, 8-63

register request
server response, 17-31

registered non-Oracle queues
altering, 18-19
example, 18-20
monitoring, 18-20

registering
AQ Agent, 17-52
AQ queues, 18-20
JDBC connection parameters through

LDAP, 13-8
JDBC URL through LDAP, 13-11
non-Oracle queues, 18-18
through the database, JDBC connection

parameters, 13-4
through the database, JDBC URL, 13-6

registration
client request for, 17-7
to a queue, 2-5

registration for notification vs. listener, 6-3
removing

messaging gateway links, 18-18
resetting

propagation jobs, 18-22
restarting

propagation jobs, 18-22
retention, 2-9
retention and message history, 1-9, 8-27, 12-18
retries with delays, 1-19
retry

delay interval, 8-77
revoking

system privileges, 13-40
revoking roles and privileges, A-67
role

revoking, A-67
user, 4-2

rollback a transaction, 17-26
rollback response, 17-32
rule, 1-24

selecting subscriber, 10-31
rule-based subscriber, 1-17

example, 9-61
rule-based subscription, 8-86

S
schedules

altering, 18-22
creating, 18-21

scheduling
propagation, 1-20, 12-88, 13-57

schema
AQ XML, 17-33
IDAP, 17-35
SOAP, 17-33

security, 4-2, 4-3
selection rules, 18-23
sender identification, 1-17
sequence_deviation, 2-9
servlet

AQ XML, 17-48, 17-54
queue table

creating, 9-12
setting up

Messaging Gateway, 18-6
shutdown, 18-14
SMTP, 1-12, 17-55

operations over the Internet, 17-2
SOAP, 17-33

body, 17-4
envelope, 17-4
headers, 17-4
message structure, 17-4
method invocation, 17-5

SOAP schema, 17-33
specifying
Index-9

destination properties, 13-33
SQL access, 1-8
starting

destination, 13-50
startup, 18-14
state parameter, 2-9
static service information

example, 18-8
statistics views, 8-35
statistics views support, 12-21
stopping

destination, 13-52
stream message, 12-27
structured payload, 1-9, 8-11
structured payload/message types, 12-21
subscriber, 2-4

adding, 9-58
altering, 9-64
durable, 12-45
removing, 9-68
rule-based, 1-17, 9-61
selecting, 10-29

subscribers
altering, 18-22
creating, 18-20

subscription, 8-36
anonymous, 2-5
rule-based, 8-86

subscription and recipient list, 1-15
subscription and recipient lists, 1-15
system privilege

granting, 9-48
revoking, 9-51

system privileges
granting, 13-39
revoking, 13-40

system-level access control, 8-2, 12-16

T
text message, 12-28
time specification, 1-17

delay, 8-45, 12-59
expiration, 8-48, 12-60

tnsnames.ora file

example, 18-9
modifying, 18-8

topic
connection factory, JDBC connection

parameters, 13-23
connection factory, with JDBC URL, 13-21
publish-subscribe, creating, 13-37

topic privilege
granting, publish-subscribe, 13-42
revoking, publish-subscribe, 13-44

topic publisher, 12-48
tracking and event journals, 1-9
transaction protection, 1-19
transformation. See message format

transformation, 1-7, 1-24
transformations, 18-23

example, 18-24
tuning. See database tuning, 5-2
type_name, 2-2
types

object, 4-3, 4-17

U
unloading

Messaging Gateway, 18-12
unregistering

non-Oracle queues, 18-19
example, 18-20

queue/topic connection factory in LDAP, 13-13,
13-15

unscheduling
propagation, 13-64

user authentication, 17-51
user authorization, 17-52
user queue, 1-22
user role, 4-2
USER_ATTRIBUTE_TRANSFORMATIONS, 10-39
USER_TRANSFORMATIONS, 10-38
users

administration, 18-11
agent, 18-11
Index-10

V
view, 10-1

attributes, 10-1
views, 10-2

statistics, 8-35
visibility, 2-9
Visual Basic. See Oracle Objects for OLE(OO4O)

W
wait, 2-9
waiting

for message arrival, 8-75
Web server

setup, 17-56

X
XML, 17-1

components, 17-10
schema, 17-33
servlet, 17-48, 17-54
servlet, HTTP, 17-58
Index-11

Index-12

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Advanced Queuing?
	Oracle9i Release 2 (9.2.0) New Features
	Oracle9i (9.0.1) New Features in Advanced Queuing
	Oracle8i New Features in Advanced Queuing

	1 Introduction to Oracle Advanced Queuing
	What Is Advanced Queuing?
	Advanced Queuing in Integrated Application Environments
	Interfaces to Advanced Queuing
	Queuing System Requirements

	General Features of Advanced Queuing
	Point-to-Point and Publish-Subscribe Messaging
	Oracle Internet Directory
	Oracle Enterprise Manager Integration
	Message Format Transformation
	SQL Access
	Support for Statistics Views
	Structured Payloads
	Retention and Message History
	Tracking and Event Journals
	Queue-Level Access Control
	Nonpersistent Queues
	Support for Oracle9i Real Application Clusters
	XMLType Payloads
	Internet Integration and Internet Data Access Presentation
	Nonrepudiation and the AQ$<QueueTableName> View

	Enqueue Features
	Correlation Identifiers
	Subscription and Recipient Lists
	Priority and Ordering of Messages in Enqueuing
	Message Grouping
	Propagation
	Sender Identification
	Time Specification and Scheduling
	Rule-Based Subscribers
	Asynchronous Notification

	Dequeue Features
	Recipients
	Navigation of Messages in Dequeuing
	Modes of Dequeuing
	Optimization of Waiting for the Arrival of Messages
	Retries with Delays
	Optional Transaction Protection
	Exception Handling
	Listen Capability (Wait on Multiple Queues)
	Dequeue Message Header with No Payload

	Propagation Features
	Automated Coordination of Enqueuing and Dequeuing
	Propagation of Messages with LOBs
	Propagation Scheduling
	Enhanced Propagation Scheduling Capabilities
	Third-Party Support

	Elements of Advanced Queuing
	Message
	Queue
	Queue Table
	Agent
	Recipient
	Recipient and Subscription Lists
	Rule
	Rule-Based Subscribers
	Transformation
	Queue Monitor

	Java Message Service Terminology
	Demos

	2 Basic Components
	Data Structures
	Object Name (object_name)
	Type Name (type_name)
	Agent Type (aq$_agent)
	AQ Recipient List Type (aq$_recipient_list_t)
	AQ Agent List Type (aq$_agent_list_t)
	AQ Subscriber List Type (aq$_subscriber_list_t)
	AQ Registration Info List Type (aq$_reg_info_list)
	AQ Post Info List Type (aq$_post_info_list)
	AQ Registration Info Type
	AQ Notification Descriptor Type
	AQ Post Info Type

	Enumerated Constants in the Administrative Interface
	Enumerated Constants in the Operational Interface
	INIT.ORA Parameter File Considerations
	AQ_TM_PROCESSES Parameter
	JOB_QUEUE_PROCESSES Parameter

	3 AQ Programmatic Environments
	Programmatic Environments for Accessing AQ
	Using PL/SQL to Access AQ
	Using OCI to Access AQ
	Examples

	Using Visual Basic (OO4O) to Access AQ
	For More Information

	Using AQ Java (oracle.AQ) Classes to Access AQ
	Accessing Java AQ Classes
	Advanced Queuing Examples
	Managing the Java AQ API

	Using Oracle Java Message Service to Access AQ
	Standard JMS Features
	Oracle JMS Extensions
	Accessing Standard and Oracle JMS
	For More Information

	Using the AQ XML Servlet to Access AQ
	Comparing AQ Programmatic Environments
	AQ Administrative Interfaces
	AQ Operational Interfaces

	4 Managing AQ
	Security
	Administrator Role
	User Role
	Access to AQ Object Types

	Oracle 8.1-Style Queues
	Compatibility
	Security
	Privileges and Access Control
	LNOCI Applications
	Security Required for Propagation

	Queue Table Export-Import
	Exporting Queue Table Data
	Importing Queue Table Data

	Creating AQ Administrators and Users
	Oracle Enterprise Manager Support
	Using Advanced Queuing with XA
	Restrictions on Queue Management
	Collection Types in Message Payloads
	Synonyms on Queue Tables and Queues
	Tablespace Point-in-Time Recovery
	Nonpersistent Queues

	Propagation Issues
	Execute Privileges Required for Propagation
	The Number of Job Queue Processes
	Optimizing Propagation
	Propagation from Object Queues
	Guidelines for Debugging AQ Propagation Problems

	Oracle 8.0-Style Queues
	Migrating To and From 8.0
	Importing and Exporting with 8.0-Style Queues
	Roles in 8.0
	Security with 8.0-Style Queues
	Access to AQ Object Types
	LNOCI Application Access to 8.0-Style Queues
	Pluggable Tablespaces and 8.0-Style Multiconsumer Queues
	Autocommit Features in the DBMS_AQADM Package

	5 Performance and Scalability
	Performance Overview
	Advanced Queuing in the Oracle Real Application Clusters Environment
	Advanced Queuing in a Shared Server Environment

	Basic Tuning Tips
	Running Enqueue and Dequeue Processes Concurrently—Single Queue Table
	Running Enqueue and Dequeue Processes in Serial—Single Queue Table

	Propagation Tuning Tips

	6 Frequently Asked Questions
	General Questions
	Messaging Gateway Questions
	Propagation Questions
	Transformation Questions

	JMS Questions
	Internet Access Questions
	Oracle Internet Directory Questions—Global Agents, Global Events, and Global Queues
	Transformation Questions
	Performance Questions
	Installation Questions

	7 Modeling and Design
	Modeling Queue Entities
	Basic Queuing
	Basic Queuing Illustrated
	AQ Client-Server Communication
	Multiconsumer Dequeuing of the Same Message
	Dequeuing of Specified Messages by Specified Recipients
	AQ Implementation of Workflows
	AQ Implementation of Publish/Subscribe
	Message Propagation
	Propagation and Advanced Queuing

	8 A Sample Application Using AQ
	A Sample Application
	General Features of Advanced Queuing
	System-Level Access Control
	Queue-Level Access Control
	Message Format Transformation
	Structured Payloads
	XMLType Queue Payloads
	Nonpersistent Queues
	Retention and Message History
	Publish-Subscribe Support
	Support for Oracle Real Application Clusters
	Support for Statistics Views
	Internet Access

	Enqueue Features
	Subscriptions and Recipient Lists
	Priority and Ordering of Messages
	Time Specification: Delay
	Time Specification: Expiration
	Message Grouping
	Message Transformation During Enqueue
	Enqueue Using the AQ XML Servlet

	Dequeue Features
	Dequeue Methods
	Multiple Recipients
	Local and Remote Recipients
	Message Navigation in Dequeue
	Modes of Dequeuing
	Optimization of Waiting for Arrival of Messages
	Retry with Delay Interval
	Exception Handling
	Rule-Based Subscription
	Listen Capability
	Message Transformation During Dequeue
	Dequeue Using the AQ XML Servlet

	Asynchronous Notifications
	Registering for Notifications Using the AQ XML Servlet

	Propagation Features
	Propagation
	Propagation Scheduling
	Propagation of Messages with LOB Attributes
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation
	Message Format Transformation During Propagation
	Propagation Using HTTP

	9 Administrative Interface
	Use Case Model: Administrative Interface — Basic Operations
	Creating a Queue Table
	Creating a Queue Table [Set Storage Clause]
	Altering a Queue Table
	Dropping a Queue Table
	Creating a Queue
	Creating a Nonpersistent Queue
	Altering a Queue
	Dropping a Queue
	Creating a Transformation
	Modifying a Transformation
	Applying a Transformation
	Dropping a Transformation
	Starting a Queue
	Stopping a Queue
	Granting System Privilege
	Revoking System Privilege
	Granting Queue Privilege
	Revoking Queue Privilege
	Adding a Subscriber
	Altering a Subscriber
	Removing a Subscriber
	Scheduling a Queue Propagation
	Unscheduling a Queue Propagation
	Verifying a Queue Type
	Altering a Propagation Schedule
	Enabling a Propagation Schedule
	Disabling a Propagation Schedule
	Creating an AQ Agent
	Altering an AQ Agent
	Dropping an AQ Agent
	Enabling Database Access
	Disabling Database Access
	Adding an Alias to the LDAP Server
	Removing an Alias from the LDAP Server

	10 Administrative Interface: Views
	Use Case Model: Administrative Interface—Views
	Selecting All Queue Tables in Database
	Selecting User Queue Tables
	Selecting All Queues in Database
	Selecting All Propagation Schedules
	Selecting Queues for Which User Has Any Privilege
	Selecting Queues for Which User Has Queue Privilege
	Selecting Messages in Queue Table
	Selecting Queue Tables in User Schema
	Selecting Queues In User Schema
	Selecting Propagation Schedules in User Schema
	Selecting Queue Subscribers
	Selecting Queue Subscribers and Their Rules
	Selecting the Number of Messages in Different States for the Whole Database
	Selecting the Number of Messages in Different States for Specific Instances
	Selecting the AQ Agents Registered for Internet Access
	Selecting User Transformations
	Selecting User Transformation Functions
	Selecting All Transformations
	Selecting All Transformation Functions

	11 Operational Interface: Basic Operations
	Use Case Model: Operational Interface — Basic Operations
	Enqueuing a Message
	Enqueuing a Message [Specify Options]
	Enqueuing a Message [Specify Message Properties]
	Enqueuing a Message [Specify Message Properties [Specify Sender ID]]
	Enqueuing a Message [Add Payload]
	Listening to One or More Single-Consumer Queues
	Listening to One or More Multiconsumer Queues
	Dequeuing a Message
	Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]
	Dequeuing a Message from a Multiconsumer Queue [Specify Options]
	Registering for Notification
	Registering for Notification [Specifying Subscription Name—Single-Consumer Queue]
	Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]
	Posting for Subscriber Notification
	Adding an Agent to the LDAP Server
	Removing an Agent from the LDAP Server

	12 Creating Applications Using JMS
	A Sample Application Using JMS
	General Features of JMS
	J2EE Compliance
	JMS Connection and Session
	JMS Destinations - Queue and Topic
	System-Level Access Control in JMS
	Destination-Level Access Control in JMS
	Retention and Message History in JMS
	Supporting Oracle Real Application Clusters in JMS
	Supporting Statistics Views in JMS
	Structured Payload/Message Types in JMS
	Payload Used by JMS Examples

	JMS Point-to-Point Model Features
	Queues
	Queue Sender
	Queue Receiver
	Queue Browser

	JMS Publish-Subscribe Model Features
	Topic
	Durable Subscriber
	Topic Publisher
	Recipient Lists
	TopicReceiver
	Topic Browser

	JMS Message Producer Features
	Priority and Ordering of Messages
	Time Specification - Delay
	Time Specification - Expiration
	Message Grouping

	JMS Message Consumer Features
	Receiving Messages
	Message Navigation in Receive
	Modes for Receiving Messages
	Retry With Delay Interval
	Asynchronously Receiving Message Using Message Listener
	AQ Exception Handling

	JMS Propagation
	Remote Subscribers
	Scheduling Propagation
	Enhanced Propagation Scheduling Capabilities
	Exception Handling During Propagation

	Message Transformation with JMS AQ
	Defining Message Transformations
	Sending Messages to a Destination Using a Transformation
	Receiving Messages from a Destination Using a Transformation
	Specifying Transformations for Topic Subscribers
	Specifying Transformations for Remote Subscribers

	13 JMS Administrative Interface: Basic Operations
	Use Case Model: JMS Administrative Interface — Basic Operations
	Registering a Queue/Topic Connection Factory Through the Database—with JDBC Connection Parameters
	Registering a Queue/Topic Connection Factory Through the Database—with a JDBC URL
	Registering a Queue/Topic Connection Factory Through LDAP—with JDBC Connection Parameters
	Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL
	Unregistering a Queue/Topic Connection Factory in LDAP Through the Database
	Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP
	Getting a Queue Connection Factory with JDBC URL
	Getting a Queue Connection Factory with JDBC Connection Parameters
	Getting a Topic Connection Factory with JDBC URL
	Getting a Topic Connection Factory with JDBC Connection Parameters
	Getting a Queue/Topic Connection Factory in LDAP
	Getting a Queue/Topic in LDAP
	Creating a Queue Table
	Creating a Queue Table [Specify Queue Table Property]
	Getting a Queue Table
	Specifying Destination Properties
	Creating a Queue—Point-to-Point
	Creating a Topic—Publish-Subscribe
	Granting System Privileges
	Revoking System Privileges
	Granting Topic Privileges—Publish-Subscribe
	Revoking Topic Privileges—Publish-Subscribe
	Granting Queue Privileges—Point-to-Point
	Revoking Queue Privileges—Point-to-Point
	Starting a Destination
	Stopping a Destination
	Altering a Destination
	Dropping a Destination
	Scheduling a Propagation
	Enabling a Propagation Schedule
	Altering a Propagation Schedule
	Disabling a Propagation Schedule
	Unscheduling a Propagation

	14 JMS Operational Interface: Basic Operations (Point-to-Point)
	Use Case Model: Operational Interface — Basic Operations
	Creating a Queue Connection with Username/Password
	Creating a Queue Connection with an Open JDBC Connection
	Creating a Queue Connection with Default Connection Factory Parameters
	Creating a Queue Connection with an Open OracleOCIConnection Pool
	Creating a Queue Session
	Creating a Queue Sender
	Sending a Message Using a Queue Sender with Default Send Options
	Sending Messages Using a Queue Sender by Specifying Send Options
	Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes or Map Messages
	Creating a Queue Browser for Queues with Text, Stream, Objects, Bytes, Map Messages, Locking Mess...
	Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages
	Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages, Locking Messages While ...
	Browsing Messages Using a Queue Browser
	Creating a Queue Receiver for Queues of Standard JMS Type Messages
	Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages
	Creating a Queue Connection with an Open OracleOCIConnection Pool

	15 JMS Operational Interface: Basic Operations (Publish-Subscribe)
	Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe)
	Creating a Topic Connection with Username/Password
	Creating a Topic Connection with Open JDBC Connection
	Creating a Topic Connection with Default Connection Factory Parameters
	Creating a Topic Connection with an Open OracleOCIConnectionPool
	Creating a Topic Session
	Creating a Topic Publisher
	Publishing a Message Using a Topic Publisher—with Minimal Specification
	Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay
	Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live
	Publishing a Message Using a Topic Publisher—Specifying a Recipient List Overriding Topic Subscri...
	Creating a Durable Subscriber for a JMS Topic without Selector
	Creating a Durable Subscriber for a JMS Topic with Selector
	Creating a Durable Subscriber for an ADT Topic without Selector
	Creating a Durable Subscriber for an ADT Topic with Selector
	Creating a Remote Subscriber for Topics of JMS Messages
	Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages
	Unsubscribing a Durable Subscription for a Local Subscriber
	Unsubscribing a Durable Subscription for a Remote Subscriber
	Creating a Topic Receiver for a Topic of Standard JMS Type Messages
	Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messages
	Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes or Map Messages
	Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes, Map Messages, Locking Mess...
	Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages
	Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages, Locking Messages While ...
	Browsing Messages Using a Topic Browser

	16 JMS Operational Interface: Basic Operations (Shared Interfaces)
	Use Case Model: JMS Operational Interface — Basic Operations (Shared Interfaces)
	Starting a JMS Connection
	Getting the JMS Connection from a Session
	Committing All Operations in a Session
	Rolling Back All Operations in a Session
	Getting the Underlying JDBC Connection from a JMS Session
	Getting the Underlying OracleOCIConnectionPool from a JMS Connection
	Creating a Bytes Message
	Creating a Map Message
	Creating a Stream Message
	Creating an Object Message
	Creating a Text Message
	Creating a JMS Message
	Creating a JMS Message (Header Only)
	Creating an ADT Message
	Specifying Message Correlation ID
	Specifying JMS Message Property
	Specifying JMS Message Property as Boolean
	Specifying JMS Message Property as String
	Specifying JMS Message Property as Int
	Specifying JMS Message Property as Double
	Specifying JMS Message Property as Float
	Specifying JMS Message Property as Byte
	Specifying JMS Message Property as Long
	Specifying JMS Message Property as Short
	Specifying JMS Message Property as Object
	Setting Default TimeToLive for All Messages Sent by a Message Producer
	Setting Default Priority for All Messages Sent by a Message Producer
	Creating an AQjms Agent
	Receiving a Message Synchronously Using a Message Consumer by Specifying Timeout
	Receiving a Message Synchronously Using a Message Consumer Without Waiting
	Specifying the Navigation Mode for Receiving Messages
	Specifying a Message Listener to Receive a Message Asynchronously at the Message Consumer
	Specifying a Message Listener to Receive a Message Asynchronously at the Session
	Getting the Correlation ID of a Message
	Getting the Message ID of a Message as Bytes
	Getting the Message ID of a Message as a String
	Getting the JMS Message Property
	Getting the JMS Message Property as a Boolean
	Getting the JMS Message Property as a String
	Getting the JMS Message Property as Int
	Getting the JMS Message Property as Double
	Getting the JMS Message Property as Float
	Getting the JMS Message Property as Byte
	Getting the JMS Message Property as Long
	Getting the JMS Message Property as Short
	Getting the JMS Message Property as Object
	Closing a Message Producer
	Closing a Message Consumer
	Stopping a JMS Connection
	Closing a JMS Session
	Closing a JMS Connection
	Getting the Error Code for the JMS Exception
	Getting the Error Number for the JMS Exception
	Getting the Error Message for the JMS Exception
	Getting the Exception Linked to the JMS Exception
	Printing the Stack Trace for the JMS Exception
	Setting the Exception Listener
	Getting the Exception Listener
	Setting the Ping Period for the Exception Listener
	Getting the Ping Period for the Exception Listener

	17 Internet Access to Advanced Queuing
	Overview of Advanced Queuing Operations Over the Internet
	The Internet Data Access Presentation (IDAP)
	SOAP Message Structure
	SOAP Method Invocation
	IDAP Documents

	SOAP and AQ XML Schemas
	The SOAP Schema
	IDAP Schema

	Deploying the AQ XML Servlet
	Creating the AQ XML Servlet Class
	Compiling the AQ XML Servlet
	User Authentication
	User Authorization
	Using an LDAP Server with an AQ XML Servlet
	Setup for Receiving AQ XML Requests Using SMTP (E-mail)

	Using HTTP to Access the AQ XML Servlet
	User Sessions and Transactions

	Using HTTP and HTTPS for Advanced Queuing Propagation
	High-Level Architecture

	Using SMTP to Access the AQ Servlet
	Customizing the AQ Servlet
	Setting the Connection Pool Size
	Setting the Session Timeout
	Setting the Style Sheet for All Responses from the Servlet
	Callbacks Before and After AQ Operations

	18 Messaging Gateway
	Messaging Gateway Functionality
	Messaging Gateway Architecture
	Administration Package
	Gateway Agent

	Propagation Processing Overview
	Setting Up Messaging Gateway
	Oracle9i Database Prerequisites
	Non-Oracle Messaging System Prerequisites
	Loading and Setup Tasks
	Setup Verification
	Unloading Messaging Gateway

	Working with Messaging Gateway
	Managing the Messaging Gateway Agent
	Configuring Messaging Gateway Links
	Registering Non-Oracle Messaging System Queues
	Configuring Propagation Jobs
	Monitoring the Messaging Gateway Log File

	Converting Messages
	The Message Conversion Process
	Messaging Gateway Canonical Types
	Message Conversion for Advanced Queuing
	Message Conversion for MQSeries
	Message Header Conversions
	Using Header Properties: Examples
	Using XML Message Propagation: Examples

	The mgw.ora Initialization File
	File Contents
	Initialization Parameters
	Environment Variables
	Java Properties

	A Oracle Advanced Queuing by Example
	Creating Queue Tables and Queues
	Creating a Queue Table and Queue of Object Type
	Creating a Queue Table and Queue of Raw Type
	Creating a Prioritized Message Queue Table and Queue
	Creating a Multiconsumer Queue Table and Queue
	Creating a Queue to Demonstrate Propagation
	Setting Up Java AQ Examples
	Creating an Java AQ Session
	Creating a Queue Table and Queue Using Java
	Creating a Queue and Start Enqueue/Dequeue Using Java
	Creating a Multiconsumer Queue and Add Subscribers Using Java

	Enqueuing and Dequeuing Of Messages
	Enqueuing and Dequeuing of Object Type Messages Using PL/SQL
	Enqueuing and Dequeuing of Object Type Messages Using Pro*C/C++
	Enqueuing and Dequeuing of Object Type Messages Using OCI
	Enqueuing and Dequeuing of Object Type Messages (CustomDatum interface) Using Java
	Enqueuing and Dequeuing of Object Type Messages (using SQLData interface) Using Java
	Enqueuing and Dequeuing of RAW Type Messages Using PL/SQL
	Enqueuing and Dequeuing of RAW Type Messages Using Pro*C/C++
	Enqueuing and Dequeuing of RAW Type Messages Using OCI
	Enqueue of RAW Messages using Java
	Dequeue of Messages Using Java
	Dequeue of Messages in Browse Mode Using Java
	Enqueuing and Dequeuing of Messages by Priority Using PL/SQL
	Enqueue of Messages with Priority Using Java
	Dequeue of Messages after Preview by Criterion Using PL/SQL
	Enqueuing and Dequeuing of Messages with Time Delay and Expiration Using PL/SQL
	Enqueuing and Dequeuing of Messages by Correlation and Message ID Using Pro*C/C++
	Enqueuing and Dequeuing of Messages by Correlation and Message ID Using OCI
	Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue Using PL/SQL
	Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue using OCI
	Enqueuing and Dequeuing of Messages Using Message Grouping Using PL/SQL
	Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using PL/SQL
	Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes Using Java

	Propagation
	Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and Propagation Sc...
	Managing Propagation From One Queue To Other Queues In The Same Database Using PL/SQL
	Manage Propagation From One Queue To Other Queues In Another Database Using PL/SQL
	Unscheduling Propagation Using PL/SQL

	Dropping AQ Objects
	Revoking Roles and Privileges
	Deploying AQ with XA
	AQ and Memory Usage
	Create_types.sql: Create Payload Types and Queues in Scott's Schema
	Enqueuing Messages (Free Memory After Every Call) Using OCI
	Enqueuing Messages (Reuse Memory) Using OCI
	Dequeuing Messages (Free Memory After Every Call) Using OCI
	Dequeuing Messages (Reuse Memory) Using OCI

	B Oracle JMS Interfaces, Classes, and Exceptions
	Oracle JMSClasses (part 1)
	Oracle JMS Classes (part 2)
	Oracle JMS Classes (part 3)
	Oracle JMS Classes (part 4)
	Oracle JMS Classes (part 5)
	Oracle JMS Classes (part 6)
	Oracle JMS Classes (part 6 continued)
	Oracle JMS Classes (part 7)
	Oracle JMS Classes (part 8)
	Oracle JMS Classes (part 9)
	Oracle JMS Classes (part 10)
	Oracle JMS Classes (part 10 continued)
	Interfaces, Classes, and Exceptions

	C Scripts for Implementing BooksOnLine
	tkaqdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers
	tkaqdocd.sql: Examples of Administrative and Operational Interfaces
	tkaqdoce.sql: Operational Examples
	tkaqdocp.sql: Examples of Operational Interfaces
	tkaqdocc.sql: Clean-Up Script

	D JMS and AQ XML Servlet Error Messages
	JMS Error Messages
	AQ XML Servlet Error Messages

	E Unified Modeling Language Diagrams
	Use Case Diagrams
	State Diagrams

	Index

