Oracle9

Application Developer’s Guide - Advanced Queuing

Release 2 (9.2)

March 2002
Part No. A96587-01

ORACLE

Oracle9i Application Developer’s Guide - Advanced Queuing, Release 2 (9.2)

Part No. A96587-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Authors: D.K. Bradshaw, Bhagat Nainani, Kevin MacDowell, Den Raphaely

Contributing Authors: Neerja Bhatt, Brajesh Goyal, Shelley Higgins, Rajit Kambo, Anish Karmarkar,
Krishna Kunchithapadam, Vivek Maganty, Krishnan Meiyyappan, Shengsong Ni, Wei Wang

Contributors: Sashi Chandrasekaran, Dieter Gawlick, Mohan Kamath, Goran Olsson, Hilkka Outinen,
Madhu Reddy, Mary Rhodes, Ashok Saxena, Ekrem Soylemez, Alvin To, Rahim Yaseen

Graphics Production Specialist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, PL/SQL, Pro*C/C++, and
SQL*Plus are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send UsS YOUr COMMENTS ...t Xxiii
PIEIACE ... XXV
F N B Lo [7=1 o (o1 RSO UR XXVi
L@ 1o 7=V aT 2= 1 To] o 1SS XXVi
Related DOCUMENTALIONocoiviiiiiiieeeee ettt st eb et sbe e anas XXVili
(070 01V 7T o1 1o LTRSS XXiX
Documentation ACCESSIDIIITYvccviviiiie e nrne s XXXIV
What's New in Advanced QUEUING? ..o XXXVii
Oracle9i Release 2 (9.2.0) NEW FEATUIEScceiveieieeieise s sie st sttt se et se e sne e sse e e XXXViii
Oracle9i (9.0.1) New Features in Advanced QUEUINGccccoviveiiiierienisieseseseseeseenseieesennens XXXViii
Oracle8i New Features in Advanced QUEUINGcuoiiiaiiiie ettt nnen xli

1 Introduction to Oracle Advanced Queuing

What IS AdVaNCed QUEUING?oiiiiiiiieie ittt ettt b et se bttt e et b et enbe b sbe e e 1-2
Advanced Queuing in Integrated Application ENVironmentscccoevvevvivvivscnieniesnnens 1-2
Interfaces to AdvVanced QUEUING........cccviiiirieieese et e ettt sre et aesa e ere e e sneenenns 1-3
Queuing SYStem REQUITEIMENTSciiiiiii et st eeesne e 1-4

General Features of Advanced QUEUINGccoiiieiiieiiiisie st e et srenes 1-5
Point-to-Point and Publish-Subscribe MeSSaging........ccccccveriviiiiieiienesiere e se e se e 1-6
Oracle INTErNEEL DIFBCLOIYc.eiiiiieieieeee ettt e et se et e e neeaesee e 1-7
Oracle Enterprise Manager INtegration...........ccccvvvieririnieie e s aenea 1-7
Message Format TransSformMationccovvieieieiiie e 1-7

] @]I Ao =1 ST 1-8

SUPPOIt FOF SALISTICS VIBWSceeieiiiieiii ettt ettt bt se e 1-9
] 1 L0 =To B o\ (0= o L 1-9
Retention and MeSSage HiSTOMYcoiiciieii it e e 1-9
Tracking and EVENT JOUINAIS.........cooiiie e n e 1-9
QUEUE-LEVEI ACCESS CONLIOL......iiiitiiiiciiitie ettt ettt ettt ettt e st ebe b sbeeraesreereea 1-10
NONPETSISTENT QUEUES.ceeiiitite ettt ettt sttt e et see st ese e b b e et ebeabesbe bt sbesbessesbeneeseeteane 1-10
Support for Oracle9i Real Application CIUSTEIS. ..o 1-10
DAY 1 Y0 T-Y 2= Y4 (o T U £ TR 1-11
Internet Integration and Internet Data Access Presentationccccoceoeiercinininccenene 1-11
Nonrepudiation and the AQ$<QueueTableName> VIieW.........c.cccvcvvrinineiineniniensesnens 1-14
ENQUEUE FEALUIES ...ttt sttt b et s b st ek s b bt e st st b e e nbe e st b e et e e nbe e e nre e 1-14
Correlation IAENTIFIEIS ..o e et ere s 1-15
Subscription and RECIPIENT LISTSc..oiiiiiiiie ittt 1-15
Priority and Ordering of Messages in ENQUEUINGccveveieieiieiese e 1-16
Y [T o [€] foT U] o] [T FU RSOSSN 1-16
PrOPAGATIONoeiiiieie bbbttt bt 1-16
Sender 1AeNTITICALION ..o 1-17
Time Specification and SChedUIINGccooviiiiiii s 1-17
RUIE-BaSEA SUDSCIIDEISottt nene s 1-17
AsYyNChronous NOLITICALION ...t 1-17
DEOUEUE FEALUIES ...ttt b e ar e 1-18
RECTPIENTS ...ttt e bbbt bbb 1-18
Navigation of Messages in DEQUEUING........cccviieiirieiie e e ere et neens 1-18
MOAES OF DEQUEUING ...ttt bt b 1-18
Optimization of Waiting for the Arrival of MeSSages........c.ccoverierienciencieneeeee e 1-18
RELFIES WIth DEIAYS......cceiiicic ettt st se e aneane s 1-19
Optional Transaction PrOtECTION..........cciiiiiiiiiiisie e 1-19
EXCEPLiON HANAIING ..ottt 1-19
Listen Capability (Wait on Multiple QUEUES)........ccceivirieiriiie e ie et 1-19
Dequeue Message Header With NO Payload ... 1-19
Propagation FEATUIESii ittt bbbttt b et b et b e eb ettt eb e ens 1-20
Automated Coordination of Enqueuing and DeqUEUINGc.ccciveveveinecnniesie e 1-20
Propagation of Messages With LOBS ... e 1-20

Propagation SCREAUTINGoiiii et 1-20

Enhanced Propagation Scheduling Capabilities.........cc.cccooviiiiiiiennin s 1-20

TRIFA-Party SUPPOIT ...t ettt ettt bbb b st e saeneeneas 1-21
Elements of Advanced QUEUINGccccoiiiiieiiriceie ettt re e sne e sne s 1-21
YL TSY T 1= SRR 1-21
(O 18 1= U = PSP 1-22
(@ LU= LI =1 o] [T R PP O PR 1-22
Y0 =] o | AU P TR URTURPRPPOT 1-22
R ToT | o 11T o | ST TP 1-23
Recipient and SUDSCIIPLION LISTScccoiuiiiiiciieise e 1-23
RUIE . ettt bt sttt b s e e e e Rt e s b e e a e e bt e b e be b et enenbeeneeaeeeas 1-24
RUIE-BaSEA SUDSCIIDEIS ...t 1-24
TFANSTOMMALION ...ttt sttt bt 1-24
(@ TU =IO T\ (o] g] (o] (OSSOSO 1-24
Java Message Service TerMINOIOQY 1-25
D 1T 0 0101 S TP TRV PR 1-25

2 Basic Components

DALA STIUCTUIES ..o ettt re et r e 2-2
Object Name (ODJECT_NAIME)cuiiuiiiieeieee ettt ettt be e see e e e e 2-2
TYPE NAME (LYPE_NAMIE) ...ttt sttt et b et e besbesbesbesbe e e b es e e e neeneneas 2-2
AGENT TYPE (AGF_AGENL) ettt e bbb e e eans 2-3
AQ Recipient List Type (aq$_recipient St _t)cocceieiinicieiiierer e 2-4
AQ Agent List Type (a0$_agent ISt t) ..ottt 2-4
AQ Subscriber List Type (ag$_subscriber_liSt_t) ... 2-4
AQ Registration Info List Type (ag$_reg_info_lIiSt).......cocoiriiriniiiiiiie e 2-5
AQ Post Info List Type (ag$_post_iNfo_lSt).......cccoiriiiiiiniceieeee e 2-5
AQ Registration INTO TYPE c.ovciiicicee ettt er e e e enenes 2-5
PAXO N\ o] 1 j[ox=Nu o] g WD I-T Yol g1 o] o] gl 1Y/ o 1= USSR 2-7
AQ POSE INTO TY PR ettt ettt b et st e e e e e b e s et ne e e seenesee et e 2-8

Enumerated Constants in the Administrative INterfacecccovvviinicccinnic e 2-8

Enumerated Constants in the Operational Interface ... 2-9

INIT.ORA Parameter File CONSIAEIatiONScccciiiiiiiiiicec ettt 2-9
AQ_TM_PROCESSES PAramMetercccviiiiiiieiie sttt esiae s s 2-10
JOB_QUEUE_PROCESSES PArameterccocoerirriiiiiniiesiisiseie et 2-10

3 AQ Programmatic Environments

Vi

Programmatic Environments for ACCESSING AQ ...c..ouiiiiiiriiiiiie et 3-2
USIiNG PL/SQL t0 ACCESS AQ ...veiiieiieieite sttt st esa e te st te e st e e ae e esbes e e e aneanesresnesrenees 3-3
USING OCT 10 ACCESS AQ.....oiiiciiieitiieiteeees et ste ettt e st e et te s tesa e se s e e s esbesaesseaeseenessesteseeseaneanens 3-4
= 10 4 o] [T OSSPSR 3-5
Using Visual Basic (OO40) t0 ACCESS AQoouiiieieieieeiseriesiese s ste e s ea et ssese e reasesressesaeses 3-5
FOr MOre INTOrMALION.coiiiiee ettt bbb 3-6
Using AQ Java (oracle.AQ) Classes t0 ACCESS AQ......cui it 3-6
ACCESSING JAVA AQ CIASSES......viiitiiiitiitisieiese et e sttt se et eerestestesre e et see e s 3-6
Advanced QUEUING EXAMPIESoueiiiiieie ettt st ene 3-7
Managing the Java AQ APot 3-8
Using Oracle Java Message Service t0 ACCESS AQcovovvviiriieieieee s seere s eaere s 3-8
STANAAIA JMS FEATUIES ...ttt ettt bbb et e e e et et e s et e neebe e s 3-8
OraCle JIMS EXEENSIONS ...ttt sttt ettt st sbe b b se et et se et et e r et e eneebe e e 3-9
Accessing Standard and Oracle IMS ..o 3-9
FOr MOre INTOrMALION.......ccuiiiiiee ettt e sne e 3-10
Using the AQ XML Serviet t0 ACCESS AQ ..ottt sne s 3-11
Comparing AQ Programmatic ENVIFONMENTScc.civiiiriiieieise e 3-12
AQ AdMINISLrative INTErTACESoeie e 3-12
AQ Operational INTEITACES.cccoviiiictiee s 3-16
Managing AQ
7= 1o UL | TSP U SR PRTRTSOR 4-2
AAMINISTFALOr ROIE ..ottt b 4-2
USEE ROIE ...ttt b e sttt bt b et s be et e be e e e eneebenbeeneeneenas 4-2
ACCESS t0 AQ ODJECT TYPIES. . eiiietieieeiete ettt sttt ettt bt et be b e ebe e sbene e bese e e eneesesneanens 4-3
Oracle 8.1-Sty18 QUEUEScvir ettt sttt ettt sttt e e e et e st e e et ereeraetesneerenre s 4-3
(070 0o e T 141 o1 11 1Y 2RSSR 4-3
= o0 1) YRS PSR 4-3
Privileges and ACCESS CONIOIc.coveiviieiiici st sneneens 4-4
(I N1@ 10 BN o] o] [oF: U1 o] o OSSPSR 4-5
Security Required fOr Propagation........ ..o 4-5
Queue Table EXPOIt-IMPOItcooiiiiieceeee e e st st et sa et st esaene e s ereene e 4-5
EXporting QUEUE Table Data..........ccuoiiieiiiie e e 4-5
Importing QUeUE Table DALAcccoiiiiie et e 4-7

Creating AQ AdmiNiStrators anNd USEIScccviivieieierieeieie e se s s sie e esee e e srenes 4-7

Oracle Enterprise Manager SUPPOITc..ouiiiiieiie ettt et sbe e e 4-8
Using Advanced QUeUING WIth XA ...t 4-9
Restrictions on QUEUE MaNagEMENT.........ccceivirieieieieeeeee s se e e e sre e sresresresrens 4-9
Collection Types in Message Payloads..........ccoereieiireieiiieiesiese et 4-10
Synonyms on Queue Tables and QUEUEScccccvevieiiiiieieiire st 4-10
Tablespace POINt-iN-TIME RECOVEIYcooiiiiiiiie ettt 4-10
NONPEISISTENT QUEUES ...ttt sttt st se e st et ebe e b e ebe bt ebesbesnesbeneeseeneenens 4-10
o oo - U o] o T KT 1= S 4-11
Execute Privileges Required for Propagation............coeoeeireeinenie e 4-11
The Number of JOD QUEUE PrOCESSEScc.covieiiiiiiiecie ettt st 4-11
O] o] t]galVAT e [ad fo] oF: Lo F- U1 [o] o SO 4-12
Propagation from ObJect QUEUES ..ottt s 4-13
Guidelines for Debugging AQ Propagation Problems ... 4-13
Oracle 8.0-Styl8 QUEBUES.........ccv ettt e sttt se e r e te s tesae st e e e sae e ensereaneens 4-14
Migrating To and From 8.0 ..o 4-15
Importing and Exporting with 8.0-Style QUEUES...........ccoiieiiiiiiiireeee e, 4-16
ROIES N 8.0 ..ttt 4-16
Security With 8.0-Style QUEUEScuiiiiiiiiciee e 4-17
ACCESS 10 AQ ODJECT TYPES vttt 4-17
LNOCI Application Access to 8.0-Style QUEUEScccveviveireie e 4-17
Pluggable Tablespaces and 8.0-Style Multiconsumer QUEUES...........cceoveeeeriereserierneanens 4-17
Autocommit Features in the DBMS_AQADM Packagecccoevrneiinenienenene e 4-17

5 Performance and Scalability

PerformManCe OVEIVIBWcuiiiiiiie ettt ettt bbb bbbt b e e et e bt st e b sbesbenbe e 5-2
Advanced Queuing in the Oracle Real Application Clusters Environment........................ 5-2
Advanced Queuing in a Shared Server ENVIrONmMeNt...........ccocooo i 5-2

2T CY Tl LW T 11 To T T o LSOO US TP . 52
Running Enqueue and Dequeue Processes Concurrently—Single Queue Table 5-2
Running Enqueue and Dequeue Processes in Serial—Single Queue Table...........ccc.......... 5-3

Propagation TUNTNG THPS ...coe ettt b ettt s b e s te e et es e e st esesbeanesbesbeneesnen 5-3

6 Frequently Asked Questions

(CT e oo @ LU =] d To] o ISR 6-1

vii

Messaging Gateway QUESTIONSc.covviiiiire e et se sttt st see e e e eneereens 6-6

Propagation QUESTIONS.couiiiii ettt ettt s b et st sbe b e see e e ane s 6-11

TransformMation QUESTIONScviiiii ittt ettt e e ebe s be e sbesbaesbeetbebeeneenes 6-13
JIMIS QUESTIONS ...ttt ettt ettt sttt e et e b e et e beeateebesaeeabeeseesbeebesbeestesbeenbesbeenbesreenne 6-16
INtErNet ACCESS QUESTIONSc.viiiiiii et e et be e s te e te s be e st e s teeneesteenbeereenes 6-17
Oracle Internet Directory Questions—Global Agents, Global Events, and Global
L T 1= 1 SR 6-18
Transformation QUESTIONS............ooii it be et s be e e e s beenb e beenreereenes 6-19
Performance QUESTIONS........coviii et et te e be s be e s be st e e st e e s b et e eneesbesneesreanns 6-19
INSTAllatioN QUESTIONS......c..ciiiici et sttt sr et s e e ene e s ereenenneerenreane 6-20

Modeling and Design

Y oTo (=] LT g o @ TU 1-T U cIN o g) A= 7-2
2o T (ol @ U =T U1 o o TSRS SO U TRRRN 7-3
Basic QUEUING HTUSTIAtEdooiiiiiiicee e e seene s 7-3
AQ Client-Server COMMUINICATIONc.coiiiiie e cee sttt sre et sbeere e sresbeesbesreesaesraens 7-5
Multiconsumer Dequeuing of the SAame MESSAJEccccvveriiicirieiieee e 7-7
Dequeuing of Specified Messages by Specified ReCipients..........ccccovveniiiininieiinc e 7-9
AQ Implementation 0f WOIrKFIOWSccoiiiiiiicic st 7-11
AQ Implementation of Publish/SUDSCIIDEccoiii e 7-12
Y (I o [l ol o] o F- T F= L1 [ISR 7-14
Propagation and Advanced QUEUINGcoeverierieeiieisesestenie e seesteseesese e se e see e sre s 7-14

8 A Sample Application Using AQ

viii

FANST= 10 0] o] T3 AN o] o] [To= 1 o] o 1S TSRS 8-2
General Features of Advanced QUEUINGccoi ittt 8-2
System-Level ACCESS CONTIOL ...t e 8-2
QUEUE-LEVEI ACCESS CONLIOL......coiiiiiiiciicti ettt e e bt ebe e te b ebe s 8-4
Message Format TranSfOrmMation.............coiiiiiiiiiiee e 8-6
STrUCTUIEd PAYIOAASceeiiieiieieieee ettt st ae e bene s 8-11
XMLTYPE QUEUE PAYIOAAScocvviiieiiceieiie sttt sae e enee s 8-14
NONPETSISTENT QUEUES.cteiiitite ittt ettt ettt sttt st e et e b et e et ebeabe b e bt abesbeebesbeneeseeteane 8-17
Retention and MesSage HiSTOMY ..ot 8-27
PUblish-SUBSCIIDE SUPPOIt ..ot ere s 8-28
Support for Oracle Real Application CIUSTEIScoiiiiiiiieeee e 8-30

SUPPOI FOr STALISTICS VIBWSoviviceieiirie sttt st ene e ene e nnennaes 8-35

INEEITIET AACCESS ...ttt ettt bbbt e bbb e bt ab e eb e et sb e e et e s be e s b e she et e ebeenbenbeenes 8-35
ENQUEUE FRATUIESottt sttt et e s e e e st e beeteenaesneeseeaneeteeseenteenaeneennee e 8-36
Subscriptions and ReCIPIENT LSSciiieieiiiiiiieie e 8-36
Priority and Ordering Of MESSAQESccviiiiriiie ettt ebe e 8-38
Time SPECITICAtION: DEIAYc.eiviiviieieeeee ettt neerens 8-45
Time Specification: EXPIration ... e 8-48
Y (I o [€] foT U o] [T PSSR USRS 8-51
Message Transformation DUFiNg ENQUEUE............ccvieriieiinece et 8-54
Enqueue Using the AQ XML SEIVIET ..ottt 8-55
DEQUEUE FRATUIES ...ttt ettt et b et b e e e e b e st s bt et e ebe e bt s be e eae s e e be e e e nbe e 8-58
(1= 0 (U =T TN Y 1=Y d o o LSRR 8-58
MUILIPIE RECIPIENTS ...ttt b st s et sbesbe st seaesnea 8-63
Local and RemOte RECIPIENTScouiiiieiiieeie ettt 8-64
Message Navigation iN DEQUEUEccueveieieieieeiesesestesie e seesiesaeaesessessesresre e saesseseesasnsesens 8-65
MOAES OF DEQUEUINGc.eeueieiiietiieeie ettt ettt b et b ettt 8-69
Optimization of Waiting for Arrival of MESSAgESccceoreririineniiceceeee s 8-75
Retry With Delay INTEIVAL...........cccoiiieiiece et ns 8-77
EXCEPLiON HANAIING. ..ottt 8-80
RuUlE-Based SUDSCIIPLIONciiiiiiiiieiieeeceeie ettt 8-86
I3 =T g T OF=T o T=1 o] | 1) Y PR 8-90
Message Transformation DUring DEQUEUEc.coceiiiiiinicienieie e 8-95
Dequeue Using the AQ XML SerVIet.......cccoiiiiiiiiiiieee e 8-97
ASYNChronous NOLITICAtIONS ..ot sre e 8-97
Registering for Notifications Using the AQ XML Servlet ..o 8-105
Propagation FEATUIES. ..ottt bbbttt bbbt 8-106
g o] o T-To F- 1 (0] o TSRS 8-107
Propagation SChEAUIING ..o e 8-108
Propagation of Messages with LOB AttribUtes. ..o 8-111
Enhanced Propagation Scheduling Capabilities........cc.ccccoovviivieiiniiiieiecisc s 8-114
Exception Handling DUring Propagationcccccuviininneneeneesene e 8-116
Message Format Transformation During Propagation...........c.ccooevrenneneensencseniseee 8-117
Propagation USING HTTP ...ttt sre s 8-118

Administrative Interface

Use Case Model: Administrative Interface — Basic Operations..........c.ccooeveieenneeienenenennn. 9-2
Creating @ QUEUE TaBIE ..o ettt re s 9-4
Creating a Queue Table [Set Storage ClaUSE].......ccccveivieieieiiieinr et 9-12
AIering @ QUEUE TADIEo ittt r e e 9-14
Dropping @ QUEUE TABIEc.oiiicc ettt ens 9-17
Creating @ QUEUE ..ottt e e et s et e sttt et e s bt e be s b e s beseeeeen b e st e e et ereebeaneereneas 9-20
Creating a NONPersiSteNt QUEUEcoii ittt et e et resbe e ereneas 9-26
WA L (=T g o = T U =T L RSP 9-28
DIrOPPING @ QUEUE ..ottt ettt eae ettt st e et es e et sb et e b e s e emeabe et e beseeneeneebesreneees 9-31
Creating @ TranSTOrMALION ..o ettt eae s 9-34
Modifying a TransSTorMatioN ... e 9-37
APPIYING @ TranSTOrMATIONccoiiieie e et 9-39
Dropping @ TranSTOrMationccooiiiiii et e 9-40
] 7 U o = T =T 1 PSSP 9-42
] (o] o] 11 aTo =W @ 10 =10 1 IO UP TR 9-45
Granting SYStemM PriVIIEOEcoouoiiiiic e 9-48
ReVOKING SYStEM PriVIIEQEccvoieeee et nne s 9-51
Granting QUEUE PrIVIIEOEccoouiiiiiiii e 9-53
ReVOKING QUEUE PrIVIIEOE ..ot 9-55
AN (o [T To - TS T U] o 1ol o | o =1 o TSRS 9-58
AIEring @ SUDSCIIDETcooiii e 9-64
REMOVING @ SUDSCIIDET ...ttt 9-68
Scheduling a QUEUE Propagationccccccciiiiiiiie i e et sr et a s te e erenes 9-71
Unscheduling a QUEeUE Propagation ... s 9-75
VEriTYING 8 QUEUE TYPE ...ttt sttt stttk b et eb e 9-78
Altering a Propagation SChedUIE ..ot 9-81
Enabling a Propagation SCheduUle...........ccoiiii s 9-84
Disabling a Propagation SChedule ... 9-87
Creating an AQ AGENT ..ot ettt ettt et reere e erenres 9-90
AErNG AN AQ AGENT ..ottt b bbb et r e er e 9-92
Dropping @n AQ AGENT ..ottt ettt 9-94
ENabliNg Database ACCESS......ciiiiiieieieieci ettt ettt e e b s e e e enesreanenneas 9-96
Disabling Database ACCESSccceiiiiiiiiiiiteiiite ettt sttt ettt sb bbbt sb et ab e ab et abe e ere e 9-98

Adding an Alias t0 the LDAP SEIVET ... 9-100

10

11

Removing an Alias from the LDAP SEIVENcccveiiieieieiiese s sieie s enaeres e e ssesns 9-102

Administrative Interface: Views
Use Case Model: Administrative INterface—VieWs ... 10-2
Selecting All Queue Tables in Databasec.cooieiiiiii e 10-3
Selecting User QUEUE TabIEScviiiiieiii et 10-5
Selecting All QUEUES IN DAADASEccoiuiiiiiieiie e e 10-7
Selecting All Propagation SChedUIES.............ooiiiii e 10-9
Selecting Queues for Which User Has ANy Privilege ... 10-13
Selecting Queues for Which User Has Queue Privilege..........cccoiiiiicieienceeee, 10-15
Selecting Messages in QUEUE Table ... 10-17
Selecting Queue Tables in USer SChEMA ... 10-21
Selecting QUEUES 1N USEI SCREMA. ..o e 10-23
Selecting Propagation Schedules in User SChema ... 10-25
Selecting QUEUE SUDSCIIDEIS.cviiicicic et ere e 10-29
Selecting Queue Subscribers and Their RUIES ... 10-31
Selecting the Number of Messages in Different States for the Whole Database 10-33
Selecting the Number of Messages in Different States for Specific Instances.................. 10-35
Selecting the AQ Agents Registered for INTErNet ACCESS........cocvvrieiierieieneireee e 10-37
Selecting User TranSTOrmMatioNSccoeiiiiiiiiieee e 10-38
Selecting User Transformation FUNCLIONS.........cccooviiiiiiieisece s 10-39
Selecting All TranSTOrMatiONS........cooiiiiiieie e 10-39
Selecting All Transformation FUNCLIONSccoiiiiiiiiicics e 10-41
Operational Interface: Basic Operations
Use Case Model: Operational Interface — Basic Operations...........ccoccoeveeinieeienienienc s 11-2
ENQUEUING @ IMIEBSSAQJEvvcviieiiieieieie sttt sttt sa e s et ae st e besa e e neetestesee e eneaneanas 11-4
Enqueuing a Message [SPecCify OPtiONS] ... e 11-6
Enqueuing a Message [Specify Message Properties] ... 11-9
Enqueuing a Message [Specify Message Properties [Specify Sender ID]]c.ccceevvvennee. 11-12
Enqueuing a Message [Add Payload] ... 11-14
Listening to One or More Single-Consumer QUEUEScooiieieieiirene e neere e seeeene s 11-23
Listening to One or More MulticonSumMer QUEUESccvcererereereereeeseseesie e eese e e sseneens 11-35
(D= o [BLTU T T o I WAV, (=TT Vo 1= TSP 11-44
Dequeuing a Message from a Single-Consumer Queue [SpecifyOptions]ccccceeeeiee 11-47

Xi

Dequeuing a Message from a Multiconsumer Queue [Specify Options]c..ccocveevvvrnnne. 11-52

Registering for NOTITICAtIONoco it 11-55
Registering for Notification [Specifying Subscription Name—Single-Consumer

L0 T8-S 11-58
Registering for Notification [Specifying Subscription Name—Multiconsumer Queue]. 11-59
Posting for Subscriber NOtifiCation ... 11-66
Adding an Agent t0 the LDAP SEIVELccccei ittt enees 11-69
Removing an Agent from the LDAP SEIVENccciiiiiiiiiiene e 11-71

12 Creating Applications Using JMS

A Sample Application USING JIMS ... e 12-2
General FEatUres OF JIMIS..... ... bttt r et e erenean 12-2
N @0 0 0] o] [T U g Lol SRR 12-3
JMS CONNECLION AN SESSTONitiitiitiiiie ettt ebe e se e b s 12-5
JMS Destinations - QUEUE aNd TOPICooviuieiiiieii ettt s 12-12
System-Level Access CONtrol INJIMS ... ene 12-16
Destination-Level Access Control iN JMS............cooiiiiii e 12-17
Retention and Message History iN JMSo e 12-18
Supporting Oracle Real Application ClUSters iN IMS.........cccccovvvvivnine v 12-19
Supporting StatisticsS VIEWS INJMSo.oiiiie s 12-21
Structured Payload/Message TYPeS iNIMS ..o 12-21
Payload Used by JIMS EXaMPIES.......c.ccciiiiiiiiiiie ettt 12-32
JMS P0oint-t0-POiNt MOdel FEATUIESocoiieiie e 12-38
QUEBUES ...ttt bttt h bt a bt e bt e he e e bt oAb e eE e e abe e be e e e e b e eb b e nbeeh b e ebeenbeebe e e e neennas 12-38
QUEUE SENAET ...ttt ettt ettt e et e b be e sbe s te e s te s rae e be e st e beebbeebeenbesbeentebeensesasennes 12-39
QUEBUE RECEIVET ...ttt ettt ettt sttt s e e bt st e Rt e bt e be et e ebe st e sbe e et areene e 12-39
QUEUE BIOWVSET ...ttt b bt a et b e bt e b bt e eb e et et e e e sae e 12-42
JMS Publish-Subscribe Model FEAtUIESccociiiiiiiiseee e 12-43
TOPIC ottt e e b et ene 12-44
DUrable SUDSCIIDEL ...t 12-45
JLIC0] ool =W o] 1] =T TSRS 12-48
RECTPIENT LISTS ...ttt bbb bbbt 12-50
TOPICRECEIVET ...ttt bt b ekttt ettt b e bbbt er e 12-51
JLIC0] ool =T 0 1YY= PSSRSO 12-53
JMS Message ProdUCET FEATUIES ..ot 12-56

Xii

Priority and Ordering 0f MESSAQESciviiviiriireririeeeesise e te et se e e e erenns
Time SPecification - DeIAYccooiiii e e
Time Specification - EXPIration ..ot
Y L=TST= o [€ (o]0 o oV S
JMS Message CONSUMEE FEATUIESoiiiiiiiiiiie ettt ettt sttt sae e
RECEIVING IMBSSAQESvvveiuiiiiiesiesteieste et ete e e s e et e s e s te st e st e te e et esae e eseasesteasestesseseessensesteseeneaneas
Message Navigation iN RECEIVE..........cciii it
Modes fOr RECEIVING IMESSAGES.couiuieerieeiieiiee ettt sbe e see e b e e e eneenense e
Retry With Delay INTEIVALccccoiiieiiceceee e
Asynchronously Receiving Message Using Message LiStenercccooovrvienencicnienienn
AQ EXCeption HaNAIINGc.oouiiiiieieee et
N 1LY RS R (o] o = To T-1 1 o] o S TSP
REMOLE SUDSCIIDETS ... e ne s
Scheduling Propagation ...t s eene s
Enhanced Propagation Scheduling Capabilities.........c.ccccevvviiviviinivieiecisc e
Exception Handling DUring Propagationcccceviiriinneneeneesene e
Message Transformation With JIMS AQc.ooiiiiic e
Defining Message TransformMationSccccvcvveieiiiie s s
Sending Messages to a Destination Using a Transformationcccccovcviiniincnnnn,
Receiving Messages from a Destination Using a Transformationc.cccocveevvienienne
Specifying Transformations for Topic SUDSCIIDErS..........ccccoiii i
Specifying Transformations for Remote SubSCribers...........cccii

13 JMS Administrative Interface: Basic Operations

Use Case Model: IMS Administrative Interface — Basic Operations...........c.ccoccoeeveiennnne.

Registering a Queue/Topic Connection Factory Through the Database
—with JDBC CoNNEeCtion Parametersooouiiiiiiiiiiie et

Registering a Queue/Topic Connection Factory Through the Database
LU= S| = T U = PSRRI

Registering a Queue/Topic Connection Factory Through LDAP
—with JDBC CONNECLION PATAMETETSc.oiiiiiiiiiitiiieseee st

Registering a Queue/Topic Connection Factory Through LDAP—with a JDBC URL......
Unregistering a Queue/Topic Connection Factory in LDAP Through the Database
Unregistering a Queue/Topic Connection Factory in LDAP Through LDAP.....................
Getting a Queue Connection Factory with JDBC URL ..ot

13-8

Xiii

14

Xiv

Getting a Queue Connection Factory with JDBC Connection Parameters..........cc.cccccvene.e. 13-19

Getting a Topic Connection Factory with JIDBC URL ..ot 13-21
Getting a Topic Connection Factory with JDBC Connection Parameterscc.ccocevene.e. 13-23
Getting a Queue/Topic Connection Factory in LDAP ... 13-25
Getting a QUEUE/TOPIC IN LDAP ...t ene s 13-27
Creating @ QUEUE TaBIE ..ottt eena e e ene s 13-28
Creating a Queue Table [Specify Queue Table Property] ... 13-30
Getting @ QUEUE TADIE ...ttt st e s b e neene s 13-31
Specifying Destination ProPertiescccciiiviiiiiiieseeeie e esaenaeresneenens 13-33
Creating @ QUEUE—POINT-T0-POINT.........cooiiiiiiii e 13-35
Creating a Topic—Publish-SubsCribe ... 13-37
Granting SYSLEM PriVIIEQEScoocv ittt srenes 13-39
ReVOKING SYSteM PriVIIEOESceiiie e e e 13-40
Granting Topic Privileges—Publish-Subscribe ... 13-42
Revoking Topic Privileges—Publish-Subscribe..........cccocooieiiiicni e 13-44
Granting Queue Privileges—PoiNt-t0-POINt...........cocooiiiiiiic e 13-46
Revoking Queue Privileges—PoiNt-t0-POINT ..o 13-48
Starting @ DESTINATIONcc.oiveiicc ettt sa et e st e e e eneereaneenens 13-50
SLOPPING 8 DESTINALIONc.eiiiiiicic bbb 13-52
AIEring @ DESTINALION ..ottt bbbt 13-54
Dropping @ DEStINALIONcceiiiiiecee ettt sttt ere e e neenenns 13-56
Scheduling @ Propagation ... 13-57
Enabling a Propagation SCheduUle...........ccoiiiii e 13-59
Altering a Propagation SChedUIE ... 13-61
Disabling a Propagation SChedule ... 13-63
Unscheduling @ ProPagation ..ot 13-64
JMS Operational Interface: Basic Operations (Point-to-Point)
Use Case Model: Operational Interface — Basic Operations..........c.cccocveiieiinieneneneneseeneennas 14-2
Creating a Queue Connection with Username/Password...........ccccociveivirnniieseseseseneeseneens 14-3
Creating a Queue Connection with an Open JDBC CONNECLION.........cccoeveiirieiienieieeeeeeee 14-4
Creating a Queue Connection with Default Connection Factory Parameters...................... 14-6
Creating a Queue Connection with an Open OracleOCIConnection Poolccceee.e.. 14-7
Creating @ QUEUE SESSTONc..oiiiiiieei ettt et ettt ettt e b b e beseese e b e st e e et eseebesneerennan 14-9
Creating @ QUEUE SENTETottt ettt ettt b e besbe et et e e e e e e eneereaneanens 14-10

15

Sending a Message Using a Queue Sender with Default Send Options..........cccccceevivennee. 14-11

Sending Messages Using a Queue Sender by Specifying Send Options...........cc.cccceeeneee. 14-13
Creating a Queue Browser for Queues with Text, Stream, Objects,

BYTES OF IMAP IMIESSATES.ccutiiiiiiiit ettt sttt ettt sttt st etk e b sb e be et e e bt e sbe e e beebeenteas 14-15
Creating a Queue Browser for Queues with Text, Stream, Objects,

Bytes, Map Messages, LOCKING MESSAQGESccccvieiiriiieieii et ste st e et se e s e 14-17
Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages............... 14-19
Creating a Queue Browser for Queues of Oracle Object Type (ADT) Messages,

Locking Messages While BrOWSINGcocciiririiiiecee s 14-21
Browsing Messages USing @ QUEUE BIOWSETcouiieireiiiiiirie et ene s 14-23
Creating a Queue Receiver for Queues of Standard JMS Type Messagesccccoeereeuenne. 14-25
Creating a Queue Receiver for Queues of Oracle Object Type (ADT) Messages.............. 14-27
Creating a Queue Connection with an Open OracleOCIConnection Pool 14-29

JMS Operational Interface: Basic Operations (Publish-Subscribe)
Use Case Model: JMS Operational Interface — Basic Operations (Publish-Subscribe).... 15-2

Creating a Topic Connection with Username/Password.............cccccooveienineieneneieieceeeee 15-4
Creating a Topic Connection with Open JDBC Connectioncccccocevvvenevevieneeeene e 15-5
Creating a Topic Connection with Default Connection Factory Parameterscccc....... 15-7
Creating a Topic Connection with an Open OracleOCIConnectionPoolcccccceenneee. 15-8
Creating @ TOPIC SESSION.....cciiiiiiieieireeiee sttt er e e s te e sr e s e eesbe b e sae s et enee e sneerenrs 15-10
Creating a TOPIC PUBIISNEr ..o 15-11
Publishing a Message Using a Topic Publisher—with Minimal Specification 15-12

Publishing a Message Using a Topic Publisher—Specifying Correlation and Delay 15-15
Publishing a Message Using a Topic Publisher—Specifying Priority and Time-To-Live 15-18
Publishing a Message Using a Topic Publisher—Specifying a Recipient List

Overriding TOPIC SUDSCIIDEIS ... e 15-21
Creating a Durable Subscriber for a JMS Topic without Selectorccccoeevvveieivcnennnn, 15-24
Creating a Durable Subscriber for a JMS Topic with Selector ..., 15-26
Creating a Durable Subscriber for an ADT Topic without Selector.............ccccoeeneincennen 15-29
Creating a Durable Subscriber for an ADT Topic with Selector...........cccccoovvievincieivircnn, 15-31
Creating a Remote Subscriber for Topics 0f IMS MeSSAgEScovvriiineneeneeneie e 15-34
Creating a Remote Subscriber for Topics of Oracle Object Type (ADT) Messages 15-37
Unsubscribing a Durable Subscription for a Local Subscriber..........cccccocoovevviiiiciinieienn, 15-40
Unsubscribing a Durable Subscription for a Remote Subscriber ... 15-42
Creating a Topic Receiver for a Topic of Standard JMS Type MeSSagescc.cccevererrerennnn. 15-44

XV

16

XVi

Creating a Topic Receiver for a Topic of Oracle Object Type (ADT) Messagesc........ 15-46
Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes

OF IMIAP IMIBSSAGES ... vttt ettt sttt ettt b et b e st ekt e bt eb e ek e ke e e be s b eh bt eh b e n bt e Rt e bt ebe e ebesaneebesnaenbeeeens 15-48
Creating a Topic Browser for Topics with Text, Stream, Objects, Bytes,

Map Messages, Locking Messages While BroOWSINGcccoveivviireiniesie e 15-50
Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messagesccv.n... 15-52
Creating a Topic Browser for Topics of Oracle Object Type (ADT) Messages,

Locking Messages While BrOWSINGcocooiieiiiiiiiee et 15-55
Browsing Messages USing a TOPIC BIOWSETc.cccovciiieiiiisiesesesie e seesieaesess e e e sne e seesnens 15-57

JMS Operational Interface: Basic Operations (Shared Interfaces)

Use Case Model: IMS Operational Interface — Basic Operations (Shared Interfaces) 16-2
Starting @ JMS CONNECTION ...ttt ettt r e be st ereneas 16-5
Getting the JMS Connection from @ SESSIONcciiiiiiiiiie e s 16-6
Committing All OPerations iN @ SESSIONcccccviiiiiiiierie e ere s 16-7
Rolling Back All Operations iN @ SESSIONccoii i 16-8
Getting the Underlying JDBC Connection from a JMS SeSSionccooveiiieiencicieneenns 16-10
Getting the Underlying OracleOCIConnectionPool from a JMS Connection 16-11
Creating @ BYTES IMESSAQEc.vioieieeieeeete ettt ettt ettt b et be s et et e e et eneebeaneanens 16-12
Creating @ Map IMESSAQEovioieiieieeeie ettt ettt ettt b et beee et et e e et eneebeaneenens 16-13
Creating @ Stream IMESSAQE ... covcveivirieeeeee sttt sttt e et te e st e bestesrebe st e e esaneereaneanens 16-15
Creating an ODJECT IMIESSATEcuve ittt ettt sttt se et e e e e e e eneebeaneaneas 16-16
Creating @ TEXE IMESSATE ... oottt ettt b ettt be b besbe e e besee e e e eneebeaneanens 16-17
Creating @ JIMS IMESSAQE .. .c.vevirierieieeieeteseseste st e e e s tes e ae e este s e e e sseatestesaesresbestessenbeseessensanseresneanens 16-19
Creating a JMS Message (Header ONY).......ocooiiiiiee e 16-20
Creating N ADT IMESSAGEoocieiiieetieieee ettt ee et ettt bt sbeaae bt sbesbe s ebeseeseeneaseabeaneanens 16-21
Specifying Message Correlation IDcccccoiiiiie i neene s 16-23
SPecCifying JIMS MESSAQgE PrOPEITYcviiiiiiiiiiiiiiisitiiste sttt 16-25
Specifying JMS Message Property as BOOIEANcccocviiriiniiiiincceeseees 16-27
Specifying IMS Message Property as StriNgcccceceieiereieise e seese e essesaeesnenens 16-29
Specifying JIMS Message Property as INt.........cccoeoiiiiniiceee e 16-31
Specifying JMS Message Property as DOUDIE.............cccooiiiiiiiiiiics 16-33
Specifying IMS Message Property as FIOat ... 16-35
Specifying JMS Message Property as BYLecooiiiiiiiiiiiiee s 16-37
Specifying JIMS Message Property @S LONGcccuoiiiiiriiiinneeeeeee s 16-39

Specifying IMS Message Property as SNOrt ... 16-41

Specifying IMS Message Property as ODJECT ... 16-43
Setting Default TimeToLive for All Messages Sent by a Message Producer...................... 16-45
Setting Default Priority for All Messages Sent by a Message Producerc.ccccoevevennee. 16-46
Creating an AQJMS AGENT ..o ettt ettt ettt b et b e et et r e e e ere e 16-48
Receiving a Message Synchronously Using a Message Consumer

DY SPECITYING TIMEOUL.......coi i re st st sn e eneas 16-50
Receiving a Message Synchronously Using a Message Consumer Without Waiting....... 16-52
Specifying the Navigation Mode for Receiving MesSSages.........ccocvvvereieneieieneeee e 16-53
Specifying a Message Listener to Receive a Message Asynchronously

At The MESSAGE CONSUNMIETciuiiieieiie ettt ete e ste sttt et esae e s e s s teasesbesteseesbe st e ste e et enee e sneerenrs 16-55
Specifying a Message Listener to Receive a Message Asynchronously at the Session.... 16-58
Getting the Correlation ID Of 8 MESSAQEcoiiiriiiiiiie e 16-59
Getting the Message ID of a MeSSage aS BYLES......ccccvviiiiiiniiie i 16-60
Getting the Message ID of a Message as @ STriNg ..o e 16-61
Getting the JIMS MeSSage PrOPEITYcoviiiiiiiiieiiicee e 16-63
Getting the JIMS Message Property as a Bool€ancccooeveiiicvincce s 16-64
Getting the JIMS Message Property as a String ... 16-66
Getting the JIMS Message Property as INt........cocooiiiiiiie e 16-68
Getting the IMS Message Property as DOUDIE ... 16-70
Getting the JIMS Message Property as FIOAt ..o 16-71
Getting the JIMS Message Property as BYTE ..o 16-73
Getting the JIMS Message Property as LONQG......cccocerieieiineieiesie e seee e seess e s 16-74
Getting the JIMS Message Property as SNOFT ... 16-76
Getting the JIMS Message Property as OBJECtcccooviiieiiieiiiii e 16-77
CloSiNg @ MESSAGE PrOQUCETc..cveeiieiicte ettt st nene e neerenns 16-79
CloSiNg @ MESSagE CONSUIMIETcuiiiiiiiieiirieirie sttt sttt sttt bbbt sr e 16-80
StOPPING 8 JIMS CONNECTIONviiiiiiieirieiere bbb et 16-81
(O3 Lo YT g Lo IF= BNV ST T 1] Lo I OSSR 16-82
CloSiNg @ JMS CONNECTIONoviiieiiieeie bbbt 16-83
Getting the Error Code for the JIMS EXCEPLION........cciiiiiiiiieie e 16-84
Getting the Error Number for the JIMS EXCEPLIONccccvviiiiie i 16-85
Getting the Error Message for the JMS EXCEPLIONcccoovieiiiiiiiinnineeee e 16-86
Getting the Exception Linked to the JIMS EXCEPLION ... 16-88
Printing the Stack Trace for the JIMS EXCEPLIONcccccvcvcviiii e 16-89
Setting the EXCePLioN LISTENETot 16-90

XVii

17

18

XViii

Getting the EXCEPLioN LISTENEN ..ot et ene s 16-91

Setting the Ping Period for the Exception LIiStENer ...t 16-93
Getting the Ping Period for the EXCEPtIoN LIStENETccccovevviveiireiesc e 16-94
Internet Access to Advanced Queuing
Overview of Advanced Queuing Operations Over the Internet..........ccocceeeeveveiccivsnennn, 17-2
The Internet Data Access Presentation (IDAP) ... 17-3
SOAP IMESSAGE STIUCTUIE ...ttt ettt be bt e b esb e b e b e sbe e b saea 17-4
SOAP Method INVOCALION ..ot 17-5
IDAP DOCUIMEBINTS ...ttt ettt ettt bbbt eb e e b e s b e s he e s e et e e be st e e b e ebe e b e ebesnnas 17-6
SOAP and AQ XML SCNEMAS.........ccviiiiciiii ettt sttt e e s be et saeesre e sae e 17-33
THE SOAP SCREMA ..o 17-33
IDAP SCREIMA. ...ttt ettt b et be e e sbesee e e e e nset e e ene s 17-35
Deploying the AQ XIML SEIVIET ...t 17-48
Creating the AQ XML Servlet Class........cccoveiiiviiiiie e 17-49
Compiling the AQ XIML SEIVIETooiiiieee e 17-50
USer AUTNENTICALION ..o bbb e 17-51
USEI AULNOTIZALION ...t 17-52
Using an LDAP Server with an AQ XML Servlet ... 17-54
Setup for Receiving AQ XML Requests Using SMTP (E-mail)ccocoveiiiiiiniininnns 17-55
Using HTTP to Access the AQ XML SErVIEtccoovieiiicccs e 17-58
User Sessions and TranSACIONScociiiiiieieie ettt 17-62
Using HTTP and HTTPS for Advanced Queuing Propagation..........c.cccocvereiencieiciciennnas 17-62
High-Level ArChItECIUIEcce et 17-62
Using SMTP to Access the AQ SEIVIET ..ot 17-65
Customizing the AQ SEIVIET ... 17-65
Setting the CoNNECtION POOI SIZE.......cccvcviiciiece e 17-66
Setting the SESSION TIMEOULc.oviiiiiie s 17-66
Setting the Style Sheet for All Responses from the Serviet............cccccoviiiiiniiniiicen 17-67
Callbacks Before and After AQ OPEIatioNS........cccvvviiiiiieieseie e se e snens 17-68
Messaging Gateway
Messaging Gateway FUNCLIONAIITYcc.covoveiiiie e 18-2
Messaging Gateway ArCHITECIUIEco i 18-3

AdMINISTration PACKAGEoviiiiiiie ettt sene 18-3

LTS L=V 7= Y o =T o) PSR 18-5

Propagation ProCeSSIiNG OVEIVIEW.........c.oiiiiiiriiiiieeecie ettt e et sneeee e e 18-5
Setting Up MeSSaging GatEBWAYccccucviieiiieieiieseeesieaesese e sse e ssesaesaessessssessesssssesseses 18-6
Oraclei Database Prer@qUISITESccviviiverieieeriieeise s e ettt se e restesre e seennens 18-6
Non-Oracle Messaging SyStem PrereqUISITES.cooviiiiiieeeceeise e 18-6
[IoF: o [T aTo Ik=TaTo IST-Y 1] o I 1o TS SRS SPS 18-6
SELUP VEFITICATION ...ttt et ene e 18-11
Unloading Messaging GatEWAYccccecirieriiiieieeieeeeieieeeete ettt ssesbeseesee e asssseeeaneas 18-12
Working with Messaging GateWaYc..ccccviiieiiieierieicrieese st see e sessa e e e snens 18-12
Managing the Messaging GatewWay AGENT........c.cooiie it 18-13
Configuring Messaging Gateway LiNKS. ... 18-15
Registering Non-Oracle Messaging System QUEUES........c.ccvcvvvrerierieieeieseseseeeseeeesenee s 18-18
Configuring Propagation JODS ...t 18-20
Monitoring the Messaging Gateway Log File ... 18-26
CONVEITING IMESSAQESeviieieitiieiieitetetiete sttt e e te st ettt eseesee e et e s tesaesbestestesbenbeste e et enee e anearenns 18-27
The Message CONVEISION PrOCESSc.ciiiiiiiiiiiiriaiisieesiee sttt sttt 18-28
Messaging Gateway CanoniCal TYPES.coiiiiiriiriineiseesie e 18-29
Message Conversion for Advanced QUEUINGcccccveieieireieieie e 18-29
Message Conversion fOr MQSEIIES ..ot 18-32
Message Header CONVEISIONScoriiiieiiiiiieie ettt 18-33
Using Header Properties: EXamMPIESccovviiiieiiniieiciee et ene s 18-39
Using XML Message Propagation: EXamples ... 18-40
The mgw.ora INitialization File...........cooiiiiiiii e 18-44
FIIE CONENTS ... ettt 18-45
INItIAliZAtION PAramEters.cviiiiciees ettt st 18-45
ENVIrONMENT VariableScc.oiiiiiie ettt 18-46
N V7 B (0] o LT [P S 18-48

A Oracle Advanced Queuing by Example

Creating Queue Tables anNd QUEUES.c..civeicieiiieire et sre e srenees A-4
Creating a Queue Table and Queue 0f ODJECT TYPE...coiiiiriie it A-4
Creating a Queue Table and Queue Of RAW TYPEooi i A-5
Creating a Prioritized Message Queue Table and QUEUEccccevevevevevieicie e A-5
Creating a Multiconsumer Queue Table and QUEUEccoeiiiiniiienecee e A-5
Creating a Queue to Demonstrate Propagation...........ccccoceeieiineiienenenie e A-6

XiX

Setting Up Java AQ EXAMPIES ..c.ooiveiiiecicicece ettt s A-6

Creating an Java AQ SESSION.........ci ittt sttt se e st e eese e e et reereaneeresre s A-7
Creating a Queue Table and QuUeue USING JAVA.........cccecvcriiiieie s A-8
Creating a Queue and Start Enqueue/Dequeue USING JaVa.......ccccooevvevereveeniesieiesie s A-9
Creating a Multiconsumer Queue and Add Subscribers Using Java..........ccccccoeoiiiiienens A-9
Enqueuing and Dequeuing Of MESSAQEScvcivivririerieieiieieesestesesesesse e seessessesasseesessessessens A-11
Enqueuing and Dequeuing of Object Type Messages Using PL/SQLcccccoceviieinnnn. A-11
Enqueuing and Dequeuing of Object Type Messages Using Pro*C/C++ccccceenenn. A-12
Enqueuing and Dequeuing of Object Type Messages Using OCl........cc.cccceevvivecvinnnnnnnn. A-14
Enqueuing and Dequeuing of Object Type Messages (CustomDatum interface)
(O [To - 1V PR TRS A-16
Enqueuing and Dequeuing of Object Type Messages (using SQLData interface)
(O [0 - 1V O RTTRR A-18
Enqueuing and Dequeuing of RAW Type Messages Using PL/SQL.........ccccocecvvvieienennn. A-21
Enqueuing and Dequeuing of RAW Type Messages Using Pro*C/C++.........cccccccvveene. A-22
Enqueuing and Dequeuing of RAW Type Messages Using OCIcccccooeiviiiiiencncnne A-25
Enqueue of RAW MEeSSages USING JAVAccvueiriirrierieiieesee ettt A-26
Dequeue 0f MeSSages USING JAVA........couiiiiiiiiiiiisienesie ettt A-27
Dequeue of Messages in Browse Mode USING JaVa...........cocooveriiniinicieneieseeseeees A-28
Enqueuing and Dequeuing of Messages by Priority Using PL/SQLccccccoevvvveieiinnnn, A-30
Enqueue of Messages with Priority USINg JAVAccocoeiriiiiiiniiiicecee e A-32
Dequeue of Messages after Preview by Criterion Using PL/SQLcccccovvinneincnnene, A-33
Enqueuing and Dequeuing of Messages with Time Delay and Expiration
USING PLZSQL ..ttt et bbb et eae st et A-37
Enqueuing and Dequeuing of Messages by Correlation and Message 1D
USING PO C/CHF ittt sttt st b sttt sb et s et beebe st neereas A-38
Enqueuing and Dequeuing of Messages by Correlation and Message 1D Using OCI..... A-42
Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue
USING PLZSQL ..ttt bbbttt A-44
Enqueuing and Dequeuing of Messages to/from a Multiconsumer Queue using OCI .. A-47
Enqueuing and Dequeuing of Messages Using Message Grouping Using PL/SQL A-51
Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
USING PLZSQL ..ottt ettt bbbt A-53
Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
USING JAVE ..ttt sttt et s bt s e bt e b e b s b e bt sbe e eneereenenre s A-56

PrOPAGALION ...ttt bbb bbb bbb bbb bR eh bbb A-62

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue

and Propagation Scheduling Using PLZSQLccoiviiiiiir et A-62
Managing Propagation From One Queue To Other Queues In The Same Database
USING PLZSQL ..ttt bbbt bbbttt bbbttt sttt et nn et A-64
Manage Propagation From One Queue To Other Queues In Another Database
USING PLZSQL ..ttt A-64
Unscheduling Propagation Using PLZSQLcccvviiiieiiiiececese e A-65
Dropping AQ ODBJECTS ...t et bbb enea A-66
Revoking ROIES @aNd PriVIIEQESccoviiiiie e A-67
Deploying AQ WIth XA ...ttt a ettt bbb e e et eneenas A-68
AQ AN MEMONY USAGE ...viueiiiiieiiite ittt ettt st ee sttt este e e sbeseebesbesbe st e saeneesesbesneneeneas A-72
Create_types.sql: Create Payload Types and Queues in Scott's Schema...........ccccceveevennnne. A-72
Enqueuing Messages (Free Memory After Every Call) Using OCIccooeiiiiiiiicenns A-72
Enqueuing Messages (Reuse Memory) USiNG OCH ..o A-76
Dequeuing Messages (Free Memory After Every Call) Using OClcccceeviviivieicnennns A-80
Dequeuing Messages (Reuse Memory) USiNg OCl ..o A-84

Oracle JMS Interfaces, Classes, and Exceptions

Oracle IMSCIASSES (PAIT 1)eiiiuiiieiieieerieie ettt bbb bt ettt et et eebe bt ebesbe st sbennas B-5
Oracle JMS ClaSSES (PANT 2)cveuieieieeee ettt ettt sb e be b e b e e e e et ene e e eneeneneas B-7
Oracle IMS Classes (PArt 3)....cccueiviieiiiiesise e e et e e e sb s te e sresbeseesaeseenseneeneenearenns B-8
Oracle JIMS ClaSSES (DAt 4) .. .ottt ettt ettt b e b b ee e b e e e e e e ene e e neaneneas B-9
Oracle IMS ClaSSES (PANT 5)....c.ciiieiiiieiieieieiie ettt ettt et be st sbe e e e eneeneene e B-10
Oracle IMS Classes (PANT 6).....ccviviiieiiieieieiece ettt sa et e e re e sresresreseesaeseensereeneens B-11
Oracle JIMS Classes (part 6 CONTINUE)ccooiiiiiieiiicie e B-12
Oracle JIMS ClaSSES (PANT 7)) ...ccueiueiieeieiee ettt ettt st sttt e bt et be b sbeseeseeeeeneereene e B-14
Oracle IMS Classes (PArt 8).....cccvceiiieiieiieieiece et e sa et esaeeresre st steseesae e ensereeneens B-16
Oracle IMS ClaSSeS (PANT 9)....c.oouiieiiieiieieeiie ettt ettt sbe b sbe e e e e ene s e e e e B-18
Oracle IMS Classes (PArt 10)c.oooeiieiieieiieti ettt sb et sbe e see e e ese e saeeeeseeees B-20
Oracle JIMS Classes (part 10 CONtINUE)ccoveveiieiiiiiie et B-21
Interfaces, Classes, aNd EXCEPTIONSooi i B-22

Scripts for Implementing BooksOnLine

tkaqgdoca.sql: Script to Create Users, Objects, Queue Tables, Queues & Subscribers.......... C-2
tkagdocd.sql: Examples of Administrative and Operational Interfaces............ccccccoeinennne C-16

XXi

tkagdoce.sql: Operational EXamPIES........ccccceiiieieiii et C-21

tkagdocp.sql: Examples of Operational INterfaces...........ccooooviiiiiiiieiincecee e C-22

112G T (o [0 Yool o | B @] =TT q Bl o J0 vl o | o | OSSR C-37
D JMS and AQ XML Servlet Error Messages

B ISR g 0T g AV [t Y- o =SSR D-2

AQ XML SErvIet EFrOr IMESSAQESoiueiueiteeiieeiieieeeeie ettt st ete st see st seeseeseese et aeesestesaesbeseeseesaeneas D-15
E Unified Modeling Language Diagrams

USE CASE DIHAGIAMIS ...ttt bttt e bbb et b e s b e bbb be et b e e e bt abesbe b sbeeeas E-2

] LI B T T To | =10 1S F OSSOSO PR PR E-7
Index

XXii

Send Us Your Comments

Oracle9 j Application Developer’'s Guide - Advanced Queuing, Release 2 (9.2)
Part No. A96587-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

=« Did you find any errors?

= Is the information clearly presented?

= Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
= What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

= Electronic mail: infodev_us@oracle.com
= FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
= Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XXiii

XXiv

Preface

This reference describes features of application development and integration using
Oracle Advanced Queuing. This information applies to versions of the Oracle
database server that run on all platforms, unless otherwise specified.

This preface contains these topics:
= Audience

=« Organization

= Related Documentation

= Conventions

= Documentation Accessibility

XXV

Audience

Oracle9i Application Developer’s Guide - Advanced Queuing is intended for
programmers who develop applications that use Advanced Queuing.

Organization

This document contains:

Chapter 1, "Introduction to Oracle Advanced Queuing"
This chapter describes the requirements for optimal messaging systems.

Chapter 2, "Basic Components"

This chapter describes features of Advanced Queuing, including general, enqueue,
and dequeue features.

Chapter 3, "AQ Programmatic Environments"

This chapter describes the elements you need to work with and issues to consider in
preparing your AQ application environment.

Chapter 4, "Managing AQ"

This chapter discusses issues related to managing Advanced Queuing, such as
migrating queue tables (import-export), security, Oracle Enterprise Manager
support, protocols, sample DBA actions to prepare for working with Advanced
Queuing, and current restrictions.

Chapter 5, "Performance and Scalability"
This chapter discusses performance and scalability issues.

Chapter 6, "Frequently Asked Questions"
This chapter answers frequently asked questions.

Chapter 7, "Modeling and Design"
This chapter covers the fundamentals of Advanced Queueing modeling and.design

Chapter 8, "A Sample Application Using AQ"

This chapter considers the features of Advanced Queuing in the context of a sample
application.

XXVi

Chapter 9, "Administrative Interface"”
This chapter describes the administrative interface to Advanced Queuing.

Chapter 10, "Administrative Interface: Views"

This chapter depicts views in the administrative interface using use cases and state
diagrams.

Chapter 11, "Operational Interface: Basic Operations"

This chapter describes the operational interface to Advanced Queuing in terms of
use cases.

Chapter 12, "Creating Applications Using JMS"

This chapter discusses the features of the Oracle JMS interface to Advanced
Queuing in the context of a sample application.

Chapter 13, "JMS Administrative Interface: Basic Operations"

This chapter depicts the administrative interface to Advanced Queuing using use
cases.

Chapter 14, "JMS Operational Interface: Basic Operations (Point-to-Point)"
This chapter describes point-to-point operations.

Chapter 15, "JIMS Operational Interface: Basic Operations
(Publish-Subscribe)"

This chapter describes publish-subscribe operations.

Chapter 16, "JMS Operational Interface: Basic Operations (Shared Interfaces)"
This chapter describes shared interface operations.

Chapter 17, "Internet Access to Advanced Queuing"

This chapter describes how to perform AQ operations over the Internet by using
Simple Object Access Protocol (SOAP) and Internet Data Access Presentation
(IDAP), and transmitting messages over the Internet using transport protocols such
as HTTP or SMTP.

Chapter 18, "Messaging Gateway"

This chapter describes how AQ-based applications can communicate with
non-Oracle messaging systems using Messaging Gateway.

XXVii

Appendix A, "Oracle Advanced Queuing by Example"

This appendix provides examples of operations using different programmatic
environments.

Appendix B, "Oracle JMS Interfaces, Classes, and Exceptions"
This appendix provides a list of Oracle JMS interfaces, classes, and exceptions.

Appendix C, "Scripts for Implementing BooksOnLine"
This appendix contains scripts used in the BooksOnLine example.

Appendix D, "IMS and AQ XML Servlet Error Messages"
This appendix lists error messages.

Appendix E, "Unified Modeling Language Diagrams"
This appendix provides a brief explanation of use case diagrams and UML notation.

Related Documentation

XXViii

For more information, see these Oracle resources:

s Oracle9i Application Developer’s Guide - Fundamentals
s PL/SQL User’s Guide and Reference

s Oracle9i Supplied Java Packages Reference

= Oracle9i Supplied PL/SQL Packages and Types Reference

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http/Amwwv.oraclebookshop.conv

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit
http:/tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:
= Conventions in Text
s Conventions in Code Examples
s Conventions for Windows Operating Systems
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis.

Ensure that the recovery catalog and target
database do not reside on the same disk.

XXiX

Convention

Meaning

Example

UPPERCASE
monospace
(fixed-width)
font

lowercase
monospace
(fixed-width)
font

lowercase
italic
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKURommand.

Query the TABLE_NAMEolumn in the USER_
TABLESdata dictionary view.

Use the DBMS_STATSENERATE_STATS
procedure.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

You can specify the parallel_clause

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

XXX

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame = 'MIGRATE;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention

Meaning

Example

[]

{}

Other notation

ltalics

UPPERCASE

Brackets enclose one or more optional
items. Do not enter the brackets.

Braces enclose two or more items, one of
which is required. Do not enter the braces.

A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

Horizontal ellipsis points indicate either:

= That we have omitted parts of the
code that are not directly related to
the example

= That you can repeat a portion of the
code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

DECIMAL (digits [, precsion)

{ENABLE | DISABLE}

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

CREATE TABLE .. AS subquery ;

SELECT coll , con FROM

employees;

cog , ..,

SQL> SELECT NAME FROM V$DATAFILE;
NAME

fslidbsftbs_01.dbf
fs1/dbsftos_02.dbf

fsidbsbs 09.dof
9 rows selected.

acctbal NUMBER(L1,2);
acct CONSTANT NUMBERW) = 3;

CONNECT SYSTEMstern_password
DB_NAME =database name

SELECT last name, employee_id FROM
employees;

SELECT * FROM USER TABLES;
DROP TABLE hr.employees;

XXXi

Convention Meaning Example

lowercase Lowercase typeface indicates SELECT last name, employee_id FROM
programmatic elements that you supply. employees;
For example, lowercase indicates names ggipjus hr/hr
of tables, columns, or files. CREATE USER mjones IDENTIFIED BY ty3MU9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,

File and directory
names

C:\>

choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory names are not case cwinnt\'system32 is the same as
sensitive. The following special characters CA\WINNT\SYSTEM32
are not allowed: left angle bracket (<),

right angle bracket (>), colon (:), double

guotation marks ("), slash (/), pipe (]),

and dash (-). The special character

backslash (\) is treated as an element

separator, even when it appears in quotes.

If the file name begins with \\, then

Windows assumes it uses the Universal

Naming Convention.

Represents the Windows command C\oracle\oradata>
prompt of the current hard disk drive.

The escape character in a command

prompt is the caret (©). Your prompt

reflects the subdirectory in which you are

working. Referred to as the command

prompt in this manual.

XXXii

Convention Meaning Example

Special characters The backslash (\) special character is C\exp scotifiger TABLES=emp
sometimes required as an escape QUERY=\'WHERE job="SALESMAN’ and
character for the double quotation mark sgi<1600\"
(") special character at the Windows C\>Simp SYSTEM/ password FROMUSER=scott

command prompt. Parentheses and the TABLES=(emp, dept)
single quotation mark (’) do not require '

an escape character. Refer to your

Windows operating system

documentation for more information on

escape and special characters.

HOME_NAME Represents the Oracle home name. The C\> net start Oracle HOME_NAMBSListener
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

XXXiii

Convention Meaning Example

ORACLE_HOME In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASEORACLE _
and ORACLE _ when you installed Oracle components, HOM¥Edbms\admin directory.
BASE all subdirectories were located under a

top level ORACLE_HOM#rectory that by

default used one of the following names:

s C:orant for Windows NT
= C:orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOMf#irectory. There is a
top level directory called ORACLE _BASE
that by default is C:\oracle . If you
install the latest Oracle release on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora nn, where nn is the
latest release number. The Oracle home
directory is located directly under
ORACLE_BASE

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Started
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

XXXV

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

XXXV

XXXVi

What's New in Advanced Queuing?

This section describes the new Advanced Queuing features of Oracle9i and
previous releases.

The following sections describe the new features in Oracle Advanced Queuing:
= Oracle9i Release 2 (9.2.0) New Features
= Oracle9i (9.0.1) New Features in Advanced Queuing

= Oracle8i New Features in Advanced Queuing

XXXVii

Oracle9/ Release 2 (9.2.0) New Features
= Oracle Messaging Gateway

The interaction between different messaging systems is a common integration
requirement. Messaging Gateway allows Advanced Queuing to propagate
messages to and from non-Oracle messaging systems. It allows secure,
transactional, and guaranteed one-time-only delivery of messages between
Oracle Advanced Queuing and IBM MQSeries v5.1 and v5.2. See Chapter 18,
"Messaging Gateway" for more information.

= Standard JMS Support

Oracle’s JIMS implementation conforms to Sun Microsystems’ JMS 1.0.2b
standard. See "J2EE Compliance" on page 12-3.

= XMLType Payload Support

You no longer need to embed an XMLType attribute in an Oracle object type.
You can directly use an XMLType message as the message payload.

Oracle9/(9.0.1) New Features in Advanced Queuing

Oracle9i introduces the following new Advanced Queuing features to improve
e-business integration and use standard Internet transport protocols:

= Internet Integration

To perform queuing operations over the Internet, Advanced Queuing takes
advantage of the Internet Data Access Presentation (IDAP), which defines
message structure using XML. Using IDAP, AQ operations such as enqueue,
dequeue, notification, and propagation can be executed using standard Internet
transport protocols—HTTP(S) and SMTP. Third-party clients, including
third-party messaging vendors, can also interoperate with AQ over the Internet
using Messaging Gateway.

IDAP messages can be requests, responses, or an error response. An IDAP
document sent from an AQ client contains an attribute for designating the
remote operation; that is, enqueue, dequeue, or register accompanied by
operational data. The AQ implementation of IDAP can also be used to execute
batched enqueue and dequeue of messages.

The HTTP and SMTP support in AQ is implemented by using the AQ servlet
which is bundled with the Oracle database server. A client invokes the servlet
through an HTTP post request that is sent to the Web server. The Web server
invokes the servlet mentioned in the post method if one is not already invoked.

XXXViii

The servlet parses the content of the IDAP document and uses the AQ Java API
to perform the designated operation. On completion of the call, the servlet
formats either a response or an error response as indicated by IDAP and sends
it back to the client.

IDAP is transport independent and therefore can work with other transport
protocols transparently. Oracle9i supports HTTP and SMTP; other proprietary
protocols can also be supported using the callout mechanism through
transformations.

Advanced Queuing Security over the Internet

AQ functionality allows only authorized Internet users to perform AQ
operations on AQ queues. An Internet user connects to a Web server, which in
turn connects to the database using an application server. The Internet user
doing the operation is typically not the database user connected to the database.
Also, the AQ queues may not reside in the same schema as the connected
database user. Advanced Queuing uses proxy authentication so that only
authorized Internet users can perform AQ operations on AQ queues.

LDAP Integration

OID Integration: To leverage LDAP as the single point for managing generic
information, Advanced Queuing is integrated with the Oracle Internet
Directory (OID) server. This addresses the following requirements:

= Global topics (queues): AQ queue information can be stored in an OID
server. OID provides a single point of contact to locate the required topic or
gueue. Business applications (users) looking for specific information need
not know in which database the queue is located. Using the industry
standard Java Messaging Service (JMS) API, users can directly connect to
the queue without explicitly specifying the database or the location of the
topic or queue.

= Global events: OID can be used as the repository for event registration.
Clients can register for database events even when the database is down.
This allows clients to register for events such as “Database Open,” which
would not have been possible earlier. Clients can register for events in
multiple databases in a single request.

XML Integration: XML has emerged as a standard for e-business data
representations. The XMLType datatype has been added to the Oracle server to
support operations on XML data. AQ not only supports XMLType data type
payloads, but also allows definitions of subscriptions based on the contents of
an XML message. This is powerful functionality for online market places where

XXXIX

xl

multiple vendors can define their subscriptions based on the contents of the
orders.

Transformation Infrastructure

Applications are designed independent of each other. So, the messages they
understand are different from each other. To integrate these applications,
messages have to be transformed. There are various existing solutions to handle
these transformations. AQ provides a transformation infrastructure that can be
used to plug in transformation functionality from Oracle Application
Interconnect or other third-party solutions such as Mercator without losing AQ
functionality. Transformations can be specified as PL/SQL call back functions,
which are applied at enqueue, dequeue, or propagation of messages. These
PL/SQL callback functions can call third-party functions implemented in C,
Java, or PL/SQL. XSLT transformations can also be specified for XML messages.

AQ Management

You can use new and enhanced Oracle Enterprise Manager to manage
Advanced Queuing, as follows:

= Improved Ul task flow and administration of queues, including a topology
display at the database level and at the queue level, error and propagation
schedules for all the queues in the database, and relevant initialization
parameters (init.ora)

= Ability to view the message queue

Oracle diagnostics and tuning pack supports alerts and monitoring of AQ
gueues. Alerts can be sent when the number of messages for a particular
subscriber exceeds a threshold. Alerts can be sent when there is an error in
propagation. In addition, queues can be monitored for the number of messages
in ready state or the number of messages per subscriber.

Additional Enhancements

PL/SQL notifications and e-mail notifications: Oracle9i allows notifications on
the queues to be PL/SQL functions. Using this functionality, users can register
PL/SQL functions that will be called when a message of interest is enqueued.
Using e-mail notification functionality, an e-mail address can be registered to
provide notifications. E-mail will be sent if the message of interest arrives in the
gueue. Presentation of the e-mail message can also be specified while
registering for e-mail notification. Users can also specify an HTTP URL to
which notifications can be sent.

Dequeue enhancements: Using the dequeue with a condition functionality,
subscribers can select messages that satisfy a specified condition from the
messages meant for them.

Overall performance improvements: AQ exhibits overall performance
improvements as a result of code optimization and other changes.

Propagation enhancements: The maximum number of job queue processes has
been increased from 36 to 1000 in Oracle9i. With Internet propagation, you can
set up propagation between queues over HTTP. Overall performance
improvements have been made in propagation due to design changes in the
propagation algorithm.

JMS Enhancements

All the new Oracle9i features are supported through JMS, as well as the
following:

= Connection pooling: Using this feature, a pool of connection can be
established with the Oracle database server. Later, at the time of
establishing a JMS session, a connection from the pool can be picked up.

= Global topics: This is the result of the integration with Oracle Internet
Directory. AQ Queue information can be stored and looked up from OID.

= Topic browsing: Allows durable subscribers to browse through the
messages in a publish-subscribe (topic) destination, and optionally allows
these subscribers to purge the browsed messages (so that they are no longer
retained by AQ for that subscriber).

= Exception listener support: This allows a client to be asynchronously
notified of a problem. Some connections only consume messages, so they
have no other way to learn that their connection has failed.

Oracle8 i New Features in Advanced Queuing

The Oracle8i release included the following Advanced Queuing features:

Queue-level access control

Nonpersistent queues

Support for Oracle Parallel Server
Rule-based subscribers for publish-subscribe

Asynchronous notification

xli

= Sender identification

= Listen capability (wait on multiple queues)
= Propagation of messages with LOBs

= Enhanced propagation scheduling

= Dequeuing message headers only

= Support for statistics views

= Java API (native AQ)

= Java Messaging Service (JMS) API

= Separate storage of history management information

xlii

1

Introduction to Oracle Advanced Queuing

In this chapter, Oracle Advanced Queuing (AQ) and the requirements for complex
information handling in an integrated environment are discussed under the
following topics:

= What Is Advanced Queuing?

= General Features of Advanced Queuing
= Enqueue Features

= Dequeue Features

= Propagation Features

= Elements of Advanced Queuing

= Java Message Service Terminology

= Demos

Introduction to Oracle Advanced Queuing 1-1

What Is Advanced Queuing?

What Is Advanced Queuing?

When Web-based business applications communicate with each other, producer
applications enqueue messages and consumer applications dequeue messages.
Advanced Queuing provides database-integrated message queuing functionality.
Advanced Queuing leverages the functions of the Oracle database so that messages
can be stored persistently, propagated between queues on different machines and
databases, and transmitted using Oracle Net Services, HTTP(S), and SMTP.

Since Oracle Advanced Queuing is implemented in database tables, all the
operational benefits of high availability, scalability, and reliability are applicable to
gueue data. Standard database features such as recovery, restart, and security are
supported in Advanced Queuing, and queue tables can be imported and exported.
Refer to Chapter 4, "Managing AQ" for more information. You can also use database
development and management tools such as Oracle Enterprise Manager to monitor
gueues. Refer to "Oracle Enterprise Manager Support" on page 4-8.

Advanced Queuing in Integrated Application Environments

Advanced Queuing provides the message management functionality and
asynchronous communication needed for application integration. In an integrated
environment, messages travel between the Oracle database server and the
applications and users, as shown in Figure 1-1. Using Oracle Net Services,
messages are exchanged between a client and the Oracle database server or between
two Oracle databases. Oracle Net Services also propagates messages from one
Oracle queue to another. Or, as shown in Figure 1-1, you can perform Advanced
Queuing operations over the Internet using transport protocols such as HTTP,
HTTPS, or SMTP. In this case, the client, a user or Internet application, produces
structured XML messages. During propagation over the Internet, Oracle servers
communicate using structured XML also. Refer to Chapter 17, "Internet Access to
Advanced Queuing" for more information on Internet integration with Advanced
Queuing.

Application integration also involves the integration of heterogeneous messaging
systems. AQ seamlessly integrates with existing non-Oracle messaging systems like
IBM MQSeries through Messaging Gateway, thus allowing existing MQSeries-based
applications to be integrated into an Oracle AQ environment. Refer to Chapter 18,
"Messaging Gateway" for more information on AQ integration with non-Oracle
messaging systems.

1-2 Oracle9i Application Developer’'s Guide - Advanced Queuing

What Is Advanced Queuing?

Figure 1-1 Integrated Application Environment Using Advanced Queuing

XML-Based Internet OCl, PL/SQL,

Internet Users Transport Java clients
(HTTP(s), SMTP)

e B < m

Rules and

‘ Transformations h

o PP
queues

MQ Series
Internet
Propagation
(Oracle
Net)

Internet
Propagation

Rules and
Transformations

Rules and
Transformations

YUY

Advanced
gueues

Global Agents,
Global Subscriptions,
Global Events

Interfaces to Advanced Queuing
You can access Advanced Queuing functionality through the following interfaces:

= PL/SQL using DBMS_AQDBMS_AQADMand DBMS_AQELNRefer to the
Oracle9i Supplied PL/SQL Packages and Types Reference.

= Visual Basic using Oracle Obijects for OLE. Refer to the Online Help for Oracle
Objects for OLE.

= Java using the oracle.AQ Java package. Refer to the Oracle9i Supplied Java
Packages Reference.

= Java Message Service (JMS) using the oracle.jms Java package. Refer to the
Oracle9i Supplied Java Packages Reference.

= Internet access using HTTP, HTTPS, and SMTP

Introduction to Oracle Advanced Queuing 1-3

What Is Advanced Queuing?

Queuing System Requirements

Advanced Queuing meets queuing system requirements for performance,
scalability, and persistence. Refer to Chapter 5, "Performance and Scalability" for
more information.

Performance

Requests for service must be decoupled from supply of services to increase
efficiency and provide the infrastructure for complex scheduling. Advanced
Queuing exhibits high performance characteristics as measured by the following
metrics:

= Number of messages enqueued/dequeued per second
= Time to evaluate a complex query on a message warehouse

= Time to recover/restart the messaging process after a failure

Scalability

Queuing systems must be scalable. Advanced Queuing exhibits high performance
as the number of programs using the application increases, as the number of
messages increases, and as the size of the message warehouse increases.

Persistence for Security

Messages that constitute requests for service must be stored persistently, and
processed exactly once, for deferred execution to work correctly in the presence of
network, machine, and application failures. Advanced Queuing is able to meet
requirements in the following situations:

= Applications that do not have the resources to handle multiple unprocessed
messages arriving simultaneously from external clients or from programs
internal to the application.

= Communication links between databases that are not available all the time or
are reserved for other purposes. If the system falls short in its capacity to deal
with these messages immediately, the application must be able to store the
messages until they can be processed.

= Eternal clients or internal programs that are not ready to receive messages that
have been processed.

1-4 Oracle9i Application Developer’'s Guide - Advanced Queuing

General Features of Advanced Queuing

Persistence for Scheduling

Queuing systems need message persistence so they can deal with priorities:
messages arriving later may be of higher priority than messages arriving earlier;
messages arriving earlier may have to wait for messages arriving later before
actions are executed; the same message may have to be accessed by different
processes; and so on. Priorities also change. Messages in a specific queue can
become more important, and so need to be processed with less delay or interference
from messages in other queues. Similarly, messages sent to some destinations can
have a higher priority than others.

Persistence for Accessing and Analyzing Metadata

Message persistence is needed to preserve message metadata, which can be as
important as the payload data. For example, the time that a message is received or
dispatched can be a crucial for business and legal reasons. With the persistence
features of Advanced Queuing, you can analyze periods of greatest demand or
evaluate the lag between receiving and completing an order.

General Features of Advanced Queuing
The following general features are discussed:
= Point-to-Point and Publish-Subscribe Messaging
= Oracle Internet Directory
= Oracle Enterprise Manager Integration
= Message Format Transformation
= SQL Access
= Support for Statistics Views
= Structured Payloads
= Retention and Message History
= Tracking and Event Journals
= Queue-Level Access Control
= Nonpersistent Queues
= Support for Oracle9i Real Application Clusters
= XMLType Payloads

Introduction to Oracle Advanced Queuing 1-5

General Features of Advanced Queuing

= Internet Integration and Internet Data Access Presentation

Refer to Chapter 8, "A Sample Application Using AQ" for a hypothetical scenario in
which the messaging system for a hypothetical online bookseller, BooksOnLine, is
described. Many features discussed here are exemplified in the BooksOnLine
example.

Point-to-Point and Publish-Subscribe Messaging

A combination of features allows publish-subscribe messaging between
applications. These features include rule-based subscribers, message propagation,
the listen feature, and notification capabilities.

Advanced Queuing sends and receives messages in the following ways:
= Point-to-Point
= Publish-Subscribe

Point-to-Point

A point-to-point message is aimed at a specific target. Senders and receivers decide
on a common queue in which to exchange messages. Each message is consumed by
only one receiver. Figure 1-2 shows that each application has its own message
gueue, known as a single-consumer queue.

Figure 1-2 Point-to-Point Messaging

o Enqueue Enqueue .
Application 9 9 9 9 44—l | Application
PP Dequeue Dequeue PP
Advanced

queues

Publish-Subscribe

A publish-subscribe message can be consumed by multiple receivers, as shown in
Figure 1-3. Publish-subscribe messaging has a wide dissemination
mode—broadcast—and a more narrowly aimed mode—multicast, also called
point-to-multipoint.

Broadcasting is the equivalent of a radio station not knowing exactly who the
audience is for a given program. The dequeuers are subscribers to multiconsumer

1-6 Oracle9/ Application Developer’'s Guide - Advanced Queuing

General Features of Advanced Queuing

queues In contrast, multicast is the same as a magazine publisher who knows who
the subscribers are. Multicast is also referred to as point-to-multipoint because a
single publisher sends messages to multiple receivers, called recipients, who may
or may not be subscribers to the queues that serve as exchange mechanisms.

Figure 1-3 Publish-Subscribe Mode

Publish i
Application Subscribe Application
o Publish @@@@ Publish o
Application | «—) | Advanced - Application
queues Subscribe

Oracle Internet Directory

Oracle Internet Directory is a native LDAPv3 directory service built on the Oracle
database that centralizes a wide variety of information, including e-mail addresses,
telephone numbers, passwords, security certificates, and configuration data for
many types of networked devices. You can look up enterprise-wide queuing
information—queues, subscriptions, and events—from one location, the Oracle
Internet Directory. Refer to the Oracle Internet Directory Administrator’s Guide for
more information.

Oracle Enterprise Manager Integration
You can use Enterprise Manager to do the following:

= Create and manage queues, queue tables, propagation schedules, and
transformations

= Monitor your AQ environment using the AQ topology at the databse and queue
levels, and by viewing queue errors and queue and session statistics. Refer to
"Oracle Enterprise Manager Support" on page 4-8.

Message Format Transformation

The message format transformation feature supports applications that use data in
different formats. A transformation defines a mapping from one Oracle data type to
another. The transformation is represented by a SQL function that takes the source
data type as input and returns an object of the target data type.

Introduction to Oracle Advanced Queuing 1-7

General Features of Advanced Queuing

A transformation can be specified as follows:

= During enqueue, to transform the message to the correct type before inserting it
into the queue.

You can convert a message to the payload type of the queue at enqueue time.
Thus, the type of the message to be enqueued need not match the payload type
of the queue.

=« During dequeue, to receive the message in the desired format

A message can be transformed to the desired format before returning it to the
dequeuer.

= By aremote subscriber, who can choose to receive a message in a format
different from the format of the source queue

Before propagating the message to the remote subscriber, the message is
transformed according to the transformation that the remote subscriber
specified when subscribing to the queue.

As Figure 1-4 shows, queuing, routing, and transformation are essential building
blocks to an integrated application architecture. The figure shows how data from
the Out queue of a CRM application is routed and transformed in the integration
hub and then propagated to the In queue of the Web application. The
transformation engine maps the message from the format of the Out queue to the
format of the In queue.

Figure 1-4 Transformations in Application Integration

Integration Hub

CRM > Out Queue > Routing and >) > In Queue > Web
Application e Transformation Propagation e < Application
Spoke Spoke

Refer to "Message Format Transformation"” on page 8-6 for more information.

SQL Access

Messages are placed in normal rows in a database table, and so can be queried
using standard SQL. This means that you can use SQL to access the message
properties, the message history, and the payload. With SQL access you can also do
auditing and tracking. All available SQL technology, such as indexes, can be used to
optimize access to messages.

1-8 Oracle9i Application Developer’'s Guide - Advanced Queuing

General Features of Advanced Queuing

Support for Statistics Views
Basic statistics about queues are available using the GV$AQview.

Structured Payloads

You can use object types to structure and manage message payloads. RDBMSs in
general have a richer typing system than messaging systems. Since Oracle is an
object-relational DBMS, it supports both traditional relational types as well as
user-defined types. Many powerful features are enabled as a result of having
strongly typed content, such as content whose format is defined by an external type
system. These include:

= Content-based routing: Advanced Queuing can examine the content and
automatically route the message to another queue based on the content.

= Content-based subscription: a publish and subscribe system is built on top of a
messaging system so that you can create subscriptions based on content.

= Querying: the ability to execute queries on the content of the message enables
message warehousing.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Structured Payloads" on page 8-11.

Retention and Message History

The systems administrator specifies the retention duration to retain messages after
consumption. Advanced Queuing stores information about the history of each
message, preserving the queue and message properties of delay, expiration, and
retention for messages destined for local or remote receivers. The information
contains the enqueue and dequeue times and the identification of the transaction
that executed each request. This allows users to keep a history of relevant messages.
The history can be used for tracking, data warehouse, and data mining operations,
as well as specific auditing functions.

To see this feature applied in the context of the BooksOnLine scenario, refer to
Retention and Message History on page 8-27.

Tracking and Event Journals

If messages are retained, they can be related to each other. For example, if a message
m2is produced as a result of the consumption of message m1, mlis related to m2
This allows users to track sequences of related messages. These sequences represent

Introduction to Oracle Advanced Queuing 1-9

General Features of Advanced Queuing

event journals, which are often constructed by applications. Advanced Queuing is
designed to let applications create event journals automatically.

When an online order is placed, multiple messages are generated by the various
applications involved in processing the order. Advanced Queuing offers features to
track interrelated messages independent of the applications that generated them.
You can determine who enqueued and dequeued messages, who the users are, and
who did what operations.

With Advanced Queuing tracking features, you can use SQL SELECTand JOIN
statements to get order information from AQ$QUETABLENAMIE the views ENQ_
TRAN_ID, DEQ_TRAN_IDUSER_DATAthe payload), CORR_IDQ and MSG_ID These
views contain the following data used for tracking:

= Transaction IDs—from ENQ_TRAN_IDand DEQ_TRAN_IDcaptured during
enqueuing and dequeuing.

= Correlation IDs—from CORR_IDQ part of the message properties

= Message content that can be used for tracking—USER_DATA

Queue-Level Access Control

The owner of an 8.1-style queue can grant or revoke queue-level privileges on the
gueue. Database administrators can grant or revoke new AQ system-level privileges
to any database user. Database administrators can also make any database user an
AQ administrator.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Queue-Level Access Control" on page 8-4.

Nonpersistent Queues

Advanced Queuing can deliver nonpersistent messages asynchronously to
subscribers. These messages can be event-driven and do not persist beyond the
failure of the system (or instance). Advanced Queuing supports persistent and
nonpersistent messages with a common API.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Nonpersistent Queues” on page 8-17.

Support for Oracle9 iReal Application Clusters

An application can specify the instance affinity for a queue table. When Advanced
Queuing is used with Real Application Clusters and multiple instances, this

1-10 Oracle9i Application Developer’'s Guide - Advanced Queuing

General Features of Advanced Queuing

information is used to partition the queue tables between instances for
gueue-monitor scheduling. The queue table is monitored by the queue monitors of
the instance specified by the user. If an instance affinity is not specified, the queue
tables is arbitrarily partitioned among the available instances. There can be pinging
between the application accessing the queue table and the queue monitor
monitoring it. Specifying the instance affinity does not prevent the application from
accessing the queue table and its queues from other instances.

This feature prevents pinging between queue monitors and Advanced Queuing
propagation jobs running in different instances. If compatibility is set to Oracle8i,
release 8.1.5 or higher, an instance affinity (primary and secondary) can be specified
for a queue table. When Advanced Queuing is used with Real Application Clusters
and multiple instances, this information is used to partition the queue tables
between instances for queue-monitor scheduling as well as for propagation. At any
time, the queue table is affiliated to one instance. In the absence of an explicitly
specified affinity, any available instance is made the owner of the queue table. If the
owner of the queue table is terminated, the secondary instance or some available
instance takes over the ownership for the queue table.

To see this feature applied in the context of the BooksOnLine scenario, refer to
"Support for Oracle Real Application Clusters” on page 8-30.

XMLType Payloads

You can create queues that use the new opaque type, XMLType. These queues can
be used to transmit and store messages that are XML documents. Using XMLType,
you can do the following:

= Store any type of message in a queue
= Store documents internally as CLOBs
= Store nore than one type of payload in a queue

= Query XMLType columns using the operators ExistsNode() and
SchemaMatch()

= Specify the operators in subscriber rules or dequeue conditions

Internet Integration and Internet Data Access Presentation

You can access AQ over the Internet by using Simple Object Access Protocol
(SOAP). Internet Data Access Presentation (IDAP) is the SOAP specification for AQ
operations. IDAP defines the XML message structure for the body of the SOAP
request. An IDAP-structured message is transmitted over the Internet using

Introduction to Oracle Advanced Queuing 1-11

General Features of Advanced Queuing

transport protocols such as HTTP or SMTP. Refer to "Propagation over the Internet:
HTTP and SMTP" on page 1-12 and Chapter 17, "Internet Access to Advanced
Queuing" for more information.

Propagation over the Internet: HTTP and SMTP

Figure 1-5 shows the architecture for performing AQ operations over HTTP. The
major components are:

= The AQ client program
= The Web server/ServletRunner hosting the AQ servlet
= The Oracle database server

The AQ client program sends XML messages (conforming to IDAP) to the AQ
servlet, which understands the XML message and performs AQ operations. Any
HTTP client, for example Web browsers, can be used. The Web
server/ServletRunner hosting the AQ servlet interprets the incoming XML
messages. Examples include Apache/Jserv or Tomcat. The AQ servlet connects to
the Oracle database server and performs operations on the users’ queues.

Figure 1-5 Architecture for Performing AQ Operations Using HTTP

Web Oracle9
Server Server

]
E. XL Message @@g
———l =

AQ Servlet E —_—
% L:’ — Queue
AQ Client S

Figure 1-6 shows additional components in the architecture for sending AQ
messages over SMTP:

=« E-mail server
= LDAP server (Oracle Internet Directory)

The e-mail server verifies client signatures using certificates stored in LDAP and
then routes the request to the AQ servlet.

1-12 Oracle9i Application Developer’'s Guide - Advanced Queuing

General Features of Advanced Queuing

Figure 1-6 Architecture for Performing AQ Operations Using SMTP

AQ Client %;

XML Message
|:. over SMTP
——py

Oracle)
Email Web Oracle9
Server Server Server

L. |

eco
=]
=]

o

AQ Servlet

LEr — Queue

LDAP
Server

The Internet Data Access Presentation (IDAP)

The Internet Data Access Presentation (IDAP) uses the Content-Type of text/xml
to specify the body of the SOAP request. XML provides the presentation for IDAP
request and response messages as follows:

All request and response tags are scoped in the SOAP namespace.
AQ operations are scoped in the IDAP namespace.

The sender includes namespaces in IDAP elements and attributes in the SOAP
body.

The receiver processes IDAP messages that have correct namespaces; for the
requests with incorrect namespaces, the receiver returns an invalid request
error.

The SOAP namespace has the value
http://schemas.xmlsoap.org/soap/envelope/

The IDAP namespace has the value
http://ns.oracle.com/AQ/schemas/access

Introduction to Oracle Advanced Queuing 1-13

Enqueue Features

Refer to Chapter 17, "Internet Access to Advanced Queuing" for more information
about IDAP.

Nonrepudiation and the AQ$<QueueTableName> View

Advanced Queuing maintains the entire history of information about a message
along with the message itself. You can look up history information by using the
AQ$<QueueTableName> view. This information serves as the proof of sending and
receiving of messages and can be used for nonrepudiation of the sender and
nonrepudiation of the receiver. Refer to Chapter 10, "Administrative Interface:
Views" for more information about the AQ$<QueueTableName> view.

The following information is kept at enqueue for nonrepudiation of the enqueuer:
= AQ agent doing the enqueue

= Database user doing the enqueue

= Enqueue time

= Transaction ID of the transaction doing the enqueue

The following information is kept at dequeue for nonrepudiation of the dequeuer:
= AQ agent doing dequeue

= Database user doing dequeue

= Dequeue time

= Transaction ID of the transaction doing dequeue

After propagation, the Original_Msgid field in the destination queue of
propagation corresponds to the message ID of the source message. This field can be
used to correlate the propagated messages. This is useful for nonrepudiation of the
dequeuer of propagated messages.

Stronger nonrepudiation can be achieved by enqueuing the digital signature of the
sender at the time of enqueue with the message and by storing the digital signature
of the dequeuer at the time of dequeue.

Enqueue Features

The following features apply to enqueuing messages.

1-14 Oracle9i Application Developer’'s Guide - Advanced Queuing

Enqueue Features

Correlation Identifiers

Users can assign an identifier to each message, thus providing a means to retrieve
specific messages at a later time.

Subscription and Recipient Lists

A single message can be designed to be consumed by multiple consumers. A queue
administrator can specify the list of subscribers who can retrieve messages from a
gueue. Different queues can have different subscribers, and a consumer program
can be a subscriber to more than one queue. Further, specific messages in a queue
can be directed toward specific recipients who may or may not be subscribers to the
gueue, thereby overriding the subscriber list.

You can design a single message for consumption by multiple consumers in a
number of different ways. The consumers who are allowed to retrieve the message
are specified as explicit recipients of the message by the user or application that
enqueues the message. Every explicit recipient is an agent identified by name,
address, and protocol.

A queue administrator may also specify a default list of recipients who can retrieve
all the messages from a specific queue. These implicit recipients become subscribers
to the queue by being specified in the default list. If a message is enqueued without
specifying any explicit recipients, the message is delivered to all the designated
subscribers.

A rule-based subscriber is one that has a rule associated with it in the default
recipient list. A rule-based subscriber will be sent a message with no explicit
recipients specified only if the associated rule evaluated to TRUE for the message.
Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be
directed toward specific recipients who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

A recipient may be specified only by its name, in which case the recipient must
dequeue the message from the queue in which the message was enqueued. It may
be specified by its name and an address with a protocol value of 0. The address
should be the name of another queue in the same database or another Oracle
database (identified by the database link), in which case the message is propagated
to the specified queue and can be dequeued by a consumer with the specified name.
If the recipient’s name is NULL, the message is propagated to the specified queue in
the address and can be dequeued by the subscribers of the queue specified in the
address. If the protocol field is nonzero, the name and address are not interpreted
by the system and the message can be dequeued by a special consumer. To see this

Introduction to Oracle Advanced Queuing 1-15

Enqueue Features

feature applied in the context of the BooksOnLine scenario, refer to "Elements of
Advanced Queuing" on page 1-21.

Priority and Ordering of Messages in Enqueuing

It is possible to specify the priority of the enqueued message. An enqueued message
can also have its exact position in the queue specified. This means that users have
three options to specify the order in which messages are consumed: (a) a sort order
specifies which properties are used to order all message in a queue; (b) a priority
can be assigned to each message; (c) a sequence deviation allows you to position a
message in relation to other messages. Further, if several consumers act on the same
gueue, a consumer will get the first message that is available for immediate
consumption. A message that is in the process of being consumed by another
consumer will be skipped.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Priority and Ordering of Messages" on page 8-38.

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group have
to be created in the same transaction and all messages created in one transaction
belong to the same group. This feature allows users to segment complex messages
into simple messages; for example, messages directed to a queue containing
invoices can be constructed as a group of messages starting with the header
message, followed by messages representing details, followed by the trailer
message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Message Grouping” on page 8-51.

Propagation

This feature enables applications to communicate with each other without having to
be connected to the same database or the same queue. Messages can be propagated
from one Oracle AQ to another, irrespective of whether the queues are local or
remote. Propagation is done using database links and Oracle Net Services.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Propagation” on page 8-107.

1-16 Oracle9i Application Developer’'s Guide - Advanced Queuing

Enqueue Features

Sender Identification

Applications can mark the messages they send with a custom identification. Oracle
also automatically identifies the queue from which a message was dequeued. This
allows applications to track the pathway of a propagated message or a string
messages within the same database.

Time Specification and Scheduling

Delay interval or expiration intervals can be specified for an enqueued message,
thereby providing windows of execution. A message can be marked as available for
processing only after a specified time elapses (a delay time) and has to be consumed
before a specified time limit expires.

Rule-Based Subscribers

A message can be delivered to multiple recipients based on message properties or
message content. Users define a rule-based subscription for a given queue as the
mechanism to specify interest in receiving messages of interest. Rules can be
specified based on message properties and message data (for object and raw
payloads). Subscriber rules are then used to evaluate recipients for message
delivery.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Rule-Based Subscription” on page 8-86.

Asynchronous Notification

The asynchronous notification feature allows clients to receive notification of a
message of interest. The client can use it to monitor multiple subscriptions. The
client does not have to be connected to the database to receive notifications
regarding its subscriptions.

Clients can use the OCI function, LNOCISubcriptionRegister , or the PL/SQL
procedure DBMS_AQ.REGISTERO register interest in messages in a queue. Refer to
"Registering for Notification" in Chapter 11, "Operational Interface: Basic
Operations" for more information.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Asynchronous Notifications" on page 8-97.

Introduction to Oracle Advanced Queuing 1-17

Dequeue Features

Dequeue Features

The following features apply to dequeuing messages.

Recipients

A message can be retrieved by multiple recipients without the need for multiple
copies of the same message. To see this feature applied in the context of the
BooksOnLine scenario, refer to "Multiple Recipients" on page 8-63.

Designated recipients can be located locally or at remote sites. To see this feature
applied in the context of the BooksOnL.ine scenario, refer to "Local and Remote
Recipients" on page 8-64.

Navigation of Messages in Dequeuing

Users have several options to select a message from a queue. They can select the
first message or once they have selected a message and established a position, they
can retrieve the next. The selection is influenced by the ordering or can be limited
by specifying a correlation identifier. Users can also retrieve a specific message
using the message identifier.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Message Navigation in Dequeue" on page 8-65.

Modes of Dequeuing

A DEQUEUEequest can either browse or remove a message. If a message is
browsed, it remains available for further processing. If a message is removed, it is
not available more for DEQUEUEequests. Depending on the queue properties, a
removed message may be retained in the queue table.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Modes of Dequeuing"” on page 8-69.

Optimization of Waiting for the Arrival of Messages

A DEQUEUEan be issued against an empty queue. To avoid polling for the arrival
of a new message, a user can specify if and for how long the request is allowed to
wait for the arrival of a message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Optimization of Waiting for Arrival of Messages" on page 8-75.

1-18 Oracle9i Application Developer’'s Guide - Advanced Queuing

Dequeue Features

Retries with Delays

A message must be consumed exactly once. If an attempt to dequeue a message
fails and the transaction is rolled back, the message will be made available for
reprocessing after some user-specified delay elapses. Reprocessing will be
attempted up to the user-specified limit.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Retry with Delay Interval" on page 8-77.

Optional Transaction Protection

ENQUEURNd DEQUEUHEequests are normally part of a transaction that contains the
requests, thereby providing the desired transactional behavior. You can, however,
specify that a specific request is a transaction by itself, making the result of that
request immediately visible to other transactions. This means that messages can be
made visible to the external world as soon as the ENQUEUIBr DEQUEURBtatement is
issued or after the transaction is committed.

Exception Handling

A message may not be consumed within given constraints, such as within the
window of execution or within the limits of the retries. If such a condition arises, the
message will be moved to a user-specified exception queue.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Exception Handling" on page 8-80.

Listen Capability (Wait on Multiple Queues)

The listen call is a blocking call that can be used to wait for messages on multiple
gueues. It can be used by a gateway application to monitor a set of queues. An
application can also use it to wait for messages on a list of subscriptions. If the listen
returns successfully, a dequeue must be used to retrieve the message.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Listen Capability” on page 8-90.

Dequeue Message Header with No Payload

The dequeue mode REMOVE_NODATA can be used to remove a message from a
gueue without retrieving the payload. Use this mode to delete a message with a
large payload whose content is irrelevant.

Introduction to Oracle Advanced Queuing 1-19

Propagation Features

Propagation Features

The following features apply to propagating messages. Refer to "Internet
Integration and Internet Data Access Presentation" on page 1-11 for information on
propagation over the Internet.

Automated Coordination of Enqueuing and Dequeuing

Recipients can be local or remote. Because Oracle does not support distributed
object types, remote enqueuing or dequeuing using a standard database link does
not work. However, you can use AQ message propagation to enqueue to a remote
gueue. For example, you can connect to database X and enqueue the message in a
gueue, DROPBOXocated in database X. You can configure AQ so that all messages
enqueued in DROPBOMvill be automatically propagated to another queue in
database Y, regardless of whether database Y is local or remote. AQ will
automatically check if the type of the remote queue in database Y is structurally
equivalent to the type of the local queue in database X and propagate the message.

Recipients of propagated messages can be applications or queues. If the recipient is
a queue, the actual recipients are determined by the subscription list associated with
the recipient queue. If the queues are remote, messages are propagated using the
specified database link. Only AQ-to-AQ message propagation is supported.

Propagation of Messages with LOBs

Propagation handles payloads with LOBattributes. To see this feature applied in the
context of the BooksOnL.ine scenario, refer to "Propagation of Messages with LOB
Attributes” on page 8-111.

Propagation Scheduling

Messages can be scheduled to propagate from a queue to local or remote
destinations. Administrators can specify the start time, the propagation window,
and a function to determine the next propagation window (for periodic schedules).

Enhanced Propagation Scheduling Capabilities

Detailed run-time information about propagation is gathered and stored in the
DBA_QUEUE_SCHEDULRfw for each propagation schedule. This information can
be used by queue designers and administrators to fix problems or tune
performance. For example, available statistics about the total and average number
of message/bytes propagated can be used to tune schedules. Similarly, errors

1-20 Oracle9i Application Developer’'s Guide - Advanced Queuing

Elements of Advanced Queuing

reported by the view can be used to diagnose and fix problems. The view also
describes additional information such as the session ID of the session handling the
propagation, and the process name of the job queue process handling the
propagation.

To see this feature applied in the context of the BooksOnL.ine scenario, refer to
"Enhanced Propagation Scheduling Capabilities” on page 8-114.

Third-Party Support

AQ allows messages to be enqueued in queues that can then be propagated to
different messaging systems by third-party propagators. If the protocol number for
a recipient is in the range 128 - 255, the address of the recipient is not interpreted by
AQ and so the message is not propagated by the AQ system. Instead, a third-party
propagator can then dequeue the message by specifying a reserved consumer name
in the dequeue operation. The reserved consumer names are of the form AQ$_P#,
where # is the protocol number in the range 128-255. For example, the consumer
name AQ$_P128 can be used to dequeue messages for recipients with protocol
number 128. The list of recipients for a message with the specific protocol number is
returned in the recipient_list message property on dequeue.

Another way for Advanced Queuing to propagate messages to and from third-party
messaging systems is through Messaging Gateway, an Enterprise Edition feature of
Advanced Queuing. Messaging Gateway dequeues messages from an AQ queue
and guarantees delivery to a third-party messaging system like MQSeries.
Messaging Gateway can also dequeue messages from third-party messaging
systems and enqueue them to an AQ queue. Refer to Chapter 18, "Messaging
Gateway" for more information.

Elements of Advanced Queuing

Message

By integrating transaction processing with queuing technology, persistent
messaging in the form of Advanced Queuing is possible. This section defines a
number of Advanced Queuing terms.

A message is the smallest unit of information inserted into and retrieved from a
gueue. A message consists of the following:

= Control information (metadata)

= Payload (data)

Introduction to Oracle Advanced Queuing 1-21

Elements of Advanced Queuing

Queue

Queue Table

Agent

The control information represents message properties used by AQ to manage
messages. The payload data is the information stored in the queue and is
transparent to Oracle AQ. A message can reside in only one queue. A message is
created by the enqueue call and consumed by the dequeue call.

A queue is a repository for messages. There are two types of queues: user queues,
also known as normal queues, and exception queues. The user queue is for normal
message processing. Messages are transferred to an exception queue if they cannot
be retrieved and processed for some reason. Queues can be created, altered, started,
stopped, and dropped by using the Oracle AQ administrative interfaces. Refer to
Chapter 9, "Administrative Interface” for more information.

User queues can be persistent (the default) or nonpersistent queues. Persistent
gueues store messages in database tables. These queues provide all the reliability
and availability features of database tables. Nonpersistent queues store messages in
memory. They are generally used to provide an asynchronous mechanism to send
notifications to all users that are currently connected.

Queues are stored in queue tables. Each queue table is a database table and contains
one or more queues. Each queue table contains a default exception queue.

Figure 7-1, "Basic Queues" on page 7-2 shows the relationship between messages,
gueues, and queue tables.

An agent is a queue user. This can be an end user or an application. There are two
types of agents:

= Producers who place messages in a queue (enqueuing)
= Consumers who retrieve messages (dequeuing)

Any number of producers and consumers may be accessing the queue at a given
time. Agents insert messages into a queue and retrieve messages from the queue by
using the Oracle AQ operational interfaces. Refer to Chapter 11, "Operational
Interface: Basic Operations"” for more information.

An agent is identified by its name, address and protocol. Refer to "Agent Type
(ag$_agent)" on page 2-3 in Chapter 2, "Basic Components" for a formal description
of this data structure.

1-22 Oracle9i Application Developer’'s Guide - Advanced Queuing

Elements of Advanced Queuing

= The name of the agent may be the name of the application or a name assigned
by the application. A queue may itself be an agent—enqueuing or dequeuing
from another queue.

s The address field is a character field of up to 1024 bytes that is interpreted in the
context of the protocol. For instance, the default value for the protocol is 0,
signifying a database link addressing. In this case, the address for this protocol
is of the form

queue_name@dblink

where queue_name is of the form [schema.]queue and dblink may either
be a fully qualified database link name or the database link name without the
domain name.

Recipient

The recipient of a message may be specified by its name only, in which case the
recipient must dequeue the message from the queue in which the message was
enqueued. The recipient may be specified by name and an address with a protocol
value of 0. The address should be the name of another queue in the same database
or another Oracle database (identified by the database link) in which case the
message is propagated to the specified queue and can be dequeued by a consumer
with the specified name. If the recipient's name is NULL, the message is propagated
to the specified queue in the address and can be dequeued by the subscribers of the
gueue specified in the address. If the protocol field is nonzero, the name and
address are not interpreted by the system and the message can be dequeued by a
special consumer (refer to "Third-Party Support” on page 1-21).

Recipient and Subscription Lists
Multiple consumers can consume a single message:

= The enqueuer can explicitly specify the consumers who may retrieve the
message as recipients of the message. A recipient is an agent identified by a
name, address, and protocol.

= A queue administrator can specify a default list of recipients who can
retrieve messages from a queue. The recipients specified in the default list
are known as subscribers. If a message is enqueued without specifying the
recipients, the message is sent to all the subscribers.

Different queues can have different subscribers, and the same recipient can be a
subscriber to more than one queue. Further, specific messages in a queue can be

Introduction to Oracle Advanced Queuing 1-23

Elements of Advanced Queuing

directed toward specific recipients who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

Rule

A rule is used to define one or more subscribers’ interest in subscribing to messages
that conform to that rule. The messages that meet the rule criterion are delivered to
the interested subscribers. A rule is specified as a boolean expression (one that
evaluates to true or false) using syntax similar to the WHERElause of a SQL query.
The boolean expression can include conditions on the following:

= Message properties (currently priority and correlation identifier)
= User data properties (object payloads only)
= Functions (as specified in the WHERElause of a SQL query)

Rule-Based Subscribers

A rule-based subscriber is a subscriber with associated rules in the default recipient
list. If an associated rule evaluates to TRUEfor a message, the message is sent to the
rule-based subscriber even if the message has no specified recipients.

Transformation

A transformation defines a mapping from one Oracle data type to another. The
transformation is represented by a SQL function that takes the source data type as
input and returns an object of the target data type. A transformation can be
specified during enqueue, to transform the message to the correct type before
inserting it into the queue. It can be specified during dequeue to receive the
message in the desired format. If specified with a remote subscriber, the message
will be transformed before propagating it to the destination queue.

Queue Monitor

The queue monitor (QMNN) is a background process that monitors messages in
gueues. It provides the mechanism for message delay, expiration, and retry delay.
The QMNnN also performs garbage collection for the queue table and its indexes and
index-organized tables (I0Ts). For example, the QMNnN determines when all
subscribers of multiconsumer queues have received a message and subsequently
removes the message from the queue table and supporting indexes and 1OTs.

1-24 Oracle9i Application Developer’'s Guide - Advanced Queuing

Demos

You can start a maximum of 10 multiple queue monitors at the same time. You start
the queue monitors by setting the dynamic init.ora parameter aq_tm_
processes . The queue monitor wakes up every minute, or whenever there is work
to do, for instance, if a message is marked expired or ready to be processed.

Java Message Service Terminology

Demos

When using the oracle.jms Java package, keep in mind the following:
= The JMS equivalent of enqueue is send.
= The destination of messages is a queue, without any qualification.

= The container of messages is a topic, and each application can publish on or
subscribe to a given topic.

= Topic in JMS maps to a multiconsumer queue in the other AQ interfaces.

= TheJava package oracle.jms has classes and interfaces to implement Oracle
extensions to the public JMS standard.

The following demos can be found in the $ORACLE_HOME/rdbms/demodirectory.
Refer to agxmlreadme.txt and agjmsreadme.txt in the demo directory for
more information.

Table 1-1 Demos

Demo and Locations Topic

agjmsdemoOl.java Enqueue text messages and dequeue based on
message properties

agjmsdemo02.java Message Listener demo

agjmsdemo03.java Message Listener demo

agjmsdemo04.java Oracle Type Payload - Dequeue on payload
content

agjmsdemo05.java Example of the queue browser

agjmsdemo06.java Schedule propagation between queues in the
database

agjmsdmo.sql Set up AQ JMS demos

Introduction to Oracle Advanced Queuing 1-25

Demos

Table 1-1 Demos

Demo and Locations

Topic

agjmsREADME.txt
agorademoOl.java

agorademo02.java

agoradmo.sql

agxmlol.xml

agxml02.xml

agxml03.xml

agxml04.xml

agxml05.xml

agxml06.xml

agxml07.xml

agxml08.xml

agxml09.xml

agxml10.xml
agxmlhtp.sql
AQDemoServlet.java
AQPropServlet.java
newaqdemo00.sql

newaqgdemo01.sql

newaqdemo02.sql

newaqdemo03.sql

Describe the AQ Java APl and JMS demos
Enqueue and dequeue RAW messages

Enqueue and dequeue object type messages
using the Custom Datum interface

Setup file for AQ java APl demos

AQXmISend—Enqueue to ADT single-
consumer queue with piggyback commit

AQXmIReceive—Dequeue from ADT
single-consumer queue with piggyback commit

AQXmIPublish—Enqueue to ADT (with LOB)
multiconsumer queue

AQXmIReceive—Dequeue from ADT multi-
consumer gueue

AQXmICommit—Commit previous operation

AQXmISend—Enqueue to JMS Text
single-consumer queue with piggyback commit

AQXmIReceive—Dequeue from JMS Text
single-consumer queue with piggyback commit

AQXmIPublish—Enqueue JIMS MAP message
with recipient into multiconsumer queue

AQXmIReceive—Dequeue JMS MAP message
from multiconsumer queue

AQXmIRollback—Roll back previous operation
HTTP Propagation

Servlet to post AQ XML files (for Jserv)

Servlet for AQ HTTPpropagation

Create users, message types, tables, and so on

Set up queue_tables, queues, subscribers and
set up

Enqueue messages

Install dequeue procedures

1-26 Oracle9i Application Developer’'s Guide - Advanced Queuing

Demos

Table 1-1 Demos

Demo and Locations

Topic

newagdemo04.sql
newagdemo05.sql

newaqdemo06.sql

ociagdemo00.c
ociagdemoOl.c

ociagdemo02.c

Perform blocking dequeue
Perform listen for multiple agents

Clean up users, queue_tables, queues,
subscribers (cleanup script)

Enqueue messages
Perform blocking dequeue

Perform listen for multiple agents

Introduction to Oracle Advanced Queuing 1-27

Demos

1-28 Oracle9i Application Developer’'s Guide - Advanced Queuing

2

Basic Components

The following basic components are discussed in this chapter:

Data Structures
Enumerated Constants in the Administrative Interface
Enumerated Constants in the Operational Interface

INIT.ORA Parameter File Considerations

Basic Components 2-1

Data Structures

Data Structures

The following chapters discuss the Advanced Queuing administrative and
operational interfaces in which data structures are used:

= Chapter 9, "Administrative Interface"

= Chapter 11, "Operational Interface: Basic Operations"

Object Name (object_name)

Purpose

To name database objects. This naming convention applies to queues, queue tables,
and object types.

Syntax

object name = VARCHAR2
object name = [<schema_name>.]J<name>

Usage

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified, then the current schema is assumed. The name must
follow the reserved character guidelines in the Oracle9i SQL Reference. The schema
name, agent name, and the object type name can each be up to 30 bytes long.
However, queue hames and queue table names can be a maximum of 24 bytes.

Type Name (type_name)

Purpose
To define queue types.

Syntax

type_name = VARCHAR2
type_name = <object type> | "RAW"

Usage
Table 2-1 lists usage information for type_name .

2-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures

Table 2-1 Type Name (type_name)

Parameter

Description

<object_types>

"RAW"

For details on creating object types please refer to Oracle9i Database Concepts. The
maximum number of attributes in the object type is limited to 900.

To store payload of type RAWAQ creates a queue table with a LOBcolumn as the
payload repository. The size of the payload is limited to 32K bytes of data. Because
LOBcolumns are used for storing RAWpayload, the AQ administrator can choose the
LOBtablespace and configure the LOBstorage by constructing a LOBstorage string
in the storage_clause parameter during queue table creation time.

Agent Type (ag$_agent)

Purpose
To identify a producer or a consumer of a message.

Syntax

TYPE ag$ agent IS OBJECT (
name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER)

Usage

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENTparameters. You can add more subscribers by
repeatedly using the DBMS_AQADM.ADD_SUBSCRIBRPcedure up to a maximum
of 1024 subscribers for a multiconsumer queue. Two subscribers cannot have the
same values for the NAMEADDRESS,and PROTOCOAttributes for the AQ$_AGENT
type. At least one of the three attributes must be different for two subscribers.

Table 2-2 lists usage information for aq$_agent .

Basic Components 2-3

Data Structures

Table 2-2 Agent (aq$_agent)

Parameter Description

name Name of a producer or consumer of a message.The name must follow the reserved
(VARCHAR2(30)) character guidelines in the Oracle9i SQL Reference.

address Protocol specific address of the recipient. If the protocol is 0 (default), the address is
(VARCHAR2(1024)) of the form [schema.]queue[@dblink].

protocol Protocol to interpret the address and propagate the message. The default value is 0.
(NUMBER)

AQ Recipient List Type (ag$_recipient_list_t)

Purpose
To identify the list of agents that will receive the message.

Syntax

TYPE ag$ _recipient list t IS TABLE OF ag$_agent
INDEX BY BINARY_INTEGER,;

AQ Agent List Type (ag$_agent list_t)

Purpose
To identify the list of agents for DBMS_AQ.LISTENTto listen for.

Syntax

TYPE ag$ agent list t IS TABLE OF ag$ agent
INDEX BY BINARY INTEGER,;

AQ Subscriber List Type (ag$_subscriber_list_t)

Purpose
To identify the list of subscribers that subscribe to this queue.

2-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures

Syntax

TYPE ag$_subscriber_list t IS TABLE OF ag$ agent
INDEX BY BINARY INTEGER;

AQ Registration Info List Type (ag$_reg_info_list)

Purpose
To identify the list of registrations to a queue.

Syntax
TYPE ag$ reg_info list AS VARRAY(1024) OF sysag$ reg info

AQ Post Info List Type (ag$_post_info_list)

Purpose
To identify the list of anonymous subscriptions to which messages are posted.

Syntax
TYPE ag$ post info_list AS VARRAY(1024) OF sys.ag$ post_info

AQ Registration Info Type

The ag$_reg_info data structure identifies a producer or a consumer of a

message.

Syntax

TYPE sys.ag$ reg info IS OBJECT (
name VARCHAR2(128),

namespace NUMBER,
calback VARCHAR2(4000),
context RAW(2000));

Basic Components 2-5

Data Structures

Attributes

Table 2-3 AQ Registration Info Type Attributes

Attribute Description

name Specifies the name of the subscription.

The subscription name is of the form <schema>.<queue> if
the registration is for a single consumer queue and
<schema>.<queue>:<consumer_name> if the registration is
for a multiconsumer queue.

namespace Specifies the namespace of the subscription.

To receive notifications from AQ queues the namespace must
be DBMS_AQ.NAMESPACE_AQ

To receive notifications from other applications using DBMS_
AQ.POSTor OCISubscriptionPost() , the namespace must
be DBMS_AQ.NAMESPACE_ANONYMOUS

callback Specifies the action to be performed on message notification.

For e-mail notifications, the form is
mailto://xyz@company.com

For AQ PL/SQL Callback, use
plsql://<schema>.<procedure>?PR=0 for raw message
payload or plsql://<schema>.<procedure>?PR=1 for
ADT message payload converted to XML

context Specifies the context that is to be passed to the callback
function. Default: NULL

Table 2-4 shows the actions performed when different notification
mechanisms/presentations are specified for nonpersistent queues.

2-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Data Structures

Table 2-4 Nonpersistent Queues

Presentation Specified

RAW XML
Queue
Payloa Notification Mechanism Notification Mechanism
d Type PL/SQL PL/SQL
LNOCI E-mail Callback LNOCI E-mail Callback
RAW The callback Not supported The PL/SQL | The callback The XML data The PL/SQL
receives the callback receives the is formatted as callback
RAW data in receives the XML data in a SOAP receives the
the payload. RAW data in the payload. message and XML data in
the payload. e-mailed to the the payload.
registered
e-mail address.
ADT Not supported. Notsupported. Notsupported. The callback The XML data The PL/SQL

receives the is formatted as callback

XML data in a SOAP receives the

the payload. message and XML data in
e-mailed to the the payload.
registered

e-mail address.

AQ Notification Descriptor Type

The aq$_descriptor data structure specifies the AQ Descriptor received by the
AQ PL/SQL callbacks upon notification.

Syntax

TYPE sys.ag$_descriptor IS OBJECT (
queue_name VARCHAR2(30),
consumer_name VARCHAR2(30),

msg_id RAW(16),
msg_prop msg_prop_Y);
Attributes

Table 2-5 AQ Notification Descriptor Type

Attribute Description

gueue_name Name of the queue in which the message was enqueued which
resulted in the notification.

Basic Components 2-7

Enumerated Constants in the Administrative Interface

Table 2-5 AQ Notification Descriptor Type

Attribute Description

consumer_name Name of the consumer for the multiconsumer queue
msg_id Id of the message.

msg_prop Message properties.

AQ Post Info Type

The ag$_post_info data structure specifies anonymous subscriptions to which
you want to post messages.

Syntax
TYPE sys.ag$ post info IS OBJECT (
name VARCHAR2(128),

namespace NUMBER,
payload RAW(2000));

Attributes

Table 2-6 AQ Post Info Type Attributes

Attribute Description

name Name of the anonymous subscription to which you want to
post to.

namespace To receive notifications from other applications using DBMS_
AQ.POSTor OCISubscriptionPost() , the namespace must

be DBMS_AQ.NAMESPACE_ANONYMOUS

payload The payload to be posted to the anonymous subscription
Default: NULL

Enumerated Constants in the Administrative Interface

When enumerated constants such as INFINITE , TRANSACTIONALand NORMAL _
QUEURHre selected as values, the symbol must be specified with the scope of the
packages defining it. All types associated with the administrative interfaces must be
prepended with DBMS_AQADMor example:

DBMS_AQADM.NORMAL_QUEUE

2-8 Oracle9i Application Developer’s Guide - Advanced Queuing

INIT.ORA Parameter File Considerations

Table 2-7 lists the enumerated constants.

Table 2—-7 Enumerated Constants in the Administrative Interface

Parameter Options

retention 0,1,2...INFINITE

message_grouping TRANSACTIONAL , NONE

queue_type NORMAL_QUEUEEXCEPTION_QUEUE,NON_PERSISTENT_QUEUE

Enumerated Constants in the Operational Interface

When using enumerated constants such as BROWSH.OCKEDand REMOVEhe
PL/SQL constants must be specified with the scope of the packages defining them.
All types associated with the operational interfaces must be prepended with DBMS_
AQ For example:

DBMS_AQ.BROWSE
Table 2-8 lists the enumerated constants.

Table 2-8 Enumerated Constants in the Operational Interface

Parameter Options

visibility IMMEDIATE , ON_COMMIT

dequeue mode BROWSH.OCKEDREMOVEREMOVE_NODATA
navigation FIRST_MESSAGE , NEXT_MESSAGHEEXT_TRANSACTION
state WAITING , READYPROCESSEMIEXPIRED
sequence_deviation BEFORE ,TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER

namespace NAMESPACE_AQ, NAMESPACE_ANONYMOUS

INIT.ORA Parameter File Considerations

You can specify the AQ_TM_PROCESSE®d JOB_QUEUE_PROCESSpSrameters
in the init.ora parameter file.

Basic Components 2-9

INIT.ORA Parameter File Considerations

AQ_TM_PROCESSES Parameter

A parameter called AQ_TM_PROCESSES8ould be specified in the init .ora
parameter file if you want to perform time monitoring on queue messages. Use this
for messages that have delay and expiration properties specified. This parameter
should be set to at least 1. It can be set in a range from 0 to 10. Setting it to any
other number will result in an error. If this parameter is set to 1, one queue monitor
process (QMN) will be created as a background process. If the parameter is not
specified, or is set to 0, the queue monitor process is not created.

Table 2-9 lists parameter information.

Table 2-9 AQ_TM_PROCESSES Parameter

Parameter Options

Parameter Name aq_tm_processes

Parameter Type integer

Parameter Class Dynamic

Allowable Values 0 to 10

Syntax ag_tm_processes = <0 to 10>
Name of process ora_gmn<n>_<oracle sid>
Example ag_tm_processes = 1

JOB_QUEUE_PROCESSES Parameter

Propagation is handled by job queue (SNP) processes. The number of job queue
processes started in an instance is controlled by the init.ora parameter JOB
QUEUE_PROCESSEHhe default value of this parameter is 0. For message
propagation to take place, this parameter must be set to at least 2. The database
administrator can set it to higher values if there are many queues from which the
messages have to be propagated, or if there are many destinations to which the
messages have to be propagated, or if there are other jobs in the job queue.

See Also: Oracle9i SQL Reference for more information on JOB_
QUEUE_PROCESSES.

The Java Advanced Queuing API supports both the administrative and operational
features of Advanced Queuing. In developing Java programs for messaging
applications, you will use JDBC to open a connection to the database and then use

2-10 Oracle9i Application Developer’s Guide - Advanced Queuing

INIT.ORA Parameter File Considerations

oracle.AQ ,theJava AQ API for message queuing. This means that you will no
longer need to use PL/SQL interfaces.

Basic Components 2-11

INIT.ORA Parameter File Considerations

2-12 Oracle9i Application Developer’s Guide - Advanced Queuing

3

AQ Programmatic Environments

This chapter describes the elements you need to work with and issues to consider in
preparing your AQ application environment. The following topics are discussed:

= Programmatic Environments for Accessing AQ

s Using PL/SQL to Access AQ

= Using OCI to Access AQ

= Using Visual Basic (O040) to Access AQ

= Using AQ Java (oracle.AQ) Classes to Access AQ
= Using Oracle Java Message Service to Access AQ
= Using the AQ XML Servlet to Access AQ

=« Comparing AQ Programmatic Environments

AQ Programmatic Environments 3-1

Programmatic Environments for Accessing AQ

Programmatic Environments for Accessing AQ

The following programmatic environments are used to access the Advanced
Queuing functions of Oracle:

= Native AQ Interface

=« PL/SQL (DBMS_AQADMd DBMS_A(ackages): supports administrative
and operational functions

= C (OCI): supports operational functions
= Visual Basic (O040): supports operational functions

= Java (oracle.AQ package using JDBC): supports administrative and
operational functions

= JMS Interface to AQ

= Java (javax.ms and oracle.ms packages using JDBC): supports the
standard JMS administrative and operational functions and Oracle JMS
extensions

= XML Interface to AQ

= The AQ XML servlet supports operational functions using an XML message
format.

Refer to Table 3-1, " AQ Programmatic Environments" for the AQ programmatic
environments and syntax references.

Table 3-1 AQ Programmatic Environments

Precompiler or

Language Interface Program Syntax Reference In This Chapter See...

PL/SQL DBMS_AQADad Oracle9i Supplied PL/SQL Packages "Using PL/SQL to Access AQ" on
DBMS_AQ@ackage and Types Reference page 3-3

C Oracle Call Interface Oracle Call Interface Programmer’s "Using OCI to Access AQ" on

(OCl) Guide page 3-4

3-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Using PL/SQL to Access AQ

Table 3-1 (Cont.) AQ Programmatic Environments

Precompiler or

Language Interface Program Syntax Reference In This Chapter See...
Visual Basic Oracle Objects For Oracle Objects for OLE (O040) is "Using AQ Java (oracle.AQ) Classes
OLE (O040) a Windows-based product to Access AQ" on page 3-6
included with Oracle Client for
Windows NT.
There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the Oracle
installation.
Java (AQ) oracle.AQ package Oracle9i Supplied Java Packages "Using AQ Java (oracle.AQ) Classes
using JDBC Reference to Access AQ" on page 3-6
Application
Programmatic
Interface (API)
Java JMS) oracle.JMS package Oracle9i Supplied Java Packages "Using AQ Java (oracle.AQ) Classes
using JDBC Reference to Access AQ" on page 3-6 and
Application "Using Oracle Java Message Service
Programmatic to Access AQ" on page 3-8
Interface (API)
AQ XML oracle.AQ.xmlL.AQ Oracle9i Supplied Java Packages "Using the AQ XML Servlet to Access
Servlet xmiServlet using Reference AQ" on page 3-11

HTTP or SMTP

Using PL/SQL to Access AQ

The PL/SQL packages DBMS_AQADMd DBMS_AQupport access to Oracle
Advanced Queuing administrative and operational functions using the native AQ

interface. These functions include the following:

= Create: queue, queue table, nonpersistent queue, multiconsumer queue/topic,
RAW message, message with structured data

= Get: queue table, queue, multiconsumer queue/topic

= Alter: queue table, queue/topic

=« Drop: queue/topic

= Start or stop: queue/topic

AQ Programmatic Environments 3-3

Using OCI to Access AQ

= Grant and revoke privileges

= Add, remove, alter subscriber

= Add, remove, alter AQ Internet agents

= Grant or revoke privileges of database users to AQ Internet agents

= Enable, disable, and alter propagation schedule

= Enqueue messages to single consumer queue (point-to-point model)
= Publish messages to multiconsumer queue/topic (publish-subscribe model)
= Subscribing for messages in multiconsumer queue

= Browse messages in a queue

= Receive messages from queue/topic

= Register to receive messages asynchronously

= Listen for messages on multiple queues/topics

= Post messages to anonymous subscriptions

= Bind or unbind agents in a LDAP server

= Add or remove aliases to AQ objects in a LDAP server

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
detailed documentation, including parameters, parameter types,
return values, examples, DBMS_AQADMd DBMS_AQyntax.

Available PL/SQL DBMS_AQADMhd DBMS_AQunctions are listed in detail in
Table 3-2 through Table 3-9.

Using OCI to Access AQ

Oracle Call Interface (OCI) provides an interface to Oracle Advanced Queuing
functions using the native AQ interface.

An OCI client can perform the following actions:
= Enqueue messages
= Dequeue messages

= Listen for messages on sets of queues

3-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Using Visual Basic (0040) to Access AQ

Examples

s Register to receive message notifications

In addition, OCI clients can receive asynchronous notifications for new messages in
a queue using OClISubscriptionRegister.

See: Oracle Call Interface Programmer’s Guide: “OCI and Advanced
Queuing” and “Publish-Subscribe Notification” sections, for syntax
details.

For queues with user-defined payload type, OTT must be used to generate the OCI
mapping for the Oracle type. The OCI client is responsible for freeing the memory
of the AQ descriptors and the message payload.

LNOCI Interface

See Appendix A, "Oracle Advanced Queuing by Example" under "Enqueuing and
Dequeuing Of Messages" on page A-11 for OCI Advanced Queuing interface
examples.

Managing OCI Descriptor Memory

See Appendix A, "Oracle Advanced Queuing by Example" under "AQ and Memory
Usage" on page A-72 for examples illustrating memory management of OCI
descriptors.

Using Visual Basic (0040) to Access AQ

Visual Basic (O040) supports access to Oracle Advanced Queuing operational
functions using the native AQ interface.

These functions include the following:

= Create: connection, RAW message, message with structured data

= Engueue messages to single consumer queue (point-to-point model)

= Publish messages to multiconsumer queue/topic (publish-subscribe model)
= Browse messages in a queue

= Receive messages from queue/topic

= Register to received messages asynchronously

AQ Programmatic Environments 3-5

Using AQ Java (oracle.AQ) Classes to Access AQ

For More Information
For more information about OO40, refer to the following Web site:

= http://technet.oracle.com

Select Products > Internet Tools > Programmer. Scroll down to: Oracle Objects
for OLE. At the bottom of the page is a list of useful articles for using the
interfaces.

=« http://www.oracle.com/products

Search for articles on O0O40 or Oracle Objects for OLE.

Using AQ Java (oracle.AQ) Classes to Access AQ

The Java AQ API supports both the administrative and operational features of
Advanced Queueing. In developing Java programs for messaging applications, you
use JDBC to open a connection to the database and to oracle.AQ, the Java AQ API
for message queuing.

Oracle9i Supplied Java Packages Reference describes the common interfaces and classes
based on current PL/SQL interfaces.

= Common interfaces are prefixed with “AQ”. These interfaces will have different
implementations in Oracle8i and Oracle Lite.

= Inthis document we describe the common interfaces and their corresponding
Oracle8i implementations, that are in turn prefixed with “AQQOracle”.

Accessing Java AQ Classes

The Java AQ classes are located in $ORACLE_HOMEdbms /jlib /agapi* .jar .In
release 9.2, Oracle JMS conforms to Sun Microsystems’ JMS 1.0.2b standard. These
classes can be used with any OracleJDBC driver, version 8i and higher.

= Using OCI8 or Thin JDBC Driver
= For JDK 1.3, include the following in the CLASSPATH:
* $ORACLE_HOM#gdbc/lib/classes12.zip
* $ORACLE_HOMHib/jndi jar
* $ORACLE_HOMEdbms /jlib /agapil3 .jar
* $ORACLE_HOMEdbms/jlib/jmscommon.jar

3-6 Oracle9i Application Developer’s Guide - Advanced Queuing

Using AQ Java (oracle.AQ) Classes to Access AQ

s ForJDK 1.2, include the following in the CLASSPATH
* $ORACLE_HOM#gdbc/lib/classes12.zip
* $ORACLE_HOMHib/jndi jar
* $ORACLE_HOMEdbms /jlib /agapil2 .jar
* $ORACLE_HOMEdbms/jlib/jmscommon.jar
s ForJDK 1.1, include the following in the CLASSPATH
* $ORACLE_HOM#gdbc/lib/classesl1l.zip
* $ORACLE_HOMHib/jndi jar
* $ORACLE_HOMEdbms /jlib /agapi 11.jar
* $ORACLE_HOMEdbms/jlib/jmscommon.jar

Using Oracle Server Driver in JServer: If the application is using the Oracle
Server driver and accessing the Java AQ API from Java stored procedures, the
Java files are generally automatically preloaded in a Java-enabled database. If
the Java files are not loaded, you must first load the jmscommon.jar and
agapi .jar files into the database using the loadjava utility.

Advanced Queuing Examples

Appendix A, “Oracle Advanced Queuing by Example” contains the following
examples:

Enqueue and Dequeue of Object Type Messages (CustomDatum interface)
Using Java

Enqueue and Dequeue of Object Type Messages (using SQLData interface)
Using Java

Create a Queue Table and Queue Using Java

Create a Queue and Start Enqueue/Dequeue Using Java

Create a Multiconsumer Queue and Add Subscribers Using Java
Enqueue of RAW Messages using Java

Dequeue of Messages Using Java

Dequeue of Messages in Browse Mode Using Java

Enqueue of Messages with Priority Using Java

AQ Programmatic Environments 3-7

Using Oracle Java Message Service to Access AQ

= Enqueuing and Dequeuing Object Type Messages That Contain LOB Attributes
Using Java

Managing the Java AQ API

The various implementations of the Java AQ API are managed with
AQDriverManager . Both OLite and Oracle9i will have an AQDriver thatis
registered with the AQDriverManager . The driver manager is used to create an
AQSession that can be used to perform messaging tasks.

The Oracle8i AQ driver is registered using the Class.forName
(“oracle.AQ.AQOracleDriver”) command.

When the AQDriverManager .createAQSession () method is invoked, it calls the
appropriate AQDriver (among the registered drivers) depending on the parameter
passed to the createAQSession () call.

The Oracle9i AQDriver expects a valid JDBC connection to be passed in as a
parameter to create an AQSession. Users must have the execute privilege on the
DBMS_AQINpackage to use the AQ Java interfaces. Users can also acquire these
rights through the AQ_USER_ROLBr the AQ_ADMINSTRATOR_ROLBsers will
also need the appropriate system and queue privileges for 8.1-style queue tables.

Using Oracle Java Message Service to Access AQ

Java Message Service (JMS): JMS is a messaging standard defined by Sun
Microsystems, Oracle, IBM, and other vendors. JMS is a set of interfaces and
associated semantics that define how a JMS client accesses the facilities of an
enterprise messaging product.

Oracle Java Message Service: Oracle Java Message Service provides a Java API for
Oracle Advanced Queuing based on the JMS standard. Oracle JMS supports the
standard JMS interfaces and has extensions to support the AQ administrative
operations and other AQ features that are not a part of the standard.

Standard JMS Features

Standard JMS features include:
= Point-to-point model of communication - using queues

= Publish-subscribe model of communication - using topics

3-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Using Oracle Java Message Service to Access AQ

Five types of messages - ObjectMessage, StreamMessage, TextMessage,
BytesMessage, MapMessage

Synchronous and Asynchronous delivery of messages

Message selection based on message header fields/properties

Oracle JMS Extensions
Oracle JMS extensions include the following:

Administrative API to create queue tables, queues and topics
Point-to-multipoint communication using recipient lists for topics

Message propagation between destinations. Allows the application to define
remote subscribers.

Supports transacted sessions that enable you to perform JMS as well as SQL
operations in one atomic transaction.

Message retention after messages have been dequeued
Message delay - messages can be made visible after a certain delay

Exception handling - messages are moved to exception queues if they cannot be
processed successfully

In addition to the standard JMS message types, Oracle supports AdtMessages .
These are stored in the database as Oracle objects and hence the payload of the
message can be queried after it is enqueued. Subscriptions can be defined on
the contents of these messages as opposed to just the message properties.

Topic browsing - allows durable subscribers to browse through the messages in
a publish-subscribe (topic) destination, and optionally allows these subscribers
to purge the browsed messages (so that they are no longer retained by AQ for
that subscriber).

Accessing Standard and Oracle JMS

Oracle JMS uses JDBC to connect to the database, hence it applications can run as
follows:

Outside the database using the OCI8 or thin JDBC driver

Inside Oracle8i JServer using the Oracle Server driver

The standard JMS interfaces are in the javax.jms package.

AQ Programmatic Environments 3-9

Using Oracle Java Message Service to Access AQ

The Oracle JMS interfaces are in the oracle.jms package.

= Using OCI8 or Thin JDBC Driver: To use JMS with clients running outside the
database, you must include the appropriate JDBC driver, JNDI jar files and the
following AQ jar files in your CLASSPATH:

= For JDK 1.1 include the following:
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbmsljlib/agapill.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/jdbc/lib/classes111.jar

= For JDK 1.2 include the following:
$ORACLE_HOME/rdbms/jlib/jmscommon.jar
$ORACLE_HOME/rdbmsljlib/agapi.jar
$ORACLE_HOME/jlib/jndi.jar
$ORACLE_HOME/jdbc/lib/classes12.jar

= Using Oracle Server Driver in JServer: If your application is running inside the
JServer, you should be able to access the Oracle JMS classes that have been
automatically loaded when the JServer was installed. If these classes are not
available, you may have to load jmscommon.jar followed by aqapi.jar
using the $ORACLE_HOME/rdbms/admin/initjms SQL script.

Privileges
Users must have EXECUTHBprivilege on the DBMS_AQINand DBMS_AQJMS

packages to use the Oracle JMS interfaces. Users can also acquire these rights
through the AQ_USER_ROLEr the AQ_ADMINSTRATOR_ROLE

Users will also need the appropriate system and queue or topic privileges to send or
receive messages.

For More Information

Oracle JMS interfaces are described in detail in the Oracle9i Supplied Java Packages
Reference.

3-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Using the AQ XML Servlet to Access AQ

Using the AQ XML Servlet to Access AQ

You can use the AQ XML servlet to access Oracle9i AQ over HTTP using Simple
Object Access Protocol (SOAP) and an XML message format called Internet Data
Access Presentation (IDAP).

Using the AQ servlet, a client can perform the following actions:
= Send messages to single-consumer queues

= Publish messages to multiconsumer queues/topics

= Receive messages from queues

= Register to receive message notifications

The servlet can be created by defining a Java class that extends the
oracle.AQ.xml.AQxmlServlet or oracle.AQ.xml.AQxmlServlet20 class.
These classes in turn extend the javax.servlet.http.HttpServlet class.

The servlet can be deployed on any Web server or ServletRunner that implements
Javasoft’s Servlet 2.0 or Servlet 2.2 interfaces.

= To deploy the AQ Servlet with a Web server that implements Javasoft’s
Servlet2.0 interfaces, you must define a class that extends the
oracle.AQ.xml.AQxmlIServie20 class.

= To deploy the AQ Servlet with a Web server that implements Javasoft’s
Servlet2.2 interfaces, you must define a class that extends the
oracle.AQ.xml.AQxmlServlet class.

The servlet can be compiled using JDK 1.1.x or JDK 1.2.x libraries.
= ForJDK 1.1.x the CLASSPATH must contain:

$ORACLE_HOMEfdbcfibiciasses111 jar
$ORACLE_HOMEfiibftajar
$ORACLE_HOME/jdocfib/inls_charsetl1 jar
$ORACLE_HOMEfjibjndijar
$ORACLE_HOME/ib/classes11.zip
$ORACLE HOME/ibxmiparserv2 jar
$ORACLE_HOME/ibixschema.jar
$ORACLE HOME/rdbmsiji/agapilljar
$ORACLE_HOME/rdbmsijibjmscommon jar
$ORACLE_HOME/dbms/jib/acxmljar
$ORACLE_HOME/dbms/jibixsulljar
$ORACLE HOME/ib/serviet jar

AQ Programmatic Environments 3-11

Comparing AQ Programmatic Environments

s ForJDK 1.2.x the CLASSPATH must contain:

$ORACLE._HOME/dbclibiciasses12.jar
$ORACLE._HOME/jibftajar
$ORACLE_HOME/dbclibnls_charset12 jar
$ORACLE HOMEflibjindijar

$ORACLE HOME/ibAclasses12.zip
$ORACLE_HOME/ibxmiparsenv2.jar
$ORACLE_HOME/libixschemajar
$ORACLE_HOME/dbmsijib/acapijar
$ORACLE_HOME/rdbms/jilbjmscommon.jar
$ORACLE HOME/rdbms/jiilb/agxml jar
$ORACLE HOME/rdbms/jib/xsul2 jar
$ORACLE_HOME/ib/servietjar

Since the servlet uses JDBC OCI drivers to connect to the Oracle9i database server,
the 9i Oracle client libraries must be installed on the machine that hosts the servlet.
The LD_LIBRARY_PATHmust contain $SORACLE_HOME/lib.

Refer to Chapter 17, "Internet Access to Advanced Queuing" for more information

on Internet access to Advanced Queuing.

Comparing AQ Programmatic Environments

Available functions for the AQ programmatic environments are listed by use case in
Table 3-2 through Table 3-9. Use cases are described in Chapter 9 through

Chapter 11 andChapter 13 through Chapter 16. Refer to Chapter E, "Unified
Modeling Language Diagrams" for an explanation of use case diagrams.

AQ Administrative Interfaces

Table 3-2 lists the equivalent AQ administrative functions for three programmatic

environments, PL/SQL, Java (native AQ), and Java (JMS).

3-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-2 Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)

Create a Connection N/A N/A AQjmsFactory.getQueueC

Factory onnectionFactory
AQjmsFactory.getTopicCo
nnectionFactory

Register a Connection N/A N/A AQjmsFactory.registerCon

Factory in a LDAP server nectionFactory

Create a Queue Table DBMS_AQADM.create_ Create AQjmsSession.createQueu

Get a Queue Table
Alter a Queue Table
Drop a Queue Table
Create a Queue

Get a Queue

Create a Nonpersistent

Queue

Create a Multiconsumer
Queue/Topic

Get a Multiconsumer
Queue/Topic

Alter a Queue/Topic

queue_table

Use <schema>.<queue_
table_name>

DBMS_AQADM.alter_
queue_table

DBMS_AQADM.drop_
queue_table

DBMS_AQADM.create_
queue

Use <schema>.<queue_
name>

DBMS_AQADM.create_
np_queue

DBMS_AQADM.create_
queue

in a queue table with
multiple consumers
enabled

Use <schema>.<queue_
name>

DBMS_AQADM.alter_
queue

AQQueueTableProperty,
then

AQSession.createQueueTa
ble
AQSession.getQueueTable
AQQueueTable.alter
AQQueueTable.drop
AQSession.createQueue
AQSession.getQueue

Not supported

AQSession.createQueue

in a queue table with
multiple consumers
enabled

AQSession.getQueue

AQQueue.alterQueue

eTable

AQjmsSession.getQueueT
able

AQQueueTable.alter
AQQueueTable.drop
AQjmsSession.createQueu
e
AQjmsSession.getQueue

Not supported

AQjmsSession.createTopic

in a queue table with
multiple consumers
enabled

AQjmsSession.getTopic

AQjmsDestination.alter

AQ Programmatic Environments 3-13

Comparing AQ Programmatic Environments

Table 3-2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case

PL/SQL

Java (Native)

Java (JMS)

Start a Queue/Topic

Stop a Queue/Topic

Drop a Queue/Topic

Grant System Privileges
Revoke System Privileges
Grant a Queue/Topic

Privilege

Revoke a Queue/Topic
Privilege

Verify a Queue Type

Add a Subscriber

DBMS_AQADM.start_
queue

DBMS_AQADM.stop_
queue

DBMS_AQADM.drop_
gueue

DBMS_AQADM.grant_
system_privilege

DBMS_AQADM.revoke _
system_privilege

DBMS_AQADM.grant_
queue_privilege

DBMS_AQADM.revoke _
queue_privilege

DBMS_AQADM.verify_
gueue_types

DBMS_AQADM.add_
subscriber

AQQueue.start
AQQueue.startEnqueue
AQQueue.startDequeue
AQQueue.stop
AQQueue.stopEnqueue
AQQueue.stopDequeue
AQQueue.drop
AQQueueTable.dropQueu

e
Not supported
Not supported
AQQueue.grantQueuePri

vilege

AQQueue.revokeQueuePr
ivilege

Not supported

AQQueue.addSubscriber

3-14 Oracle9i Application Developer’s Guide - Advanced Queuing

AQjmsDestination.start

AQjmsDestination.stop

AQjmsDestination.drop

AQjmsSession.grantSyste
mPrivilege

AQjmsSession.revokeSyst
emPrivilege

AQjmsDestination.grantQ
ueuePrivilege

AQjmsDestination.grantT
opicPrivilege

AQjmsDestination.revoke
QueuePrivilege

AQjmsDestination.revoke
TopicPrivilege

Not supported

See Table 3-6,

" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases"

Comparing AQ Programmatic Environments

Table 3-2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case

PL/SQL

Java (Native)

Java (JMS)

Alter a Subscriber

Remove a Subscriber

Schedule Propagation

Enable a Propagation
Schedule

Alter a Propagation
Schedule

Disable a Propagation
Schedule

Unschedule a Propagation

Create an AQ Internet
Agent

Alter an AQ Internet
Agent

DBMS_AQADM .alter_
subscriber

DBMS_AQADM.remove_
subscriber

DBMS_
AQADM.schedule_
propagation

DBMS_AQADM.enable_
propagation_schedule

DBMS_AQADM.alter_
propagation_schedule

DBMS_AQADM.disable_
propagation_schedule

DBMS_
AQADM.unschedule_
propagation

DBMS_AQADM.create_
ag_agent

DBMS_AQADM.alter_aq_
agent

AQQueue.alterSubscriber

AQQueue.removeSubscri
ber

AQQueue.schedulePropa
gation

AQQueue.enablePropagat
ionSchedule

AQQueue.alterPropagatio
nSchedule

AQQueue.disablePropaga
tionSchedule

AQQueue.unschedulePro
pagation

not supported

not supported

See Table 3-6,

" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases”

See Table 3-6,

" Comparison of AQ
Programmatic
Environments:
Operational
Interface—Subscribing for
Messages in a
Multiconsumer
Queue/Topic,
Publish-Subscribe Model
Use Cases"

AQjmsDestination.schedu
lePropagation

AQjmsDestination.enable
PropagationSchedule

AQjmsDestination.alterPr
opagationSchedule

AQjmsDestination.disable
PropagationSchedule

AQjmsDestination.unsche
dulePropagation

not supported

not supported

AQ Programmatic Environments 3-15

Comparing AQ Programmatic Environments

Table 3-2 (Cont.) Comparison of AQ Programmatic Environments: Administrative Interface

Use Case PL/SQL Java (Native) Java (JMS)
Drop an AQ Internet DBMS_AQADM.drop_ not supported not supported
Agent aq_agent

Grant Database User DBMS_AQADM.enable_ not supported not supported
privileges to an AQ db_agent

Internet Agent

Revoke Database User DBMS_AQADM.disable_ not supported not supported
privileges from an AQ db_agent

Internet Agent

Add alias for queue, DBMS_AQADM.add_ not supported not supported

agent, ConnectionFactory alias_to_ldap
in a LDAP server

Delete alias for queue, DBMS_AQADM.del_ not supported not supported
agent, ConnectionFactory alias_from_ldap
in a LDAP server

AQ Operational Interfaces

Table 3-3 through Table 3-9 list equivalent AQ operational functions for the
programmatic environments PL/SQL, Java (native AQ), OCI, AQ XML Servlet, and
JMS, for various use cases.

3-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-3 Comparison of AQ Programmatic Environments: Operational Interface—Create Connection,

Session, Message Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Create a Connec- N/A Create JDBC OClServerAttach Openan HTTP AQjmsQueue-
tion connection connection after ConnectionFac-
authenticating tory.createQueue
with the Web Connection
server))
AQjmsTopicCon
nectionFactory.cr
eateTopicConnec
ion
Create a Session N/A AQDriverMan- OClISessionBegin An HTTP servlet QueueConnec-
ager.cre- session is tion.create-
ateAQSession automatically QueueSession
started with the . .
first SOAP TopicConnecion.
request createTopicSessi

on

AQ Programmatic Environments 3-17

Comparing AQ Programmatic Environments

Table 3-3 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Create
Connection, Session, Message Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Create a RAW Use SQL RAW AQQueue.cre- Use OCIRaw for Supply the hex
representation of
Message type for message ateMessage Message thg ossage Not supported
Set ;
payload in the
AQRaWPaonad XML message.
in message Eg.
<raw>023f452
3</raw>
Create a Mes- Use SQL ADT AQQueue.cre- Use SQL ADT For ADT queues Session.create-
sage with Struc- type for message ateMessage type for message that are not JI_\/lS TextMessage
tured Data Set ?hueeues (thatis, o sion.cre-
. y are not type .
AQObjectPaona AQ3$_JIMS_¥, the ateObjectMes-
d in message XML specified in sage
<message Session.createMa
payload> must pMessage
map to the SQL)
type of the Session.createByt
payload for the esMessage
queue table. Session.createStr
For JMS queues, €amMessage
the XML AQjmsSession.cr
specified inthe gateAdtMessage
<message_
payload> must
be one of the
following:
<jms_text_
message>,
<jms_map_
message>,
<jms_bytes
message>,
<jms_object_
message>
Create a Mes- N/A N/A N/A N/A QueueSes-
sage Producer sion.create-
Sender

TopicSession.cre
atePublisher

3-18 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-4 Comparison of AQ Programmatic Environments: Operational Interface—Enqueue Messages
to a Single-Consumer Queue, Point-to-Point Model Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Enqueue a Mes- DBMS_ AQQueue.enque LNOCIAQEnq <AQXmiSend> Queue-
sage to a sin- AQ.enqueue ue Sender.send
gle-consumer
queue
Enqueue a Mes- DBMS_ AQQueue.enque LNOCIAQENQ <AQXmISend> Not supported
sage to a queue - AQ.enqueue ue Specify OCI iIO?QLf)I’_t
R _ >
specify visibility gecify visibility Specify visibility ATTR. N odueer
options in ENQUEUE_ in VISIBILITY in Optigns> -
OPTIONS AQEnqueueOpti LNOCIAQENqO
on ptions
Enqueue a Mes- DBMS_ AQQueue.enque LNOCIAQEng <AQXmlISend> Specify priority
sage to a sin- AQ.enqueue ue Specify SDQCif)t/ and TimeToLive
gle-consumer Specifyv priori Specify priorit <priority> during Queue-
queue - specify pecify priority, - Specify priority, | Noci_ATTR_ <expiration> Sender.send OR
expiration in expiration in PRIORITY in <message
message proper- MESSAGE_ AQMessageProp | Nocl ATTR headers ~ MessagePro-
ties - priority, PROPERTIES erty EXPIRATION in ducer.setTimeTo-
expiration Live &

LNOCIAQMsgP
roperties

MessagePro-
ducer.setPriority

followed by
QueueSender.se
nd

AQ Programmatic Environments 3-19

Comparing AQ Programmatic Environments

Table 3-4 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Enqueue
Messages to a Single-Consumer Queue, Point-to-Point Model Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Enqueue a Mes- DBMS_ AQQueue.enque LNOCIAQENQ <AQXmlISend> Message.setIM-
sage to a sin- AQ.enqueue ue Specify OCI Specify SCorrelationID
gle-consumer_ Specify Specify ATTR. - <ic;‘jo>rrel;a(tjlglr;1 N Delay and
Queue - specify correlation, correlation, CORRELATION, zexcéption Y= exception queue
message proper- delay, exception_ delay, exception OCI_ATTR_ queue> in specified as
ties - correla- gueue in queue in DELAY, LNOCI_ <message provider specific
tionID, delay;, MESSAGE _ AQMessageProp ATTR_ headers message
exception queue PROPERTIES erty EXCEPTION_ properties
QUEUE in IMS
LNOCIAQMsgP —
roperties OracleDelay
IMS_
OracleExcpQ
followed by
QueueSender.se
nd
Enqueue a Mes- Not supported Not supported Not supported <AQXmlISend> Message.setInt-
sage to asin- Properties Properties Properties Spgcn‘_y <hame> - Property
gle-consumer should be part of should be partof should be partof " <int_ Message.setStrin
; value> g
Queue - specify payload payload payload <string gProperty
Message Proper- 9_
ties value> , Message.setBool
defined <long_ eanProperty etc.
(user-defined) value>, etc.in followed by
<user
prope?ties> QueueSender.se
nd
Enqueue a Mes- DBMS_ AQQueue.enque LNOCIAQENngq <AQXmISend> AQjmsQueueSen
sage to a sin- AQ.enqueue ue Specify OCI Specify der.setTransform
gle-consumer Specify Specify ATTR - <transformat ation followed
Queue - specify transformation transformation =~ TRANSFORMA fn:)dlljr::er by
Message Trans- in ENQUEUE_ in TION in bt QueueSender.se
formation OPTIONS AQDequeueOpti LNOCIAQENqO P nd
on ptions

3-20 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-5 Comparison of AQ Programmatic Environments: Operational Interface—Publish Messages to
a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Publish a Mes- DBMS_ AQQueue.enque LNOCIAQEng <AQXmIPublis TopicPub-
sage to a Multi- AQ.enqueue ue Set OCI ATTR h> lisher.publish
consumer Set recipient_list Set recipient_list RECIPIENT_
queue/Topic {5 NULL in to NULL in LIST to NULL in
(using default MESSAGE_ AQMessageProp LNOCIAQMsgP
subscription list) PROPERTIES erty roperties
Publish a Mes- DBMS_ AQQueue.enque LNOCIAQEng <AQXmlPublis AQjmsTopicPub-
sage to a Multi- AQ.enqueue ue Specify OCI h> Specify lisher.pubish
- <
consumer. Specify recipient Specify ATTR_ recipient_ Specify
/ s S - list> in S
queue Top!c. listin recipient_listin ~ RECIPIENT_ <message recipients as an
(using specific ~ MESSAGE_ AQMessageProp LIST in header> array of
recipient list) PROPERTIES erty LNOCIAQMsgP AQjmsAgent
See footnote-1 roperties
Publish a Mes- DBMS_ AQQueue.enque LNOCIAQEng <AQXmlPublis Specify priority
sageto amulti- AQ.enqueue ue Specify OCI h> Specify and TimeToLive
consumer Specify priority, Specify priority, ATTR_ - :228{:3;» ' durlr_lg Topic-
Queue/Topic - expiration in expiration in PRIORITY, in the Publisher.pub-
specify message MESSAGE_ AQMessageProp LNOCI_ATTR_ _ 0 lish OR
properties - pri- PROPERTIES erty EXPIRATION in header>g - MessagePro-
ority, expiration LNOCIAQMsgP ducer.setTimeTo-
roperties Live &

MessagePro-
ducer.setPriority
followed by

TopicPublisher.p
ublish

AQ Programmatic Environments 3-21

Comparing AQ Programmatic Environments

Table 3-5 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Publish
Messages to a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Publish a Mes- DBMS_ AQQueue.enque LNOCIAQEng <AQXmlPublis Message.setiM-
sage to amulti- AQ.enqueue ue Specify OCI h> Specify SCorrelationlD
consumer Specify Specify ATTR_ <ic;‘jo>rrelj1(tj|glr;y> Delay and
queqe/toplc - correlation, correlation, CORRELATION, zexcéption ' exception queue
specify send delay, exception_ delay, exception OCI_ATTR_ queue> in specified as
options - correla- queue in queue in DELAY, LNOCI_ <message provider specific
tionID, delay;, MESSAGE _ AQMessageProp ATTR_ headers message
exception queue PROPERTIES erty EXCEPTION_ properties
QUEUE in IMS
LNOCIAQMsgP OracleDel
roperties raciebelay
IMS_
OracleExcpQ
followed by
TopicPublisher.p
ublish
Publish a Mes- Not supported Not supported Not supported <AQXmlPublis Message.setlInt-
sage toatopic- prgnerties Properties Properties Eia?rg:gz\d Property
specify Message should be part of should be part of should be part of <int value> Message.setStrin
Properties payload payload payload <strir " gProperty
(user-defined) string_
value> Message.setBool
<long_ eanProperty etc.
value>, etc.in followed by
<user . .
prope?ties> l’gﬂlsci:’ubllsher.p
Publish a Mes- DBMS _ AQQueue.enque LNOCIAQEng <AQXmlPublis AQjmsTopicPubl
sage to atopic- AQ.enqueue ue Specify OCI h> Specify isher.setTransfor
specify Message Specify Specify ATTR - strans_format mation
Transformation transformation transformation =~ TRANSFORMA fn:)dlljr::er followed by
in ENQUEUE_in TION in options> B TopicPublisher.
OPTIONS AQDequeueOpti LNOCIAQEngO °P ub'IDi < P
on ptions

3-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-6 Comparison of AQ Programmatic Environments: Operational Interface—Subscribing for
Messages in a Multiconsumer Queue/Topic, Publish-Subscribe Model Use Cases

Use Case

PL/SQL

Java (Native

AQ)

OClI

AQ XML Servlet IMS

Add a Subscriber

Alter a Sub-
scriber

Remove a Sub-
scriber

See administra-
tive interfaces

See administra-
tive interfaces

See administra-
tive interfaces

See administra-
tive interfaces

See administra-
tive interfaces

See administra-
tive interfaces

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

TopicSession.cre-
ateDurableSub-
scriber

AQjmsSession.cr
eateDurableSubs
criber

TopicSession.cre-
ateDurableSub-
scriber

AQjmsSession.cr
eateDurableSubs
criber

using the new
selector

AQjmsSes-
sion.unsub-
scriber

AQ Programmatic Environments 3-23

Comparing AQ Programmatic Environments

Table 3-7 Comparison of AQ Programmatic Environments: Operational Interface—Browse Messages in
a Queue Use Cases

Java (Native

Use Case PL/SQL AQ) AQ XML Servlet IMS
Browse mes- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmlIReceiv QueueSes-
sages in a AQ.dequeue ue setOCl ATTR € Specify sion.create-
. — - <
Queue/Topic Set dequeue_ Set dequeue._ DEQ_MODE to mdo%qeu>e§(;_OWSE Browser
mode to mode to ; QueueBrowser.g
<
BROWSE in BROWSE in LNOCIAQDeqO :)nptigggiumer_ etEnumeration
DEQUEUE_ AQDequeueOpti
OPTIONS on Not supported
on Topics
oracle.jms.AQjm
sSession.createBr
owser
oracle.jms.Topic
Browser.getEnu
meration
Browse mes- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmIReceiv AQjmsSes-
sages ina AQ.dequeue ue Set OCI ATTR e> Specify sion.create-
i — - <
Que_ue/Toplc - Set dequeue_ Set dequeue._ DEQ_MODE to d%qufuL%CKED Browser - set
locking mes- mode to mode to _rno< e locked to TRUE.
; . . in <consumer
sages YVhI|e LOCKED in LOCKED in _ LNOCIAQDeqO options> ~ QueueBrowser.g
brOWSIng DEQUEUE_ AQDeqUeerptl etEnumeration
OPTIONS on

Not supported
on Topics

oracle.jms.AQjm
sSession.createBr
owser

oracle.jms.Topic
Browser.getEnu
meration

3-24 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-8 Comparison of AQ Programmatic Environments: Operational Interface—Receive Messages
from a Queue/Topic Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Start a connec- N/A N/A N/A N/A Connection.start
tion for receiv-
ing messages
Create a Mes- N/A N/A N/A N/A QueueSes-
sage Consumer sion.create-
QueueReceiver
TopicSession.cre
ateDurableSubsc
riber
AQjmsSession.cr
eateTopicReceive
r
Dequeue ames- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmlIReceiv Not supported
sage from a AQ.dequeue ue Specify OCI_ i\>/|sS|E?I|?fZ
queue/topic - gnedify visibility Specify visibility ATTR_ in <C0ngumer
specify visibility jn pEQUEUE_~ in VISIBILITY in o ones ™~
OPTIONS AQDequeueOpti LNOCIAQDeqO
on ptions
Dequeue ames- DBMS_ DBMS _ LNOCIAQDeq <AQXmIReceiv AQjmsQueueRe-
sage from a AQ.dequeue AQ.dequeue . e> Specify ceiver.setTrans-
. Specify OCI_ >
queue/topic- goeciny Specify ATTR <transformat formation
R — >
specify transfor- transformation transformation TRANSFORMA fgonslunmer AQjmsTopicSubs
mation in DEQUEUE_ in TION in options> criber.setTransfor
OPTIONS AQDequeueOpti LNOCIAQDeqO mation
on ptions i .
AQjmsTopicRece
iver.setTransfor
mation
Dequeue a mes- DBMS_ DBMS_ LNOCIAQDeq <AQXmIReceiv AQjmsQueueRe-
sage from a AQ.dequeue AQ.dequeue Specify OCI e> Specify ceiver.setNaviga-
queue/topic- ghecify Specify ATTR - <navigation> tionMode
- - — <
specify naviga- nayigation in navigation in NAVIGATION antigggiumer_ AQjmsTopicSubs
tion mode DEQUEUE_ AQDequeueOpti in criber.setNavigat
OPTIONS on LNOCIAQDeqO ionMode

ptions

AQjmsTopicRece
iver.setNavigatio
nMode

AQ Programmatic Environments 3-25

Comparing AQ Programmatic Environments

Table 3-8 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Receive
Messages from a Queue/Topic Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS
Dequeue a mes- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmIReceiv QueueRe-
sage from asin- AQ.dequeue ue Set OCI ATTR e> ceiver.receive or
gle consumer Set dequeue_ Set dequeue_ DEQ_MODE to QueueReceiver.r
queue mode to mode to REMOVE in eceiveNoWait or
REMOVE in REMOVE in LNOCIAQDeqO .
DEQUEUE_ AQDequeueOpti ptions Q\%m‘gg\‘i‘éﬁﬁ%
OPTIONS on ata
Dequeue a mes- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmlIReceiv Create a durable
sage from a mul- AQ.dequeue ue setOCl ATTR & Specify TopicSubscriber
ticonsumer Set dequeue Set dequeue DEQ MODEto _consumer_ on the Topic
Queue/Topic modeto modeto REMOVE and ame>1n using the sub-
(using subscrip- REMOVEand ~ REMOVEand Set OCI_ATTR_ :gﬁgﬁgfer— scription name,
tion name) Setconsumer_ Setconsumer_ CONSUMER_ then
name to name to NAME to . .

- _— P TopicSubscriber.r
subscription subscription subscription ecgii/e ch)r !
name in name in name in
DEQUEUE_ AQDequeueOpti LNOCIAQDeqO TopicSubscriber.r
OPTIONS on ptions eceiveNoWait or

AQjmsTopicSubs
criber.receiveNo
Data
Dequeue a mes- DBMS_ AQQueue.deque LNOCIAQDeq <AQXmlReceiv Create a
sage from amul- AQ.dequeue ue setocl ATTR & Specify TopicReceiveron
ticonsumer Set dequeue Set dequeue DEQ MODEto —consumer_ the Topic using
Queue/Topic modeto modeto REMOVE and 2ame> In the reciﬁlent
(using recipient REMOVEand ~ REMOVEand ~ SetOCI_ATTR_ o808 el name, then
name) Set consumer_ Set consumer_ CONSUMER _ P AQjmsSession.cr
name to name to NAME to eateTopicReceive
recipientname recipient name recipient name r
in DEQUEUE inAQDequeueO In AQj :
— A jmsTopicRece
OPTIONS ption LNOCIAQDeqO Ver receive or

ptions

AQjmsTopicRece
iver.receiveNowW
aitor

AQjmsTopicRece
iver.receiveNoDa
ta

3-26 Oracle9i Application Developer’s Guide - Advanced Queuing

Comparing AQ Programmatic Environments

Table 3-9 Comparison of AQ Programmatic Environments: Operational Interface—Register to Receive
Messages Asynchronously from a Queue/Topic Use Cases

Java (Native

Use Case OCl AQ XML Servlet IMS
Receive Not supported LNOCISubscript <AQXmIRegist Create a
messages PL/SQL callback ionRegister er> Specify QueueReceiver
Asynchronously Specify queue gueue name in on the queue,
g?lg;e?consumer Register it using nameas ida?]sc;matlon then _
queue subscription notification QueueReceiver.s
name . etMessageL.isten
mechanism in er
LNOCISubscript <notify_url>
ionEnable

Receive
messages
Asynchronously
froma
multiconsumer
queue/Topic

Not supported
PL/SQL callback

Register it using

LNOCISubscript
ionRegister

Specify
queue:OCI_
ATTR_
CONSUMER _
NAME as
subscription
name

LNOCISubscript
ionEnable

<AQXmIRegist
er> Specify
gueue name in
<destination

>, consumer in
<consumer_
name>and
notification
mechanism in
<notify_url>

Create a
TopicSubscriber
or TopicReceiver
on the topic,
then

TopicSubscriber.s
etMessageL.isten
er

TopicReceiver.set
MessageL.istener

AQ Programmatic Environments 3-27

Comparing AQ Programmatic Environments

Table 3-9 (Cont.) Comparison of AQ Programmatic Environments: Operational Interface—Register to
Receive Messages Asynchronously from a Queue/Topic Use Cases

Java (Native

Use Case PL/SQL AQ) OCl AQ XML Servlet IMS

Listen for - - - - -

messages on

multiple

Queues/Topics

Listen for DBMS_AQ.listen Not supported LNOCIAQListen Not supported Create multiple
messages on one QueueReceivers
(many) Use agent_name Use agent_name ona

single-consumer
queues

Listen for
messages on
one(many)
multiconsumer
gueues/Topics

as NULL for all
agents in agent_
list

DBMS_AQ.listen Not supported

Specify agent_
name for all
agents in agent_
list

as NULL for all
agents in agent_
list

LNOCIAQListen Not supported

Specify agent_
name for all
agents in agent_
list

QueueSession,
then

QueueSession.se
tMessageL.istene
r

Create multiple
TopicSubscribers
or
TopicReceivers
ona
TopicSession,
then

TopicSession.set
MessageL.istener

3-28 Oracle9i Application Developer’s Guide - Advanced Queuing

A

Managing AQ

This chapter discusses the following topics related to managing Advanced
Queuing:

Security

Oracle 8.1-Style Queues

Queue Table Export-Import

Oracle Enterprise Manager Support
Using Advanced Queuing with XA
Restrictions on Queue Management
Propagation Issues

Oracle 8.0-Style Queues

Managing AQ 4-1

Security

Security

Configuration information can be managed through procedures in the DBMS_
AQADMbackage. Initially, only SYSand SYSTEMave execution privilege for the
procedures in DBMS_AQADAd DBMS_AQUsers who have been granted EXECUTE
rights to these two packages will be able to create, manage, and use queues in their
own schemas. Users also need the MANAGRANYQUEUHBprivilege to create and
manage queues in other schemas.

Users of the JMS or Java AQ APIs will need EXECUTHBprivileges on DBMS_AQJMS
(also available through AQ_ADMINSTRATOR_ROlaed AQ_USER_ROLE&nNd
DBMS_AQIN

Administrator Role

User Role

The AQ_ADMINISTRATOR_ROLEas all the required privileges to administer
gueues. The privileges granted to the role let the grantee:

= Perform any queue administrative operation, including create queues and
gueue tables on any schema in the database

= Perform enqueue and dequeue operations on any queues in the database
= Access statistics views used for monitoring the queue workload

= Create transformations using DBMS_TRANSFORM

= Execute all procedures in DBMS_AQELM

= Execute all procedures in DBMS_AQJMS

You should avoid granting AQ_USER_ROLI Oracle9i and 8.1 since this role will
not provide sufficient privileges for enqueuing or dequeuing on Oracle9i or
8.1-compatible queues.

Your database administrator has the option of granting the system privileges
ENQUEURNYQUEUENd DEQUEURNYQUEUEexercising DBMS_AQADMRANT_
SYSTEM_PRIVILEGEand DBMS_AQADREVOKE_SYSTEM_PRIVILEGHirectly to
a database user, if you want the user to have this level of control. You as the
application developer give rights to a queue by granting and revoking privileges at
the object level by exercising DBMS_AQADMRANT_QUEUE_PRIVILEGEnd DBMS_
AQADMREVOKE_QUEUE_PRIVILEGE

4-2 Oracle9i Application Developer's Guide - Advanced Queuing

Oracle 8.1-Style Queues

As a database user, you do not need any explicit object-level or system-level
privileges to enqueue or dequeue to queues in your own schema other than the
execute right on DBMS_AQ

Access to AQ Object Types

All internal AQ objects are now accessible to PUBLIC.

Oracle 8.1-Style Queues

Compatibility

Security

For 8.1-style queues, the compatible parameter of init .ora and the
compatible parameter of the queue table should be set to 8.1 to use the following
features:

= Queue-level access control

= Nonpersistent queues (automatically created when queue table compatible =
8.1)

= Support for Oracle Parallel Server environments
= Rule-based subscribers for publish-subscribe

= Asynchronous notification

= Sender identification

= Separate storage of history management information

AQ administrators of an Oracle9i database can create 8.1-style queues. All 8.1
security features are enabled for 8.1-style queues. Note that AQ 8.1 security features
work only with 8.1-style queues. When you create queues, the default value of the
compatible parameter in DBMS_AQAD®REATE_QUEUE_TABLIE 8.1 .

Managing AQ 4-3

Oracle 8.1-Style Queues

Table 4-1 lists the AQ security features and privilege equivalences supported with
8.1-style queues.

Table 4-1 Security with 8.1-Style Queues

Privilege 8.1.x-Style Queues in a 8.1.x Database or Higher

AQ_USER_ROLE Not supported. Equivalent privileges:
= execute right on dbms_aq
= enqueue any queue system privilege
= dequeue any queue system privilege

= execute right on dbms_transform

AQ_ADMINISTRATOR_ Supported.

ROLE
Execute right on Execute right on DBMS_AQGhould be granted to all AQ users.
DBMS_AQ To enqueue/dequeue on 8.1-compatible queues, the user needs

the following privileges:
= execute right on DBMS_AQ

= enqueue/dequeue privileges on target queues, or
ENQUEUE ANY QUEUE/DEQUEUE ANEUEystem
privileges

Privileges and Access Control

You can grant or revoke privileges at the object level on 8.1- style queues. You can
also grant or revoke various system-level privileges. The following table lists all
common AQ operations and the privileges need to perform these operations for an
Oracle9i or 8.1-compatible queue:

Table 4-2 Operations and Required Privileges

Operation(s) Privileges Required

CREATZDROFMONITOR Must be granted execute rights on DBMS_AQADMIo other
own queues privileges needed.

CREATEZDROFMONITOR Must be granted execute rights on DBMS_AQAD#hd be
any queues granted AQ_ADMINISTRATOR_ROLEy another user who

has been granted this role (SYSand SYSTEMare the first
granters of AQ_ADMINISTRATOR_ROLE)

ENQUEUEDEQUEUE to Must be granted execute rights on DBMS_AQNo other
own queues privileges needed.

4-4 Oracle9i Application Developer's Guide - Advanced Queuing

Queue Table Export-Import

Table 4-2 Operations and Required Privileges

Operation(s) Privileges Required

ENQUEUEDEQUEUE to Must be granted execute rights on DBMS_AQnd be granted

another’'s queues privileges by the owner using DBMS_AQADBRANT_QUEUE_
PRIVILEGE.

ENQUEUEDEQUEUE to Must be granted execute rights on DBMS_AQnd be granted

any queues ENQUEURNYQUEUBr DEQUEURNYQUEUEystem
privileges by an AQ administrator using DBMS_
AQADMSRANT_SYSTEM_PRIVILEGE

LNOCI Applications

For an OCI application to access an 8.1-style queue, the session user has to be
granted either the object privilege of the queue he intends to access or the ENQUEUE
ANY QUEURBr DEQUEUE ANY QUEBNstem privileges. The EXECUTHRight of
DBMS_AQuill not be checked against the session user’s rights if the queue he
intends to access is an Oracle9i or 8.1-compatible queue.

Security Required for Propagation

AQ propagates messages through database links. The propagation driver dequeues
from the source queue as owner of the source queue; hence, no explicit access rights
have to be granted on the source queue. At the destination, the login user in the
database link should either be granted ENQUEURNYQUEUHBprivilege or be granted
the rights to enqueue to the destination queue. However, if the login user in the
database link also owns the queue tables at the destination, no explicit AQ
privileges need to be granted.

Queue Table Export-Import

When a queue table is exported, the queue table data and anonymous blocks of
PL/SQL code are written to the export dump file. When a queue table is imported,
the import utility executes these PL/SQL anonymous blocks to write the metadata
to the data dictionary.

Exporting Queue Table Data

The export of queues entails the export of the underlying queue tables and related
dictionary tables. Export of queues can only be done at queue-table granularity.

Managing AQ 4-5

Queue Table Export-Import

Exporting Queue Tables with Multiple Recipients

A queue table that supports multiple recipients is associated with the following
tables:

s A dequeue index-organized table (10T)

s Atime-management index-organized table

s A subscriber table (for 8.1-compatible queue tables)

s A history index-organized table (for 8.1-compatible queue tables)

These tables are exported automatically during full database mode and user mode
exports, but not during table mode export. See "Export Modes" on page 4-6.

Because the metadata tables contain rowids of some rows in the queue table, the
import process will generate a note about the rowids being obsoleted when
importing the metadata tables. This message can be ignored, since the queuing
system will automatically correct the obsolete rowids as a part of the import
operation. However, if another problem is encountered while doing the import
(such as running out of rollback segment space), you should correct the problem
and repeat the import.

Export Modes

Exporting operates in full database mode, user mode, and table mode, as follows.
Incremental exports on queue tables are not supported.

= Full database mode—Queue tables, all related tables, system-level grants, and
primary and secondary object grants are exported automatically.

= User mode—Queue tables, all related tables, and primary object grants are
exported automatically.

= Table mode—This mode is not recommended. If you need to export a queue
table in table mode, you must export all related objects that belong to that
gueue table. For example, when exporting an 8.1-compatible multiconsumer
gueue table MCQyou must also export the following tables:

AQ$ <queue_table> | (the dequeue IOT)

AQ$ <queue_table> T (the time-management 10T)
AQ$ <queue _table> S (the subscriber table)

AQ3$ <queue table> H (the history 10T)

4-6 Oracle9i Application Developer's Guide - Advanced Queuing

Creating AQ Administrators and Users

Importing Queue Table Data

Similar to exporting queues, importing queues entails importing the underlying
gueue tables and related dictionary data. After the queue table data is imported, the
import utility executes the PL/SQL anonymous blocks in the dump file to write the
metadata to the data dictionary.

Importing Queue Tables with Multiple Recipients

A queue table that supports multiple recipients is associated with the following
tables:

= Adequeue IOT

= Atime-management IOT

= A subscriber table (for 8.1-compatible queue tables)

= Anhistory IOT (for 8.1-compatible queue tables)

These tables must be imported as well as the queue table itself.

Import IGNORE Parameter

You should not import queue data into a queue table that already contains data. The
IGNOREparameter of the import utility should always be set to NOwhen importing
gueue tables. If the IGNOREparameter is set to YES and the queue table that
already exists is compatible with the table definition in the dump file, then the rows
will be loaded from the dump file into the existing table. At the same time, the old
gueue table definition and the old queue definition will be dropped and re-created.
Hence, queue table and queue definitions prior to the import will be lost, and
duplicate rows will appear in the queue table.

Creating AQ Administrators and Users

Creating a User as an AQ Administrator
To set a user up as an AQ administrator, do the following:

CONNECT system/manager

CREATE USER agadm IDENTIFIED BY agadm;
GRANT AQ_ADMINISTRATOR ROLE TO agadm;
GRANT CONNECT, RESOURCE TO agadm;

Additionally, you can grant execute privilege on the AQ packages as follows:

Managing AQ 4-7

Oracle Enterprise Manager Support

GRANT EXECUTE ON DBMS_AQADM TO agadm;
GRANT EXECUTE ON DBMS_AQ TO agadm;

This allows the user to execute the procedures in the AQ packages from within a
user procedure.

Creating Users AQUSER1 and AQUSER?2

If you want to create AQ users who create and access queues within their own
schemas, follow the steps outlined in "Creating a User as an AQ Administrator"
except do not grant the AQ_ADMINISTRATOR_ROLE

CONNECT system/manager
CREATE USER aquserl IDENTIFIED BY aquserl;
GRANT CONNECT, RESOURCE TO aquserl,;

Additionally, you can grant execute privilege on the AQ packages as follows:
GRANT EXECUTE ON DBMS_AQADM to aquserl;
GRANT EXECUTE ON DBMS_AQ TO aguserl;

If you wish to create an AQ user who does not create queues but uses a queue in
another schema, first follow the steps outlined in the previous section. In addition,
you must grant object level privileges. However, note that this applies only to
gueues defined using 8.1 compatible queue tables.

CONNECT system/manager

CREATE USER aquser2 IDENTIFIED BY aquser2;

GRANT CONNECT, RESOURCE TO aquserz;

Additionally, you can grant execute on the AQ packages as follows:

GRANT EXECUTE ON DBMS_AQADM to aquser2;

GRANT EXECUTE ON DBMS _AQ TO aguser;

For aquser2 to access the queue, aquserl_gl inaquserl schema, aguserl
must execute the following statements:

CONNECT aguserl/aquserl
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE(
'ENQUEUEaquserl._g1',aquser2,FALSE);

Oracle Enterprise Manager Support

Oracle Enterprise Manager supports most of the administrative functions of
Advanced Queuing. AQ functions are found under the Distributed node in the nav-

4-8 Oracle9i Application Developer's Guide - Advanced Queuing

Restrictions on Queue Management

igation tree of the Enterprise Manager console. Functions available through Enter-
prise Manager include:

s Using queues as part of the schema manager to view properties
s Creating, starting, stopping, and dropping queues

s Scheduling and unscheduling propagation

s Adding and removing subscribers

s Viewing propagation schedules for all queues in the database

s Viewing errors for all queues in the database

= Viewing the message queue

= Granting and revoking privileges

= Creating, modifying, or removing transformations

Using Advanced Queuing with XA

You must specify "Objects=T" in the xa_open string if you want to use the AQ OCI
interface. This forces XA to initialize the client-side cache in Objects mode. You do
not need to do this if you plan to use AQ through PL/SQL wrappers from OCI or
Pro*C. The LOB memory management concepts from the Pro* documentation are
not relevant for AQ raw messages because AQ provides a simple RAW buffer
abstraction (although they are stored as LOBSs).

When using the AQ navigation option, you must reset the dequeue position by
using the FIRST_MESSAGHf you want to continue dequeuing between services
(such as xa_start and xa_end boundaries). This is because XA cancels the cursor
fetch state after an xa_end . If you do not reset, you will get an error message
stating that the navigation is used out of sequence (ORA-25237).

Restrictions on Queue Management
See the following topics for restrictions on queue management:
= Collection Types in Message Payloads
= Synonyms on Queue Tables and Queues
= Tablespace Point-in-Time Recovery

= Nonpersistent Queues

Managing AQ 4-9

Restrictions on Queue Management

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.

Collection Types in Message Payloads

You cannot construct a message payload using a VARRAY that is not itself
contained within an object. You also cannot currently use a NESTED Table even as
an embedded object within a message payload. However, you can create an object
type that contains one or more VARRAYS, and create a queue table that is founded
on this object type.

For example, the following operations are allowed:

CREATE TYPE number_varay AS VARRAY(32) OF NUMBER,;
CREATE TYPE embedded varray AS OBJECT (coll number_varray);
EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(

queue_table = ‘QT,

queue_payload type = ‘'embedded _varray);

Synonyms on Queue Tables and Queues

All AQ PL/SQL calls do not resolve synonyms on queues and queue tables.
Although you can create a synonyms, you should not apply the synonym to the AQ
interface.

Tablespace Point-in-Time Recovery

AQ currently does not support tablespace point-in-time recovery. Creating a queue
table in a tablespace will disable that particular tablespace for point-in-time
recovery.

Nonpersistent Queues

Currently you can create nonpersistent queues of RAWANd ADTtype.You are limited
to sending messages only to subscribers and explicitly specified recipients who are
local. Propagation is not supported from nonpersistent queues. When retrieving
messages, you cannot use the dequeue call, but must instead employ the
asynchronous notification mechanism, registering for the notification by mean of
LNOCISubcriptionRegister

4-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Issues

Propagation Issues

Propagation makes use of the system queue ag$_prop_notify_X , Where Xis the
instance number of the instance where the source queue of a schedule resides, for
handling propagation run-time events. Messages in this queue are stored in the
system table ag$_prop_table_X, where X is the instance number of the instance
where the source queue of a schedule resides.

Caution: The queue aq$_prop_notify_X should never be
stopped or dropped and the table aq$_prop_table_X should
never be dropped for propagation to work correctly.

Execute Privileges Required for Propagation

Propagation jobs are owned by SYS, but the propagation occurs in the security
context of the queue table owner. Previously propagation jobs were owned by the
user scheduling propagation, and propagation occurred in the security context of
the user setting up the propagation schedule. The queue table owner must be
granted EXECUTHprivileges on the DBMS_AQADhckage. Otherwise, the Oracle
snapshot processes will not propagate and generate trace files with the error
identifier SYS.DBMS_AQADNbt defined. Private database links owned by the queue
table owner can be used for propagation. The user name specified in the connection
string must have EXECUTEaccess on the DBMS_AQ@nd DBMS_AQADphckages on
the remote database.

The Number of Job Queue Processes

The scheduling algorithm places the restriction that at least two job queue processes
be available for propagation. If there are nonpropagation-related jobs, then more job
gueue processes are needed. If heavily loaded conditions (a large number of active
schedules, all of which have messages to be propagated) are expected, you should
start a larger number of job queue processes and keep in mind the need for
nonpropagation jobs as well. In a system that only has propagation jobs, two job
gueue processes can handle all schedules. However, with more job queue processes,
messages are propagated faster. Since one job queue process can propagate
messages from multiple schedules, it is not necessary to have the number of job
gueue processes equal to the number of schedules.

Managing AQ 4-11

Propagation Issues

Optimizing Propagation
In setting the number of JOB_QUEUE_PROCESSE®BAS should be aware that this
number is determined by the number of queues from which the messages have to
be propagated and the number of destinations (rather than queues) to which
messages have to be propagated.

A scheduling algorithm handles propagation. The algorithm optimizes available job
gueue processes and minimizes the time it takes for a message to show up at a
destination after it has been enqueued into the source queue, thereby providing
near-OLTP behavior. The algorithm can handle an unlimited number of schedules
and various types of failures. While propagation tries to make the optimal use of the
available job queue processes, the number of job queue processes to be started also
depends on the existence of nonpropagation-related jobs such as replication jobs.
Hence, it is important to use the following guidelines to get the best results from the
scheduling algorithm.

The scheduling algorithm uses the job queue processes as follows (for this
discussion, an active schedule is one that has a valid current window):

= If the number of active schedules is less than half the number of job queue
processes, the number of job queue processes acquired corresponds to the
number of active schedules.

= If the number of active schedules is more than half the number of job queue
processes, after acquiring half the number of job queue processes, multiple
active schedules are assigned to an acquired job queue process.

= If the system is overloaded (all schedules are busy propagating), depending on
availability, additional job queue processes will be acquired up to one less than
the total number of job queue processes.

= If none of the active schedules handled by a process has messages to be
propagated, then that job queue process will be released.

= The algorithm performs automatic load balancing by transferring schedules
from a heavily loaded process to a lightly load process such that no process is
excessively loaded.

Handling Failures in Propagation

The scheduling algorithm also has robust support for handling failures. It may not
be able to propagate messages from a queue due to various types of failures. Some
of the common reasons include failure of the database link, non-availability of the
remote database, non-existence of the remote queue, remote queue not started and
security violation while trying to enqueue messages into the remote queue. Under

4-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Issues

all these circumstances the appropriate error messages will be reported in the DBA _
QUEUE_SCHEDULBSew. When an error occurs in a schedule, propagation of
messages in that schedule is attempted periodically using an exponential backoff
algorithm for a maximum of 16 times, after which the schedule is disabled. If the
problem causing the error is fixed and the schedule is enabled, the error fields that
indicate the last error date, time, and message will still continue to show the error
information. These fields are reset only when messages are successfully propagated
in that schedule. During the later stages of the exponential backoff, many hours or
even days can elapse between propagation attempts. This happens when an error
has been neglected for a long time. Under such circumstances it may be better to
unschedule the propagation and schedule it again.

Propagation from Object Queues

Note that AQ does not support propagation from object queues that have BFILE or
REF attributes in the payload.

Guidelines for Debugging AQ Propagation Problems

This discussion assumes that you have created queue tables and queues in source
and target databases and defined a database link for the destination database. The
notation assumes that you will supply the actual name of the entity (without the
brackets).

To begin debugging, do the following:
1. Turn on propagation tracing at the highest level using event 24040, level 10.

Debugging information will be logged to job queue trace files as propagation
takes place. You can check the trace file for errors and for statements indicating
that messages have been sent.

2. Check the database link to database 2.
You can do this by doing select count(*) from @.

3. Check that the propagation schedule has been created and that a job queue
process has been assigned.

Look for the entry in dba_queue_schedules and aq$_schedules . Check
that it has a 'jobno 'in ag$_schedules , and that there is an entry in job$ or
dbms_jobs with that jobno.

4. Make sure that at least two job queue processes are running.

Managing AQ 4-13

Oracle 8.0-Style Queues

Check for messages in the source queue with select count(*) from where
g_hame = '<queue_name>',

Check for messages in the destination queue with the same kind of select
Check to see who is using job queue processes.

Is it possible that the propagation job is being starved of processing time by
other jobs?

Check to see that sys.aq$_prop_table _existsin dba_queue_tables and
that queue ag$_prop_notify exists in dba_queues (used for
communication between job queue processes).

Check that the consumer attempting to dequeue a message from the destination
gueue is a recipient of the propagated messages.

For 8.1-style queues, you can do the following:

select consumer_name, deq txn id, deq_time, deq user id,

propagated msgid from ag$
where queue = '<queue_name>'

For 8.0-style queues, you can obtain the same information from the history
column of the queue table:

select h.consumer, hitransaction id, h.deq_time, h.deq_user,
h.propagated msgid from t, table(thistory) h
where tg_name = '<queue_name>'

or

select consumer, transaction id, deq_time, deq user,
propagated_msgid from

the(select cast(history as sys.ag$_dequeue_history f)
from where g _name = '<queue_name>);

Oracle 8.0-Style Queues

If you use 8.0-style queues and 8.1 or higher database compatibility, the following
features are not available:

Support for Oracle Parallel Server environments

Asynchronous notification

To use these features, you should migrate to 8.1-style or higher queues.

4-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle 8.0-Style Queues

For more information, see:
= "Security Required for Propagation” on page 4-5
= Oracle9i Database Migration

Migrating To and From 8.0

To upgrade a 8.0-style queue table to an 8.1-style queue table or to downgrade a
8.1-style queue table to an 8.0-style queue table, use DBMS_AQADM.MIGRATE_
QUEUE_TABLETable 4-3 lists the parameters for DBMS_AQADM.MIGRATE_QUEUE _

TABLE

Syntax

DBMS_AQADM.MIGRATE_QUEUE_TABLE(
queue_table IN VARCHAR?2,
compatible IN VARCHAR?2)

Table 4-3 DBMS_AQADM_MIGRATE_QUEUE_TABLE Parameters

Parameter Description

queue_table Specifies name of the queue table that is to be migrated.

(IN VARCHAR?2)

compatible Setto 8.1 to upgrade an 8.0 queue table to 8.1 compatibility. Set to 8.0 to

downgrade an 8.1 queue table to 8.0 compatibility.

Example: Upgrading an 8.0 Queue Table to an 8.1-Compatible Queue
Table

Note: You may need to set up the following data structures for
certain examples to work:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table => 'qtablel’,
multiple_consumers => TRUE,
queue_payload_type => 'ag.message_typ’,
compatible =>'8.0");

EXECUTE DBMS_AQADMMIGRATE_QUEUE_TABLE(

Managing AQ 4-15

Oracle 8.0-Style Queues

queue_table => ‘gtablel’,
compatble => '81);

Importing and Exporting with 8.0-Style Queues

Rolesin 8.0

Because the metadata tables contain rowids of some rows in the queue table, the
import and export processes will generate a note about the rowids being obsoleted
when importing the metadata tables. This message can be ignored, since the
gueuing system will automatically correct the obsolete rowids as a part of the
import operation. However, if another problem is encountered while doing the
import or export (such as running out of rollback segment space), you should
correct the problem and repeat the import or export.

Access to AQ operations in Oracle 8.0 is granted to users through roles that provide
execution privileges on the AQ procedures. The fact that there is no control at the
database object level when using Oracle 8.0 means that, in Oracle 8.0, a user with
the AQ_USER_ROLEan enqueue and dequeue to any queue in the system. For
finer-grained access control, use 8.1-style queue tables in an 8.1- compatible or
higher database.

AQ administrators of an Oracle9i or 8.1 database can create queues with 8.0
compatibility; 8.0-style queues are protected by the 8.0-compatible security features.

If you want to use 8.1 security features on a queue originally created in an 8.0
database, the queue table must be converted to 8.1 style by running DBMS _
AQADMIIGRATE_QUEUE_TABL®&N the queue table.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information on DBMS_AQADMIGRATE_QUEUE_TABLE

If a database downgrade is necessary, all 8.1-style queue tables have to be either
converted back to 8.0 compatibility or dropped before the database downgrade can
be carried out. During the conversion, all Oracle9i or 8.1 security features on the
gueues, like the object privileges, will be dropped. When a queue is converted to 8.0
compatibility, the 8.0 security model applies to the queue, and only 8.0 security
features are supported.

4-16 Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle 8.0-Style Queues

Security with 8.0-Style Queues

Table 4-4 lists the AQ security features and privilege equivalences supported with
8.0-style queues.

Table 4-4 Security with 8.0.x-Style Queues

8.0.x-Style Queues in an 8.0.x 8.0.x Compatible Queues in a 8.1.x

Privilege Database Database

AQ_USER_ROLE Supported. The grantee is given the Supported. The grantee is given the
execute right of DBMS_AQhrough the execute right of dbms_aq through the
role. role.

AQ_ADMINISTRATOR_ Supported. Supported.

ROLE

Execute right on Execute right on DBMS_AQGhould be Execute right on DBMS_AQGhould be

DBMS_AQ granted to developers who write AQ granted to developers who write AQ
applications in PL/SQL. applications in PL/SQL.

Access to AQ Object Types

The procedure grant_type_access was made obsolete in release 8.1.5 for
8.0-style queues.

LNOCI Application Access to 8.0-Style Queues

For an OCI application to access an 8.0-style queue, the session user has to be
granted the EXECUTFRights of DBMS_AQ

Pluggable Tablespaces and 8.0-Style Multiconsumer Queues

A tablespace that contains 8.0-style multiconsumer queue tables should not be
transported using the pluggable tablespace mechanism. The mechanism will work,
however, with tablespaces that contain only single-consumer queues as well as 8.1
compatible multiconsumer queues. Before you can export a tablespace in pluggable
mode, you have to alter the tablespace to read-only mode. If you try to import a
read-only tablespace that contains 8.0-style multiconsumer queues, you will get an
Oracle error indicating that you cannot update the queue table index at import time.

Autocommit Features in the DBMS_AQADM Package

The autocommit parameters in the CREATE_QUEUE_TABLBROP_QUEUE_TABLE
CREATE_QUEUBROP_QUEUENd ALTER_QUEUEalls of the DBMS_AQADM

Managing AQ 4-17

Oracle 8.0-Style Queues

package are deprecated for 8.1.5 and subsequent releases. Oracle continues to
support this parameter in the interface for backward compatibility.

4-18 Oracle9i Application Developer’s Guide - Advanced Queuing

D

Performance and Scalability

This chapter discusses the following topics:
= Performance Overview
= Basic Tuning Tips

= Propagation Tuning Tips

Performance and Scalability 5-1

Performance Overview

Performance Overview

Queues are stored in database tables. The performance characteristics of queue
operations are similar to underlying database operations. The code path of an
enqueue operation is comparable to SELECTand INSERT into a multicolumn queue
table with three 10Ts. The code path of a dequeue operation is comparable to
SELECT, DELETE, and UPDATEoperations on similar tables.

Advanced Queuing in the Oracle Real Application Clusters Environment

Oracle Real Application Clusters can be used to ensure highly available access to
gueue data. The tail and the head of a queue can be extreme hot spots. Since Oracle
Real Application Clusters may not scale well in the presence of hot spots, limit
normal access to a queue from one instance only. If an instance failure occurs,
messages managed by the failed instance can be processed immediately by one of
the surviving instances.

Advanced Queuing in a Shared Server Environment

Queue operation scalability is similar to the underlying database operation
scalability. If a dequeue operation with wait option is issued in a shared server
environment, the shared server process will be dedicated to the dequeue operation
for the duration of the call, including the wait time. The presence of many such
processes can cause severe performance and scalability problems and can result in
deadlocking the shared server processes. For this reason, it is recommended that
dequeue requests with wait option be issued using dedicated server processes. This
restriction is not enforced.

Basic Tuning Tips

Advanced Queuing table layout should be considered similar to a layout with
ordinary database tables and indexes.

See Also: Oracle9i Database Performance Tuning Guide and Reference
for tuning recommendations

Running Enqueue and Dequeue Processes Concurrently—Single Queue Table

Some environments need to process messages in a constant flow, thus requiring that
both enqueue and dequeue processes run concurrently. If the message delivery
system has only one queue table and one queue, all processes must work on the

5-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Propagation Tuning Tips

same segment area at the same time, which impedes delivering a high number of
messages at reasonable performance levels.

The best number for concurrent processes must be defined according to available
system resources. For example, on a four-CPU system, it is reasonable to start with
two concurrent enqueue and two concurrent dequeue processes. If the optimal
number of messages that should be delivered through the system has not been
achieved, rather than increasing the number of processes, use several subscribers
for load balancing.

Running Enqueue and Dequeue Processes in Serial—Single Queue Table

When enqueue and dequeue processes are not running concurrently, that is,
messages are first enqueued and then dequeued, contention on the same data
segment is lower than in the case of concurrent processes. In this case, the total time
taken to deliver messages by the system is longer than when they run concurrently.
Increasing the number of processes helps both enqueuing and dequeuing. The
message throughput rate is higher for enqueuers than for dequeuers when the
number of processes is increased. Normally, the dequeue operations throughput is
much less than the enqueue operation (INSERT) throughput because dequeue
operations perform SELECT DELETE and UPDATE

Propagation Tuning Tips

Propagation can be considered a special kind of dequeue operation with an
additional INSERT at the remote (or local) queue table. Propagation from a single
schedule is not parallelized across multiple job queue processes. Rather, they are
load balanced. For better scalability, configure the number of propagation schedules
according to the available system resources (CPUs).

Propagation rates from transactional and nontransactional (default) queue tables
vary to some extent because Oracle determines the batching size for
nontransactional queues, whereas for transactional queues, batch size is mainly
determined by the user application.

Performance and Scalability 5-3

Propagation Tuning Tips

5-4 Oracle9i Application Developer’s Guide - Advanced Queuing

6

Frequently Asked Questions

This section answers some of the most commonly asked questions about Advanced
Queuing. This chapter discusses questions in the following areas:

General Questions
JMS Questions
Internet Access Questions

Oracle Internet Directory Questions—Global Agents, Global Events, and Global
Queues

Transformation Questions
Performance Questions

Installation Questions

General Questions

How are messages that have been dequeued but are still retained in the
gueue table accessed?

Access messages using SQL. Messages in the queue table (either because they are
being retained or because they have not yet been processed). Each queue has a view
that you can use (see "Selecting the Number of Messages in Different States for the
Whole Database" on page 10-33).

Frequently Asked Questions 6-1

General Questions

Message retention means the messages are there, but how does the
subscriber access these messages?

Typically we expect the subscriber to access the messages using the dequeue
interface. If, however, you would like to see processed or waiting messages, you can
either dequeue by message id or use SQL.

Can the sort order be changed after the queue table is created?

You cannot change the sort order for messages after you have created the queue
table.

How do | dequeue from an exception queue?

The exception queue for a multiconsumer queue must also be a multiconsumer
queue.

Expired messages in multiconsumer queues cannot be dequeued by the intended
recipients of the message. However, they can be dequeued in the REMOVE mode
once (only once) using a NULL consumer nhame in dequeue options. Messages can
also be dequeued from an exception queue by specifying the message ID.

Expired messages can be dequeued only by specifying message ID if the
multiconsumer exception queue was created in a queue table without the
compatible parameter or with the compatible parameter set to '8.0'

What does the latency parameter mean in scheduling propagation?

If a latency less than 0 was specified in the propagation schedule, the job is
rescheduled to run after the specified latency. The time at which the job actually
runs depends on other factors, such as the number of ready jobs and the number of
job_queue_processes. It may also be affected by the value for job_queue_
interval. Please refer to the MANAGING JOB QUEUES chapter of the Oracle9i
Database Administrator’s Guide for more information on job queues and SNP
background processes.

How can | control the tablespaces in which the queue tables are

created?

You can pick a tablespace for storing the queue table and all its ancillary objects

using the storage_clause parameter in DBMS_AQADM.CREATE_QUEUE_TABLE.
However, once you pick the tablespace, all I10Ts and indexes created for that queue
table will go to the specified tablespace. Currently, you do not have a choice to split
them between different tablespaces.

6-2 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Questions

How do you associate Oracle Parallel Server instance affinities with

gueue tables?

In 8.1 you can associate OPS instance affinities with queue tables. If you are using
gl and g2 in different instances, you can use alter_queue_table (or even create
gueue table) on the queue table and set the primary_instance to the appropriate
instance_id.

Can you give me some examples of a subscriber rule containing -

message properties - message data properties.

Yes, here is a simple rule that specifies message properties - rule = 'priority 1';
here are example rules that specify a combination of message properties and data
attributes: rule = 'priority 1 AND tab.userdata.sal 1000' rule =

" ((priority between 0 AND 3) OR correlation = 'BACK_ORDERS') AND
tab.userdata.customer_name like "JOHN DOE")'

Note that user data properties or attributes apply only to object payloads and must
be prefixed with tab.userdata in all cases. Check documentation for more examples.

Is registration for notification (OCI) the same as starting a listener?

No. Registration is an OCI client call to be used for asynchronous notifications (that
is, push). It provides a notification from the server to the client when a message is
available for dequeue. A client side function (callback) is invoked by the server
when the message is available. Registration for notification is both nonblocking and
nonpolling.

What is the use of non-persistent queues?

To provide a mechanism for notification to all users that are currently connected.
The non-persistent queue mechanism supports the enqueue of a message to a
non-persistent queue and OCI notifications are used to deliver such messages to
users that are currently registered for notification.

Is there a limit on the length of a recipient list? Or on the number of
subscribers for a particular queue?
Yes, 1024 subscribers or recipients for any queue.

How can I clean out a queue with UNDELIVERABLE messages?

You can dequeue these messages by msgid. You can find the msgid by querying
the queue table view. Eventually the messages are moved to the exception queue

Frequently Asked Questions 6-3

General Questions

(you must have the AQ background process running for this to happen). You can
dequeue these messages from the exception queue with a normal dequeue.

Is it possible to update the message payload after it has been
enqueued?

Only by dequeuing and enqueuing the message again. If you are changing the
message payload, it is a different message.

Can asynchronous notification be used to invoke an executable every

time there is a new message?

Notification is possible only to OCI clients. The client does not have to be connected
to the database to receive notifications. The client specifies a callback function
which will be executed for each message. Asynchronous Notification cannot be
used to invoke an executable, but it is possible for the callback function to invoke a
stored procedure.

Does propagation work from multiconsumer queues to single-consumer
gueues and vice versa?

Propagation from a multiconsumer queue to a single consumer queue is possible.
The reverse is not possible (propagation is not possible from a single consumer
gueue).

Why do | sometimes get ORA-1555 error on dequeue?

You are probably using the NEXT_MESSAGHRavigation option for dequeue. This
uses the snapshot created during the first dequeue call. After that the other dequeue
calls generate more undo which fills up the rollback segment and hence generates
1555.

The workaround is to use the FIRST_MESSAGHption to dequeue the message.
This will reexecute the cursor and get a new snapshot. This might not perform as
well, so we suggest you dequeue them in batches: FIRST _MESSAGHor one, and
NEXT_MESSAGfor the next, say, 1000 messages, and then FIRST_MESSAGEgain,
and so on.

What are the different subscriber types recorded on the subscriber
table?

The subscriber_types and their values are;

1 - Current Subscriber. The subscribers name, address and protocol are in the same
row.

6-4 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Questions

2 - Ex subscriber - A subscriber that unsubscribed but had agent entries in the
history aq$_queuetable_h [OT.

4 - Address - Used to store addresses of recipients. The name is always NULL. The
address is always non-NULL.

8 - Proxy for Propagation - The name is always NULL.
database proxy to local queues, address=NULL, protocol=0
database proxy to remote queues, address=dblink address, protocol=0

3rd party proxies, address = NULL, protocol = 3rd party protocol.

After a message has been moved to an exception queue, is there a way,
using SQL or otherwise, of identifying which queue the message
resided in before moving to the exception queue?

No, AQ does not provide this information. To get around this, the application could
save this information in the message.

What is the order in which messages are dequeued if many messages
are enqueued in the same second?

When the enq_time is the same for messages, there is another field called step_no
that will be monotonically increasing (for each message that has the same enq_
time). Hence this helps in maintaining the order of the messages. There will be no
situation when both enqg_time and step_no are the same for more than one
message enqueued from the same session.

What happened to OMB? When should we use AQ and when should we
use Oracle MessageBroker?

In Oracle9i, OMB functionality is provided in the Oracle database. So, if you are
using the Oracle9i database, use the functionality offered by the database.

You do not need OMB.

With Oracle8i, use OMB in the following scenarios:
= Tointegrate with MQ Series

= Touse HTTP framework

Use JMS functionality directly from the database in other scenarios.

Frequently Asked Questions 6-5

Messaging Gateway Questions

Can | use AQ with Virtual Private Database?

Yes, you can specify a security policy with AQ queue tables. While dequeuing, use
the dequeue condition (deq_cond) or the correlation ID for the policy to be
applied. You can use "1=1" as the dequeue condition. If you do not use a dequeue
condition or correlation 1D, the dequeue will result in an error.

How do | clean up my retained messages?

The Advanced Queuing retention feature can be used to automatically clean up
messages after the user-specified duration after consumption.

| have an application in which | inserted the messages for the wrong
subscriber. How do | clean up those messages?

You can do a dequeue with the subscriber name or by message ID. This consumes
the messages, which will be cleaned up after their retention time expires.

I’'m running propagation between multiple Oracle databases. For some
reason, one of the destination databases has gone down for an

extended duration. How do | clean up messages for that destination?

To clean up messages for a particular subscriber, you can remove the subscriber and

add the subscriber again. Removing the subscriber removes all the messages for
that subscriber.

Messaging Gateway Questions

Where is the Messaging Gateway log file?

By default, the Messaging Gateway log file is in the $ORACLE_HOME/mgw/log
directory. The location can be overridden by the log_directory parameter of the
mgw.ora file. A new log file is created each time the MGW agent starts. The format
of the log file name is "oramgw-hostname-timestamp-processid.log"

How do | interpret exception messages in a Messaging Gateway log file?
The exception messages logged to the MGW log file may include one or more
linked exceptions ([Linked-exception]), which are helpful in determining the
problem. A java.sql.SQLException may include an Oracle error message and
possibly a PL/SQL stack trace.

The following example shows entries from a MGW log file when an invalid value
(‘bad_service_name’) was specified for the database parameter of dbms_

6-6 Oracle9/ Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions

mgwadm.db_connect_info . This resulted in the MGW agent being unable to
establish database connections.

>>2002-01-15 154512 MGW AdminMgr 0 LOG

Connecting to database using connect string = jdbc:oracle:oci8:@BAD_SERVICE_NAME
>>2002-01-15 154515 MGW Engine 0 3

Agent is shutdown.

oracle.mgw.admin.MgwAdminException: [241] Faied to connect to database. SQL
error: 12154, connect string: jdbc:oracle:oci8:@BAD_SERVICE_NAME

[...Java stack trace here...]

[Linked-exception]
java.sgl.SQLException: ORA-12154: TNS:could not resolve service name
[...Java stack trace here...]

How do | know if the Messaging Gateway agent is running?

Use the MGW_GATEWAiéw to show gateway status information. The AGENT _
STATUSand AGENT_PINGfields indicate the current agent status and whether it is
active and responsive to pings. AGENT_STATU®rogresses through the following
values when the MGW agent is started:

1. NOT_STARTED
2. START_SCHEDULED
3. STARTING

4. INITIALIZING

5. RUNNING

Will the Messaging Gateway agent automatically restart if the database

shuts down or crashes while the agent is running?

The MGW agent may or may not automatically restart after a database shutdown or
crash. The MGW agent should always be shut down before shutting down the
database. If the MGW agent is running when a database SHUTDOWN NORMS#L
done, the database will not shut down due to the database connections held by the
MGW agent. For IMMEDIATE or ABORTthe agent will not restart if the agent has
time to exit normally; otherwise the agent will restart the next time the database is
started.

Frequently Asked Questions 6-7

Messaging Gateway Questions

Why does the database not shut down when the Messaging Gateway

agent is running?

The MGW agent establishes connections with the database and those connections
prevent the database from shutting down fora SHUTDOWN NORMAMmMand. Call
dbms_mgwadm.shutdown to shut down the MGW agent before shutting down the
database.

Why does MGW__GATEWAY view always show an AGENT_STATUS of
START_SCHEDULED?

Messaging Gateway uses job queues in the Oracle database to start the MGW agent
process. At least one job queue process must be configured to execute queued jobs
in the background. The gateway job is scheduled to execute immediately, but will
not do so until a job queue process is available. If the gateway status remains
START_SCHEDULETfr an extended period of time, it may indicate that the
database instance has been started with no or too few job queue processes. The
Messaging Gateway holds its job queue process for the lifetime of that MGW agent
session.

You should verify that the database instances have been started, with enough job
gueue processes so one is available for use by Messaging Gateway. A minimum
value of 2 is recommended.

init.ora parameters:
JOB_QUEUE_PROCESSERecifies the number of job queue processes for each
instance.

Dynamic parameters:
ALTER SYSTEM SET JOB_QUEUE_PROCESSES = <number>;

After starting the Messaging Gateway agent, why does the MGW_
GATEWAY view show an AGENT_STATUS of NOT_STARTED?

The MGW_GATEWKMW provides status information about the gateway agent. A
NOT_STARTEDBtatus indicates that the agent is not running. If the MGW agent
encounters a fatal error while starting or running, the LAST_ERROR_MSf&ld is
nonnull.

Do the following:

1. Check if a MGW log file has been generated and whether it indicates any errors.
If a log file is not present, the gateway agent process was probably not started.

2. Verify that the listener has been started.

6-8 Oracle9/ Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions

Verify that the values specified in thsnames.ora and listener.ora are
correct. Incorrect or mismatched values will prevent the listener from starting
the MGW agent. process.

Verify that the values specified in mgw.ora are correct. Incorrect values may
cause the MGW agent to terminate due to abnormal error conditions.

Correct the problem indicated by the error and start the MGW agent.

What if the MGW_GATEWAY view shows LAST_ERROR_MSG of "ORA-28575:
unable to open RPC connection to external procedure agent?"

Verify that the listener has been started. If listener.ora has been modified,
the listener must be stopped and restarted before the changes will take effect.

tnsnames.ora must have a net service name entry named MGW_AGENThis
entry is not needed for Messaging Gateway on Windows NT.

The SID value specified for CONNECT_DAT#&f the MGW_AGENiEt service
name in tnsnames.ora must match the SID_NAMEvalue of the SID_DESC
entry in listener.ora

If the MGW_AGENEt service name is set up for an IPC connection, the KEY
values for ADDRESSn tnsnames.ora and listener.ora must match.

Verify that other values in thsnames.ora or listener.ora are correct.

What if MGW_GATEWAY view shows LAST_ERROR_MSG of
"ORA-32830: result code <value> returned by Messaging Gateway
agent?"

The result code may be one of the following:

-1 ...An error occurred starting the Java Virtual Machine (JVM). Check the MGW log
file for an entry that contains one of the following lines.

= Can't create Java VM

Verify that the Java version you are using is correct. Verify that your operating
system version and patch level are sufficient for the JDK version. Verify that
you are using a reasonable value for the JVM heap size. The heap size is
specified by the max_memory parameter of doms_mgwadm.alter_agent

=« Can't find class oracle.mgw.engine.Agent
Verify that the CLASSPATHet in mgw.ora contains mgw.jar . For example:
set CLASSPATH=<ORACLE_HOME>/mgw/classes/mgw.jar

Frequently Asked Questions 6-9

Messaging Gateway Questions

-2 ...An error occurred reading mgw.ora . Verify that the file is readable.

-3 ...An error occurred creating the MGW log file. Verify that the log directory is
writeable. The default location is <ORACLE_HOME>/mgw/log

-100 ...The MGW agent JVM encountered a runtime exception or error on startup.
-101 ..The MGW agent shut down due to a fatal error. Check the MGW log file.

Why does the Messaging Gateway log file show "ORA-01034: ORACLE
not available" when attempting to start Messaging Gateway agent?

This error may indicate that the database has not been started or that the
environment used by the Messaging Gateway agent to connect to the database is
not correct.

Example 1
If the MGW log file shows the following two Oracle errors

= ORA-01034: ORACLE not available
= ORA-27101: shared memory realm does not exist

then the gateway agent is attempting to connect to the database using a local IPC
connection, but the ORACLE_SIDvalue is not correct.

A local connection is used when dbms_mgwadm.db_connect_info is called with
a NULL value for the database parameter. If a local connection is desired, the correct
ORACLE_SIDvalue must be set in the MGW agent process. This can be done by
adding the following line to mgw.ora .

set ORACLE SID = <sid value>

Note that ORACLE_SIDneed not be set if dbms_mgwadm.db_connect_info is
called with a nonnull value for the database parameter. In this case the value should
specify a net service name from tnsnames.ora

Can | use an AQ single consumer queue as a propagation source?
No, only an AQ multi-consumer queue can be used as a propagation source queue.

When is a Messaging Gateway subscriber flagged as DELETE_PENDING
removed?

An MGW subscriber will be flagged as DELETE_PENDINGvhen dbms_
mgwadm.remove_subscriber is called to remove the subscriber in a nonforced

6-10 Oracle9/ Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions

manner and either the MGW agent is not running or the agent is running but
unable to perform all necessary clean up action at that time.

The MGW agent tries to remove a DELETE_PENDINGubscriber:

1. Each time dbms_mgwadm.remove_subscriber is called and the agent is
running.

2. Each time the MGW agent is started and it finds a DELETE_PENDING
subscriber.

What is the maximum message size for AQ queues with RAW payload?

For AQ queues with RAWpayload, the MGW agent can propagate messages of
32512 bytes or less. If the message size is larger than 32512 bytes, an error occurs
when the agent attempts to enqueue or dequeue the message.

Which instance of Oracle Real Application Clusters is used for the
Messaging Gateway agent?

The DBMS_MGWADM.STARTRBcedure submits a job queue job that starts the
MGW agent external process when the job is executed. The instance and force can
be used to control the job and instance affinity. By default the job is set up so that it
can be run by any instance.

Propagation Questions

How can | control when message propagation occurs?

The MGW agent propagates messages when a propagation subscriber and schedule
are configured for the same source queue, destination queue, and propagation type.
You can control when propagation occurs by using dboms_mgwadm.enable__
propagation_schedule and dbms_mgwadm.disable_propagation_

schedule . By default, the propagation schedule is enabled when it is first created.

To create a propagation job that is initially disabled, call the following APIs in the
indicated order:

1. dbms_mgwadm.schedule_propagation
2. dbms_mgwadm.disable_propagation_schedule
3. dbms_mgwadm.add_subscriber

In release 9.2, the propagation schedule window parameters are not used.

Frequently Asked Questions 6-11

Messaging Gateway Questions

How do | tell if messages are being propagated or moved to the

exception queue?

The PROPAGATED_MSG@igld of the MGW_SUBSCRIBER&ew indicates how many
messages have been successfully propagated. The EXCEPTIONQ_MSGfeld
indicates how many messages have been moved to the exception queue. Both these
fields are reset to zero when the MGW agent is started.

When are messages moved to the propagation job exception queue?

If a MGW subscriber has been configured with an exception queue, the MGW agent
will move messages to that exception queue the first time the MGW agent
encounters a propagation failure due to a message conversion failure. A message
conversion failure is indicated by oracle.mgw.common.MessageException in
the MGW log file.

How do | recover from a message conversion failure? How do | continue
processing when oracle.mgw.common.MessageException occurs?

If a message conversion failure occurs,

oracle.mgw.common.MessageException is be logged to the MGW log file. If
this occurs, the MGW agent probably cannot propagate the message causing the
failure, and the propagation job will eventually be disabled.

If the log file indicates that the failure is due to an exception being raised in a
transformation function used for an AQ dequeue (outbound propagation) or AQ
enqueue (inbound propagation), verify that the transformation function is correct.

The MGW subscriber can be configured with a propagation exception queue. If a
message conversion failure occurs, the MGW agent moves that message to the
exception queue and then continues processing the propagation job.

How do | recover a failed propagation job?

If a propagation job runs into failures during processing, the MGW agent retries up
to 16 times in an exponential backoff scheme before disabling the job.

To recover from a failed propagation job, do the following:

1. Look at the MGW log file to determine the nature of the failure and correct the
problem. For a message conversion failure, the MGW subscriber may need to be
configured with an exception queue.

2. Call dbms_mgwadm.reset_subscriber to reset the subscriber state. The
MGW agent will attempt to recover the failed job and retry the propagation.

6-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions

Why are messages moved to the default AQ exception queue upon
propagation failures for an outbound propagation job?

The MAX_RETRIESparameter of AQ queues controls when AQ moves messages to
an AQ exception queue for a failed dequeue attempt. The default value is NULL,
which resolves to the value 5 in Oracle 9i.

If the parameter value is too small, messages in the queues can be moved into AQ
exception queues if the MGW agent keeps running into failures when processing
MGW subscribers. The AQ messages moved to AQ exception queues cause
unrecoverable failures on the associated MGW subscribers. The MAX_RETRIES
parameter for AQ queues that are used as a propagation source should be set to at
least 16, and preferably a much larger value.

Transformation Questions

How do | use transformations?

An MGW subscriber can be configured with a transformation to use during an AQ
dequeue for outbound propagation or an AQ enqueue for inbound propagation.
Do the following:

1. Create the transformation function.

2. Grant EXECUTHo the MGW agent user or to PUBLIC on the function and the
object types it references.

3. Call dbms_transform.create_transformation to register the
transformation.

4. Call dboms_mgwadm.add_subscriber to create a MGW subscriber using the
transformation, or dboms_mgwadm.alter_subscriber to alter an existing
subscriber.

The value passed in the transformation parameter for these APIs must be the
registered transformation name and not the function name.

What happens if a transformation raises an exception?

If a transformation function raises an exception, a message conversion failure occurs
and will be indicated by an oracle.mgw.common.MessageException in the MGW
log file.

Frequently Asked Questions 6-13

Messaging Gateway Questions

What transformation exceptions might | see in a Messaging Gateway log
file?

The exception messages logged to the MGW log file often include a linked
exception that provides additional information. If the linked exception is a
java.sql.SQLException, it may include an Oracle error message and possibly
a PL/SQL stack trace.

ORA-25229 is typically thrown by AQ when the transformation function raises a
PL/SQL exception or some other Oracle error occurs when attempting to use the
transformation.

Example 1

Errors occured during processing of subscriber SUB_MQ2AQ 2
oracle.mgw.common.GatewayException: [722] Message transformation failed; queue:
MGWUSER.DESTQ_SIMPLEADT, transform:

MGWUSER MGW_BASIC_MSG_TO_SIMPLEADT

[...Java stack trace here...]

[Linked-exception]

oracle.mgw.common.MessageException: [722] Message transformation falled; queue:
MGWUSER.DESTQ_SIMPLEADT, transform:

MGWUSER MGW_BASIC_MSG_TO_SIMPLEADT

[...Java stack trace here...]

[Linked-exception]

java.sgl.SQLException: ORA-25229: error on transformation of message msgid:
9749DB80C85B0BD4E03408002086745E

ORA-00604: emor occurred at recursive SQL level 1

ORA-00904: invalid column name

[...Java stack trace here...]

Possible causes of transformation exceptions include:

1. The MGW agent user may not have EXECUTHBprivilege on the transformation
function. It is not sufficient to grant EXECUTEo MGW_AGENT_ROABEd then
grant MGW_AGENT_ROLdrthe agent user. EXECUTHprivilege on the
transformation function must be granted directly to the agent user or to
PUBLIC.

2. The transformation function may not exist, even though the registered
transformation does. If the transformation function does not exist, it must be
re-created.

3. The MGW agent user may not have EXECUTHprivilege on the payload object
type for the queue indicated in the exception. It is not sufficient to grant
EXECUTEo MGW_AGENT_ROBEd then grant MGW_AGENT_ROLdrthe agent

6-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Messaging Gateway Questions

user. EXECUTHBprivilege on the object type must be granted directly to the agent
user or to PUBLIC.

Example 2

Errors occured during processing of subscriber SUB_AQ2MQ 2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT_TO_MGW_BASIC_MSG

[...Java stack trace here...]

The transformation indicated in the exception may not exist. Note that the
transformation parameter of doms_mgwadm.add_subscriber specifies the name
of the registered transformation and not the name of the transformation function.

Example 3

Errors occured during processing of subscriber SUB_AQ2MQ 2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT _TO_MGW_BASIC_MSG

[...Java stack trace here...]

[Linked-exception]
java.sgl.SQLException: “from_type" is null
[...Java stack trace here...]

The MGW agent user may not have EXECUTHBprivilege on the object type used for
the from_type of the transformation indicated in the exception. It is not sufficient
to grant EXECUTEo MGW_AGENT_ROBbEd then grant MGW_AGENT_ROLdethe
agent user. EXECUTHprivilege on the object type must be granted directly to the
agent user or to PUBLIC.

Example 4

Erors occured during processing of subscriber SUB_AQ2MQ 2
oracle.mgw.common.GatewayException: [703] Failed to retrieve information for
transformation mgwuser.SAMPLEADT _TO_MGW_BASIC_MSG

[...Java stack trace here...]

[Linked-exception]
java.sgl.SQLEXxception: "to_type" is null
[...Java stack trace here...]

The MGW agent user may not have EXECUTHBprivilege on the object type used for
the to_type of the transformation indicated in the exception. It is not sufficient to
grant EXECUTEBo MGW_AGENT_ROBEd then grant MGW_AGENT_ROLdrthe

Frequently Asked Questions 6-15

JMS Questions

agent user. EXECUTHprivilege on the object type must be granted directly to the
agent user or to PUBLIC.

JMS Questions

Why do the JMS dbms_agadm.add_subscriber and dbms_
agadm.remove_subscriber calls sometimes hang when there are
concurrent enqueues or dequeues happening on the same queue to
which these calls are issued?

Add_subscriber and remove_subscriber are administrative operations on a
gueue. Though AQ does not prevent applications from issuing administrative and
operational calls concurrently, they are executed serially. Both add_subscriber

and remove_subscriber will block until pending transactions that have
enqueued or dequeued messages commit and release the resources they hold. It is
expected that adding and removing subscribers will not be a frequent event. It will
mostly be part of the setup for the application. The behavior you observe will be
acceptable in most cases. The solution is to try to isolate the calls to add_
subscriber and remove_subscriber at the setup or cleanup phase when there
are no other operations happening on the queue. That will make sure that they will
not stay blocked waiting for operational calls to release resources.

Why do the TopicSession.createDurableSubscriber and
TopicSession.unubscribe calls raise JMSException with the message

"ORA - 4020 - deadlock detected while trying to lock object"?
CreateDurableSubscriber and unsubscribe calls require exclusive access to the
Topics. If there are pending JMS operations (send/publish/receive) on the same
Topic before these calls are issued, the ORA - 4020 exception is raised.

There are two solutions to the problem:

1. Try toisolate the calls to createDurableSubscriber and unsubscribe at the
setup or cleanup phase when there are no other JMS operations happening on
the Topic. That will make sure that the required resources are not held by other
JMS operational calls. Hence the error ORA - 4020 will not be raised.

2. lIssue a TopicSession.commit call before calling
createDurableSubscriber and unsubscribe call.

6-16 Oracle9/ Application Developer’s Guide - Advanced Queuing

Internet Access Questions

Why doesn't AQ_ADMINISTRATOR_ROLE or AQ_USER_ROLE always
work for AQ applications using Java/JMS API?

In addition to granting the roles, you would also need to grant execute to the user
on the following packages:

= grant execute on sys.dbms_aqin to <userid>

= grant execute on sys.dbms_agjms to <userid>

Why do | get java.security.AccessControlException when using JMS
MessagelListeners from Java stored procedures inside Oracle8 i
JServer?

To use MessageL.isteners inside Oracle8i JServer, you can do one for the following
1. GRANT JAVASYSPRIYo <userid>

Call dbms_java.grant_permission (‘JAVASYSPRIV',
'SYS:java.net.SocketPermission', "™,
'accept,connect,listen,resolve’);

Internet Access Questions

What is IDAP?

IDAP is Internet Data Access Presentation. IDAP defines the message structure for
the body of a SOAP request. An IDAP message encapsulates the AQ request and
response in XML. IDAP is used to perform AQ operations such as enqueue,
dequeue, send notifications, register for notifications, and propagation over the
Internet standard transports—HTTP(s) and e-mail. In addition, IDAP encapsulates
transactions, security, transformation, and the character set ID for requests.

Which Web servers are supported for AQ Internet access functionality?

Do | have to use Apache or can | use any Web server? Which servlet
engines are supported for AQ Internet access? Can | use Tomcat?

Internet access functionality for AQ is supported on Apache. This feature is certified
to work with Apache, along with the Tomcat or Jserv servlet execution engines.
However, the code does not prevent the servlet from working with other Web

server and servlet execution engines that support Java Servlet 2.0 or higher
interfaces.

Frequently Asked Questions 6-17

Oracle Internet Directory Questions—Global Agents, Global Events, and Global Queues

How do | get transactional behavior while using e-mail for AQ
operations?

When you send IDAP messages through SMTP, each request is a separate
transaction. The IDAP request must contain <AQXmICommit/> as part of the
message request to ensure that the operation is committed.

How does an Internet agent tie to an AQ agent stored in Oracle Internet
Directory?

You can create an alias to an AQ agent in Oracle Internet Directory (OID). You can
use these AQ agent aliases in the IDAP document sent over the Internet to perform
AQ operations. Using aliases prevents exposing the internal name of the AQ agent.

Can | use my own authentication framework for authentication?

Yes, you can use your own authentication framework for authentication. HTTP
POSTrequests to the AQ Servlet for AQ operations must be authenticated by the
Web server. For example, in Apache, the following can be used to restrict access
(using basic authentication) to servlets installed under agserv/servlet. In this
example, all users sending POSTrequests to the servlet are authenticated using the
users file in /apache/htdocs/userdb.

<Location /agserviseniet>
<Limit POST>
AuthName "Restrict AQ Senvlet Access'
AuthType Basic
AuthUserFile /apache/tdocs/userdb/users
require valid-user
</Limit>
</Location>

Oracle Internet Directory Questions—Global Agents, Global Events, and
Global Queues

Which events can be registered in Oracle Internet Directory (OID)?

All types of events—system events, user events, and notifications on queues—can
be registered with OID. System events are database startup, database shutdown,
and system error events. User events include user log on and user log off, DDL
statements (create, drop, alter), and DML statement triggers. Notifications on
gueues include OCI notifications, PL/SQL notifications, and e-mail notifications.

6-18 Oracle9/ Application Developer’s Guide - Advanced Queuing

Performance Questions

How do | use agent information stored in an OID?

You can create aliases for an AQ agent in OID. These aliases can be specified while
performing AQ operations-enqueue, dequeue, and notifications. This is specifically
useful while performing AQ operations over the Internet when you do not want to
expose an internal agent name. An alias can be used in an AQ operation (IDAP
request).

Transformation Questions

What happens to enqueue, dequeue, or propagation if the

transformation mapping raises an error?

Enqueue and dequeue of the message will raise the error to the application. If the
error occurs during the dequeue operation, the retry count of the message is
incremented. If the retry count exceeds max_retries, the message is moved to
the exception queue. If the error occurs during propagation, it is handled in a
manner similar to dequeue; propagation of the message will fail. It will be
attempted again and the message will be moved to the exception queue when retry
count exceeds max_retries for the queue.

How do you do transformation of XML data?
Transformation of XML data can be done in one of the following ways:

= Using the extract operator supported on XMLType to return an object of
XMLType after applying the supplied XPath expression.

= Creating a PL/SQL function that transforms the XMLType object by applying an
XSLT transformation to it, using the package XSLPROCESSOR.

Performance Questions

What is the maximum number of queues that a table can have without
affecting performance?
Performance is not affected by the number of queues in a table.

When messages are moved from one queue to another using
propagation, is there any optimization to move the messages in batches,
rather than one at a time?

Yes, if it is optimized, propagation happens in batches.

Frequently Asked Questions 6-19

Installation Questions

If the remote queue is in a different database, we use a sequencing algorithm to
avoid the need for a two-phase commit.

When a message needs to be sent to multiple queues in the same destination, it is
sent multiple times. If the message needs to be sent to multiple consumers in the
same queue at the destination, it is sent only once.

When is it useful to create indexes on a queue table? How do | create
them?
Creating an index on the queue table is useful in the following scenarios:

a. Dequeuing using correlation ID: To expedite dequeue, an index can be
created on the column corr_id of the underlying queue table AQ$_
<QueueTableName>.

b. Dequeue using a condition: Assume this condition to the where-clause for
the SELECTon the underlying queue table. An index on
<QueueTableName> can be created to expedite the performance this
SELECTstatement.

What is the performance of Java (JMS) versus the PL/SQL API for AQ?

We do not have a specific performance evaluation of JMS versus the PL/SQL API.
In general, the PL/SQL API is slightly better than the IMS API. The performance of
the JMS and PL/SQL APIs in version 8.1.7 and higher should be comparable.

Installation Questions

How do | set up Internet access for AQ? What components are

required?

See Chapter 17 for a full discussion. The following summarizes the steps required to
set up Internet access for AQ queues:

1. Setup the AQ Servlet: If you are using a servlet execution engine that supports
the Java Servlet 2.2 specification (such as Tomcat), you must create a servlet that
extends the oracle.AQ.xml.AQxmIServlet class. If you are using a servlet
execution engine that supports the Java Servlet 2.0 specification (like Apache
Jserv), you must create a servlet that extends the
oracle.AQ.xml.AQxmlServlet20 class. Implement the init() method in
the servlet to specify database connection parameters.

6-20 Oracle9/ Application Developer’s Guide - Advanced Queuing

Installation Questions

Set up user authentication: Configure the Web server to authenticate all the
users that send POSTrequests to the AQ Servlet. Only authenticated users are
allowed to access the AQ Servilet.

Set up user authorization: Register the AQ agent name that will be used to
perform AQ operations using DBMS_AQADM.CREATE_AQ_AGENMap the AQ
agent to the database users using DBMS_AQADM.ENABLE_DB_ACCESS.

Now clients can write SOAP requests and send them to the AQ Servlet using
HTTP POST.

How do | set up e-mail notifications?
Here are the steps for setting up your database for e-mail notifications:

1.

Set the SMTP mail host: Invoke DBMS_AQELM.SET_MAILHOSSE an AQ
administrator.

Set the SMTP mail port: Invoke DBMS_AQELM.SET_MAILPOREs an AQ
administrator. If not explicit, set defaults to 25.

Set the SendFrom address: Invoke DBMS_AQELM.SET_SENDFROM

After setup, you can register for e-mail notifications using the OCI or PL/SQL
API.

How do | perform AQ operations using e-mail?

See Chapter 17 for a full discussion. Currently, these operations are supported by
Oracle Email Server 5.5 and higher. In summary, follow the steps for setting up
Internet access for AQ. In addition, do the following:

1.

Create an AQ Internet agent to access the servlet using SMTP. This agent’s
digital certificate should be registered in LDAP. The certificate location must be
specified when the agent is registered using the DBMS_AQADM.CREATE_AQ _
AGENTprocedure.

Set up the Web server: Configure the Web server to receive requests from a user
called ORACLE_SMTP_AGENThis user will be used to access the AQ Servlet.
Also specify setEmailServerAddr or setEmailServerHost in the

init() method of the AQ Servlet.

Set up Oracle Email Server:

a. Run $ORACLE_HOME/admin/emailrule.sql to create an AQ schema on
the e-mail server database.

Frequently Asked Questions 6-21

Installation Questions

4.

b. Create an e-mail account for the destination database in which the AQ
operations are to be performed.

c. Setup an e-mail rule for the destination database, so that it can route the
AQ requests to the AQ Servlet on the web server. This can be done using
the DBMS_AQST.REGISTER_DPBrocedure.

Now clients can write IDAP requests and send to the AQ Servlet using e-mail.

How do | set up AQ propagation over the Internet?

See Chapter 17 for a full discussion. In summary, follow the steps for setting up
Internet access for AQ. The destination databases need to be set up for Internet
access, as follows:

1.

At the source database, create the dblink with protocol as http, and host and
port of the Web server running the AQ Servlet with the username password for
authentication with the Web server/servlet runner. For example, if the Web
server is running on machine webdest.oracle.com and listening for
requests on port 8081, then the connect string of the database is
(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.c
om)(PORT=8081)) If SSL is used, specify https as the protocol in the connect
string. The database link is created as follows: create public database

link propdb connect to john identified by welcome using
'(DESCRIPTION=(ADDRESS=(PROTOCOL=http)(HOST=webdest.oracle.
com)(PORT=8081))’; where user John with password Welcome is used to
authenticate with the Web server, and is also known by the term AQ HTTP
agent.

If SSL is used, create an Oracle wallet and specify the wallet path at the source
database execute dbms_agadm.set_aq_
propagationwallet('/home/myuid/cwallet.sso’, 'welcome’);

Deploy the AQ Servlet at the destination database: Create a class
AQPropServilet that extends oracle.AQ.xml.AQxmIServlet20 (if you
are using a Servlet 2.0 execution engine like Apache Jserv) or extends
oracle.AQ.xml.AQxmlServlet (if you are using a Servlet 2.2 execution
engine like Tomcat). This servlet must connect to the destination database. The
servlet must be deployed on the Web server in the path agserv/servlet.

6-22 Oracle9i Application Developer’s Guide - Advanced Queuing

Installation Questions

NOTE: In Oracle9i, the propagation servlet name and deployment
path are fixed, that is, they must be AQPropServlet and the
aqgserv/servlet respectively.

At the destination database: Set up the authorization and authentication for the
Internet user performing propagation, in this case, John.

Start propagation at the source site by calling dbms_agadm.schedule_
propagation(’src_queue’, 'propdb’).

Frequently Asked Questions 6-23

Installation Questions

6-24 Oracle9i Application Developer’s Guide - Advanced Queuing

v

Modeling and Design

This chapter covers the fundamentals of AQ modeling and design in the following
sections:

= Basic Queuing

= Basic Queuing lllustrated

= AQ Client-Server Communication

= Multiconsumer Dequeuing of the Same Message

= Dequeuing of Specified Messages by Specified Recipients
= AQ Implementation of Workflows

= AQ Implementation of Publish/Subscribe

= Message Propagation

Modeling and Design 7-1

Modeling Queue Entities

Modeling Queue Entities
Figure 7-1 shows a queue table that contains the following queues and messages:
= Queuel—contains 10 messages
= Queue2—contains 7 messages

= ExceptionQueuel—contains 3 messages

Figure 7-1 Basic Queues

Queue Table

Queue 1 Queue 2 Exception Queue 1
Quel Msgl Que?2 Msg1l ExQue 1l Msg1l
Quel Msg?2 Que 2 Msg 2 ExQue 1 Msg 2
Quel Msg3 Que 2 Msg3 ExQue 1 Msg 3
Quel Msg4 Que 2 Msg 4
Quel Msg5 Que 2 Msg5
Quel Msg6 Que 2 Msg 6
Quel Msg7 Que 2 Msg7
Quel Msg8
Quel Msg9
Quel Msg 10

7-2 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Basic Queuing

Basic Queuing — One Producer, One Consumer

At its most basic, one producer may enqueue different messages into one queue.
Each message will be dequeued and processed once by one of the consumers. A
message will stay in the queue until a consumer dequeues it or the message expires.
A producer may stipulate a delay before the message is available to be consumed,
and a time after which the message expires. Likewise, a consumer may wait when
trying to dequeue a message if no message is available. Note that an agent program,
or application, can act as both a producer and a consumer.

Basic Queuing — Many Producers, One Consumer

At a slightly higher level of complexity, many producers may enqueue messages
into a queue, all of which are processed by one consumer.

Basic Queuing — Many Producers, Many Consumers of Discrete Messages

In this next stage, many producers may enqueue messages, each message being
processed by a different consumer depending on type and correlation identifier. See
Figure 7-2.

Basic Queuing lllustrated

Figure 7-2 portrays a queue table that contains one queue into which messages are
being enqueued and from which messages are being dequeued.

Modeling and Design 7-3

Modeling Queue Entities

Figure 7-2 Modeling Basic Queuing

Queue Table
Enqueue Queue Dequeue
application as application as
producers consumers
Msg 2
Msg 3 #

Producers

The figure indicates that there are 6 producers of messages, although only four are
shown. This assumes that two other producers (P4 and P5) have the right to
enqueue messages even though there are no messages enqueued by them at the

moment portrayed by the figure. The figure shows that:

= Asingle producer may enqueue one or more messages.

= Producers may enqueue messages in any sequence.

7-4 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

Consumers
According to the figure, there are 3 consumers of messages, representing the total
population of consumers. The figure shows that:

= Messages are not necessarily dequeued in the order in which they are
enqueued.

= Messages may be enqueued without being dequeued.

AQ Client-Server Communication

The figure portrays the enqueuing of multiple messages by a set of producers, and
the dequeuing of messages by a set of consumers. What may not be readily evident
in that sketch is the notion of time and the advantages offered by Oracle AQ.

Client-Server applications normally execute in a synchronous manner, with all the
disadvantages of that tight coupling described earlier. Figure 7-3 demonstrates the
asynchronous alternative using AQ. In this example Application B (a server)
provides service to Application A (a client) using a request/response queue.

Modeling and Design 7-5

Modeling Queue Entities

7-6

Figure 7-3 Client-Server Communication Using AQ

Application A .
producer & consumer Client

Enqueue

Dequeue

d w0 d P

5.

Dequeue
Request Response
Queue Queue

Enqueue

Application B

consumer & producer Server

Application A enqueues a request into the request queue.
Application B dequeues the request.
Application B processes the request.
Application B enqueues the result in the response queue.

Application A dequeues the result from the response queue.

In this way the client does not have to wait to establish a connection with the server,
and the server dequeues the message at its own pace. When the server is finished
processing the message, there is no need for the client to be waiting to receive the
result. In this way a process of double-deferral frees both client and server.

Note: The various enqueue and dequeue operations are part of
different transactions.

Oracle9/ Application Developer’'s Guide - Advanced Queuing

Modeling Queue Entities

Multiconsumer Dequeuing of the Same Message

A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
this would require management of a very large number of queues. Oracle AQ
provides two mechanisms to allow for multiple consumers to dequeue the same
message: queue subscribers and message recipients. The queue must reside in a queue
table that is created with multiple consumer option to allow for subscriber and
recipient lists. Each message remains in the queue until it is consumed by all its
intended consumers.

Queue Subscribers Using this approach, multiple consumer-subscribers are
associated with a queue. This will cause all messages enqueued in the queue to be
made available to be consumed by each of the queue subscribers. The subscribers to
the queue can be changed dynamically without any change to the messages or
message producers. Subscribers to the queue are added and removed by using the
Oracle AQ administrative package. Figure 7-4 shows multiple producers enqueuing
messages into queue, each of which is consumed by multiple consumer-subscribers.

Message Recipients A message producer can submit a list of recipients at the time a
message is enqueued. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the
subscriber list. However, recipients may be selected from among the subscribers.

Figure 7-4 describes the case in which three consumers are all listed as subscribers
of a queue. This is the same as saying that they all subscribe to all the messages that
might ever be enqueued into that queue.

Modeling and Design 7-7

Modeling Queue Entities

Figure 7-4 Multiconsumer Dequeuing of the Same Message

Queue Table
Subscriber list: s1, s2, s3

Queue Subscribers
Msg 1]

Msg 2 »
Msg 3

Msg 4 #
Msg 5

Msg 6 »
Msg 7

The figure illustrates a number of important points:

= The figure portrays the situation in which the 3 consumers are subscribers to 7
messages that have already been enqueued, and that they might become
subscribers to messages that have not yet been enqueued.

= Every message will eventually be dequeued by every subscriber.

= There is no priority among subscribers. This means that there is no way of
saying which subscriber will dequeue which message first, second, and so on.
Or, put more formally: the order of dequeuing by subscribers is undetermined.

= We have no way of knowing from the figure about messages they might already
have been dequeued, and which were then removed from the queue.

Figure 7-5 illustrates the same technology from a dynamic perspective. This
examples concerns a scenario in which more than one application needs the result

7-8 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

produced by an application. Every message enqueued by Application A is dequeued
by Application B and Application C. To make this possible, the multiconsumer queue
is specially configured with Application B and Application C as queue subscribers.
Consequently, they are implicit recipients of every message placed in the queue.

Figure 7-5 Communication Using a Multiconsumer Queue

Application A J

Enqueue

Multiple
Consumer
Queue

Dequeue Dequeue
Application B J ‘ Application C J

Note: Queue subscribers can be applications or other queues.

Dequeuing of Specified Messages by Specified Recipients

Figure 7-6 shows how a message can be specified for one or more recipients. In this
case, Message 5 is specified to be dequeued by Recipient-1 and Recipient-2. Neither of
the recipients is one of the 3 subscribers to the queue.

Modeling and Design 7-9

Modeling Queue Entities

Figure 7-6 Dequeuing of Specified Messages by Specified Recipients

Queue Table
Subscriber list: s1, s2, s3
Recipient list: r1, r2

Queue Subscribers
Msg 1
Msg 2 #
Msg 3
Msg 4 1R (52]
Msg 5
Msg 6 1p R |
Msg 7

We earlier referred to subscribers as implicit recipients in that they are able to
dequeue all the messages placed into a specific queue. This is like subscribing to a
magazine and thereby implicitly gaining access to all its articles. The category of
consumers that we have referred to as recipients may also be viewed as explicit
recipients in that they are designated targets of particular messages.

Figure 7-7 shows how Oracle AQ can adjust dynamically to accommodate both
kinds of consumers. In this scenario Application B and Application C are implicit
recipients (subscribers). But messages can also be explicitly directed toward specific
consumers (recipients) who may or may not be subscribers to the queue. The list of
such recipients is specified in the enqueue call for that message and overrides the

7-10 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

list of subscribers for that queue. In the figure, Application D is specified as the sole
recipient of a message enqueued by Application A.

Figure 7-7 Explicit and Implicit Recipients of Messages
Application A
producer

Enqueue

Dequeue

Application B
consumer (subscriber)

Implicit Recipient

Application D
consumer (recipient)

Explicit Recipient

Dequeue

Application C
consumer (subscriber)

Implicit Recipient

Note: Multiple producers may simultaneously enqueue messages
aimed at different targeted recipients.

AQ Implementation of Workflows

Figure 7-8 illustrates the use of AQ for implementing workflows, also knows as
chained application transactions. It shows the steps in the workflow performed by
Applications A, B, C and D. The queues are used to buffer the flow of information

Modeling and Design 7-11

Modeling Queue Entities

between different processing stages of the business process. By specifying delay
interval and expiration time for a message, a window of execution can be provided
for each of the applications.

Figure 7-8 Implementing Workflows using AQ

Application C
consumer & producer

Application A
producer

Enqueue Dequeue Enqueue
(Message 1) (Message 2) (Message 3)

Dequeue Enqueue Dequeue
(Message 1) (Message 2) (Message 3)

Application B Application D
consumer & producer consumer

From a workflow perspective, the passing of messages is a business asset above and
beyond the value of the payload data. Hence, AQ supports the optional retention of
messages for analysis of historical patterns and prediction of future trends.

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages may contain parts
of the of the contents of previous messages.

AQ Implementation of Publish/Subscribe

Figure 7-9 illustrates the use of AQ for implementing a publish/subscribe
messaging scheme between applications. Application A is a publisher application
which is publishing messages to a queue. Applications B, C, D are subscriber

7-12 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

applications. Application A publishes messages anonymously to a queue. These
messages are then delivered to subscriber applications based on the rules specified
by each application. Subscriber applications can specify interest in messages by
defining a rule on message properties and message data content.

Figure 7-9 Implementing Publish/Subscribe using AQ

Application A
producer

Enqueue
1 priority 3
+— priority 1
1— priority 2
Register
Dequeue Dequeue
Application B Application C
consumer consumer
(rule-based subscriber) (rule-based subscriber)
"priority = 1" "priority > 1"
Application D
consumer
(rule-based subscriber)
"priority = 3"

In the example shown, application B has subscribed with rule "priority=1",
application C has subscribed with rule "priority > 1", and application D has
subscribed with rule "priority = 3". Application A enqueues 3 messages (priority 3,
1, 2). Application B receives a single message (priority 1), application C receives two
messages (priority 2, 3) and application D receives a single message (priority 3).
Thus, message recipients are computed dynamically based on message properties
and content. The figure also illustrates how application C uses asynchronous

Modeling and Design 7-13

Modeling Queue Entities

notification for message delivery. Application C registers for messages on the
gueue. When messages arrive, application C is notified and can dequeue the
messages.

Message Propagation

Fanning-Out of Messages

In AQ, message recipients can be either consumers or other queues. If the message
recipient is a queue, the actual recipients are determined by the subscribers to the
gueue (which may in turn be other queues). Thus it is possible to fan-out messages
to a large number of recipients without requiring them all to dequeue messages
from a single queue.

For example, a queue, Source, may have as its subscribers queues dispatchl@destl
and dispatch2@dest2. Queue dispatch1@destl may in turn have as its subscribers the
gueues outerreachl@dest3 and outerreach2@dest4, while queue dispatch2@dest2 has as
subscribers the queue outerreach3@dest21 and outerreach4@dest4. In this way,
messages enqueued in Source will be propagated to all the subscribers of four
different queues.

Compositing (Funneling)

You can also combine messages from different queues into a single queue,
sometimes described as compositing. For example, if queue composite@endpoint is a
subscriber to both funnell@sourcel and funnel2@source2, then the subscribers to
composite@endpoint can get all messages enqueued in those queues as well as
messages enqueued directly to itself.

Propagation and Advanced Queuing

Figure 7-10 illustrates applications on different databases communicating using
AQ. Each application has an inbox and an outbox for handling incoming and
outgoing messages. An application enqueues a message into its outbox irrespective
of whether the message is sent locally (on the same node) or remotely (on a
different node). An application dequeues messages from its inbox irrespective of

7-14 Oracle9i Application Developer’s Guide - Advanced Queuing

Modeling Queue Entities

whether the message originates locally or remotely. AQ facilitates all interchanges,
treating messages on the same basis.

Figure 7-10 Message Propagation

Database 1

Application A
producer & consumer

Dequeue
Enqueue

Outbox Inbox

; AQ's
/ Message '\
Propagation
Infrastructure

-

’

Database 2

N

Inbox Outbox Inbox Outbox

Enqueue Enqueue

Dequeue Dequeue

Application B
consumer & producer

Application C
consumer & producer

Modeling and Design 7-15

Modeling Queue Entities

7-16 Oracle9i Application Developer’s Guide - Advanced Queuing

38

A Sample Application Using AQ

In Chapter 1, "Introduction to Oracle Advanced Queuing" a messaging system for a
hypothetical company, BooksOnLine, was described. In this chapter the features of
AQ in the BooksOnLine sample application are discussed under the following
headings:

A Sample Application

General Features of Advanced Queuing
Enqueue Features

Dequeue Features

Asynchronous Notifications

Propagation Features

A Sample Application Using AQ 8-1

A Sample Application

A Sample Application

The operations of a large bookseller, BooksOnL.ine, are based on an online book
ordering system that automates activities across the various departments involved
in the sale. The front end of the system is an order entry application used to enter
new orders. Incoming orders are processed by an order processing application that
validates and records the order. Shipping departments located at regional
warehouses are responsible for ensuring that orders are shipped on time. There are
three regional warehouses: one serving the East Region, one serving the West
Region, and a third warehouse for shipping international orders. After an order is
shipped, the order information is routed to a central billing department that handles
payment processing.The customer service department, located at a separate site, is
responsible for maintaining order status and handling inquiries.

The features of AQ are exemplified within the BooksOnL.ine scenario to
demonstrate the possibilities of AQ technology. A script for the sample code is
provided in Appendix C, "Scripts for Implementing BooksOnLine").

General Features of Advanced Queuing
In this section, the following topics are discussed:
= System-Level Access Control
= Queue-Level Access Control
= Message Format Transformation
= Structured Payloads
= XMLType Queue Payloads
= Nonpersistent Queues
= Retention and Message History
= Publish-Subscribe Support
= Support for Oracle Real Application Clusters

= Support for Statistics Views

System-Level Access Control

Oracle supports system-level access control for all queuing operations, allowing an
application designer or DBA to designate users as queue administrators. A queue
administrator can invoke AQ administrative and operational interfaces on any

8-2 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

gueue in the database. This simplifies the administrative work because all
administrative scripts for the queues in a database can be managed under one
schema. For more information, see "Oracle Enterprise Manager Support” on
page 4-8.

PL/SQL (DBMS_AQADM Package): Scenario and Code

In the BooksOnL.ine application, the DBA creates BOLADMthe BooksOnLine
Administrator account, as the queue administrator of the database. This allows
BOLADMOo create, drop, manage, and monitor queues in the database. If PL/SQL
packages are needed in the BOLADM schema for applications to enqueue and
dequeue, the DBA should grant ENQUEUE_ANahd DEQUEUE_ANYystem
privileges to BOLADM:

CREATE USER BOLADM IDENTIFIEED BY BOLADM;

GRANT CONNECT, RESOURCE, ag_administrator_role TO BOLADM,;

GRANT EXECUTE ON dbms ag TO BOLADM,;

GRANT EXECUTE ON dbms_agadm TO BOLADM;

EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',BOLADM'FALSE);
EXECUTE dbms_agadm.grant_system_priviege(DEQUEUE_ANY',BOLADM'FALSE);

If using the Java AQ API, BOLADM must be granted execute privileges on the
DBMS_AQIN package:

GRANT EXECUTE ON DBMS_AQIN to BOLADM,;

In the application, AQ propagators populate messages from the Order Entry(OE)
schema to the Western Sales (WS), Eastern Sales (ES) and Worldwide Sales (OS)
schemas. The WS ESand OSschemas in turn populate messages to the Customer
Billing (CB) and Customer Service (CS) schemas. Hence the OF WSESand OS
schemas all host queues that serve as the source queues for the propagators.

When messages arrive at the destination queues, sessions based on the source
gueue schema name are used for enqueuing the newly arrived messages into the
destination queues. This means that you need to grant schemas of the source
gueues enqueue privileges to the destination queues.

To simplify administration, all schemas that host a source queue in the
BoooksOnL.ine application are granted the ENQUEUE_ANYystem privilege:

EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',OE FALSE);
EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',WS FALSE);
EXECUTE dbms_agadm.grant_system privilege(ENQUEUE_ANY',ES,FALSE);
EXECUTE dbms_agadm.grant_system_priviege(ENQUEUE_ANY',OSFALSE);

A Sample Application Using AQ 8-3

General Features of Advanced Queuing

To propagate to a remote destination queue, the login user specified in the database
link in the address field of the agent structure should either be granted the
ENQUEURNY QUEURrivilege, or be granted the rights to enqueue to the
destination queue. If the login user in the database link also owns the queue tables
at the destination, no explicit privilege grant is needed.

Visual Basic (O040): Example Code
Use the dbexecutesqgl interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Queue-Level Access Control

Oracle supports queue-level access control for enqueue and dequeue operations.
This feature allows the application designer to protect queues created in one schema
from applications running in other schemas. The application designer needs to
grant only minimal access privileges to the applications that run outside the queue
schema. The supported access privileges on a queue are ENQUEUEDEQUEURNd
ALL. For more information, see "Oracle Enterprise Manager Support” on page 4-8.

Scenario

The BooksOnLine application processes customer billings in its CBand CBADM
schemas. CB(Customer Billing) schema hosts the customer billing application, and
the CBADMchema hosts all related billing data stored as queue tables.

To protect the billing data, the billing application and the billing data reside in
different schemas. The billing application is allowed only to dequeue messages
from CBADM_shippedorders_que , the shipped order queue. It processes the
messages, and then enqueues new messages into CBADM_billedorders_que , the
billed order queue.

To protect the queues from other illegal operations from the application, the
following two grant calls are needed:

PL/SQL (DBMS_AQADM Package): Example Code

/£ Grat dequeue priviiege on the shopped orders queue to the Customer
Biling application. The CB application retrieves orders that are shipped but
not biled from the shipped orders queue.

EXECUTE dbms_agadm.grant_queue_privilege(

'DEQUEUE,'CBADM _shippedorders_gue, 'CB, FALSE);

8-4 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

£ Grart enqueue priviiege on the billed orders queue to Customer Biling
application. The CB application is alowed to put billed orders into this
queue after processing the orders. ¥

EXECUTE dbms_agadm.grant_queue_privilege(
'ENQUEUE, 'CBADM _biledorders_que', 'CB, FALSE);

Visual Basic (O040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code

public static void grantQueuePrivileges(Connection db_conn)

{
AQSession ag_sess;
AQQueue sh_queue;
AQQueue bi_queue;

try

{
f* Create an AQ Session: *

ag_sess = AQDriverManager.createAQSession(db_conn);

F Grant dequeue privilege on the shipped orders queue to the Customer
Biling application. The CB application retrieves orders that are
shipped but not biled from the shipped orders queue. */

sh_queue = ag_sess.getQueue('CBADM", "CBADM _shippedorders_que");
sh_queue.grantQueuePriviege('DEQUEUE", "CB", false);
F Grant enqueue privilege on the biled orders queue to Customer
Biling application.The CB application is allowed to put biled
orders into this queue after processing the orders. */
bi_queue = aq_sess.getQueue('CBADM", "CBADM billedorders_que”);
bi_queue.grantQueuePriviege('ENQUEUE", "CB", false);
}
catch (AQException ex)

{
System.outprinin(‘AQ Exception: " + ex);

A Sample Application Using AQ 8-5

General Features of Advanced Queuing

Message Format Transformation

You can define transformation mappings between different message payload types.
Transformation mappings are defined as SQL expressions that can include PL/SQL
functions (including callouts) and Java stored procedures. Only one-to-one message
transformations are supported. The transformation engine is tightly integrated with
Advanced Queuing to facilitate transformation of messages as they move through
the database messaging system. Figure 8-1 shows how transformations are
integrated with Advanced Queuing.

Figure 8-1 Transformations Integrated with Advanced Queuing

Enqueue(M)

i —|¢> Trans2 fmmgp| Dequeue(M")
M’ Queuel
M

Transl () @@@@

Trans3 —"bPropagate(M"')

Transl (m, m’)

Trans2 (m', m")

Trans3 (m', m")

Where M, M', M" and M"™ are messages of
types m, m', m" and m", respectively.

Transformation mappings can be used during enqueue, dequeue, and propagation
operations. To use a transformation at enqueue, the mapping is specified in the
enqueue options. To use a transformation at dequeue, the mapping is specified
either in the dequeue options or when you add a subscriber. A mapping specified in
the dequeue options overrides a mapping specified with ADD_SUBSCRIBERTo use
a transformation at propagation, the mapping is specified when you add a
subscriber.

PL/SQL (DBMS_TRANSFORM Package): Scenario and Code

In the BooksOnL.ine application, assume that the order type is represented
differently in the order entry and the shipping applications.

8-6 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

The order type of the Order Entry application (in schema OE) is as follows:

create or replace type order_typ as object (

ordemo number,
status varchar2(30),
ordertype varchar2(30),
orderregion varchar2(30),
custno number,
paymentmethod varchar2(30),
items orderitemlist_vartyp,
ccnumber varchar2(20),
order_date date);

create or replace type customer typ as object (
custno number,
custid varchar2(20),
name varchar2(100),
street varchar2(100),
city varchar2(30),
state varchar2(2),
Zip number,
country varchar2(100));

create or replace type book typ as object (
tite varchar2(100),
authors varchar2(100),
ISBN varchar2(20),
price number);

create or replace type orderitem typ as object (

quantity
item
subtotal

number,

book_typ,

number);

create or replace type orderitemlist vartyp as varmay (20) of

orderitem _typ;

The order item of the shipping application is defined as follows

create or replace type order_typ sh as object (

ordemo

status

ordertype
orderregion
customer
paymentmethod

number,
varchar2(30),

varchar2(30),
varchar2(30),

customer_typ_sh,
varchar2(30),

A Sample Application Using AQ 8-7

General Features of Advanced Queuing

items orderitemlist_vartyp,
ccnumber varchar2(20),
order_date date);

create or replace type customer_typ_sh as object (
custno number,
name varchar2(100),
street varchar2(100),
city varchar2(30),
state varchar2(2),
zip number);

create or replace type book typ sh as object (
tite varchar2(100),
authors varchar2(100),
ISBN varchar2(20),
price number);

create or replace type orderitem_typ sh as object (

quantity number,
item book_typ,
subtotal number);

create or replace type orderitemlist vartyp sh as varay (20) of
orderitem _typ_sh;

The Overseas Shipping application uses a sys.XMLType attribute.

Creating Transformations
You can create transformations in the following ways:

= Create asingle PL/SQL function that returns an object of the target type or the
constructor of the target type.

This representation is preferable for simple transformations or transformations
that are not easily broken down into independent transformations for each
attribute.

execute doms_transform.create_transformation(
schema => 'OE, name => 'OE2WS,
from_schema => 'OE, from_type => 'order_typ,
to_schema => WS, to_type => 'order_typ sh|,
transformation(
'WS.order_typ_sh(source.user_data.ordemo,
source.user_data.status,

8-8 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

source.user_data.ordertype,
source.user_data.ordemnegion,

WS.get customer_info(source.user_data.custno),
source.user_data.paymentmethod,
source.user_data.items,
source.user_data.ccnumber,
source.user_data.order_date));

In the BooksOnline application, assume that the Overseas Shipping site
represents the order as an XMLType payload. The Order Entry site represents
the order as an Oracle object, ORDER_TYHRince the Overseas Shipping site
subscribes to messages in the OE_ BOOKEDORDERS_Qjueue, a transformation
is applied before messages are propagated from the Order Entry site to the
Overseas Shipping site.

The transformation is defined as follows:

CREATE OR REPLACE FUNCTION CONVERT_TO_ORDER XML(input_order TYPE OE.ORDER_
TYP)
RETURN SYSXMLType AS
new_order SYS.XMLType;
BEGIN
select SYS XMLGEN(nput_order) into new_order from dual;
RETURN new_order;
END CONVERT_TO_ORDER_XML;

execute doms_transform.create_transformation(

schema => '0S,

name => 'OE2XML,
from_schema => 'OE,
from_type => 'ORDER_TYP,
to_schema => 'SYS,
to_type = 'XMLTYPE,

transformation => 'CONVERT_TO_ORDER_XML(source.user_data));

F Add a rule-based subscriber for Overseas Shipping to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: *
DECLARE

subscriber ag$_agent;

BEGIN

subscriber = ag$_agent(Overseas_Shipping,0S.0S_bookedorders_que',null);

dbms_agadm.add_subscriber(
queue_name => 'OE.OE_bookedorders_gque',

A Sample Application Using AQ 8-9

General Features of Advanced Queuing

subscriber => subscriber,
rule => ‘fab.user_data.orderregion = INTERNATIONAL"
transformation => 'OS.OE2XML);

END;

= Create a separate expression specified for each attribute of the target type. This
representation simplifies transformation mapping creation and management for
individual attributes of the destination type. It is useful when the destination
type has many attributes.

F first create the transformation without any transformation expression*/
execute doms_transform.create_transformation(
schema => 'OE, name => 'OE2WS,
from_schema => 'OE, from type => ‘order_typ),
to_schema => WS, to_type => 'order_typ_sh);

P specify each attribute of the target type as a function of the source
type*/
execute doms_transform.modify_transformation(

schema => 'OE, name => 'OE2WS,

atribute_number => 1,

transformation => 'source.user_data.ordemo);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS,
atribute_number => 1,
transformation => 'source.user_data.status);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS,
attibute_number => 1,
transformation => 'source.user_data.ordertype);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS,
attibute_number => 1,
transformation => 'source.user_data.orderregion);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS,
atibute_number => 1,
transformation =>
'WS.get_customer_info(source.user_data.custno));

execute doms_transform.modify_transformation(

8-10 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

schema => 'OE, name => 'OE2WS,
atribute_number => 1,
transformation => 'source.user_data.payment_method);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS,
atibute_number => 1,
transformation => 'source.user_data.orderitemiist_vartyp);

execute doms_transform.modify_transformation(
schema => 'OE, name => 'OE2WS|
atibute_number => 1,
transformation => 'source.user_data.ccnumber);

execute doms_transform.modify_transformation(
schema => 'OE|, name => 'OE2WS)
atribute_number => 1,
transformation => 'source.user_data.order_date’);

Visual Basic (O040): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Structured Payloads

With Oracle AQ, you can use object types to structure and manage the payload of
messages. The object-relational capabilities of Oracle provide a rich set of data types
that range from traditional relational data types to user-defined types.

Using strongly typed content, that is, content whose format is defined by an Oracle
object type system, makes the following features available:

Content-based routing: Advanced Queuing can examine the content and
automatically route messages to another queue based on content.

Content-based subscription: a publish and subscribe system can be built on top
of a messaging system so that you can create subscriptions based on content.

XML.: Use the flexibility and extensibility of XML with AQ messages. XMLType
has additional operators to simplify the use of XML data. The operators include
XMLType.existsNode() and XMLType.extract().

A Sample Application Using AQ 8-11

General Features of Advanced Queuing

You can also create payloads that contain Oracle objects with XMLType attributes.
These can be used for transmitting and storing messages that contain XML
documents. By defining Oracle objects with XMLType attributes, you can do the
following:

= Store more than one type of XML document in the same queue. The documents
are stored internally as CLOBs.

= Query XMLType attributes using the operators XMLType.existsNode()
XMLType.extract() , and so on.

PL/SQL (DBMS_AQADM Package): Scenario and Code

The BooksOnL.ine application uses a rich set of data types to model book orders as
message content.

s Customers are modeled as an object type called customer_typ
CREATE OR REPLACE TYPE customer_typ AS OBJECT (

custno NUMBER,

name VARCHAR2(100),
street VARCHAR2(100),
city VARCHAR2(30),
state VARCHAR2(2),

Zip NUMBER,

country VARCHAR2(100));

= Books are modeled as an object type called book_typ

CREATE OR REPLACE TYPE book typ AS OBJECT (

tite VARCHAR2(100),
authors VARCHAR2(100),
ISBN NUMBER,
price NUMBERY;

= An order item that represents an order line item is modeled as an object type
called orderitem_typ . An order item is a nested type that includes the book
type.

CREATE OR REPLACE TYPE orderitem typ AS OBJECT (
quantity NUMBER,
item BOOK_TYP,
subtotal NUMBERY);

= Anorderitem list is used to represent a list of order line items and is modeled
asavarray of order items;

8-12 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

CREATE OR REPLACE TYPE orderitemist vartyp AS VARRAY (20) OF orderitem_ typ;

= Anorder is modeled as an object type called order_typ . The order typeisa
composite type that includes nested object types defined earlier. The order type
captures details of the order, the customer information, and the item list.

CREATE OR REPLACE TYPE order typ as object (

ordemo NUMBER,

status VARCHAR2(30),

ordertype VARCHAR2(30),

orderregion VARCHAR2(30),

customer CUSTOMER_TYP,
paymentmethod VARCHAR2(30),

items ORDERITEMLIST_VARTYP,
total NUMBERY);

= Some queues in the BooksOnline application model an order using a
SYS.XMLType payload.

Visual Basic (O040): Example Code
Use the dbexecutesqgl interface from the database for this functionality.

Java (JDBC): Example Code
After creating the types, use JPublisher to generate Java classes that map to the SQL
types.

1. Create an input file "jagbol.typ" for JPublisher with the following lines:

TYPE boladm.customer_typ as Customer

TYPE boladm.book typ as Book

TYPE boladm.orderitem_typ AS Orderitem

TYPE boladm.orderitemlist vartyp AS OrderltemList

TYPE boladm.order_typ AS Order

2. Run JPublisher with the following arguments;

jpub -inputjagboltyp -user=boladm/boladm -case=mixed -methods=false
-compatible=CustomDatum

This will create Java classes Customer, Book, Orderltem and OrderltemList that
map to the SQL object types created earlier:

3. Load the Java AQ driver and create a JDBC connection:

public static Connection loadDriver(String user, String passwd)

A Sample Application Using AQ 8-13

General Features of Advanced Queuing

{
Connection db_conn = nul;
try
{
Class forName('oracle.jdbc.driver.OracleDriver');
F your actual hostname, port number, and SID will
vary from what follows. Here we use 'disun736, 5521,
and ‘test' respectively. ¥
db _conn =
DriverManager.getConnection(
"idbc:oracle:thin:@disun736:5521test",
user, passwd);
System.out.printin("'JDBC Connection opened ");
db_conn.setAutoCommit(false);
f* Load the Oracle8i AQ driver. */
Class forName('oracle. AQ.AQOracleDriver");
System.out.prinin("Successfully loaded AQ driver)
}
catch (Exception ex)
{
System.out.printin(‘Exception: " + ex);
ex.printStackTrace();
}
retum db_conn;
XMLType Queue Payloads

You can create queues with XMLType payloads. These can be used for transmitting
and storing messages that contain XML documents. By defining Oracle objects with

XMLType attributes, you can do the following:

= Store more than one type of XML document in the same queue. The documents

are stored internally as CLOBs.

= Selectively dequeue messages with XMLType attributes using the operators

XMLType.existsNode() , XMLType.extract()

8-14 Oracle9i Application Developer’s Guide - Advanced Queuing

, and so on.

General Features of Advanced Queuing

See Also: Oracle9i XML Database Developer’s Guide - Oracle XML
DB for details on XMLType operations
= Define transformations to convert Oracle objects to XMLType.

= Define rule-based subscribers that query message content using XMLType
operators such as XMLType.existsNode() and XMLType.extract()

In the BooksOnline application, assume that the Overseas Shipping site represents
the order as SYS.XMLType. The Order Entry site represents the order as an Oracle
object, ORDER_TYP

The Overseas queue table and queue are created as follows:

BEGIN
doms_agadm.create_queue_table(
queue_table => '0S _orders_pr_mqtab,
comment => 'Overseas Shipping MuliConsumer Orders queue table',

multiple_consumers => TRUE,
queue_payload type => 'SYSXMLTiype,
compatible = 81);

END;

BEGIN
doms_agadm.create_queue (
gueue_name => 'OS_bookedorders_gue',
queue_table => 'OS_orders_pr_matab);
END;

Since the representation of orders at the Overseas Shipping site is different from the
representation of orders at the Order Entry site, a transformation is applied before
messages are propagated from the Order Entry site to the Overseas Shipping site.

F Add a rule-based subscriber (for Overseas Shipping) to the Booked orders
queues with Transformation. Overseas Shipping handles all non-US orders: *
DECLARE

subscriber ag$_agent;
BEGIN

subscriber = ag$_agent(Overseas_Shipping,0S.0S_hookedorders_que',nully;

dbms_agadm.add_subscriber(
queue_name => 'OE.OE_hookedorders_que',

subscriber => subscriber,
rule => ‘fab.user_data.orderregion = INTERNATIONAL",
transformation => 'OS.OE2XMLY);

END;

A Sample Application Using AQ 8-15

General Features of Advanced Queuing

For more details on defining transformations that convert the type used by the
Order Entry application to the type used by Overseas shipping, see "Creating
Transformations" on page 8-8.

Assume that an application processes orders for customers in Canada. This
application can dequeue messages using the following procedure:

P Create procedures to enqueue into single-consumer queues: *
create or replace procedure get canada orders() as

deq_msgid RAW(16);
dopt doms_aqg.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data SYSXMLTtype;
Nno_messages exception;
pragma exception_init (no_messages, -25228);
new_orders BOOLEAN = TRUE;
begin
doptwait = 1;

F Specify dequeue condition to select Orders for Canada */
doptdeq_condition = ‘tab.user_data.extract(
"JORDER_TYP/CUSTOMER/COUNTRY/text()").getStingVal(j="CANADA™,
doptconsumer_name : = 'Overseas_Shipping’;

WHILE (new_orders) LOOP

BEGIN

dbms_ag.dequeue(
gueue_name => '0S.0S_bookedorders_gue',
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

commit;

dbms_outputput_line(Order for Canada - Order: ' ||
deq_order_data.getStringVal());

EXCEPTION
WHEN no_messages THEN
doms_outputput line (— NO MORE ORDERS —)
new_orders = FALSE;
END;

8-16 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

END LOOP;
end;

Nonpersistent Queues

A message in a nonpersistent queue is not stored in a database table. You create a
nonpersistent queue, which can be either a single-consumer or multiconsumer type.
These queues are created in a system-created queue table (AQ$_MEM_S@r
single-consumer queues and AQ$_MEM_Mfdr multiconsumer queues) in the
schema specified by the create_np_queue command. Subscribers can be added
to the multiconsumer queues (see "Creating a Nonpersistent Queue” on page 9-26).
Nonpersistent queues can be destinations for propagation.

You use the enqueue interface to enqueue messages into a nonpersistent queue in
the normal way. You can enqueue RAW and Object Type (ADT) messages into a
nonpersistent queue. You retrieve messages from a nonpersistent queue through the
asynchronous notification mechanism, registering for the notification (using
LNOCISubcriptionRegister or DBMS_AQADM.REGISTHRor the queues you
are interested in (see "Registering for Notification" on page 11-55).

When a message is enqueued into a queue, it is delivered to clients with active
registrations for the queue. The messages are published to the interested clients
without incurring the overhead of storing them in the database.

See Also: Documentation on DBMS_AQADM.REGISTER
Oracle9i Supplied PL/SQL Packages and Types Reference and
documentation on LNOCISubscriptionRegister in Oracle Call
Interface Programmer’s Guide.

Scenario

Assume that there are three application processes servicing user requests at the
Order Entry system. The connection dispatcher shares out connection requests from
the application processes. It attempts to maintain a count of the number of users
logged on to the Order Entry system and the number of users for each application
process. The application processes are named APP_1, APP_2 APP_3 (Application
process failures are not considered in this example.)

Using nonpersistent queues meets the requirements in this scenario. When a user
logs on to the database, the application process enqueues to the multiconsumer
nonpersistent queue, LOGIN_LOGOUTwith the application name as the consumer
name. The same process occurs when a user logs out. To distinguish between the

A Sample Application Using AQ 8-17

General Features of Advanced Queuing

two events, the correlation of the message is LOGIN for logins and LOGOUTor
logouts.

The callback function counts the login/logout events for each application process.
Note that the dispatcher process needs to connect to the database for registering the
subscriptions only. The notifications themselves can be received while the process is
disconnected from the database.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT oeloe;

F Create the Object Type/ADT adtmsg */

CREATE OR REPLACE TYPE adimsg AS OBJECT (id NUMBER, data VARCHAR2(4000));

/* Create the multiconsumer nonpersistent queue in OE schema: ¥
EXECUTE dbms_agadm.create_np_queue(queue_name => 'LOGON_LOGOFF,
multiple_consumers => TRUE);

/* Enable the queue for enqueue and dequeue: ¥
EXECUTE dbms_agadm.start_queue(queue_name => TLOGON_LOGOFF);

/* Nonpersistent Queue Scenario - procedure to be executed upon logon: %
CREATE OR REPLACE PROCEDURE User_Logon(app_process IN VARCHARZ)

AS
msgprop dbms_ag.message_properties t;
enqgopt doms_ag.enqueue_options t;
eng_msgid RAW(16);
payload RAW(1);

BEGIN

F visibiity must always be immediate for NonPersistent queues *
engopt.visibility:=dbms_ag.IMMEDIATE;

msgprop.correlation= 'LOGON

msgprop.recipient_list(0) = ag$_agent(app_process, NULL, NULL);
F payload is NULL *

dbms_ag.enqueue(
queue_name => LLOGON_LOGOFF,
enqueue_options => enqopt,
message_properies => msgprop,
payload => payload,
msgid => eng_msgid);
END;

/* Nonpersistent queue scenario - procedure to be executed upon logoff %
CREATE OR REPLACE PROCEDURE User Logoffiapp_process IN VARCHAR?)

8-18 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

AS
msgprop dbms_ag.message_properties t;
enqopt doms_ag.enqueue_options t;
eng_msgid RAW(16);
payload adtmsg,

BEGIN

/* Visibility must alwvays be immediate for NonPersistent queues: %
engopt.visibility:=dbms_ag.IMMEDIATE;
msgprop.correlation;= 'LOGOFF;
msgprop.recipient_list(0) = ag$_agent(app_process, NULL, NULL);
/* Payload is NOT NULL: %

payload = adtmsg(l, Logging Off);

dbms_ag.enqueue(

gqueue_name => LOGON_LOGOFF,
enqueue_options => enqopt,
message_properies => msgprop,

payload => payload,

msgid => eng_msgid);

END;

/ If there Is a login at APP1, enqueue a message into login_logoff with
correlation LOGIN:: %
EXECUTE User_logon(APP1);

F If there is a logout at APP3, enqueue a message into 'login_logoff with
conelation LOGOFF and payload adtmsg(l, 'Logging Off). *
EXECUTE User_logofft(App3);

/* The OCI program which waits for notifications: *
#incude <stdio.h>
#include <stdlib.n>
#include <string.h>
#include <ocih>
#ifdef WINS2COMMON
#define sleep(xX) Sleep(21000%(X))
#endif
/* LOGON / password: %
stafic text *usemame = (text *) "OE";
stafic text *password = (text *) "OE"

/* The corelation stiings of messages: ¥

A Sample Application Using AQ 8-19

General Features of Advanced Queuing

staic char *ogon = "LOGON"
static char *ogoff = "LOGOFF";

/* The possible consumer names of queues: ¥
static char *applis] = {'/APP1", “APP2""APP3%};

staic OCIEnv *envhp;
staic OClIServer *srvhp;
static OCIEmor *errhp;
staic OCISveCix *svchp;

static void checkerr(*_ OCIEmor *emhp, sword status _*);
struct process_statistics
{
ub4 logon;
ub4 logoff,
%
typedef struct process_statistics process_statistics;
int main(*_ int argc, char *argV{] _*/);

/* Notity Callback:
ub4 notifyCB(ctx, subscrhp, pay, payl, desc, mode)

dvoid *ctx;
LNOCISubscription *subscrhp;
dvoid *pay;
ubd payl;
dvoid *desc;
ub4 mode;
{
text *subname; /* subscription name %
ub4 Isub; /* length of subscripton name %
text *queue; /* queue name ¥
ub4 *queue; /* queue name %
text *CONSUMET, /¥ consumer name %
ub4 lconsumer;
text *correlation;
ub4 lcorrelation;
ub4 size;
ub4 appno;
OCIRaw *msgid;
OCIAQMsgProperties *msgprop; /* message propertes descriptor

process_statistics ~ *user_count = (process_statistics *)ctx;

8-20 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

OCIAtrGet((dvoid *)subscrhp, OCI HTYPE_SUBSCRIPTION,
(dvoid *)&subname, &lsub,
OC|_ATTR_SUBSCR_NAME, erthpy);

/* Extract the attibutes from the AQ descriptor: %/

/* Queue name: ¥/

OClAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&queue, &size,
OCI_ ATTR_QUEUE_NAME, erhp);

/#* Consumer name: */
OClAttrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *)&consumer, &lconsumer,
OCI_ATTR_CONSUMER_NAME, erthp);

/* Message properties: ¥
OClAtrGet(desc, OCI_DTYPE_AQNFY_DESCRIPTOR, (dvoid *&msgprop, &size,
OCl_ ATTR_MSG_PROP, erthpy);

/* Get correlation from message propertes: %

checkerr(errhp, OCIlAttrGet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES,
(dvoid *)&correlation, &lcorrelation,
OCI_ATTR_CORRELATION, erhp));

if (lconsumer = strlen(applist0]))
{
if (!memcmp((dvoid *)consumer, (dvoid *applist0], stien(applistO]))
appno = 0;
else if (Imemecmp((dvoid *)consumer, (dvoid *)applistf1],
strien(appiist[1])))
appno = 1,
else if (Imemecmp((dvoid *)consumer, (dvoid *)applist2],
strien(appiist[2])))
appno = 2;
else
{
printf("Wrong consumer in notification”);
retum;
}
}
else
{ /* consumer name must be "APP1", "APP2" or "APP3" %
printf(*Wrong consumer in notification”);
retum;

}

A Sample Application Using AQ 8-21

General Features of Advanced Queuing

if (comelaion == strlen(logon) && /* logon event %
Imemcmp((dvoid *)correlation, (dvoid *)logon, strien(logon)))
{

user_countfappnol.logon++;
/* increment logon count for the app process ¥

printf("Logon by APP%d \n", (appno+1));
printf("Logon Payload length = %d \n", payl);

}

else if (comrelaion = strlen(logoff) && F logoff event ¥

Imememp((dvoid *)correlation,(dvoid *)logoff, strien(logoff)))
{

user_countappno]logoff++;

/* increment logoff count for the app process ¥
printf("Logoff by APP%d \n", (appno+1));
printf("Logoff Payload length = %d \n", payl);

}

else /* correlation is "LOGON" or "LOGOFF" %
printf(*Wrong correlation in notification’);

printf(‘Total : \n");

printf’Appl : %d \n", user_count0].logon-user_count0].logoff);
printf(’App2 : %d \n", user_count1]logon-user_count]1]logoff);
printf(’App3 : %d \n", user_count2]logon-user_count]2].logoff);

}

int main(arge, argv)

int argc;

char *argv;

{
OClSession *authp = (OClSession *) 0;
OCISubscription *subscrhp[3];
ub4 namespace = OCl| SUBSCR_NAMESPACE _AQ;
process_statistics ¢tx[3] = {{0,0}, {0,0}, {0,0};
ub4 sleep time = 0;

printf('Initializing OCI Process\n’);

/ Iniialize OCI envionment with OCI_ EVENTS flag set %
(void) OClinitialize((ub4) OCI_EVENTS|OCI_OBJECT, (dvoid *)0,
(dvoid * (*(dvoid *, size f)) O,
(dvoid * (*(dvoid *, dvoid *, size 1))0,
(void (*)(dvoid *, dvoid *) 0);

8-22 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

).

printf{"Initialization successfuln’);

printf('Initializing OCl Envin®);
(void) OCIENvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size f) O, (dvoid *) O

printf("Initialization successfuln’);

checken(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &erhp,

LNOCI_HTYPE_ERROR,

(size_t) O, (dvoid *) 0));

checkerr(enthp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &sivhp,

LNOCI_HTYPE_SERVER,

(size_f) 0, (dvoid *) O));

checker(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid *) &svchp,

LNOCI_HTYPE_SVCCTX,

(size_f) 0, (dvoid *) O);

printf("connecting to server\n”);

checken(errhp, OCIServerAttach(sivhp, ermhp, (text *)instl_alias”,
stien('instl_alias”), (ub4) OCI_DEFAULT));

printf(‘connect successfuln';

/* Set atibute server context in the service context: %/
checkenr(enhp, OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
(ubd) 0, OCI_ATTR_SERVER, (OCIEror *) erhp));

checkenr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
(ub4) OCI_HTYPE_SESSION, (size t) 0, (dvoid *) O));

/* Set usemame and password in the session handle: %

checken(errhp, OCIAtrSet((dvoid *) authp, (ub4) OCI_ HTYPE_SESSION,
(dvoid *) usemame, (ub4) strlen((char *)usemame),
(ub4) OCI ATTR_USERNAME, erhp));

checkerr(errhp, OCIAtrSet((dvoid *) authp, (ub4) OCl_ HTYPE_SESSION,
(dvoid *) password, (ub4) strien((char *)password),
(ubd) OCI_ATTR_PASSWORD, erhp));
/* Begin session: ¥
checkerr(errhp, OCISessionBegin (svchp, enhp, authp, OCI_ CRED RDBMS,
(ub4) OCI_DEFAULT));

(void) OCIAtrSet((dvoid *) svchp, (ub4) OCI HTYPE_SVCCTX,

A Sample Application Using AQ 8-23

General Features of Advanced Queuing

(dvoid *) authp, (ub4) 0,
(ub4) OCI ATTR_SESSION, erthp);

/* Register for notification: %
printf("allocating subscription handle\n’);
subscrhp0] = (OCISubscription *)0;
(void) OClHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[0],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size t) O, (dvoid *¥) 0);

/* For application process APP1: *

printf("setting subscription name\n”);

(void) OCIAtrSet((dvoid *) subscrhp[0], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP1",
(ubd) strlen("OE.LOGON_LOGOFFAPP1"),
(ubd) OCI ATTR_SUBSCR_NAME, erthp);

printf("setting subscription callback\n®);

(void) OCIAtrSet((dvoid *) subscrhp[0], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(ubd) OCI_ ATTR_SUBSCR_CALLBACK, erhp);

(void) OCIAtrSet((dvoid *) subscrhp[0], (ub4) OCI_HTYPE_SUBSCRIPTION,
(@void *&ctx, (ubd)sizeof(cix),
(Ubd) OCI ATTR_SUBSCR_CTX, enhp);

printf("setting subscription namespace\n’);

(void) OCIAttrSet((dvoid *) subscrhp[0], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);

printf("allocating subscription handle\n’);

subscrhp[l] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[d],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) O, (dvoid *) 0);

/* For application process APP2: %

printf("setting subscription name\n”);

(void) OClAtrSet((dvoid *) subscrhp[1], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP2',
(ub4) stien('OE.LOGON_LOGOFFAPP2"),
(ub4) OCI_ ATTR_SUBSCR_NAME, erhp);

printf(’setting subscription callback\n®);

8-24 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

(void) OCIAtrSet((dvoid *) subscrhp[l], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid *) notifyCB, (ub4) O,
(Ub4) OCI_ATTR_SUBSCR_CALLBACK, erhp);

(void) OCIAtrSet((dvoid *) subscrhp[l], (ub4) OCI HTYPE SUBSCRIPTION,
(dvoid *&ctx, (Ubd)sizeof(ctx),
(Ub4) OCI_ATTR_SUBSCR _CTX, erhp);

printf("setting subscription namespace\n’);

(void) OCIAttrSet((dvoid *) subscrhp[l], (ub4) OClI HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);

printf("allocating subscription handle\n’);

subscrhp2] = (OCISubscription *)0;

(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&subscrhp[2],
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_t) O, (dvoid *) 0);

/* For application process APP3: %

printf("setting subscription name\n”);

(void) OClAtrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid *) "OE.LOGON_LOGOFFAPP3',
(ub4) sten('OE.LOGON_LOGOFFAPP3"),
(ub4) OCI_ ATTR_SUBSCR_NAME, erhp);

printf(’setting subscription callback\n®);

(void) OCIAttrSet((dvoid *) subscrhp[2], (ub4) OCI HTYPE_SUBSCRIPTION,
(dvoid * notifyCB, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CALLBACK, erhp);

(void) OCIAtrSet((dvoid *) subscrhp[2], (ub4) OCI_HTYPE_SUBSCRIPTION,
(dvoid ¥&ctx, (ubd)sizeof(ctx),
(Ub4) OCI ATTR_SUBSCR CTX, enhp);

printf("setting subscription namespace\n’);

(void) OCIAtrSet((dvoid *) subscrhp[2], (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (Ub4) O,
(ubd) OCI_ ATTR_SUBSCR_NAMESPACE, enhp);

printf("Registering fomotifications \n");
checkerr(errhp, OCISubscriptionRegister(svchp, subscrhp, 3, erhp,
OCI_DEFAULT));

sleep time = (ub4)atoi@gv1]);

A Sample Application Using AQ 8-25

General Features of Advanced Queuing

printf (‘waiting for %d s \n", sleep_time);
sleep(sleep_time);

printf'Exiting');
exit(0);
}

void checkerr(errhp, status)
LNOCIEmor *erhp;
sword status;
{
text enbufi512];
sb4 emrcode = O;

switch (status)

{

case OCl_SUCCESS:
break;

case OCl_SUCCESS WITH_INFO:
(void) printf("Emor - OCI_SUCCESS_WITH_INFO\n");
break;

case OCI_NEED DATA:
(void) printf("Enmor - OCI_NEED_DATAWN");
break;

case OClI NO_DATA:
(void) printf("Emor - OCI_NODATAWN");
break;

case OC| ERROR:
(void) OCIEmorGet((dvoid *)enhp, (ubd) 1, (text *) NULL, &errcode,

enbuf, (Ub4) sizeofenbuf), OCI_ HTYPE_ERROR);

(void) printf("Error - %*s\n", 512, embuf);
break;

case OCl INVALID_HANDLE:
(void) printf("Enmor - OCI_INVALID_HANDLEWN');
break;

case OCl_STILL_ EXECUTING:
(void) printf("Emor - OCI_STILL_EXECUTE\n");
break;

case OCl_CONTINUE:
(void) printf("Enmor - OCI_CONTINUEN");
break;

default
break;

}

}

8-26 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

/ End of fle tkagdocn.c ¥

Visual Basic (O040): Example Code
This feature is not supported currently.

Java (JDBC): Example Code
This feature is not supported through the Java API.

Retention and Message History

Advanced Queuing allows the retention of the message history after consumption.
The messages and their histories can be queried using SQL. This allows business
analysis of the integrated system. In certain cases, messages need to be tracked. For
example, if a message is produced as a result of the consumption of another
message, the two are related. As the application designer, you may want to keep
track of such relationships. Taken together, retention, message identifiers, and SQL
gueries make it possible to build powerful message warehouses.

Scenario

Assume that you need to determine the average order processing time. This
includes the time the order has to wait in the backed_order queue. You want to
know the average wait time in the backed_order queue. SQL queries can
determine the wait time for orders in the shipping application. Specify the retention
as TRUEfor the shipping queues and specify the order number in the correlation
field of the message.

For simplicity, only orders that have already been processed are analyzed. The
processing time for an order in the shipping application is the difference between
the enqueue time in the WS_bookedorders_que and the enqueue time in the WS_
shipped_orders_que (see "tkagdoca.sql: Script to Create Users, Objects, Queue
Tables, Queues & Subscribers" on page C-2 of Appendix C, "Scripts for
Implementing BooksOnLine".

A Sample Application Using AQ 8-27

General Features of Advanced Queuing

PL/SQL (DBMS_AQADM Package): Example Code

SELECT SUM(SO.eng_time - BO.enq time) / count (*) AVG_PRCS TIME
FROM WS.AQ$WS_orders_pr mqtab BO , WSAQ$WS_orders matab SO
WHERE SO.msg_state = 'PROCESSED' and BO.msg_state = 'PROCESSED'
AND SO.corr_id = BO.com_id and SO.queue = WS_shippedorders_que;,

/* Average waiting time in the backed order queue: ¥
SELECT SUM(BACKdeq time - BACK.enq_time)icount (*) AVG_BACK _TIME
FROM WS.AQ$WS _orders matab BACK
WHERE BACK.msg_state = 'PROCESSED' AND BACK.queue = WS_backorders_que’;

Visual Basic (O040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Publish-Subscribe Support

Advanced Queuing supports the publish-subscribe model of application
integration. In the model, publishing applications put the message in the queue.
The subscribing applications subscribe to the message in the queue. More
publishing and subscribing applications can be dynamically added without
changing the existing publishing and subscribing applications. Advanced Queuing
also supports content-based subscriptions. The subscriber can subscribe to a subset
of messages in the queue based on the message properties and the contents of the
messages. A subscriber to a queue can also be another queue or a consumer on
another queue.

You can implement a publish-subscribe model of communication using Advanced
Queuing as follows:

= Set up one or more queues to hold messages. These queues should represent an
area or subject of interest. For example, a queue can be used to represent billed
orders.

= Set up a set of rule-based subscribers. Each subscriber may specify a rule which
represents a specification for the messages that the subscriber wishes to receive.
A null rule indicates that the subscriber wishes to receive all messages.

= Publisher applications publish messages to the queue by invoking an enqueue
call.

8-28 Oracle9/ Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

s Subscriber applications may receive messages in the following manner:
s A dequeue call retrieves messages that match the subscription criteria.

s Alisten call may be used to monitor multiple queues for subscriptions on
different queues. This is a more scalable solution in cases where a
subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.

s Use the OCI notification mechanism. This allows a push mode of message
delivery. The subscriber application registers the queues (and subscriptions
specified as subscribing agent) from which to receive messages. This
registers a callback to be invoked when messages matching the
subscriptions arrive.

Scenario

The BooksOnL.ine application illustrates the use of a publish-subscribe model for
communicating between applications. The following subsections give some
examples.

Defining queues The Order Entry application defines a queue (OE_booked
orders_que)tocommunicate orders that are booked to various applications. The
Order Entry application is not aware of the various subscriber applications and
thus, a new subscriber application can be added without disrupting any setup or
logic in the Order Entry (publisher) application.

Setting Up Subscriptions ~ The various shipping applications and the customer service
application (that is, Eastern region shipping, Western region shipping, Overseas
shipping and Customer Service) are defined as subscribers to the booked_orders
gueue of the Order Entry application. Rules are used to route messages of interest to
the various subscribers. Thus, Eastern Region shipping, which handles shipment of
all orders for the East coast and all rush U.S. orders, expresses the subscription rule
as follows:

rule => ‘tab.user_data.orderregion = "EASTERN" OR
(tab.user_data.ordertype = "RUSH" AND
tab.user_data.customer.country = "USA") '

Each subscriber can specify a local queue where messages are to be delivered. The
Eastern region shipping application specifies a local queue (ES_booked_orders_
gue) for message delivery by specifying the subscriber address as follows:

subscriber = ag$_agent(East_Shipping, 'ES.ES_bookedorders_que', null);

A Sample Application Using AQ 8-29

General Features of Advanced Queuing

Setting Up Propagation Enable propagation from each publisher application queue.
To allow subscribed messages to be delivered to remote queues, the Order Entry
application enables propagation by means of the following statement:;

execute dboms_agadm.schedule_propagation(queue_name => 'OE.OE_bookedorders_que);

Publishing Messages Booked orders are published by the Order Entry application
when it enqueues orders (into the OE_booked_order_que) that have been
validated and are ready for shipping. These messages are then routed to each of the
subscribing applications. Messages are delivered to local queues (if specified) at
each of the subscriber applications.

Receiving Messages Each of the shipping applications and the Customer Service
application will then receive these messages in their local queues. For example,
Eastern Region Shipping only receives booked orders that are for East Coast
addresses or any U.S. order that is marked RUSHThis application then dequeues
messages and processes its orders for shipping.

Support for Oracle Real Application Clusters

Real Application Clusters can be used to improve AQ performance by allowing
different queues to be managed by different instances. You do this by specifying
different instance affinities (preferences) for the queue tables that store the queues.
This allows queue operations (enqueue and dequeue) on different queues to occur
in parallel.

The AQ queue monitor process continuously monitors the instance affinities of the
gueue tables. The queue monitor assigns ownership of a queue table to the specified
primary instance if it is available, failing which it assigns it to the specified
secondary instance.

If the owner instance of a queue table terminates, the queue monitor changes
ownership to a suitable instance such as the secondary instance.

AQ propagation is able to make use of Real Application Clusters, although it is
transparent to the user. The affinities for jobs submitted on behalf of the
propagation schedules are set to the same values as that of the affinities of the
respective queue tables. Thus a job_queue_process associated with the owner
instance of a queue table will be handling the propagation from queues stored in
that queue table, thereby minimizing pinging. Additional discussion on this topic
can be found under AQ propagation scheduling (see "Scheduling a Queue
Propagation” on page 9-71 in Chapter 9, "Administrative Interface").

8-30 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

See also: Oracle9i Real Application Clusters Setup and Configuration

Scenario

In the BooksOnL.ine example, operations on the new_orders_queue and
booked_order_queue at the order entry (OE) site can be made faster if the two
gueues are associated with different instances. This is done by creating the queues
in different queue tables and specifying different affinities for the queue tables in
the create_queue_table() command.

In the example, the queue table OE_orders_sqtab stores queue new_orders_
gueue and the primary and secondary are instances 1 and 2 respectively. Queue
table OE_orders_mqtab stores queue booked _order_queue and the primary
and secondary are instances 2 and 1 respectively. The objective is to let instances 1
and 2 manage the two queues in parallel. By default, only one instance is available,
in which case the owner instances of both queue tables will be set to instance 1.
However, if Real Application Clusters are set up correctly and both instances 1 and
2 are available, then queue table OE_orders_sqtab will be owned by instance 1
and the other queue table will be owned by instance 2. The primary and secondary
instance specification of a queue table can be changed dynamically using the
alter_queue_table () command as shown in the following example. Information
about the primary, secondary and owner instance of a queue table can be obtained
by querying the view USER_QUEUE_TABLESee "Selecting Queue Tables in User
Schema" on page 10-21 in "Administrative Interface: Views").

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.

PL/SQL (DBMS_AQADM Package): Example Code

/* Create queue tables, queues for OE %
CONNECT OE/OE;
EXECUTE dbms_agadm.create_queue_table(\

queue_table => 'OE_orders_sqtab’\

comment => 'Order Entry Single-Consumer Orders queue table’\
queue_payload type => 'BOLADM.order_typ'\

compatible = 81\

primary_instance => 1\
secondary_instance => 2);

A Sample Application Using AQ 8-31

General Features of Advanced Queuing

EXECUTE dbms_agadm.create_queue_table(\
queue_table => 'OE_orders_mqtab’\
comment => 'Order Entry Muli Consumer Orders queue table’\
multiple_consumers => TRUE\
queue_payload type => 'BOLADM.order_typ'\
compatible = '81)\
primary_instance => 2\
secondary_instance => 1);

EXECUTE dbms_agadm.create_queue (\

queue_name => 'OE_neworders_que’\

queue_table => 'OE_orders_sqtab);
EXECUTE dbms_agadm.create_queue (\

queue_name => 'OE_bookedorders_que’\

queue_table => 'OE_orders_mqtab);

/* Check instance affinity of OF queue tables from AQ administatve view: ¥
SELECT queue_table, primary_instance, secondary_instance, owner_instance
FROM user_gqueue_tables;

F Alter instance affinity of OE queue tables: *
EXECUTE dbms_agadm.alter_queue_table(\
queue_table => 'OE.OE_orders_sqtab’\
primary_instance => 2\
secondary_instance => 1);

EXECUTE dbms_agadm.alter_queue _table(\
queue_table => 'OE.OE_orders_mgqtab’, \
primary_instance => 1\
secondary_instance => 2);

/* Check instance affinity of OE queue tables from AQ administative view. ¥
SELECT queue_table, primary_instance, secondary_instance, owner_instance
FROM user_queue_tables;

Visual Basic (O040): Example Code
This feature currently not supported.

Java (JDBC): Example Code

public static void createQueueTablesAndQueues(Connection db_conn)

{
AQSession ag_Ssess,
AQQueueTableProperty sqt_prop;

8-32 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

AQQueueTableProperty mat_prop;

AQQueueTable sq_table;
AQQueueTable mq_table;
AQQueueProperty q_prop;

AQQueue neworders_g;
AQQueue bookedorders_g;
try

{

F Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

P Create a single-consumer orders queue table */

sqt prop = new AQQueueTableProperty('BOLADM.order_typ');
sat_prop.setComment("Order Entry Single-Consumer Orders queue table';
sat_prop.setCompatible(8.1";

sat_prop.setPrimaryinstance(l);

sqt_prop.setSecondaryinstance(2);

sq table = aq_sess.createQueueTable("OE", "OE _orders_sqtab”, sgt_prop);

F Create a multiconsumer orders queue table *

mat_prop = new AQQueueTableProperty('BOLADM.order_typ');
mat_prop.setComment(‘Order Entry Muli Consumer Orders queue table');
maqt_prop.setCompatible("8.1");

mat_prop.setMuliConsumer(true);

mat_prop.setPrimaryinstance(2);

mat_prop.setSecondarylnstance();

mg_table = aq_sess.createQueueTable("OE", "OE_orders_mqtab”, mat_prop);

F Create Queues in these queue tables *
g _prop = new AQQueueProperty();

neworders_q = aq_sess.createQueue(sg_table, "OE_neworders_que",

q_prop);
bookedorders g = aq_sess.createQueue(mq_table, "OE_bookedorders_que”,
0_prop);
}
catch (AQException ex)
{

System.outprinin("fAQ Exception: " + ex);

A Sample Application Using AQ 8-33

General Features of Advanced Queuing

}
}
public static void alterinstanceAffinity(Connection db_conn)
{

AQSession ag_sess,

AQQueueTableProperty sqt_prop;
AQQueueTableProperty mat_prop;

AQQueueTable sq_table;
AQQueueTable mq_table;
AQQueueProperty 0L_prop;

try

{

F Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

P Check instance affiniies *
sq table = aq_sess.getQueueTable("OE", "OE _orders_sqtab”);

sqt_prop = sq_table.getProperty();
System.out prinin(*Current primary instance for OE_orders_sqtab: "
sqt_prop.getPrimarylnstance());

mg_table = aq_sess.getQueueTable("OE", "OE_orders_matab');

mat_prop = mq_table.getProperty();

System.outprintin(*Current primary instance for OE_orders_mgtab: "
mat_prop.getPrimaryinstance());

F Alter queue table affiniies */
sq_tablealter(null, 2, 1);

mq_table.alter(null, 1, 2);

st prop = sq_table.getProperty();
System.out prinin(*Current primary instance for OE_orders_sqtab: "

sqt_prop.getPrimaryinstance();

mg_table = aq_sess.getQueueTable("OE", "OE_orders_ matab");

mat_prop = mq_table.getProperty();

System.outprinin(*Current primary instance for OE_orders_mgqtab: "
mat_prop.getPrimaryinstance());

8-34 Oracle9i Application Developer’s Guide - Advanced Queuing

General Features of Advanced Queuing

catch (AQException ex)
{

}

System.outprinin(‘AQ Exception: " + ex);

Support for Statistics Views

Each instance keeps its own AQ statistics information in its own SGA, and does not
have knowledge of the statistics gathered by other instances. When a GV$AQ view
is queried by an instance, all other instances funnel their AQ statistics information
to the instance issuing the query.

Scenario

The gv$ view can be queried at any time to see the number of messages in waiting,
ready or expired state. The view also displays the average number of seconds
messages have been waiting to be processed. The order processing application can
use this to dynamically tune the number of order processing processes (see
"Selecting the Number of Messages in Different States for the Whole Database" on
page 10-33 in Chapter 10, "Administrative Interface: Views").

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT oeloe

/ Count the number as messages and the average time for which the messages have
been waitng: %
SELECT READY, AVERAGE WAIT FROM gv$ag Stats, user_queues Qs
WHERE Stats.gid = Qs.qid and Qs.Name = 'OE_neworders_gue’,

Visual Basic (O040): Example Code
Use the dbexecutesql interface from the database for this functionality.

Java (JDBC): Example Code
No example is provided with this release.

Internet Access

See Chapter 17, "Internet Access to Advanced Queuing" for information on Internet
access to Advanced Queuing features.

A Sample Application Using AQ 8-35

Enqueue Features

Enqueue Features
In this section, the following topics are discussed:
= Subscriptions and Recipient Lists
= Priority and Ordering of Messages
= Time Specification: Delay
= Time Specification; Expiration
= Message Grouping
= Retry with Delay Interval
= Message Transformation During Enqueue
= Enqueue Using the AQ XML Servlet

Subscriptions and Recipient Lists

After consumption by dequeue, messages are retained for the time specified in
retention_time . When retention_time expires, messages are removed by the
time manager process.

After processing, the message is removed if the retention_time of the queue is 0,
or retained for the specified retention time. While the message is retained the
message can either be queried using SQL on the queue table view or by dequeuing
using the BROWSHEode and specifying the message ID of the processed message.

Advanced Queuing allows a single message to be processed and consumed by more
than one consumer. To use this feature, you must create multiconsumer queues and
enqueue the messages into these multiconsumer queues. Advanced Queuing allows
two methods of identifying the list of consumers for a message: subscriptions and
recipient lists.

Subscriptions

You can add a subscription to a queue by using the DBMS_AQADM.ADD _
SUBSCRIBERPL/SQL procedure (see "Adding a Subscriber” on page 9-58 in
Chapter 9, "Administrative Interface"). This lets you specify a consumer by means
of the AQ$_AGENarameter for enqueued messages. You can add more
subscribers by repeatedly using the DBMS_AQADM.ADD_SUBSCRIBBERcedure up
to a maximum of 1024 subscribers for a multiconsumer queue.

All consumers that are added as subscribers to a multiconsumer queue must have
unique values for the AQ$_AGENTDarameter. This means that two subscribers

8-36 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

cannot have the same values for the NAMEADDRES&nd PROTOCOAttributes for
the AQ$_AGENType. At least one of the three attributes must be different for two
subscribers (see "Agent Type (ag$_agent)" on page 2-3 for formal description of this
data structure).

You cannot add subscriptions to single-consumer queues or exception queues. A
consumer that is added as a subscriber to a queue will only be able to dequeue
messages that are enqueued after the DBMS_AQADM.ADD_SUBSCRIBBRcedure
is completed. In other words, messages that had been enqueued before this
procedure is executed will not be available for dequeue by this consumer.

You can remove a subscription by using the DBMS_AQADM.REMOVE_SUBSCRIBER
procedure (see "Removing a Subscriber" in Chapter 9, "Administrative Interface").
AQ will automatically remove from the queue all data corresponding to the
consumer identified by the AQ$_AGENTarameter. In other words, it is not an error
to execute the REMOVE_SUBSCRIBHE#tocedure even when there are pending
messages that are available for dequeue by the consumer. These messages will be
automatically made unavailable for dequeue after the REMOVE_SUBSCRIBER
procedure is executed. In a queue table that is created with the compatible
parameter set to '8.1' or higher, such messages that were not dequeued by the
consumer will be shown as "UNDELIVERABLE in the AQ$<queue_table> view.
Note that a multiconsumer queue table created without the compatible parameter,
or with the compatible parameter set to '8.0', does not display the state of a message
on a consumer basis, but only displays the global state of the message.

Recipient Lists

You do not need to specify subscriptions for a multiconsumer queue if the
producers of messages for enqueue supply a recipient list of consumers. In some
situations it may be desirable to enqueue a message that is targeted to a specific set
of consumers rather than the default list of subscribers. You accomplish this by
specifying a recipient list at the time of enqueuing the message.

= InPL/SQL you specify the recipient list by adding elements to the
recipient_list field of the message_properties record.

= In OCI the recipient list is specified by using the LNOCISetAttr procedure to
specify an array of LNOCI_DTYPE_AQAGENdescriptors as the recipient list
(LNOCI_ATTR_RECIPIENT_LIST attribute) of an LNOCI_DTYPE_AQMSG_
PROPERTIESMessage properties descriptor.

If a recipient list is specified during enqueue, it overrides the subscription list. In
other words, messages that have a specified recipient list will not be available for
dequeue by the subscribers of the queue. The consumers specified in the recipient

A Sample Application Using AQ 8-37

Enqueue Features

list may or may not be subscribers for the queue. It is an error if the queue does not
have any subscribers and the enqueue does not specify a recipient list (see
"Enqueuing a Message" on page 11-4 in Chapter 11, "Operational Interface: Basic
Operations").

Priority and Ordering of Messages

The message ordering dictates the order that messages are dequeued from a queue.
The ordering method for a queue is specified when a queue table is created (see
"Creating a Queue Table" on page 9-4 in Chapter 9, "Administrative Interface").

Priority ordering of messages is achieved by specifying priority, enqueue time as
the sort order for the message. If priority ordering is chosen, each message will be
assigned a priority at enqueue time by the enqueuer. At dequeue time, the messages
will be dequeued in the order of the priorities assigned. If two messages have the
same priority, the order in which they are dequeued is determined by the enqueue
time. A first-in, first-out (FIFO) priority queue can also be created by specifying the
enqueue time, priority as the sort order of the messages.

Scenario
In the BooksOnL.ine application, a customer can request:

= FedEx shipping (priority 1),
= Priority air shipping (priority 2). or
= Regular ground shipping (priority 3).

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

PL/SQL (DBMS_AQADM Package): Example Code

F Create a priority queue table for OE: */
EXECUTE dbms_agadm.create_queue_table(\

queue_table => 'OE_orders_pr_mqtab, \
sort_list =>priority,enq_time', \
comment => 'Order Entry Priority \

MuttiConsumer Orders queue table'\
multiple_consumers => TRUE, \
queue_payload type => 'BOLADM.order_typ', \

8-38 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

compatible = 81, \
primary_instance =2\
secondary _instance => 1);

EXECUTE dbms_agadm.create_queue (\
gueue_name => 'OE_bookedorders_que’, \
queue_table => 'OE_orders_pr_mqtab);

/ When an order amves, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
prionty is specified for each order: ¥

CREATE OR REPLACE procedure order_enq(book title IN VARCHAR?2,
book_qty IN NUMBER,
order_num IN NUMBER,
shipping_priority IN NUMBER,
cust_state IN VARCHAR2,
cust_country IN VARCHAR2,
cust_region IN VARCHAR?2,
cust_ord_typ IN VARCHAR2) AS

OE_enq_order_data BOLADM.order_typ;

OE _enq_cust data BOLADM .customer_typ;

OE_enq_book _data BOLADM.book_typ;

OE _eng_item_data BOLADM .orderitemn_typ;

OE_enq_item _list BOLADM .orderitemlist_vartyp;

enqopt dbms_ag.enqueue_options t;

msgprop dbms_ag.message_properties t;

eng_msgid RAW(16);

BEGIN

msgprop.correlation = cust_ord_typ;

OE_eng_cust_data = BOLADM.customer_typ(NULL, NULL, NULL, NULL,
cust state, NULL, cust country);

OE_enq_book_data = BOLADM.book_typ(book_tile, NULL, NULL, NULL),

OE_eng_item _data = BOLADM.orderitem _typ(book_aty,
OE_enq_book_data, NULL);

OE_enq_item _list = BOLADM.orderitemlist_vartyp(

BOLADM.orderitem_typ(book_qty,
OE_enq_book_data, NULL));
OE enq_order data = BOLADM.order_typ(order_num, NULL,
cust ord typ, cust region,
OE_enq_cust data, NULL,
OE_enq_item list, NULL);

FPuUt the shipping priority into message property before enqueuing

A Sample Application Using AQ 8-39

Enqueue Features

the message: */
msgprop.priority = shipping_priority;
doms_ag.enqueue(OE.OE_bookedorders_que', enqopt, msgprop,
OE_enq_order_data, eng_msgid);
COMMIT;
END;
/

/ At each region, simiar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the regional
booked order queues.For example, at the westem region, the booked orders
queue is created.

Create a prionty queue table for WS shipping: %

EXECUTE dbms_agadm.create_queue_table(\

queue_table => WS orders_pr_mgqtab),
sort_list =>' priority,enq_time', \
comment => 'West Shipping Priority \

MultiConsumer Orders queue table'\
multiple_consumers => TRUE, \
queue_payload type => 'BOLADM.order_typ, \
compatible = '81),

/* Booked orders are stored in the prionty queue table: %
EXECUTE dbms_agadm.create_queue (\
gueue_name => 'WS_bookedorders_que, \
queue_table => WS _orders_pr_matab);

/* At each region, the shipping application dequeues orders from the regional
booked order queue according to the orders' shipping priorities, processes
the orders, and enqueues the processed orders into the shipped orders queues
or the back orders queues. *

Visual Basic (O040): Example Code

Dim OraSession as object

Dim OraDatabase as object

Dim OraAq as object

Dim OraMsg as Object

Dim OraOrder,OraCust,OraBook,Oraltem,OraltemList as Object
Dim Msgid as Sting

Set OraSession = CreateObject("OraclelnProcServer.XOraSession")
Set OraDatabase = OraSession.DbOpenDatabase(‘dbname”, "userfpwd”, 0&)

8-40 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features

set oraaq = OraDatabase.CreateAQ("OE.OE_bookedorders_que')

Set OraMsg = OraAqAQMsg(ORATYPE_OBJECT, "BOLADM.order_typ")

Set OraOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")

Set OraCust = OraDatabase.CreateOraObject(' BOLADM.Customer_typ')

Set OraBook = OraDatabase.CreateOraObject('BOLADM.book_typ")

Set Oraltem = OraDatabase.CreateOraObject('BOLADM.orderitem_typ')

Set OraltemList = OraDatabase.CreateOraObject("'BOLADM.orderitemlist_vartyp')

' Get the values of cust state,cust country etc from user(form_based
" inpuf) and then a cmd click event for Enqueue

" will execute the subroutine order_eng.

Private Sub Order_enq()

OraMsg.correlation = txt_correlation
nitiglize the customer details
OraCust('state”) = t«t_cust_state
OraCust('country”) = txt_cust_country
OraBook('ile") = txt_book_title
Oraltem('quantity”’) = txt_book_qty
Oraltem('item") = OraBook
OraltemList(1) = Oraltem
OraOrder("ordemo”) = txt_order_num
OraOrder("ordertype™) = t<t_cust_order_typ
OraOrder("orderregion”) = cust_region
OraOrder('customer”) = OraCust
OraOrder(items”) = OraltemList

'Put the shipping priority into message property before enqueuing
the message:

OraMsg.priority = priority

OraMsg = OraOrder

Msgid = OraAg.enqueue

‘Release all allocations
End Sub

Java (JDBC): Example Code
public static void createPriorityQueueTable(Connection db_conn)

{

AQSession ag_sess,
AQQueueTableProperty mat_prop;
AQQueueTable pr_mq_table;
AQQueueProperty q_prop;

AQQueue bookedorders_g;

A Sample Application Using AQ 8-41

Enqueue Features

try
{
F Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);
F* Create a priority queue table for OE */
mat_prop = new AQQueueTableProperty('BOLADM.order_typ');
mat_prop.setComment(‘Order Entry Priority " +
"MultiConsumer Orders queue table");
mat_prop.setCompatible(‘8.1");
mat_prop.setMuliConsumer(true);
mat_prop.setSortOrder(*‘priority,eng_time");
pr_mq_table = ag_sess.createQueueTable('OE", "OE_orders_pr_matab",
matt_prop);
I Create a Queue in this queue table */
g _prop = new AQQueueProperty();
bookedorders g = aq_sess.createQueue(pr_mq_table,
"OE_bookedorders_que", q_prop);
F Enable enqueue and dequeue on the queue *
bookedorders_g.start(true, true);
}
catch (AQException ex)
{
System.outprinin(‘/AQ Exception: " + ex);
}

F When an order arives, the order entry application can use the following
procedure to enqueue the order into its booked orders queue. A shipping
priority is specified for each order

*

public static void order_enqueue(Connection db_conn, Sting book_title,
double book_qty, double order_num,
int ship_priority, String cust_state,
Sting cust_country, String cust_region,
Sting cust_order_type)

8-42 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features

AQSession ag_sess,
AQQueue bookedorders_g;
Order eng_order;
Customer cust_data;

Book book_data;
Orderitem item_data;
Orderitem[] itemns;

OrderitemList itern_list;
AQEnqueueOption enq_option;
AQMessageProperty m_property;

AQMessage message;
AQObjectPayload obj payload;
byte]] eng_msg_id;
try

{

F* Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

cust data = new Customen();
cust_data.setCountry(cust_country);
cust_datasetState(cust_state);

book data = new Book();
book _data.setTitle(book tite);

item_data = new Orderitem();
item_data.setQuantity(new BigDecimal(book_aty));
item_data.setitemn(book_data);

items = new Orderltem[1];
items[0] = item_data;

item _list = new OrderltemList(itemns);

eng_order = new Order();
eng_order.setCustomer(cust_data);
eng_order.setitems(item _list);
enq_order.setOrdemo(new BigDecimal(order_num));
eng_order.setOrdertype(cust_order_type);

bookedorders g = ag_sess.getQueue('OE", "OE_bookedorders_que');

A Sample Application Using AQ 8-43

Enqueue Features

message = bookedorders_g.createMessage();

F Put the shipping priority into message property before enqueuing *
m_property = message.getMessageProperty();

m_property.setPriority(ship_priority);

obj payload = message.getObjectPayload();
obj_payload.setPayloadData(enq_order);
eng_option = new AQEnqueueOption();

F Enqueue the message *
eng_msg_id = bookedorders_g.enqueue(eng_option, message);

db_conn.commit();

E:atch (AQException aq_ex)
{ System.outprinin("/AQ Exception: " + ag_ex);
zzatch (SQLException sql_ex)
i System.outprinin("SQL Exception: " + sgl_ex);

}

F At each region, similar booked order queues are created. The orders are
propagated from the central Order Entry's booked order queues to the
regional booked order queues.

For example, at the westem region, the booked orders queue is created.
Create a priority queue table for WS shipping

*

public static void create\WestemShippingQueueTable(Connection db_conn)

{
AQSession ag_sess,
AQQueueTableProperty mat_prop;
AQQueueTable mq_table;
AQQueueProperty oL_prop;
AQQueue bookedorders g;
try

8-44 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features

{
F Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);
F* Create a priority queue table for WS */
mat_prop = new AQQueueTableProperty('BOLADM.order_typ');
mat_prop.setComment('Westem Shipping Priority " +
"MultiConsumer Orders queue table”);
mat_prop.setCompatible('8.1");
mat_prop.setMuliConsumer(true);
mat_prop.setSortOrder(*‘priority,eng_time");
mg_table = aq_sess.createQueueTable("WS", "WS_orders_pr_majtab",
mat_prop);
F* Booked orders are stored in the priorty queue table: */
g _prop = new AQQueueProperty();
bookedorders g = aq_sess.createQueue(mq_table, "WS_bookedorders_que”,
0_prop);
F Start the queue *
bookedorders_g.start(true, true);
}

catch (AQException ex)

System.outprinin(‘/AQ Exception: " + ex);
}

F At each region, the shipping application dequeues orders from the
regional booked order queue according to the orders' shipping priorities,
processes the orders, and enqueues the processed orders into the shipped
orders queues or the back orders queues.

#

Time Specification: Delay

AQ supports delay delivery of messages by letting the enqueuer specify a delay
interval on a message when enqueuing the message, that is, the time before that a
message cannot be retrieved by a dequeue call. (see "Enqueuing a Message [Specify

A Sample Application Using AQ 8-45

Enqueue Features

Message Properties]” on page 11-9 in Chapter 11, "Operational Interface: Basic
Operations"). The delay interval determines when an enqueued message is marked
as available to the dequeuers after the message is enqueued.

When a message is enqueued with a delay time set, the message is marked in a
WAIT state. Messages in WAIT state are masked from the default dequeue calls. A
background time-manager daemon wakes up periodically, scans an internal index
for all WAIT state messages, and marks messages as READYif their delay time has
passed. The time-manager will then post to all foreground processes that are
waiting on queues for messages that have just been made available.

Scenario

In the BooksOnL.ine application, delay can be used to implement deferred billing. A
billing application can define a queue where shipped orders that are not billed
immediately can be placed in a deferred billing queue with a delay. For example, a
certain class of customer accounts, such as those of corporate customers, may not be
billed for 15 days. The billing application dequeues incoming shipped order
messages (from the shippedorders queue) and if the order is for a corporate
customer, this order is enqueued into a deferred billing queue with a delay.

PL/SQL (DBMS_AQADM Package): Example Code

/* Enqueue an order to implement deferred biling so that the order is not made
visible again unti delay has expired: %
CREATE OR REPLACE PROCEDURE defer_hiling(deferred_hiling_order order_typ)
AS
defer_bill_queue_name VARCHAR2(62);

engopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);

BEGIN

/* Enqueue the order into the deferred billing queue with a delay of 15 days: %
defer_bill queue_name = 'CBADM.deferbiling_que;
msgprop.delay = 15*60*60*24;
dbms_ag.enqueue(defer_hill queue_name, engopt, msgprop,
deferred_hiling_order, enq_msgid);
END;
/

Visual Basic (O040): Example Code

set oraaq = OraDatabase.CreateAQ('CBADM.defertiling_que™)
Set OraMsg = OraAqAQMsg(ORATYPE_OBJECT, "BOLADM.order_typ')

8-46 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

Set OraOrder = OraDatabase.CreateOraObject('BOLADM.order_typ")
Private Sub defer_biling

OraMsg = OraOrder

OraMsg.delay = 15*60*60*24

OraMsg = OraOrder 'OraOrder contains the order details

Msgid = QOraAg.enqueue

End Sub

Java (JDBC): Example Code
public static void defer_hiling(Connection db_conn, Order deferred_order)

{

AQSession ag_sess,
AQQueue def_hil_g;
AQENnqueueOption enq_option;
AQMessageProperty m_property;

AQMessage message;
AQObjectPayload obj payload;
byte]] eng_msg_id;
try

{

f* Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

def bil g = aq_sess.getQueue('CBADM", "deferbiling_que';

message = def _hil_g.createMessage();

F Enqueue the order into the deferred biling queue with a delay
of 15 days ¥

m_property = message.getMessageProperty();

m_property.setDelay(15*60*60*24);

obj payload = message.getObjectPayload();
obj_payload.setPayloadData(deferred_order);

eng_option = new AQEnqueueOption();

F Enqueue the message *
eng_msg_id = def bill_g.enqueue(enq_option, message);

A Sample Application Using AQ 8-47

Enqueue Features

db_conn.commit();

}
catch (Exception ex)
{
System.out prinin(*Exception " + ex);
}

Time Specification: Expiration
Messages can be enqueued with an expiration that specifies the interval of time the
message is available for dequeuing. Note that expiration processing requires that
the queue monitor be running. The producer can also specify the time when a
message expires, at which time the message is moved to an exception queue.

Scenario

In the BooksOnL.ine application, expiration can be used to control the amount of
time that is allowed to process a back order. The shipping application places orders
for books that are not available on a back order queue. If the shipping policy is that
all back orders must be shipped within a week, then messages can be enqueued into
the back order queue with an expiration of 1 week. In this case, any back orders that
are not processed within one week are moved to the exception queue with the
message state set to EXPIRED. This can be used to flag any orders that have not
been shipped according to the back order shipping policy.

PL/SQL (DBMS_AQADM Package): Example Code

CONNECT BOLADM/BOLADM
/* Reg-enqueue a back order into a back order queue and set a delay of 7 days;
all back orders must be processed in 7 days or they are moved to the
exception queue: ¥
CREATE OR REPLACE PROCEDURE requeue_back order(sale_region varchar2,
backorder order_typ)

AS
back_order_queue_name VARCHAR2(62);
enqgopt dbms_ag.enqueue_options t;
msgprop dbms_ag.message_properties t;
eng_msgid RAW(16);
BEGIN
/* Look up a back order queue based the the region by means of a directory

senvice: ¥/
IF sale region = 'WEST THEN

8-48 Oracle9i Application Developer’s Guide - Advanced Queuing

Enqueue Features

back_order_queue _name = WSWS_backorders_gque’;
ELSIF sale region = 'EAST THEN

back order_queue_name = 'ESES backorders_que’,
ELSE

back_order_queue_name = 'OS.OS_backorders_que;,
END IF;

F Enqueue the order with expiraion set to 7 days: ¥/
msgprop.expiration = 7*60*60*24;
dbms_ag.enqueue(back_order_queue_name, enqgopt, msgprop,
backorder, enq_msgid);
END;
/

Visual Basic (O040): Example Code

set oraaql = OraDatabase.CreateAQ("WS.WS_backorders_que”)
set oraaq2 = OraDatabase.CreateAQ('ES.ES_backorders_que”)
set oraag3 = OraDatabase.CreateAQ('CBADM.deferbiling_que™)
Set OraMsg = OraAg.AQMsg(ORATYPE _OBJECT, "BOLADM.order_typ")
Set OraBackOrder = OraDatabase.CreateOraObject('BOLADM.order_typ')

Private Sub Requeue_backorder

Dim g as oraobject

If sale_region = WEST then
g = oraaql

else if sale _region = EAST then
g = oraagq2

else
q = oraag3

end if

OraMsg.delay = 7+6060*24
OraMsg = OraBackOrder 'OraOrder contains the order details
Msgid = g.enqueue

End Sub

Java (JDBC): Example Code

F Re-enqueue a back order into a back order queue and set a delay of 7 days;
all back orders must be processed in 7 days or they are moved to the
exception queue *

public static void requeue_back order(Connection db_conn,

A Sample Application Using AQ 8-49

Enqueue Features

Sting sale_region, Order back order)

AQSession ag_sess,
AQQueue back order_g;
AQENnqueueOption enq_option;
AQMessageProperty m_property;

AQMessage message;
AQObjectPayload obj payload;
byte]] enc_msg_id;
try

{

f* Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

F Look up a back order queue based on the region *
if(sale_region.equals("WEST"))

{

back order_q = aq_sess.getQueue("'WS", "WS_backorders_que');
}
else if(sale_region.equals('EAST")
{

back _order_q = aq_sess.getQueue('ES", "ES_backorders_que");
}
else
{

back order_q = aq_sess.getQueue("OS", "OS_backorders_que");
}

message = back order_g.createMessage();

m_property = message.getMessageProperty();

F Enqueue the order with expiraion set to 7 days: ¥/
m_property.setExpiration(7*60*60°24);

obj payload = message.getObjectPayload();
obj_payload.setPayloadData(back_order);

eng_option = new AQEnqueueOption();

F Enqueue the message *
eng_msg_id = back order_g.enqueue(enq_option, message);

db_conn.commit();

8-50 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

}
catch (Exception ex)
{
System.out printin(*Exception " + ex);
}

Message Grouping

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for transactional message grouping (see "Creating a Queue
Table" on page 9-4 in Chapter 9, "Administrative Interface"). All messages belonging
to a group have to be created in the same transaction and all messages created in
one transaction belong to the same group. With this feature, you can segment
complex messages into simple messages.

For example, messages directed to a queue containing invoices can be constructed
as a group of messages starting with the header message, followed by messages
representing details, followed by the trailer message. Message grouping is also
useful if the message payload contains complex large objects such as images and
video that can be segmented into smaller objects.

The general message properties (priority, delay, expiration) for the messages in a
group are determined solely by the message properties specified for the first
message (head) of the group, irrespective of which properties are specified for
subsequent messages in the group.

The message grouping property is preserved across propagation. However, it is
important to note that the destination queue where messages have to be propagated
must also be enabled for transactional grouping. There are also some restrictions
you need to keep in mind if the message grouping property is to be preserved while
dequeuing messages from a queue enabled for transactional grouping (see
"Dequeue Methods" on page 8-58 and "Modes of Dequeuing” on page 8-69 for
additional information).

Scenario

In the BooksOnL.ine application, message grouping can be used to handle new
orders. Each order contains a number of books ordered one by one in succession.
Items ordered over the Web exhibit similar behavior.

In the following example, each enqueue corresponds to an individual book that is
part of an order and the group/transaction represents a complete order. Only the

A Sample Application Using AQ 8-51

Enqueue Features

first enqueue contains customer information. Note that the OE_neworders_que is
stored in the table OE_orders_sqtab, which has been enabled for transactional
grouping. Refer to the example code for descriptions of procedures new_order_
eng () and same_order_enqg ().

Note: Queue names and queue table names are converted to
upper case. Mixed case (upper and lower case together) is not
supported for queue names and queue table names.

PL/SQL (DBMS_AQADM Package): Example Code
connect OE/OE;

F Create queue table for OE: ¥
EXECUTE dbms_agadm.create_queue_table(\
queue_table => 'OE_orders_sqtab’\
comment => 'Order Entry Single-Consumer Orders queue table’\
queue_payload type => 'BOLADM.order_typ'\
message _grouping => DBMS_AQADM.TRANSACTIONAL, \
compatible =81, \
primary_instance => 1\
secondary_instance => 2);

F Create neworders queue for OE: *

EXECUTE dbms_agadm.create_queue (\
queue_name => 'OE_neworders_que’,
queue_table => 'OE_orders_sqtab);

F Login into OE account */

CONNECT OFE/OE;

SET serveroutput on;

F Enqueue some orders using message grouping into OE_neworders_que,
First Order Group: *

EXECUTE BOLADM.new_order_enq(My First Book, 1, 1001, 'CA);

EXECUTE BOLADM.same_order_eng(My Second Book, 2);

COMMIT;

/

F Second Order Group: */

EXECUTE BOLADM.new_order enq(My Thid Book, 1, 1002, 'WA);

COMMIT;

/

F Third Order Group: *

EXECUTE BOLADM.new_order_enq(My Fourth Book, 1, 1003, 'NV;

EXECUTE BOLADM.same_order_enq(My Fitth Book, 3);

8-52 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

EXECUTE BOLADM.same_order_enq(My Sixth Book, 2);

COMMIT;

/

F Fourth Order Group: */

EXECUTE BOLADM.new_order_enq(My Seventh Book, 1, 1004, 'MA);
EXECUTE BOLADM.same_order_enq(My Eighth Book, 3);
EXECUTE BOLADM.same_order_eng(My Ninth Book, 2);

COMMIT;

/

Visual Basic (O040): Example Code
This functionality is currently not available.

Java (JDBC): Example Code

public static void createMsgGroupQueueTable(Connection db_conn)
{

AQSession ag_sess,
AQQueueTableProperty sqt_prop;
AQQueueTable sq_table;
AQQueueProperty g_prop;
AQQueue neworders_g;
try

{

F Create an AQ Session: *
ag_sess = AQDriverManager.createAQSession(db_conn);

P Create a single-consumer orders queue table */

st prop = new AQQueueTableProperty('BOLADM.order_typ');
sat_prop.setComment("Order Entry Single-Consumer Orders queue table';
sat_prop.setCompatible(8.1";
sqt_prop.setMessageGrouping(AQQueueTableProperty. TRANSACTIONAL);

sq table = aq_sess.createQueueTable("OE", "OE _orders_sqtab”, sat_prop);

F Create new orders queue for OE *
g _prop = new AQQueueProperty();

neworders_q = aq_sess.createQueue(sg_table, "OE_neworders_que”,
a_prop);

A Sample Application Using AQ 8-53

Enqueue Features

catch (AQException ex)
{

}

System.outprinin(‘AQ Exception: " + ex);

Message Transformation During Enqueue

Continuing the scenario introduced in "Message Format Transformation” on

page 8-6, the Order Entry and Shipping applications have different representations
for the order item. The order entry application represents the order item in the form
of the ADT OE.order_typ . The Western shipping application represents the order
item in the form of the ADT WS.order_typ_sh . Therefore, the queues in the OE
schema are of payload type OE.orders_typ and those in the WS schema are of
payload type WS.orders_typ_sh

Message transformation can be used during enqueue. This is especially useful for
verification and transformation of messages during enqueue. An application can
generate a message based on its own data model. The message can be transformed
to the data type of the queue before it is enqueued using the transformation

mapping.

Scenario
At enqueue time, assume that instead of propagating messages from the OE_
booked_orders_topic , an application dequeues the order, and, if it is meant for

Western Shipping, publishes it to the WS_booked_orders_topic

PL/SQL (DBMS_AQ Package): Example Code
The application can use transformations at enqueue time as follows:

CREATE OR REPLACE FUNCTION
fwd_message to ws_shipping(booked _order OE.order_typ)
RETURNS boolean AS

eng_opt dbms_agenqueue_options t;
msg_pp dbms_ag.message_properties t;
BEGIN

IF (booked order.order_region = WESTERN' and
booked_order.order_type = 'RUSH) THEN
eng_optransformation := 'OE.OE2WS;,
msg_prp.recipient_list(0) = ag$_agent(West_shipping’, null, null);

8-54 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

dbms_ag.enqueue(WS.ws_bookedorders_topic',
eng_opt, msg_prp, booked_order);

RETURN true;
ELSE
RETURN false;
END IF;
END;

Visual Basic (O040): Example Code
No example is provided with this release.

Java (JDBC): Example Code
No example is provided with this release.

Enqueue Using the AQ XML Servlet

You can perform enqueue requests over the Internet using IDAP. See Chapter 17,
"Internet Access to Advanced Queuing" for more information on sending AQ
requests using IDAP.

Scenario
In the BooksOnL.ine application, a customer can request:

= FedEx shipping (priority 1),
= Priority air shipping (priority 2). or
= Regular ground shipping (priority 3).

The Order Entry application uses a priority queue to store booked orders. Booked
orders are propagated to the regional booked orders queues. At each region, orders
in these regional booked orders queues are processed in the order of the shipping
priorities.

The following calls create the priority queues for the Order Entry application.

PL/SQL (DBMS_AQADM Package): Example Code

F Create a priority queue table for OE: *
EXECUTE dbms_agadm.create_queue_table(\

queue_table => 'OE_orders_pr_mqtab, \
sort_list =>priority,enq_time', \
comment => 'Order Entry Priority \

A Sample Application Using AQ 8-55

Enqueue Features

MuttiConsumer Orders queue table'\
multiple_consumers => TRUE, \
queue_payload type => 'BOLADM.order_typ', \
compatible = 81, \
primary_instance =2\
secondary_instance => 1);

EXECUTE dbms_agadm.create_queue (\
gueue_name => 'OE_bookedorders_que|, \
queue_table => 'OE_orders_pr_mqtab);

Assume that a customer, John, wants to send an enqueue request using SOAP. The
XML message will have the following format.

<?xml version="1.0"?>
<Envelope xmins= "http://schemas.xmisoap.org/soap/envelope/>
<Body>
<AQXmISend xmins = "http:/ins.oracle.com/AQ/schemas/access™>
<producer_options>
<destination>OE.OE._hookedorders_que</destination>
</producer_options>

<message_set>
<message_count>1</message_count>

<message>
<message_number>1</message_number>
<message_header>
<correlation>ORDER1</correlation>
<priority>1</priority>
<sender_id>
<agent_name>john</agent_name>
</sender_id>

</message_header>

<message_payload>

<ORDER TYP>
<ORDERNO>100</ORDERNO>
<STATUS>NEW</STATUS>
<ORDERTYPE>URGENT</ORDERTYPE>
<ORDERREGION>EAST</ORDERREGION>
<CUSTOMER>
<CUSTNO>1001233</CUSTNO>
<CUSTID>JOHN</CUSTID>

8-56 Oracle9/ Application Developer’s Guide - Advanced Queuing

Enqueue Features

<NAME>JOHN DASH</NAME>
<STREET>100 EXPRESS STREET</STREET>
<CITY>REDWOOD CITY</CITY>
<STATE>CA</STATE>
<ZIP>94065</ZIP>
<COUNTRY>USA</COUNTRY>
</CUSTOMER>
<PAYMENTMETHOD>CREDIT</PAYMENTMETHOD>
<ITEMS>
<ITEMS_ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>
<TITLE>Per handbook</TITLE>
<AUTHORS>Randal</AUTHORS>
<ISBN>345620200</ISBN>
<PRICE>19</PRICE>
<ITEM>
<SUBTOTAL>190</SUBTOTAL>
<ITEMS_ITEM>
<ITEMS_ITEM>
<QUANTITY>10</QUANTITY>
<ITEM>
<TITLE>JDBC guide</TITLE>
<AUTHORS>Taylor</AUTHORS>
<ISBN>123420212</ISBN>
<PRICE>59</PRICE>
<ITEM>
<SUBTOTAL>590</SUBTOTAL>
<ITEMS_ITEM>
<ITEMS>
<CCNUMBER>NUMBER01</CCNUMBER>
<ORDER_DATE>08/23/2000 12:45:00</ORDER_DATE>
</ORDER_TYP>
</message_payload>
</message>
</message_set>

<AQXmICommit>
</AQXmISend>

</Body>
</Envelope>

A Sample Application Using AQ 8-57

Dequeue Features

Dequeue Features

When there are multiple processes dequeuing from a single consumer queue or
dequeuing for a single consumer on the multiconsumer queue, different processes
skip the messages that are being worked on by a concurrent process. This allows
multiple processes to work concurrently on different messages for the same
consumetr.

In this section, the following topics are discussed:
= Dequeue Methods

= Multiple Recipients

= Local and Remote Recipients

= Message Navigation in Dequeue

= Modes of Dequeuing

= Optimization of Waiting for Arrival of Messages
= Retry with Delay Interval

= Exception Handling

= Rule-Based Subscription

= Listen Capability

= Message Transformation During Dequeue

= Dequeue Using the AQ XML Servlet

Dequeue Methods
A message can be dequeued using one of the following dequeue methods:

= Correlation identifier
= Message identifier

= Dequeue condition

= Default dequeue

A correlation identifier is a user-defined message property (of VARCHAR2latatype)
while a message identifier is a system-assigned value (of RAWHatatype). Multiple
messages with the same correlation identifier can be present in a queue, while only
one message with a given message identifier can be present. If there are multiple

8-58 Oracle9/ Application Developer’s Guide - Advanced Queuing

Dequeue Features

messages with the same correlation identifier, the ordering (enqueue order)
between messages may not be preserved on dequeue calls. The correlation identifier
cannot be changed between successive dequeue calls without specifying the first
message navigation option.

A dequeue condition is an expression that is similar in syntax to the WHERI[Elause
of a SQL query. Dequeue conditions are expressed in terms of the attributes that
represent message properties or message content. The messages in the queue are
evaluated against the conditions and a message that satisfies the given condition is
returned.

A default dequeue means that the first available message for the consumer of a
multiconsumer queue or the first available message in a single-consumer queue is
dequeued.

Note that dequeuing with correlation identifier, message identifier, or dequeue
condition will not preserve the message grouping property (see "Message
Grouping" on page 8-51 and "Message Navigation in Dequeue" on page 8-65 for
more information).

Scenario

In the BooksOnLine example, rush orders received by the East shipping site are
processed first. This is achieved by dequeuing the message using the correlation
identifier, which has been defined to contain the order type (rush/normal). For an
illustration of dequeuing using a message identifier, refer to the get_
northamerican_orders procedure discussed in the example under "Modes of
Dequeuing” on page 8-69.

PL/SQL (DBMS_AQADM Package): Example Code
CONNECT boladm/boladm;

F Create procedures to dequeue RUSH orders */
create or replace procedure get rushtiles(consumer in varchar2) as

deq_cust_data BOLADM.customer_typ;
deq_book_data BOLADM.book_typ;

deq_item data BOLADM .orderitem_typ;
deq_msgid RAW(16);

dopt doms_ag.dequeue_options t;
mprop dbms_ag.message_properties t;
deq_order_data BOLADM.order_typ;

gname varchar2(30);

no_messages exception;

A Sample Application Using AQ 8-59

Dequeue Features

pragmaexception_init (no_messages, -25228);
new_orders BOOLEAN = TRUE;

begin

doptconsumer_name = consumer;
doptwait = 1;
doptcorelation = 'RUSH;

IF (consumer = "West_Shipping) THEN
gname = 'WSWS_hookedorders_que;
ELSIF (consumer = 'East Shipping) THEN
gname = 'ESES_bookedorders_gque’;
ELSE

gname :
END IF;

'0S.0S_hookedorders_que;

WHILE (new_orders) LOOP
BEGIN

dbms_ag.dequeue(
queue_name => gname,
dequeue_options => dopt,
message_properties => mprop,
payload => deq_order_data,
msgid => deq_msgid);

commit;

deq_item data = deq_order_dataitems(1);
deq_book data = deq_item_data.itern;

dbms_outputput_line(rushorder book_title: * ||
deq _book_dataiie ||
" quantity: * || deg_item_data.quantity);
EXCEPTION
WHEN no_messages THEN
dbms_outputput line (— NO MORE RUSH TITLES —)
new_orders = FALSE;
END;
END LOOP;

end;
/

CONNECT EXECUTE on get rushtiles to ES;

8-60 Oracle9/ Application Developer’s Guide - Advanced Queuing

Dequeue Features

F Dequeue the orders: */
CONNECT ESES;

F Dequeue all rush order tiles for East Shipping: *
EXECUTE BOLADMget rushtiies(East_Shipping);

Visual Basic (O040): Example Code

set oraaql = OraDatabase.CreateAQ('WS.WS_backorders_que”)

set oraag?2 = OraDatab