Oracle9

Application Developer’s Guide - Fundamentals

Release 2 (9.2)

March 2002
Part No. A96590-01

ORACLE

Oracle9i Application Developer’s Guide - Fundamentals, Release 2 (9.2)

Part No. A96590-01

Copyright © 1996, 2002 Oracle Corporation. All rights reserved.

Primary Author: John Russell

Contributing Authors: T. Brooksfuller, T. Burroughs, M. Cowan, J. Levinger, R. Moran, R. Strohm

Contributors: D. Alpern, G. Arora, C. Barclay, D. Bronnikoy, T. Chang, M. Davidson, G. Doherty, D.
Elson, A. Ganesh, M. Hartstein, J. Huang, N. Jain, R. Jenkins Jr., S. Kotsovolos, S. Kumar, C. Lei, D.
Lorentz, R. Murthy, R. Pang, B. Sinha, S. Vemuri, W. Wang, D. Wong, A. Yalamanchi, Q. Yu

Graphic Designer: V. Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and ConText, Oracle Store, Oracle7, Oracle8, Oracle8i, Oracle9i,
PL/SQL, Pro*xCOBOL, Pro*C, Pro*C/C++, SQL*Net, and SQL*Plus are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUI COMMENTS ..ottt XVii
PIEIACE ... Xix
What's New in Application Development? ... XXiX
1 Understanding the Oracle Programmatic Environments

Overview of Developing an Oracle APPlICAtION ...t 1-2
(@Y V1=V 1 = I 5 S 1-3
F T L] o] ol o I AT I e U o] o] =SS 14
AAVANTAgES OF PLZSQL ...ttt ettt bbb e 1-4
Overview of Java Stored Procedures, JDBC, and SQLJc.cccocvvivvriinenineneeeeese e 1-8
Overview of Writing Procedures and FUNCLIONS IN JAVA.........ccccceveievieieiieecc e 1-8
OVerview OF OracCle JIDBC.... ..ot ettt 1-9
OVerview Of Oracle SQLJ.......co ettt a e e enenresresnens 1-14
1310] I 1o o 1 OO 1-14
BeNefits OF SQLU ..o e e r et ae e re e nreaneas 1-15
Comparing SQLIWIth JDBC ..ot e 1-15
SQLJ EXample fOr ODJECT TYPES ..veiviiieieieieieiet ettt aena e sneareas 1-17
SQLJ Stored Procedures iNthe SEIVEN ..ottt 1-20
Programming with J2EE, OC4J, SOAP, JAAS, Servlets, JSPs, EJBs, CORBA, and UDDI.. 1-20
OVEIVIEW OF PrOXC/C ..ottt ettt naenes 1-21
How You Implement a Pro*C/C++ APPHCAtIONc.covviiiiiiiiiieie e 1-21
Highlights Of Pro*C/C++ FEALUIESccoviiiiiiiiiieisieese ettt 1-23

OVEIVIEW OF PrOFCOBOILviii ettt ettt ettt e st s e s s sba e e s sbb e e s sataeesbeee s 1-24

How You Implement a Pro*COBOL APPLICALIONccooiiiiiieiicinieiseseee e 1-24
Highlights of Pro*COBOL FEATUIEScc.cieieieeeiees ettt e e na e e e snens 1-26
OVerview Of OCIH aNd OCCH ..o ettt 1-26
AAVANTAGES OF OCH ...ttt bbb 1-27
Parts OF TNE OCH ...ttt nne 1-28
Procedural and Non-Procedural EIEMENtS ..o 1-28
Building an OCI APPHICALIONccouiiiiiieiieere e 1-29
Overview of Oracle Objects for OLE (OO40).......cccoiiiirieiie s sesese e seeeeaees e sse s 1-31
OO40 AULOMALION SEIVEL ...ttt bbb bbb e bbbt ebe e 1-32
OO40 ODBJECE MOUEL ...ttt 1-32
Support for Oracle LOB and Object DatatyPescccevveveieieersesesese e seeseseeseeeesae e eneses 1-37
The Oracle Data CONTIOL ...ttt 1-39
The Oracle Objects for OLE C++ Class Library.........ccccoceoiiiininiicccccseseens 1-39
Additional Sources of INFOrMatioN...........cccciiiiiiiii s 1-39
Choosing a Programming ENVIFONMENT.........c..cccvoiiiiiiiiecce et 1-40
Choosing Whether to Use OCI or a PreCOMPIlerc.cocoieiiiinciniiceseeneese e 1-40
Using Built-1n Packages and Libraries.........cocoovoviiiiiieiie s 1-41
JAVA VEISUS PLZSQL ..ottt ettt ettt et et e e ne e st e eneesneeneesneannes 1-42

Managing Schema Objects

Y F= T F= Yo T g o T I o] 1= PSSP 2-2
Designing TaABIES ... e 2-3
L1 =T 1T TN I 1] =TS 2-3
Managing TeEMPOTrary TABDIES ..ot 2-4
Creating TeMPOrary TabIES........ociiii s 2-5
UsSIiNg TEMPOTrary TaBIESccooiiice et 2-5
Examples: Using Temporary TabIES ..o e 2-6
Tip: Referencing the Same Subquery Multiple Times ... 2-7
YT a T Vo T o TV =Y 2-9
CrEALING VIBWS ..ottt ettt sttt sttt et e et e et e s ae e e s ae e tesbe e teete e teate e teeneesteensenreenns 2-9
REPIACING VIBWWS ...ttt bbbttt b bbbttt b bbb 2-11
USING VIEWS IN QUETIES ..iiiieiiiieiieiesieteee e e st sttt sa et et sa et e e e enaenenneaneenenns 2-12
(B e] o] o] [1o VA T=V Y ST PP STRSOURUPURPRRTIN 2-14
MOITYING @ JOTN VIBW ...ttt bbbttt 2-15

About Key-Preserved TabIES ...t 2-16

Rule for DML Statements 0N JOIN VIBWScooiiiiiiiiiieicec e 2-17
Using the UPDATABLE _ COLUMNS VIBWS......ccvcovciiiiicisese et erese s 2-20
L@ 181 (=] g o] [1 SO PO TSRS PRURPRPRURTN 2-20
MANAGING SEOUEINCEScoiiiiiieiiitie ittt bbb bbbt b et b et bbb et r bbb nnne 2-23
Creating SEOUENCEScocviieiierierieriestesiesieseeseeseeseeseeseetessessestestestessestesaeseenseseeseenseseesesseenesressessens 2-23
AITEIING SEQUENCES ...ttt sttt sttt b bbbt bt bbb bbb e e et et et e e be b ebe e 2-24
USING SEQUEIICES ...ttt b bttt bt b et bbbttt bbbttt 2-24
(D] o] o] o] [Lo IST=To {1 1-Y oY= SO 2-28
AV E= T F= Yo T o (o TS} Y/ 0] 04 1.4 1TSS 2-28
Creating SYNONYIMISoouiiiiiitiiiteiet ettt bbbt bbbttt b bbb 2-29
Using Synonyms in DML STatEMENTScccoveveieieeieeie e 2-29
DroppinNg SYNONYIMS ...ttt ettt b et b b et e b e e e e et eneebeebeabeebennas 2-30
Creating Multiple Tables and Views in One OPerationcccceoievienienseneeneenecneens 2-30
N ETa T lo TS Tod a =T 0P W@ L o =T o] £ 2-31
Rules for Name Resolution in SQL Statementscccccocveiiiieiisieie e 2-32
Renaming SChema ODJECEScociiiiiiic et 2-33
Switching to a Different SChema.........ccoovvi i 2-34
Listing Information about Schema ODjJECES..........ccciveiiiiec e 2-34

Selecting a Datatype

Summary of Oracle Built-1n DatatyPes........ccoeiieiiiiiiiie e 3-2
Representing Character DAta............cccooeiiiiriiiieeieeee e 3-10
Representing NUMEIIC DAtc.coviiv it reenesrenre s 3-13
Representing Date and Time DAtccocoiiiiiiiiiiiee e 3-14
DAt FOIMIAL ... ittt ettt bbbt a e bt e s e bt et bt e b ae et saeas 3-15
THIME FOMMAL ...t 3-16
Establishing Year 2000 COMPIANCEcoi it 3-19
Representing Geographic Coordinate Datacccceiiieiieiiiieeneeneee e 3-27
Representing Image, Audio, and Video Data............ccocooveiiieiiiiiinnin s 3-27
Representing Searchable TEXt DAta.........c.coiiiieiiieiiiee e 3-27
Representing Large Data TYPESc..ciiiireirieinieenieiesie sttt sn e sn e sesne e 3-27
Migrating LONG Datatypes t0 LOB DatatyPesS......ccccovevrerererieriesesieseseesieseeseeseesesessessesees 3-28
Using RAW and LONG RAW DatatyPescoueuiieiririeiiniinie et 3-32
Addressing Rows Directly with the ROWID Datatypecccoceovieiineninensensense e 3-33

vi

ANSI/ISO, DB2, and SQL/DS DAtatyPeScccoeireeiriiriiinriisieesreesresese s snesesnsesnenes 3-37

How Oracle CONVErtS DAtatyPESccoiiiiiiiriiiiieiiiieiisieitneee sttt 3-38
Datatype Conversion DUring ASSIGNMENTS..........cc.ciiiviiiirieiesese e sese e seee e esesnens 3-38
Datatype Conversion During Expression Evaluation ... 3-40

Representing Dynamically TYped Datacoccoiiiiiniinieeeese e 3-41

RePresenting XML Datalcccvcviiiiiiiieie ettt se et e e eneeneanesrenns 3-44

Maintaining Data Integrity Through Constraints

Overview of INtegrity CONSIIAINTS.......ccccviiiieecees e nne 4-2
When to Enforce Business Rules with Integrity Constraintsccccccocevvvvveveiecvecceeseenn, 4-2
When to Enforce Business Rules in APPliCatioNS ..o 4-3
Creating Indexes for Use With CONStraiNtS.........c.cocoovviveiiiieiieci e 4-3
When to Use NOT NULL Integrity CONSLIraintSccccccoveiiieiieniieieee e 4-3
When to Use Default ColumN ValUES..........cooiiiiiiiiiicre e 4-4
Setting Default Column ValUES ... 4-5
Choosing a Table’s PrimMary KEY ..ottt ettt 4-6
When to Use UNIQUE Key Integrity CONSEIAINTSccooveiiieiineiinienineeeesesee e 4-7
Constraints On Views for Performance, Not Data Integritycc.ccocvcvvvieievcicisiece e 4-7

Enforcing Referential Integrity With CONStraiNtS........cccccovveiiiieii e 4-8
ADOUL NUIIS aNd FOreign KEBYSc.ooiiiieiiiieeeee e 4-8
Defining Relationships Between Parent and Child Tables.........cc.ccoceovvivineieicircicieieene 4-11
Rules for Multiple FOREIGN KEY CONSLraiNtSccccooiiiiiiiienenienie e 4-12
Deferring CoNStraint ChECKS. ..ot e 4-12

Managing Constraints That Have Associated INAEXES........c.ccvvvvvvivriiviniene e 4-14
Minimizing Space and Time Overhead for Indexes Associated with Constraints........... 4-14

Guidelines for INdexing FOreign KEYScco i 4-15

About Referential Integrity in a Distributed Database............ccccocvvevvivviinniiesccec e 4-15

When to Use CHECK Integrity CONSLraINTSccooviiiiiiie e 4-16
Restrictions 0N CHECK CONSIFAINTScooiiiiiiiiiiisiesie et 4-16
Designing CHECK CONSIFAINTSciviieiiiieieieeeeees e e sttt ese e seeseseeaesaesessessesnens 4-17
Rules for Multiple CHECK CONSIFAINTSccooiiiiiiiiiiese e 4-17
Choosing Between CHECK and NOT NULL Integrity CONnstraintscccocevevevereennas 4-18

Examples of Defining Integrity CONSTraiNtsccccoviviiiiinienie e 4-18
Defining Integrity Constraints with the CREATE TABLE Command: Example 4-18
Defining Constraints with the ALTER TABLE Command: Exampleccccccovvneennn. 4-19

Privileges Required to Create CONSLIAINTSccooieiriiiiiiire e 4-19

Naming INtegrity CONSIFAINTSccoiiiiriiiiiiiee et er e 4-20
Enabling and Disabling Integrity CONStIaiNtScccooveiiiiiii i 4-20
Enabling and Disabling Existing Integrity CONStraintsccccccocveviiienieicse e, 4-22
Guidelines for Enabling and Disabling Key Integrity Constraintsc.cccoceeenveneennen 4-23
FiXing Constraint EXCEPLIONSccoiiviiiiice et s sneere s 4-24
Altering INtegrity CONSIIAINTS........cccviieiiee et a e sre s 4-24
Renaming INtegrity CONSTIAINTScoiiiiiiriiiieie s 4-25
Dropping INtegrity CONSIIAINTScccoceiicceece e 4-26
Managing FOREIGN KEY Integrity CONSIraintscccccccviiiiieiiiiie e 4-27
Rules for FOREIGN KEY Integrity CONSTraiNtSccccoviiriiniiiiiienisieeeeseee s 4-27
Restriction on Enabling FOREIGN KEY Integrity Constraintscc.cccceeeveveivnivcnsnnnnns 4-29
Viewing Definitions of Integrity CONStraiNtSccooiiiiii i 4-29
Examples of Defining Integrity CONSIraiNTS.........coeiiiiniiiiiceses s 4-29

Selecting an Index Strategy

Guidelines for Application-SPecific INAEXES ..o 5-2
Creating Indexes: BasiC EXAMPIES ...t 5-7
When to Use DOMAIN INAEXES......cc.oiiiiiiiiiiieeeies ettt s b b sne 5-8
When to Use FUNCLION-BASEd INUEXEScooiiiiiiiiiiiieiise ettt 5-8
Advantages of FUNCtION-Based INAEXESccvcvvviieiiiiii e 5-9
Examples of FUNCLION-Based INAEXEScoooiiiiiiiiiii e 5-10
Restrictions for FUNCLION-Based INAEXEScc.cveiiiiiiiiiicse e 5-11

Speeding Up Index Access with Index-Organized Tables

What Are INdex-Organized TabIES? ... 6-2
Index-Organized Tables Versus Ordinary Tablescccccoovvviiiinciciccceseeee e 6-2
Advantages of Index-Organized TabIles.........ccccveiiiiiici e 6-2

Features of INdex-Organized TabIes ..o 6-4

Why Use INdex-Organized TableS? ..o see e 6-7

Example of an Index-Organized TabIe ... 6-9

How Oracle Processes SQL Statements

Overview of SQL Statement EXECULIONcccooviiiiiicccccr ettt 7-2

Vii

viii

Identifying Extensions to SQL92 (FIPS FIagging)ccccceiviieiiiiiie e 7-2

Grouping Operations iNTO TraNSACTIONSciiiiiiiiieeeee e 7-4
Improving Transaction PerforManCe..........cccoveveiiieisieie s nnen 7-4
CommMUttING TranNSACLIONSoieeiieiieiesee sttt st s e e te st e e e raesbeeneesreeneenreenes 7-5
ROIIING BACK TraNSACTIONSc.ccuiiitiieiirieiiriete sttt ettt sn bbb sn e ene e 7-6
Defining Transaction SAVEPOINTSccciiiieieieeeceeiese st e e re e srenes 7-6
Privileges Required for Transaction Managementcccoeierineneieeneieeeeeeses e 7-7

Ensuring Repeatable Reads with Read-Only Transactions ... 7-8

Using Cursors Within APPLICALIONSc.cccviiiiiicccsese e 7-9
Declaring and OPening CUISOISccoiuiiiieieieieiieese sttt e st sb et sae e 7-9
Using a Cursor to Execute StatemMents AgQaiN ..ot 7-9
(O (01571 o [@181 5o -SSR 7-10
(0 T o= | 1Tg o K O1 U] o] ¢SSP 7-10

Locking Data EXPHICITIYcoooiiiiiiiii s 7-11
Choosing @ LOCKING Strategycccccvviiiiiiiie e ne e 7-12
Letting Oracle Control Table LOCKINGccccoveiiiieiiiicc e 7-15
Summary of Nondefault LOCKING OPLIONSccooiiiiiiieiieirieie et 7-16
Explicitly AcQUIrING ROW LOCKScoviiiieieect et 7-17

ADOUL USEE LOCKS ...ttt ettt b e bt b bbb e e et e bt et be b 7-18
WHEN 10 USE USEE LOCKScouiiiiiiiiiieee et sttt ane s 7-18
EXAMPIE OF @ USEE LOCKoviiiieieiice et ene s 7-19
Viewing and MoONItOriNG LOCKSccoviiiiieie ettt 7-20

Using Serializable Transactions for Concurrency Control ... 7-20
How Serializable Transactions INTEracCt..........ccoceoviiiiriiniiiecee e 7-24
Setting the Isolation Level of a Transactioncccccvviviieiie e 7-24
Referential Integrity and Serializable Transactions ... 7-25
READ COMMITTED and SERIALIZABLE 1SOIation..........cccccooiieinenneneenceeesee e 7-27
Application Tips fOr TranSACTIONScoiiiiiieieiee e 7-30

AULONOMOUS TFANSACTIONSccuiiiiiiitieiesie sttt ettt sttt st e st st seesbe st see e es e e e eneaneeresseanens 7-31
Examples of AUtONOMOUS TranSACtiONS.......cc.cvcviiiiiise e re e 7-34
Defining AUtONOMOUS TraNSACLIONSccvciiiiieieii ettt ere e 7-39

Resuming Execution After a Storage Error CONdition............ccoviieineiineinenseseeeeseee 7-40
What Operations Can Be Resumed After an Error Condition?ccccoevvvveveincinieinnnnns 7-40
Limitations on Resuming Operations After an Error Conditionc.cccceoevviinincnnne 7-40
Writing an Application to Handle Suspended Storage Allocationcccoeeevveneenen. 7-40

Example of Resumable Storage AllOCAtioNcccoviiiiiiiiiei e 7-41

Querying Data at a Point in Time (Flashback QUEIY)cccoiiiiiiiinieees 7-43
Setting Up the Database for FIashback QUENYc.ccccvviiieiinininie e sn e 7-44
Writing an Application that Uses Flashback QUErY ..o, 7-45
Flashback QUErY RESTIICTIONScviiiiiiiiiiiieiiiet e 7-46
Tips for Using FIashback QUETYc..cvcieiiieicese s sne e 7-47

Coding Dynamic SQL Statements

What 1S DYNAMIC SQL?......oiiiiiiie ettt sttt e es e eseeneaneeressesresreneennens 8-2
Why UsSe DYNAMIC SQL? ...ttt et e st e st e st e e s e sreenaesaeesreaneas 8-3
Executing DDL and SCL Statements in PLZSQLccoooiiiiiiiieneese e 8-3
Executing DYNAMIC QUETIES.ccvieiieriiieiereeteieasaetesteseste e tesre e aesaessesseseeneesessessessessessessens 8-4
Referencing Database Objects that Do Not Exist at Compilation ... 8-4
Optimizing Execution DynamicCally ... 8-5
Executing DyNamic PLZSQL BIOCKSccceiviieieici s nnens 8-6
Performing Dynamic Operations Using INVOKer-RightS.........ccccociiiiiiiiinicnccnes 8-7
A Dynamic SQL Scenario Using Native DyNamic SQLccccoiiiiiieinniineienee e 8-8
Sample DML Operation Using Native Dynamic SQLccccceivrvrerineiereeeesiese e e 8-9
Sample DDL Operation Using Native Dynamic SQLccocoiiiiiiiiiiiiceccee e 8-9
Sample Single-Row Query Using Native Dynamic SQLccocccivineinenninseneeneee 8-10
Sample Multiple-Row Query Using Native Dynamic SQL........ccccocvvvriveneieieeincesieneinens 8-11
Choosing Between Native Dynamic SQL and the DBMS_SQL Package............cccccvevveruenen. 8-11
Advantages of Native DYNamic SQL.........ccoeiiiiiiiiiieiie e 8-12
Advantages of the DBMS_SQL PaCKAQEcccovevreiiiirere et 8-16
Examples of DBMS_SQL Package Code and Native Dynamic SQL Code..............ccceue.e. 8-17
Using Dynamic SQL in Languages Other Than PL/SQL.........cccccciiiiiiniincineieiseeeees 8-21
Using PL/SQL Records in SQL INSERT and UPDATE Statements.........cccccocevvveienivcivcnnnens 8-21

Using Procedures and Packages

Overview of PL/SQL Program UNILS ... sne s 9-2
ANONYMOUS BIOCKS ...ttt et neesbeeneenreanes 9-2
Stored Program Units (Procedures, Functions, and Packages)c.c.cccooeviennienninnennnn 9-5

Hiding PL/SQL Code with the PL/SQL WIAPPELcccvcvivieiiresie e 9-21

Compiling PL/SQL Procedures for Native EXECULIONccooiiiiiiinineie e 9-22

REMOLE DEPENUENCIES ..ottt bbbttt ne et sr et nb et e bbbt b e b 9-22

10

L0 1=T1 =T 0] oL TSP OOUSOPRUR PSP 9-22

STONMBLUTES ..ttt bt bbbt b et b e ekt b ekt se et eb e bt e bbb e b et e bt e b e en e b 9-24
Controlling Remote DEPENTENCIEScceieierieriirieierieeeee e re e 9-29
CUISOE VATTADIES ...t bbb bbb ettt b et b bt 9-31
Declaring and Opening Cursor Variables ... 9-32
Examples Of CUISOr Variables.........c.ccoiviieieierceses st sne s 9-32
Handling PL/SQL ComPile-Time ErTOrSccoiiiieiiiieseeesese st 9-34
Handling RUN-TIMeE PL/SQL EFTOFSciiitiiiiiieiiiieinieieseee sttt 9-36
Declaring Exceptions and Exception Handling ROULINESccccevvvvvevenciciiceceeie e 9-37
Unhandled EXCEPLIONScc.oiiiiiiiiie et ettt 9-39
Handling Errors in Distributed QUETIEScceiiiiiiiieee e 9-40
Handling Errors in ReMOte PrOCEAUIEScoveveieiiiiisr st e e anens 9-40
Debugging StOred ProCEAUIES..........coviieiice sttt sttt e sre e sre s 9-41
Calling STOred ProCROUIES.........ooiiieieteee bbbt 9-43
Calling ReMOLE PrOCEAUIEScceiiiiie ettt st st e re e aneerenre s 9-47
Synonyms for Procedures and Packagescccvoiiiiieiiie i 9-50
Calling Stored Functions from SQL EXPreSSIONScccuieiiieiiieriienisensiensie e 9-50
USING PL/ZSQL FUNCHIONS ...oviiiiiice ettt e en e ene e 9-50
Syntax for SQL Calling a PL/SQL FUNCLIONcccoii i 9-51
NaMING CONVENTIONS ..ottt bttt 9-51
Requirements for Calling PL/SQL Functions from SQL EXPressions.........ccccccevvevvevevnnne. 9-54
Controlling Side EFfECSoooiie e 9-55
Overloading Packaged PL/SQL FUNCHIONS.........cciiiiiiiii i 9-63
Serially Reusable PL/ZSQL PaCKAQES......ccccvveieriiieieieeeetes ettt sie e e e snenns 9-64
Returning Large Amounts of Data from a FUNCLIONc.cccocviiiiii i 9-70
Coding Your Own Aggregate FUNCLIONS...........ccoiiiiiineeee et 9-72
Calling External Procedures
Overview of Multi-Language ProgramiS...... ..ottt 10-2
What IS an EXErNAl PrOCEAUIE?.......cviiiiiiiiiieie ettt 10-3
Overview of The Call Specification for External Procedures............ccoeviiiiiiiiiiniiicenn 10-4
Loading EXTErNal PrOCEAUIEScciiiiiiiiitieteei ettt 10-4
Loading Java Class MEthOGS.........cccccivieiiicccce e ene s 10-5
Loading EXternal C ProCEAUIEScccoe ettt sne e 10-6
Publishing EXtErNal PrOCEAUIES ..ottt 10-8

The AS LANGUAGE Clause for Java Class Methods..........cccccoovuveiiiiciiiic e 10-9

The AS LANGUAGE Clause for External C ProCedures..........ccocovererenieiieieeieeceenieseeeeees 10-9
Publishing Java Class Methods ... 10-11
Publishing EXternal C ProCeAUIES...........cco i iiie ittt sttt 10-12
Locations of Call SPeCifiCatiONScccouiiiiiiii e 10-12
Passing Parameters to Java Class Methods with Call Specificationsc.cccccecevvevvevennnnn, 10-16
Passing Parameters to External C Procedures with Call Specifications...........ccccccccoveieene. 10-16

SPECITYING DALALYPES. ... cveeeiiiteisteiet ettt bbbt bbbttt snens 10-17

External Datatype MapPingSccccvceieiirieieieseseeeieeesese st e et sa et saenseseeneeneesennes 10-19

BY VALUE/REFERENCE for IN and IN OUT Parameter MOdesS...........ccccoevveveivnennnnne. 10-21

The PARAMETERS CIAUSEcviiiiiiiiiiies et 10-22

Overriding Default Datatype Mapping.......ccccoeiviiiiinienienesiesesesese e ese e sse e s 10-23

SPECITYING PrOPEITIES ...ttt et ettt 10-23
Executing External Procedures with the CALL Statement ..o 10-32

PrElIMINGITES ..ottt b et b ettt ettt e 10-33

CALL StatemMEnTt SYNTAX......cccuiiieeiieiiieiie sttt saesbe e st e sbeesseesteesseesnses 10-34

Calling Java Class Methods............cociiiiiiiiiecse s 10-35

How the Database Server Calls External C Procedures..........cccovvenniennieneieneieneneneennens 10-36
Handling Errors and Exceptions in Multi-Language Programsc.ccoceeoeviiiiciniencenne, 10-37

Generic Compile Time Call specification Errors...........ccoveriiniiniineineneseseeeiens 10-37

Java EXCeption HandliNg ..o 10-37

C EXCEPLION HANAIING ..ot et 10-37
Using Service Procedures with External C ProCeduresc.coveininiineeneenee e 10-37
Doing Callbacks with External C ProCeAUIESccocveviieiie v 10-46

Object SUPPOIt fOr OCT CallDACKS ..o 10-48

ReStrictions 0N CallDACKS..........cccoiiiiiiriee e 10-48

Debugging EXternal ProCEAUIES..........coie ittt ne e ane s 10-50

(DI o [0l e goTo] =1 o [PPSR 10-50

Guidelines for EXternal C ProCeAUIES ..ot 10-51

Restrictions on EXternal C ProCEAUIESccviiiiiieiree st 10-52

11 Database Security Overview for Application Developers

Introduction to Database Security POHICIESccccveiviiiicicc e 11-2
Security Threats and COUNTENMEASULIEScccecveiiieiiirieieseeere e e se e e e steesaesre e sre s 11-2
What Information Security PoliciesS Can COVENccociieireincinieencesee e 11-3

Xi

12

Xii

Features to Use in Establishing Security POLICIES.........ccccovcveiiiiiiiccse e 11-4

Recommended Application Design Practices to Reduce RiSKccccooeveieniicinieninnne, 11-6
Introduction to Application Security POHICIES........ccccovviviiiiiice e 11-10
Considerations for Using Application-Based SECUNItY............coccuiiiiinereneneneeieeseeas 11-11
Security-Related Tasks of Application AAmINIStratorscccocveieneineieneienene e 11-13
Managing AppPlication PriVIlEgES.........ccovieieccse e 11-13
Creating Secure AppPlication ROIES..........cccoiiiiiiiie e 11-14
Associating Privileges with the User’s Database ROIE ... 11-17
Protecting Database Objects Through Use of Schemas............cccocvevvivviiivencncecescei, 11-20
Managing ODJECt PrIVIIEQEScooviiieice e 11-22
Creating a Role and Protecting 1S USE ..o 11-24
Enabling and Disabling ROIESccccv i e 11-25
Granting and Revoking System Privileges and ROIES...........cccocvevviieeieiie s 11-30
Granting and Revoking Schema Object Privileges and RoIes...........ccoccoveiniiicnicnnen, 11-32
Granting to, and Revoking from, the User Group PUBLICcccccooviniiniiienciciecnennas 11-37
Implementing Application Security Policies
Introduction to AppPlication CONTEXL.........ccccvviiiiiirirecee e 12-2
Features of APPlICatioN CONTEXL ..o e 12-2
Ways to Use Application Context with Fine-Grained Access Controlccccccvieienene 12-8
User Models and Virtual Private Database...........cccocviiiiiiiiinieeeee e 12-10
Creating a Virtual Private Database Policy with Oracle Policy Manager 12-11
How to Use ApPlICation CONTEXTcoiiiriiiriiiriiisiest et 12-13
Examples: Application Context Within a Fine-Grained Access Control Function......... 12-17
Introduction to Application Context Accessed Globally ..., 12-27
Initializing Application Context EXIErNally ... 12-32
Initializing Application Context Globallycccooveieiiiiiicici e 12-34
Introduction to Fine-Grained AcCCeSS CONTIOLccoiiiiiiiiii s 12-40
Features of Fine-Grained AcCeSS CONTIOL........ccooiiiiiiiiiiieeee e 12-40
How Fine-Grained Access CONtrol WOIKS.........cccoiiiiiiniiiiicssecse s 12-43
How to Establish POLICY GrOUPS.......cccoiuiiiiiieiicce e 12-44
How to Add a Policy to a Table, View, OF SYNONYMcccccuriiiiiniineinieisesesieeses 12-49
How to Check for Policies Applied to Statement..........cccoovvivvereievcnese e 12-51
EXEMPT ACCESS POLICY SyStem Privilegecccoviieiieiieseses e 12-51
AUTOMALIC REPAISE ...eciieiiiiteietete ettt bbbt bbbttt 12-52

13

14

FINE-GraiNed AUITINGc.cov it te e s te e aesre b e nne e 12-53

Introduction to Standard Auditing and Fine-Grained auditing...........c.ccoceoevviineiinennen, 12-53
Standard Oracle9i Auditing TEChNIQUESc.coveviiiici e 12-53
Fine-Grained Auditing TEChNIQUEScoiiiiiii s 12-55
Enforcing ApPlication SECUTNILY ...ttt e 12-57
Use of Ad Hoc Tools a Potential Security Problemcccccoovvivviniincnesecceeeee e, 12-57
Restricting Database Roles from SQL*PIUS USEFScccccoveviiiiiieiie e 12-58
Proxy Authentication
Advantages of Proxy AUuthenticationccccoovciiicic e 13-2
Security Challenges of Three-tier COMPULINGccoviriiniiiie s 13-3
WHO IS thE REAI USEI? ...ttt ebe e 13-3
Does the Middle Tier Have Too MUch Privilege? ... 13-3
How to Audit? WHhom t0 AUAIT?.......cccoiiiiieeee e 13-4
Can the User Be Re-Authenticated to the Database? ... 13-4
Oracle9i Proxy Authentication SOIULIONSc.cccveoiiiiie i 13-6
Passing Through the Identity of the Real USErc.ccoviiiiiiiiiiieees 13-6
Limiting the Privilege of the Middle TIerccccoveieiee s 13-7
Re-authenticating the REal USEIooviiiii e 13-8
Auditing Actions Taken on Behalf of the Real USEr ... 13-10
Support for Application UsSer MOEISccccveieicisieiec e 13-10
Data Encryption Using DBMS_OBFUSCATION_TOOLKIT
Securing Sensitive INFOrmMatioN ... 14-2
Principles of Data ENCIYPLION ... 14-3
Principle 1: Encryption Does Not Solve Access Control Problems............ccccoooiiiniinnn, 14-3
Principle 2: Encryption Does Not Protect Against a Malicious DBAccccceovivevinnnne 14-4
Principle 3: Encrypting Everything Does Not Make Data Secure...........ccoccoeoveveiinenienn 14-5
Solutions For Stored Data Encryption in Oraclei...........ccccoeiiiiniiiiniiisceeees 14-6
Oracle9i Data Encryption Capabilities ..o 14-6
Data ENCryption ChallENgES ..o 14-7
ENCrypting INAEXEd Datacc.coviuiiiiiiiiiiieeieeee et 14-8
[E YA YL = L =T [T 0 U= o PSS 14-8
GV I =T 3 0 1151 Lo o OSSPSR 14-9
KBY STOTAGE ... et ettt 14-9

Xiii

Changing ENCrYPLION KEYSc.ooiiiiiiiriiiisie ettt st eneas 14-12
Binary Large ODjJects (BLOBS)ccoiiiiiiiiiiie et 14-12
Example of Data Encryption PL/SQL Programccccoeveivieiesnsin e seseseseeaessesesneenens 14-12

15 Using Triggers

16

Xiv

(D 1CTS] Lo 1T Vo TN I T o =] RSOSSN 15-2
LOF 1 =T AT Lo I o T 1= SO SPS 15-2
TYPES OF THIGOBIS ..ottt ettt b bbbt b bbbt b bbbt e et bbbt 15-3
N E= T T o T I T [1= SRS PRSRN 15-5
When IS the Trigger FIFEA? ...t 15-5
Controlling When a Trigger Is Fired (BEFORE and AFTER Options)cccocevenviineennas 15-6
Modifying Complex Views (INSTEAD OF TrigQers).....ccuoiirririerereriereseeniesieseseeesesessens 15-7
Firing Triggers One or Many Times (FOR EACH ROW Option)c.ccoceveeneriencieeennnn 15-11
Firing Triggers Based on Conditions (WHEN Clause)cccceovinieniennieneienecneeee 15-12
Coding the Trigger BOAYccccvcoiiiiiiiiie et sttt neeneerenns 15-13
Accessing Column Values in ROW TrIQQEISccovoviiieiiiiece et 15-16
Triggers and Handling Remote EXCEPLIONSccooveiriiricineiieeseese e 15-19
Restrictions 0N Creating THIGQEIS ...vii it e et ere e e 15-21
VAV Lol E d [T W o o T= L= USSR 15-26
Privileges Needed to WOrk With TriQQersS ..o 15-26
(70T a T 011 T g I 1 T [1= PSS 15-27
DependencCies FOr TIIGOEIS ...ociii ittt bbb ettt 15-27
RECOMPIIING THIGUEIS ..ottt 15-28
Migration ISSUES TOr THIQQEIS ..ocviiiiiie ettt reene e 15-28
AV T T 1 VAT oo T g Lo o =T S PSS 15-29
DebUGGING TIIGOETS ...veiiiiiiiiitiete ettt bbbt bbbt et bbb 15-29
Enabling and Disabling TrigQersS.....cioiiiiiiriieieseciee ettt seenaeneesesneenens 15-29
(ST aF: o] [T aTo N I T [1= OSSPSR 15-29
DiSADIING THIOBIS ..ottt bbb bbbttt bbb 15-30
Viewing Information ADOUL THIQOEIS ...viviiiiieiiieie et 15-30
Examples of Trigger APPHICALIONScocoiiiiiiiiceee e 15-32
Responding to System Events through Triggers ... 15-52
Working With System Events
Event AttribULE FUNCLIONS ..ottt sne s 16-2

17

18

19

LiSt Of Database EVENTES.......cccuiiiiiiie ettt ettt ettt e e et e e st a e s s ba e e s ebbe s s sabaessabeeean 16-8

SYSEEIM EVENTS ...t 16-8
CHIBNEEVENTS ...ttt bbbt bttt sttt ettt 16-9
Using the Publish-Subscribe Model for Applications
Introduction to PUBIISh-SUDSCIIDE ..o e 17-2
Publish-Subscribe ArChiteCUIEccciiiii e 17-3
PUDBIisSh-SUDSCIDE CONCEPTS.ciiiiieiiietireet et 17-4
Examples of a Publish-Subscribe MechaniSm ... 17-6
Developing Web Applications with PL/SQL
What Is a PL/SQL Web APPHCAtION? ..o 18-1
How Do | Generate HTML Output from PL/SQL? ..ot 18-2
How Do | Pass Parameters to a PL/SQL Web Application?............ccccovevneniiniinnineieneeee 18-3
Performing Network Operations within PL/SQL Stored Procedures.........c.ccccoevevvevevcnnnenn. 18-9
Sending E-Mail from PLZSQLcoooiiie et 18-9
Getting a Host Name or Address from PLZSQL ..ot 18-10
Working with TCP/IP Connections from PLZSQL.........cccooviiiiviieiine e 18-10
Retrieving the Contents of an HTTP URL from PL/ZSQL.......c.cccveiiiiiii i 18-10
Working with Tables, Image Maps, Cookies, CGI Variables, and More from PL/SQL 18-13
Embedding PL/SQL Code in Web Pages (PL/SQL Server Pages).......ccccvevrererereervereeeannnns 18-13
Choosing a Software Configuration ..o 18-14
Writing the Code and Content for the PL/SQL Server Page..........ccccovevveeneienencnecnnen, 18-15
Syntax of PL/SQL Server Page EIEMENTSccccvoivieiiiiciene e 18-21
Loading the PL/SQL Server Page into the Database as a Stored Procedure................... 18-23
Running a PL/SQL Server Page Through @ URLccociiiiiiniiniiieneseese e 18-24
Examples Of PLZSQL SEIVEr PAgES......cccivieiirieieieieeeeesiesestesesteste e ssessessesaessensessssesssssenses 18-25
Debugging PL/SQL Server Page Problems...........ccccoiiiiiii e 18-32
Putting an Application using PL/SQL Server Pages into Productioncc.cccoeee. 18-34
Enabling PL/SQL Web Applications for XIML ... 18-35
Porting Non-Oracle Applications to Oracle9 i
Frequently Asked Questions ADOUL POItiNgG........cccooeriiciiiiin s 19-2

How Do | Perform Natural Joins and INNEr JOINS?ocovviiiiiiiiie e 19-2

XV

Is There an Automated Way to Migrate a Schema and Associated Data from Another
Database System? 19-2

How Do | Perform Large Numbers of Comparisons within a QUery?.........cc.ccceeecvreenen 19-3
Does Oracle Support Scalar SUDQUETIES?cvoveiiiiieiicesiese e ene s 194

20 Working with Transaction Monitors with Oracle XA

X/Open Distributed Transaction Processing (DTP) ..o 20-2
Required PUblic INfOrMAatioN...........ccooiiiii s 20-5
XA and the Two-Phase CoOmMMIt ProtOCO|ccocoiiiiiiiieiecse e 20-5
Transaction Processing MoNitors (TPIMS) ... 20-6
Support for Dynamic and Static RegiStrationcccooviiiiiiine e 20-6
Oracle XA Library Interface SUDFOULINES...........c.ccoiiiiiciiniiiee e 20-7
XA Library SUBFOULINESc.ccv et ene e 20-7
EXtensions t0 the XA INTEITACEcoi i s 20-8
Developing and Installing Applications That Use the XA Librariescccccoceoniiniinnnn, 20-9
Responsibilities of the DBA or System Administrator.........c.ccocvvvievie e 20-9
Responsibilities of the Application DeVEIOPETcceviieiiiiiie e 20-10
Defining the Xa_0PEN STING.....coiiiiiiiieee e 20-10
Interfacing XA with Precompilers and OCIS........ccccoveiviiiicinie e 20-17
Transaction CoNrol USING XAc.oi ittt re e sre e e sre e 20-20
Migrating Precompiler or OCI Applications to TPM Applicationsccccveeiennnene. 20-23
XA Library Thread Safety ... s eneas 20-24
Troubleshooting XA APPHICAtIONScooiiiiiii e 20-25
XA THACE FIIBS .ottt ettt bbbt et b et e e st e neaneeneens 20-26
Trace File EXAMPIES....c.ocviececi sttt sttt e e e eneenenrs 20-27
IN-Doubt or Pending TranNSaCtiONScccocviiiieiie et 20-27
Oracle Server SYS ACCOUNT TADIEScoiiiiiiiieiiee e 20-28
XA 1SSUES AN RESTIICTIONS ..ot bbb 20-28
Changes t0 Oracle XA SUPPOIT.....cc.oi et ebe s 20-32
XA Changes from Release 8.0 10 Release 8.1.........cccoviiiiiiieiniiniceseeseeseese e 20-32
XA Changes from Release 7.3 t0 Rel€ase 8.0.........ccevviveiiiirr i 20-33
Index

XVi

Send Us Your Comments

Oracle9 j Application Developer’s Guide - Fundamentals, Release 2 (9.2)
Part No. A96590-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

« Electronic mail: infodev_us@oracle.com
« FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
« Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Xvii

xViii

Audience

Preface

The Oracle9i Application Developer’s Guide - Fundamentals describes features of
application development for the Oracle9i Database. Information in this guide
applies to features that work the same on all platforms, and does not include
system-specific information.

This preface contains these topics:
« Audience

« Organization

» Related Documentation

« Conventions

« Documentation Accessibility

The Oracle9i Application Developer’s Guide - Fundamentals is intended for
programmers developing new applications or converting existing applications to
run in the Oracle environment. This book will also be valuable to systems analysts,
project managers, and others interested in the development of database
applications.

This guide assumes that you have a working knowledge of application
programming, and that you are familiar with the use of Structured Query Language
(SQL) to access information in relational database systems.

Certain sections of this guide also assume a knowledge of the basic concepts of
object-oriented programming.

Xix

XX

Duties of an Application Developer
Activities that are typically required of an application developer include:

Programming in SQL. Your primary source of information for this is the
Oracle9i SQL Reference. You can find information about advanced query
techniques, to perform analysis and retrieve data in a single query, in the
Oracle9i Data Warehousing Guide.

Interfacing to SQL through other languages, such as PL/SQL, Java, or C/C++.
Sources of information about these other languages include:

« PL/SQL User’s Guide and Reference

« Oracle9i Supplied PL/SQL Packages and Types Reference
« Oracle9i Java Developer’s Guide

« Pro*C/C++ Precompiler Programmer’s Guide

« Oracle Call Interface Programmer’s Guide and Oracle C++ Call Interface
Programmer’s Guide

« Oracle Objects for OLE C++ Class Library
« Oracle COM Automation Feature Developer’s Guide

Setting up interactions and mappings between multiple language
environments, as described in "Calling External Procedures” on page 10-1.

Working with schema objects. You might designing part or all of a schema, and
write code to fit into an existing schema. You can get an overview in "Managing
Schema Objects” on page 2-1, and full details in Oracle9i Database Administrator’s
Guide.

Interfacing with the database administrator to make sure that the schema can be
backed up and restored, for example after a system failure or when moving
between a staging machine and a production machine.

Building application logic into the database itself, in the form of stored
procedures, constraints, and triggers, to allow multiple applications to reuse
application logic and code that checks and cleans up errors. For information on
these database features, see "Using Procedures and Packages" on page 9-1,
"Maintaining Data Integrity Through Constraints" on page 4-1, and "Using
Triggers" on page 15-1.

Some degree of performance tuning. The database administrator might help
here. You can find more information in PL/SQL User’s Guide and Reference,

Oracle9i Supplied PL/SQL Packages and Types Reference, and Oracle9i
Database Performance Tuning Guide and Reference.

« Some amount of database administration, if you need to maintain your own
development or test system. You can learn about administration in the Oracle9i
Database Administrator’s Guide.

« Debugging and interpreting error messages, which are listed in Oracle9i
Database Error Messages.

« Making your application available over the network, particularly over the
Internet or company intranet. You can get an overview in "Developing Web
Applications with PL/SQL" on page 18-1, and full details covering various
languages and technologies in the Oracle9iAS documentation.

« Building in security features to prevent tampering or unauthorized access to
data. As a developer, you will use the information in "Application Security" on
page -1. If you have broader responsibility for database security, you should
read Oracle9i Security Overview.

« Designing the class structure and choosing object-oriented methodologies, if
your application is object-oriented. For more information, see Oracle9i
Application Developer’s Guide - Object-Relational Features, PL/SQL User’s Guide and
Reference, and Oracle9i Java Developer’s Guide.

Organization

This document contains:

Part I: Introduction

This part introduces several different ways that you can write Oracle applications.
You might need to use more than one language or development environment for a
single application. Some database features are only supported, or are easier to
access from, certain languages.

Chapter 1, "Understanding the Oracle Programmatic Environments" outlines the
strengths of the languages, development environments, and APIs that Oracle
provides.

Part II: Designing the Database

Before you develop an application, you need to plan the characteristics of the
associated database. You must choose all the pieces that go into the database, and
how they are put together. Good database design helps ensure good performance

XXi

XXii

and scalability, and reduces the amount of application logic you code by making the
database responsible for things like error checking and fast data access.

Chapter 2, "Managing Schema Obijects" explains how to manage objects such as
tables, views, numeric sequences, and synonyms. It also discusses performance
enhancements to data retrieval through the use of indexes and clusters.

Chapter 3, "Selecting a Datatype" explains how to represent your business data in
the database. The datatypes include fixed- and variable-length character strings,
numeric data, dates, raw binary data, and row identifiers (ROWID3.

Chapter 4, "Maintaining Data Integrity Through Constraints" explains how to use
constraints to move error-checking logic out of your application and into the
database.

Chapter 5, "Selecting an Index Strategy" and Chapter 6, "Speeding Up Index Access
with Index-Organized Tables" explain how to speed up queries.

Chapter 7, "How Oracle Processes SQL Statements" explains SQL topics such as
commits, cursors, and locking that you can take advantage of in your applications.

Chapter 8, "Coding Dynamic SQL Statements" describes dynamic SQL, compares
native dynamic SQL to the DBMS_SQL package, and explains when to use dynamic
SQL.

Chapter 9, "Using Procedures and Packages" explains how to store reusable
procedures in the database, and how to group procedures into packages.
Chapter 10, "Calling External Procedures” explains how to code the bodies of
computationally intensive procedures in languages other than PL/SQL.

Part 1ll: Application Security

Chapter 11, "Database Security Overview for Application Developers" provides
background information that you will need before addressing security issues in
your applications.

Chapter 12, "Implementing Application Security Policies" explains the major
security mechanisms you can use in applications: application context, fine-grained
access control, and virtual private database.

Chapter 13, "Proxy Authentication"” explains how to tie together authentication
done by the web server or application server, with the security mechanisms of the
database server.

Chapter 14, "Data Encryption Using DBMS_OBFUSCATION_TOOLKIT" explains
how to secure data so that even if an unauthorized person can see the data, they
cannot decode it.

Part IV: The Active Database

You can include all sorts of programming logic in the database itself, making the
benefits available to many applications and saving repetitious coding work.

Chapter 15, "Using Triggers" explains how to make the database do special
processing before, after, or instead of running SQL statements. You can use triggers
for things like validating or transforming data, or logging database access.

Chapter 16, "Working With System Events" explains how to retrieve information,
such as the user ID and database name, about the event that fires a trigger.

Chapter 17, "Using the Publish-Subscribe Model for Applications" introduces the
Oracle model for asynchronous communication, also known as messaging or
gueuing.

Part IV: Developing Specialized Applications

Chapter 18, "Developing Web Applications with PL/SQL" explains how to create
dynamic web pages and applications that work with the Internet, e-mail, and so on,
using the PL/SQL language.

Chapter 19, "Porting Non-Oracle Applications to Oracle9i" lists some features and
techniques you can use to make applications originally written for another database
system run on Oracle9i.

Chapter 20, "Working with Transaction Monitors with Oracle XA" describes how to
connect Oracle with a transaction monitor.

Related Documentation

For more information, see these Oracle resources:

Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corporation’s
procedural extension to SQL.

The Oracle Call Interface (OCI) is described in Oracle Call Interface Programmer’s
Guide and Oracle C++ Call Interface Programmer’s Guide .

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL
application programs in C, C++, COBOL, or FORTRAN that incorporate embedded

XXili

XXiV

SQL, then refer to the corresponding precompiler manual. For example, if you
program in C or C++, then refer to the Pro*C/C++ Precompiler Programmer’s Guide.

Oracle Developer/2000 is a cooperative development environment that provides
several tools including a form builder, reporting tools, and a debugging
environment for PL/SQL. If you use Developer/2000, then refer to the appropriate
Oracle Tools documentation.

For SQL information, see the Oracle9i SQL Reference and Oracle9i Database
Administrator’s Guide. For basic Oracle concepts, see Oracle9i Database Concepts.

For developing applications that manipulate XML data, see Oracle9i XML
Developer’s Kits Guide - XDK and Oracle9i XML API Reference - XDK and Oracle XML
DB.

Many of the examples in this book use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

In North America, printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http:/Amww.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/admin/accountimembership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index htm

To access the database documentation search engine directly, please visit
http:/tahiti.oracle.com/

This search engine has a number of features that you might find useful, such as
searching for examples, looking up SQL and PL/SQL syntax, and formatting large
numbers of search results into a "virtual book".

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:
« Conventions in Text
« Conventions in Code Examples
Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.
Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.
(fixed-width elements include parameters, privileges, .
font) datatypes, RMAN keywords, SOL You can back up the database by using the

keywords, SQL*Plus or utility commands, BACKURommand.
packages and methods, as well as Query the TABLE_NAMEolumn in the USER _
system-supplied column names, database TABLESdata dictionary view.

?(?IJ:S“S and structures, usernames, and . 1he pEMS_STATSENERATE_STATS
' procedure.

XXV

Convention

Meaning Example

lowercase
monospace
(fixed-width
font)

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database Back up the datafiles and control files in the
names, net service names, and connect /diskl/oracle/dbs directory.
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values. Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

The password is specified in the orapwd file.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase. Connect as oe user.

Enter these elements as shown. The JRepUtil class implements these

methods.

Lowercase monospace italic font You can specify the parallel_clause

represents placeholders or variables. Run Uold_release .SQL where old
release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

XXVi

which is required. Do not enter the
braces.

A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces.
Enter one of the options. Do not enter the [COMPRESS | NOCOMPRESS]

vertical bar.

Convention Meaning Example

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery ;
code that are not directly related to
the example
SELECT col1 , col2 , ..., coln FROM

« That you can repeat a portion of the .
employees;

code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than acctbal NUMBER(11,2);

brackets, braces, vertical bars, and ellipsis A
points as shown. acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or CONNECT SYSTEMystem_password

variables for which you must supply _
particular values. DB_NAME = database _name

UPPERCASE Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;
terms in uppercase in order to distinguish . .
them from terms you define. Unless terms SELECT * FROM USER_TABLES;
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

lowercase Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names
of tables, columns, or files. salplus hr/hr
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY tySMUS;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other

XXVil

XXViii

market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http/Amwwv.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

What's New in Application Development?

The following sections describe the new features for application development in
Oracle9i:

Oracle9i New Features in Application Development

XXiX

Oracle9i New Features in Application Development

XXX

Release 2 (9.2)

Enhancements to flashback query

You can perform flashback queries using the AS OF clause of the SELECT
statement rather than going through the DBMS_FLASHBACgackage. This
technique is very flexible, allowing you to perform joins, set operations,
subqueries, and views using different date/time or SCN settings for each table
in the query. You can also restore or capture past data by using flashback
gueries inside INSERT or CREATE TABLE AS SELECT statements.

See Also: "Querying Data at a Point in Time (Flashback Query)"
on page 7-43

Using PL/SQL Records in INSERT and UPDATE Statements

When you represent related data items using a PL/SQL record, you can
perform insert and update operations using the entire record, instead of
specifying each record field separately.

See Also: "Using PL/SQL Records in SQL INSERT and UPDATE
Statements"” on page 8-21

Changes to Java Programming Practices

To develop using EJBs or CORBA, you should use the J2EE components that are
part of Oracle9i Application Server. EJBs and CORBA are no longer supported
within the database. You can still access the database from these components,
just from a middle-tier application server. You can still write Java stored
procedures and Java methods for object types within the database.

See Also: "Overview of Java Stored Procedures, JDBC, and SQLJ"
on page 1-8

Ability to rename constraints

If a data management application experiences problems because it tries to
create a constraint when the constraint already exists, you can rename the
existing constraint to avoid the conflict. If you track down a constraint with a
cryptic system-generated name, you can give it a descriptive name to make it
easier to enable and disable later.

See Also: "Renaming Integrity Constraints" on page 4-25

Enhanced support for NCHAR, NVARCHAR?2, and NCLOB types

These globalization-support types can now be used as attributes of SQL and
PL/SQL object types, and in PL/SQL collection types such as varrays and
nested tables.

New XML programming capabilities

New and enhanced built-in types, such as XMLType and XDBURIType, let you
delegate XML parsing, storage, and retrieval to the database. Details are in the
XML documentation rather than this book.

Enhanced UTL_FILE package

The UTL_FILE package has a number of new functions for performing popular
file operations. You can seek, auto-flush, read and write binary data, delete files,
change file permissions, and more. You should begin using the CREATE
DIRECTORYstatement (using double quotation marks around any lowercase
names), rather than the UTL_FILE_DIR initialization parameter.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for details about these enhancements.

User-defined constructors

You can now override the system default constructor for an object type with
your own function.

See Also: .PL/SQL User’s Guide and Reference

Access to LOB data within triggers

You can access or change LOB data within BEFOREand INSTEAD OF triggers,
using the :NEWvariable.

See Also: "Example: Modifying LOB Columns with a Trigger” on
page 15-17

Synonyms for types

You can now define synonyms for types.

See Also: "Managing Synonyms" on page 2-28

XXXi

XXX

Scrollable cursors in Pro*C/C++ applications
Scrollable cursors let you move forward and backward through the result set in
a Pro*C/C++ application.

See Also: "Highlights of Pro*C/C++ Features" on page 1-23

Support for Connection Pooling in Pro*C/C++

The Connection Pool feature in Pro*C/C++ helps you optimise the performance
of Pro*C/C++ applications.

See Also: "Highlights of Pro*C/C++ Features" on page 1-23

Better linking in online documentation

Many of the cross-references from this book to other books have been made
more specific, so that they link to a particular place within another book rather
than to the table of contents. Because this is an ongoing project, not all links are
improved in this edition. If you are reading a printed copy of this book, you can
find the online equivalent at http://tahiti.oracle.com/ , with full search
capability.

Release 1 (9.0.1)

Integration of SQL and PL/SQL parsers

PL/SQL now supports the complete range of syntax for SQL statements, such
as INSERT, UPDATEDELETE and so on. If you received errors for valid SQL
syntax in PL/SQL programs before, those statements should now work.

See Also: Because of more consistent error-checking, you might
find that some invalid code is now found at compile time instead of
producing an error at runtime, or vice versa. You might need to
change the source code as part of the migration procedure. See
Oracle9i Database Migration for details on the complete migration
procedure.

Resumable Storage Allocation

When an application encounters some kinds of storage allocation errors, it can
suspend operations and take action such as resolving the problem or notifying
an operator. The operation can be resumed when storage is added or freed.

See Also: "Resuming Execution After a Storage Error Condition”
on page 7-40

Flashback Query

Table data can be queried as it existed at a point in time. This lets applications
guery, compare, or recover past data without involving the DBA and without
an expensive recovery operation. The current table data remains available to
other applications throughout.

See Also: "Querying Data at a Point in Time (Flashback Query)"
on page 7-43

WITH Clause for Reusing Complex Subqueries

Rather than repeat a complex subquery, you can give it a name and refer to that
name multiple times within the same query. This is convenient for coding, and
helps the optimizer find common code that can be optimized.

See Also: "Tip: Referencing the Same Subquery Multiple Times"
on page 2-7

New Date and Time Types

The new datatype TIMESTAMPrecords time values including fractional
seconds. New datatypes TIMESTAMP WITH TIME ZONE and TIMESTAMP
WITH LOCAL TIME ZONE allow you to adjust date and time values to account
for time zone differences. You can specify whether the time zone observes
daylight savings time, to account for anomalies when clocks shift forward or
backward. New datatypes INTERVAL DAY TO SECONiIDd INTERVAL YEAR
TO MONTIepresent differences between two date and time values, simplifying
date arithmetic.

See Also:

« "Summary of Oracle Built-In Datatypes" on page 3-2
« "Representing Date and Time Data" on page 3-14

Better Integration of LOB Datatypes

You can operate on LOB types much like other similar types. You can use
character functions on CLOBand NCLOBtypes. You can treat BLOBtypes as

Xxxiii

XXXIV

RAW. Conversions between LOBs and other types are much simpler,
particularly when converting from LONGo LOB types.

See Also:

« "Representing Large Data Types" on page 3-27
« "How Oracle Converts Datatypes" on page 3-38
« "Representing Character Data" on page 3-10

Improved Globalization and National Language Support

Data can be stored in Unicode format using fixed-width or variable-width
character sets. String handling and storage declarations can be specified using
byte lengths, or character lengths where the number of bytes is computed for
you. You can set up the entire database to use the same length semantics for
strings, or specify the settings for individual procedures; this setting is
remembered if a procedure is invalidated.

See Also: "Representing Character Data" on page 3-10

Enhancements to Bulk Operations

You can now perform bulk SQL operations, such as bulk fetches, using native
dynamic SQL (the EXECUTE IMMEDIATEstatement). You can perform bulk
insert or update operations that continue despite errors on some rows, then
examine the problems after the operation is complete.

See Also: "Overview of Bulk Binds" on page 9-18

Improved Support for PL/SQL Web Applications

The UTL_HTTPand UTL_SMTPpackages have a number of enhancements, such
as letting you access password-protected web pages, sending e-mail with
attachments, and so on.

See Also: Chapter 18, "Developing Web Applications with
PL/SQL" on page 18-1
Native Compilation of PL/SQL Code

Improve performance by compiling Oracle-supplied and user-written stored
procedures into native executables, using typical C development tools. This

setting is saved so that the procedure is compiled the same way if it is later
invalidated.

See Also: "Compiling PL/SQL Procedures for Native Execution”
on page 9-22
Oracle C++ Call Interface (OCCI) API

The OCCI API lets you write fast, low-level database applications using C++. It
is similar to the existing Oracle Call Interface (OCI) API.

See Also: "Overview of OCl and OCCI" on page 1-26

Secure Application Roles

In Oracle9i, application developers no longer need to secure a role by
embedding passwords inside applications. They can create application roles
and specify which PL/SQL package is authorized to enable the roles. These
application roles, those enabled by PL/SQL packages, are called secure
application roles.

See Also: Creating Secure Application Roles on page 11-14

Creating Application Contexts
You can create an application context by entering a command like:
CREATE CONTEXT Order_entry USING Apps.Oe_ctx;

Alternatively, you can use Oracle Policy Manager to create an application
context.

See Also: Step 2. Create an Application Context on page 12-18

Dedicated External Procedure Agents

You can run external procedure agents (the EXTPRO@ntry in thsnames.ora)
under different instances of Oracle or on entirely separate machines. This lets
you configure external procedures more robustly, so that if one external
procedure crashes, other external procedures can continue running in a
different agent process.

XXXV

See Also:

« "Loading External C Procedures" on page 10-6
« "Publishing External Procedures" on page 10-8

XXXVI

Part |

Introduction To Oracle9i Application
Development

This part contains the following chapter:

Chapter 1, "Understanding the Oracle Programmatic Environments"

Understanding the Oracle Programmatic
Environments

This chapter presents brief introductions to these application development systems:
« Overview of PL/SQL

« Overview of Java Stored Procedures, JDBC, and SQLJ

=« Overview of Pro*C/C++

« Overview of Pro*COBOL

= Overview of OCl and OCCI

« Overview of Oracle Objects for OLE (O040)

« Choosing a Programming Environment

Understanding the Oracle Programmatic Environments 1-1

Overview of Developing an Oracle Application

Overview of Developing an Oracle Application

As an application developer, you have many choices when it comes to writing a
program to interact with the database.

Client/Server Model

In a traditional client/server program, the code of your application runs on a
machine other than the database server. Database calls are transmitted from this
client machine to the database server. Data is transmitted from the client to the
server for insert and update operations, and returned from the server to the client
for query operations. The data is processed on the client machine. Client/server
programs are typically written using precompilers, where SQL statements are
embedded within the code of another language such as C, C++, or COBOL.

Server-Side Coding

You can develop application logic that resides entirely inside the database, using
triggers that are executed automatically when changes occur in the database, or
stored procedures that are called explicitly. Offloading the work from your
application lets you reuse code that performs verification and cleanup, and control
database operations from a variety of clients. For example, by making stored
procedures callable through a web server, you can construct a web-based user
interface that performs the same functions as a client/server application.

Two-Tier Versus Three-Tier Models

Client/server computing is often referred to as a two-tier model: your application
communicates directly with the database server. In the three-tier model, another
server (known as the application server) processes the requests. The application
server might be a basic web server, or might perform advanced functions like
caching and load-balancing. Increasing the processing power of this middle tier lets
you lessen the resources needed by client systems, resulting in a thin client
configuration where the client machine might need only a web browser or other
means of sending requests over the TCP/IP or HTTP protocols.

User Interface

The interface that your application displays to end users depends on the technology
behind the application, as well as the needs of the users themselves. Experienced
users might enter SQL commands that are passed on to the database. Novice users
might be shown a graphical user interface that uses the graphics libraries of the
client system (such as Windows or X-Windows). Any of these traditional user
interfaces can also be provided in a web using HTML and Java.

1-2 Oracle9i Application Developer's Guide - Fundamentals

Overview of PL/SQL

Stateful Versus Stateless User Interfaces

In traditional client/server applications, the application can keep a record of user
actions and use this information over the course of one or multiple sessions. For
example, past choices can be presented in a menu so that they do not have to be
entered again. When the application is able to save information like this, we refer to
the application as stateful.

The easiest kinds of web or thin-client applications to develop are stateless. This
means that they gather all the required information, process it using the database,
and then start over from the beginning with the next user. This is a popular way to
process single-screen requests such as customer registration.

There are many ways to add stateful behavior to web applications that are stateless
by default. For example, an entry form on one web page can pass information on to
subsequent web pages, allowing you to construct a wizard-like interface that
remembers the user’s choices through several different steps. Cookies can be used
to store small items of information on the client machine, and retrieve them when
the user returns to a Web site. Servlets can be used to keep a database session open
and store variables between requests from the same client.

Overview of PL/SQL

PL/SQL is Oracle’s procedural extension to SQL, the standard database access
language. An advanced 4GL (fourth-generation programming language), PL/SQL
offers seamless SQL access, tight integration with the Oracle server and tools,
portability, security, and modern software engineering features such as data
encapsulation, overloading, exception handling, and information hiding.

With PL/SQL, you can manipulate data with SQL statements, and control program
flow with procedural constructs such as IF-THEN and LOOP. You can also declare
constants and variables, define procedures and functions, use collections and object
types, and trap run-time errors.

Applications written using any of the Oracle programmatic interfaces can call
PL/SQL stored procedures and send blocks of PL/SQL code to the server for
execution. 3GL applications can access PL/SQL scalar and composite datatypes
through host variables and implicit datatype conversion.

Because it runs inside the database, PL/SQL code is very efficient for data-intensive
operations, and minimizes network traffic in client/server applications.

PL/SQL’s tight integration with Oracle Developer lets you develop the client and
server components of your application in the same language, then partition the

Understanding the Oracle Programmatic Environments 1-3

Overview of PL/SQL

components for optimal performance and scalability. Also, Oracle’s Web Forms lets
you deploy your applications in a multitier Internet or intranet environment
without modifying a single line of code.

For more information, see PL/SQL User’s Guide and Reference.

A Simple PL/SQL Example

The procedure debit_account takes money from a bank account. It accepts an
account number and an amount of money as parameters. It uses the account
number to retrieve the account balance from the database, then computes the new
balance. If this new balance is less than zero, the procedure jumps to an error
routine; otherwise, it updates the bank account.

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
old_balance REAL;
new_balance REAL;
overdrawn EXCEPTION,;
BEGIN
SELECT bal INTO old_balance FROM accts
WHERE acct no=acct id;
new_balance :=old_balance - amount;
IF new_balance <O THEN
RAISE overdrawn;
ELSE
UPDATE accts SET bal =new_balance
WHERE acct no=acct id;
ENDIF;
COMMIT;
EXCEPTION
WHEN overdrawn THEN
- handle the error
END debit_account;

Advantages of PL/SQL

PL/SQL is a completely portable, high-performance transaction processing
language that offers the following advantages:

Full Support for SQL

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
So, you can manipulate Oracle data flexibly and safely. PL/SQL fully supports SQL

1-4 Oracle9i Application Developer's Guide - Fundamentals

Overview of PL/SQL

datatypes, reducing conversions as data is passed between applications and the
database.

Dynamic SQL is a programming technique that lets you build and process SQL
statements "on the fly" at run time. It gives PL/SQL flexibility comparable to
scripting languages such as Perl, Korn shell, and Tcl.

Tight Integration with Oracle

PL/SQL supports all the SQL datatypes. Combined with the direct access that SQL
provides, these shared datatypes integrate PL/SQL with the Oracle data dictionary.

The %TYPEnd %ROWTY Rdtributes let your code adapt as table definitions
change. For example, the %TYPEattribute declares a variable based on the type of a
database column. If the column’s type changes, your variable uses the correct type
at run time. This provides data independence and reduces maintenance costs.

Better Performance

If your application is database intensive, you can use PL/SQL blocks to group SQL
statements before sending them to Oracle for execution. This can drastically reduce
the communication overhead between your application and Oracle.

PL/SQL stored procedures are compiled once and stored in executable form, so
procedure calls are quick and efficient. A single call can start a compute-intensive
stored procedure, reducing network traffic and improving round-trip response
times. Executable code is automatically cached and shared among users, lowering
memory requirements and invocation overhead.

Higher Productivity

PL/SQL adds procedural capabilities to such as Oracle Forms and Oracle Reports.
For example, you can use an entire PL/SQL block in an Oracle Forms trigger
instead of multiple trigger steps, macros, or user exits.

PL/SQL is the same in all environments. As soon as you master PL/SQL with one
Oracle tool, you can transfer your knowledge to other tools, and so multiply the
productivity gains. For example, scripts written with one tool can be used by other
tools.

Scalability

PL/SQL stored procedures increase scalability by centralizing application
processing on the server. Automatic dependency tracking helps to develop scalable
applications.

Understanding the Oracle Programmatic Environments 1-5

Overview of PL/SQL

The shared memory facilities of the shared server (formerly known as
Multi-Threaded Server or MTS) enable Oracle to support many thousands of
concurrent users on a single node. For more scalability, you can use the Oracle Net
Connection Manager to multiplex network connections.

Maintainability

Once validated, a PL/SQL stored procedure can be used with confidence in any
number of applications. If its definition changes, only the procedure is affected, not
the applications that call it. This simplifies maintenance and enhancement. Also,
maintaining a procedure on the server is easier than maintaining copies on various
client machines.

PL/SQL Support for Object-Oriented Programming

Object Types An object type is a user-defined composite datatype that encapsulates a
data structure along with the functions and procedures needed to manipulate the
data. The variables that form the data structure are called attributes. The functions
and procedures that characterize the behavior of the object type are called methods,
which you can implement in PL/SQL.

Obiject types are an ideal object-oriented modeling tool, which you can use to
reduce the cost and time required to build complex applications. Besides allowing
you to create software components that are modular, maintainable, and reusable,
object types allow different teams of programmers to develop software components
concurrently.

Collections A collection is an ordered group of elements, all of the same type (for
example, the grades for a class of students). Each element has a unique subscript
that determines its position in the collection. PL/SQL offers two kinds of
collections: nested tables and varrays (short for variable-size arrays).

Collections work like the set, queue, stack, and hash table data structures found in
most third-generation programming languages. Collections can store instances of
an object type and can also be attributes of an object type. Collections can be passed
as parameters. So, you can use them to move columns of data into and out of
database tables or between client-side applications and stored subprograms. You
can define collection types in a PL/SQL package, then use the same types across
many applications.

1-6 Oracle9i Application Developer's Guide - Fundamentals

Overview of PL/SQL

Portability

Applications written in PL/SQL can run on any operating system and hardware
platform where Oracle runs. You can write portable program libraries and reuse
them in different environments.

Security

PL/SQL stored procedures let you divide application logic between the client and
the server, to prevent client applications from manipulating sensitive Oracle data.
Database triggers written in PL/SQL can prevent applications from making certain
updates, and can audit user queries.

You can restrict access to Oracle data by allowing users to manipulate it only
through stored procedures that have a restricted set of privileges. For example, you
can grant users access to a procedure that updates a table, but not grant them access
to the table itself.

Built-In Packages for Application Development
« DBMS_PIPE is used to communicate between sessions.

« DBMS_ALERT is used to broadcast alerts to users.

« DBMS LOCK and DBMS TRANSACTION are used for lock and transaction
management.

« DBMS_AQ is used for Advanced Queuing.

« DBMS_LOB is for your manipulation of large objects.
« DBMS _ROWID is used for employing ROWIDs.

« UTL_RAW is for the RAW facility.

« UTL_REF is for work with REFs.

Built-In Packages for Server Management
« DBMS_SESSION is for session management by DBAs.

« DBMS _SYSTEM is used to set events for debugging.

« DBMS_SPACE and DBMS_SHARED_POOL obtain space information and
reserve shared pool resources.

« DBMS JOB is used to schedule jobs in the server.

Understanding the Oracle Programmatic Environments 1-7

Overview of Java Stored Procedures, JDBC, and SQLJ

Built-In Packages for Distributed Database Access

These provide access to snapshots, advanced replication, conflict resolution,
deferred transactions, and remote procedure calls.

Overview of Java Stored Procedures, JDBC, and SQLJ

Oracle9i embeds the OracleJVM, a J2SE 1.3-compliant JVM. Oracle can store Java
classes and execute them inside the database, as stored procedures and triggers.
These classes can manipulate data, but cannot display GUI elements such as AWT
or Swing components. Running inside the database allows these Java classes to be
called many times and manipulate large amounts of data, without the processing
and network overhead that comes with running on the client machine.

Oracle9i includes the core JDK libraries such as java.lang ,java.io ,and so on.
Oracle9i supports client-side Java standards such as JDBC and SQLJ, and provides
server-side JDBC and SQLJ drivers that allow data-intensive Java code to run
within the database.

For background information about Java and how Oracle supports it, see Oracle9i
Database Concepts.

Overview of Writing Procedures and Functions in Java

You write these named blocks and then define them using the loadjava command
or SQL CREATE FUNCTIONCREATE PROCEDURE CREATE PACKAGHatements.
These Java methods can accept arguments and are callable from:

« SQL CALL statements.

« Embedded SQL CALL statements.

« PL/SQL blocks, subprograms and packages.

«» DML statements (INSERT, UPDATEDELETE and SELECT).

« Oracle development tools such as OCI, Pro*C/C++ and Oracle Developer.

« Oracle Java interfaces such as JDBC, SQLJ statements, CORBA, and Enterprise
Java Beans.

« Method calls from object types.

Overview of Writing Database Triggers in Java

A database trigger is a stored procedure that Oracle invokes (“fires") automatically
when certain events occur, for example, when a DML operation modifies a certain

1-8 Oracle9i Application Developer's Guide - Fundamentals

Overview of Java Stored Procedures, JDBC, and SQLJ

table. Triggers enforce business rules, prevent incorrect values from being stored,
and reduce the need to perform checking and cleanup operations in each
application.

Why Use Java for Stored Procedures and Triggers?

Stored procedures and triggers are compiled once, are easy to use and maintain,
and require less memory and computing overhead.

Network bottlenecks are avoided, and response time is improved. Distributed
applications are easier to build and use.

Computation-bound procedures run faster in the server.

Data access can be controlled by letting users only have stored procedures and
triggers that execute with their definer’s privileges instead of invoker’s rights.

PL/SQL and Java stored procedures can call each other.

Java in the server follows the Java language specification and can use the SQLJ
standard, so that non-Oracle databases are also supported.

Stored procedures and triggers can be reused in different applications as well as
different geographic sites.

Overview of Oracle JDBC

JDBC (Java Database Connectivity) is an APl (Applications Programming Interface)
that allows Java to send SQL statements to an object-relational database such as
Oracle.

The JDBC standard defines four types of JDBC drivers:

Type 1. A JDBC-ODBC bridge. Software must be installed on client systems.

Type 2. Has Native methods (calls C or C++) and Java methods. Software must
be installed on the client.

Type 3. Pure Java. The client uses sockets to call middleware on the server.

Type 4. The most pure Java solution. Talks directly to the database using Java
sockets.

JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQL92 Entry Level standard.

Understanding the Oracle Programmatic Environments 1-9

Overview of Java Stored Procedures, JDBC, and SQLJ

You can use JDBC to do dynamic SQL. Dynamic SQL means that the embedded
SQL statement to be executed is not known before the application is run, and
requires input to build the statement.

The drivers that are implemented by Oracle have extensions to the capabilities in
the JDBC standard that was defined by Sun Microsystems. Oracle’s
implementations of JDBC drivers are described next. The Oracle database server
support of and extensions to various levels of the JDBC standard are described in
"How Oracle Supports and Extends the JDBC Standards" on page 1-11.

JDBC Thin Driver

The JDBC thin driver is a Type 4 (100% pure Java) driver that uses Java sockets to
connect directly to a database server. It has its own implementation of a Two-Task
Common (TTC), a lightweight implementation of TCP/IP from Oracle Net. It is
written entirely in Java and is therefore platform-independent.

The thin driver does not require Oracle software on the client side. It does need a
TCP/IP listener on the server side. Use this driver in Java applets that are
downloaded into a Web browser, or in applications where you do not want to
install Oracle client software. The thin driver is self-contained, but it opens a Java
socket, and thus can only run in a browser that supports sockets.

JDBC OCI Driver

The OCI driver is a Type 2 JDBC driver. It makes calls to the OCI (Oracle Call
Interface) which is written in C, to interact with an Oracle database server, thus
using native and Java methods.

The OCI driver allows access to more features than the thin driver, such as
Transparent Application Fail-Over, advanced security, and advanced LOB
manipulation.

The OCI driver provides the highest compatibility between the different Oracle
versions, from 7 to 9i. It also supports all installed Net8 and Oracle Net adapters,
including IPC, named pipes, TCP/IP, and IPX/SPX.

Because it uses native methods (a combination of Java and C) the OCI driver is
platform-specific. It requires a client Oracle8i or later installation including Oracle
Net (formerly known as Net8), OCI libraries, CORE libraries, and all other
dependent files. The OCI driver usually executes faster than the thin driver.

The OCI driver is not appropriate for Java applets, because it uses a C library that is
platform-specific and cannot be downloaded into a Web browser. It is usable in
J2EE components running in middle-tier application servers, such as the Oracle9i

1-10 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Java Stored Procedures, JDBC, and SQLJ

Application Server. Oracle9iAS provides middleware services and tools that
support access between applications and browsers.

JDBC Server-Side Internal Driver

The JDBC server-side internal driver is a Type 2 driver that runs inside the database
server, reducing the number of round-trips needed to access large amounts of data.
The driver, the Java server VM, the database, the Java native compiler which speeds
execution by as much as 10 times, and the SQL engine all run within the same
address space.

This driver provides server-side support for any Java program used in the database:
SQLJ stored procedures, functions, and triggers, and Java stored procedures. You
can also call PL/SQL stored procedures, functions, and triggers.

The server driver fully supports the same features and extensions as the client-side
drivers.

How Oracle Supports and Extends the JDBC Standards
Among the Oracle extensions to the JDBC 1.22 standard are:

« Support for Oracle datatypes

« Performance enhancement by row prefetching

« Performance enhancement by execution batching

« Specification of query column types to save round-trips
« Control of DatabaseMetaData calls

Oracle supports all APIs from the JDBC 2.0 standard, including the core APIs,
optional packages, and numerous extensions. Some of the highlights include
datasources, JTA and distributed transactions.

Oracle has supports these features from the JDBC 3.0 standard:
« Support for JDK 1.4.

« Toggling between local and global transactions.

« Transaction savepoints.

« Re-use of prepared statements by connection pools.

Understanding the Oracle Programmatic Environments 1-11

Overview of Java Stored Procedures, JDBC, and SQLJ

Sample JDBC 2.0 Program

The following example shows the preferred style of looking up a data source using
JNDI in JDBC 2.0:

llimport the JDBC packages
import java.sgl.*;

import javax.sgl.*;

import oracle jdbc.pool *;

InitialContext ictx = new InitialContext();

DataSource ds = (DataSource)ictx.lookup('jdbc/OracleDS”);
Connection conn = ds.getConnection();

Statement stmt = conn.createStatement();

ResultSet rs = simt.executeQuery("SELECT ename FROM emp");
while (rs.next()) {

out.printin(rs.getString("ename”) + "
");

}

conn.close();

Sample Pre-2.0 JDBC Program

The following source code registers an Oracle JDBC Thin driver, connects to the
database, creates a Statement object, executes a query, and processes the result set.

The SELECTstatement retrieves and lists the contents of the ENAMEolumn of the
EMPtable.

import java.sgl.*
import javamath.*
import java.io.*
import java.awt*

class JdbcTest{
public static void main (String args []) throws SQLException {
I/ Load Oracle driver
DriverManager.registerDriver (new oracle jdbc.OracleDriver());

/I Connect to the local database
Connection conn=
DriverManager.getConnection (jdbc:oracle:thin:@myhost 1521:orcl",
"scott’, "tiger”);
I/ Query the employee names

Statement stmt = conn.createStatement ();
ResultSet rset = simt.executeQuery ("SELECT ENAME FROM EMP");

1-12 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Java Stored Procedures, JDBC, and SQLJ

/I Print the name out
while (rsetnext ())
System.out.printin (rset.getString (1));
/I Close the resullt set, statement, and the connection
rset.close();
stmt.close);
conn.close();
}
}

An Oracle extension to the JDBC drivers is a form of the getConnection()

method that uses a Properties object. The Properties object lets you specify
user, password, and database information as well as row prefetching and execution
batching.

To use the OCI driver in this code, replace the Connection statement with:
Connection conn = DriverManager.getConnection (jdbc:oracle:oci8:@MyHostString",

"scott”’, "tiger");
where MyHostString is an entry in the TNSNAME®RAfile.

If you are creating an applet, the getConnection() and registerDriver()
strings will be different.

JDBC in SQLJ Applications

JDBC code and SQLJ code (see "Overview of Oracle SQLJ" on page 1-14)
interoperates, allowing dynamic SQL statements in JDBC to be used with both static
and dynamic SQL statements in SQLJ. A SQLJ iterator class corresponds to the
JDBC result set. For more information on JDBC, see Oracle9i JDBC Developer’s Guide
and Reference.

Understanding the Oracle Programmatic Environments 1-13

Overview of Oracle SQLJ

Overview of Oracle SQLJ
SQLJis:

« Alanguage specification for embedding static SQL statements in Java source
code which has been agreed to by a consortium of database companies,
including Oracle, and by Sun, author of Java. The specification has been
accepted by ANSI as a software standard.

« A software tool developed by Oracle to the standard, with extensions to the
standard to support Oracle features. That tool is the subject of this brief
overview.

SQLJ Tool

The Oracle software tool SQLJ has two parts: a translator and a runtime. You
execute on any Java VM with a JDBC driver and a SQLJ runtime library.

A SQLJ source file contains Java source with embedded static SQL statements. The
SQLJ translator is 100% Pure Java and is portable to any standard JDK 1.1 or higher
VM.

The Oracle SQLJ implementation typically runs in three steps:

« Translates SQLJ source to Java code with calls to the SQLJ runtime. The SQLJ
translator converts the source code to pure Java source code, and can check the
syntax and semantics of static SQL statements against a database schema and
verify the type compatibility of host variables with SQL types.

« Compiles using the Java compiler.

« Customizes for the target database. SQLJ optionally generates "profile" files
with Oracle-specific customizing.

Oracle9i supports SQLJ stored procedures, functions, and triggers which execute in
aJava VM integrated with the data server. SQLJ is integrated with Oracle’s
JDeveloper. Source-level debugging support is available in JDeveloper.

Here is an example of the simplest SQLJ executable statement, which returns one
value because empno is unique in the emptable:

String name;
#sql { SELECT ename INTO :name FROM emp WHERE empno=67890};
System.outprinin(‘Name is " + name + ", employee number =" + empno);

Each host variable (or qualified name or complex Java host expression) is preceded
by a colon (). Other SQLJ statements are declarative (declares Java types) and allow

1-14 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

you to declare an iterator (a construct related to a database cursor) for queries that
retrieve many values:

#sql iterator Empilter (String EmpNam, int EmpNumb);

Benefits of SQLJ

SQLJ’s simple extensions to Java allow rapid development and easy maintenance of
applications that perform database operations through embedded SQL.

In particular, Oracle’s implementation of SQLJ:

Provides a concise, legible mechanism for database access from static SQL. Most
SQL in applications is static. SQLJ provides more concise and less error-prone
static SQL constructs than JDBC does.

Checks static SQL at translate time.

Provides flexible deployment configurations. This makes it possible to
implement SQLJ on the client or database side or in the middle tier.

Supports a software standard. SQLJ is an effort of a group of vendors and will
be supported by all of them. Applications can access multiple database vendors.

Provides source code portability. Executables can be used with all of the
vendors’ DBMSs presuming the code does not rely on any vendor-specific
features.

Enforces a uniform programming style for the clients and the servers.

Integrates the SQLJ translator with JDeveloper, a graphical IDE that provides
SQLIJ translation, Java compilation, profile customizing, and debugging at the
source code level, all in one step.

Provides an SQL Checker module for verification of syntax and semantics at
translate-time.

Includes Oracle type extensions. Datatypes supported are LOBs, ROWIDs, REF
CURSORs, VARRAYSs, nested tables, user-defined object types, as well as other
datatypes such as RAW and NUMBER.

Comparing SQLJ with JDBC

JDBC provides a complete dynamic SQL interface from Java to databases. It allows
experienced programmers full control over database operations. SQLJ simplifies
Java database programming to improve programmer productivity.

Understanding the Oracle Programmatic Environments 1-15

Overview of Oracle SQLJ

JDBC provides fine-grained control of the execution of dynamic SQL from Java,
while SQLJ provides a higher-level binding to SQL operations in a specific database
schema. Here are some differences:

SQLJ source code is more concise than equivalent JDBC source code.

SQLJ uses database connections to type-check static SQL code. JDBC, being a
completely dynamic API, does not.

SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires a separate get or set call statement for each bind
variable and specifies the binding by position number.

SQLJ provides strong typing of query outputs and return parameters and
allows type-checking on calls. JDBC passes values to and from SQL without
compile-time type checking.

SQLJ provides simplified rules for calling SQL stored procedures and functions.
The JDBC specification requires a generic call to a stored procedure (or
function), fun, to have the following syntax (we show SQL92 and Oracle escape
syntaxes, which are both allowed):

prepStmt.prepareCall(‘{call fun(?,2)}"); /istored procedure SQL92
prepStmt.prepareCall(*{? = call fun(?,?)}); //stored function SQL92
prepStmt prepareCall("begin fun(:1,:2);end;"); //stored procedure Oracle
prepStmt.prepareCall("begin :1 := fun(:2,:3);end;");/stored func Oracle

SQLJ provides simplified notations:
#sgl {call fun(param list)}, //Stored procedure
/I Declare x

#sql x = {VALUES(fun(param_list)} /l Stored function
lIwhere VALUES is the SQL construct

Here are similarities:

SQLJ source files can contain JDBC calls. SQLJ and JDBC are interoperable.

Oracle’s JPublisher tool generates custom Java classes to be used in your SQLJ
or JDBC application for mappings to Oracle object types and collections.

Java and PL/SQL stored procedures can be used interchangeably.

1-16 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

SQLJ Example for Object Types

Here is a simple use of user-defined objects and object refs taken from Oracle9i SQLJ
Developer’s Guide and Reference, where more information on SQLJ is available:

The following items are created using the SQL script below:
« Two object types, PERSONnd ADDRESS
« Atyped table for PERSOMDbjects

« An EMPLOYEHRable that includes an ADDRESSolumn and two columns of
PERSONeferences

SET ECHOON,;
/
e+ Clean up in preparation */
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/
e+ Create address UDT **/
CREATE TYPE address AS OBJECT
(
street VARCHAR(60),
cty VARCHAR(30),
state CHAR(2),
Zip_code CHAR(5)
)
/
e+ Create person UDT containing an embedded address UDT *+/
CREATE TYPE person AS OBJECT
(
name VARCHAR(30),
ssn NUMBER,
addr address
)
/
[** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/
=+ Create a relational table with two columns that are REFs
to person objects, as well as a column which is an Address ADT. =/

Understanding the Oracle Programmatic Environments 1-17

Overview of Oracle SQLJ

CREATE TABLE employees
(
empnumber INTEGER PRIMARY KEY,
person_data REF person,
manager REF person,
office_addr address,
salary NUMBER
)
P+ Insert some data—2 objects into the persons typed table **/
INSERT INTO persons VALUES (
person(Wolfgang Amadeus Mozart, 123456,
address(Am Berg 100, 'Salzburg), 'AT,'10424))
/
INSERT INTO persons VALUES (
person(Ludwig van Beethoven', 234567,
address(Rheinallee’, 'Bonn', 'DE!, '69234)))
/
F* Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary) VALUES (
1001,
address('500 Oracle Parkway, 'Redwood Shores), 'CA, '94065),
50000)
/
¥ Set the manager and person REFs for the employee */
UPDATE employees
SET manager =
(SELECT REF(p) FROM persons p WHERE p.name ="Wolfgang Amadeus Mozart)
/
UPDATE employees
SET person_data =
(SELECT REF(p) FROM persons p WHERE p.name = Ludwig van Beethoven
/
CoMMIT
/
QuUIT

Next, JPublisher is used to generate the Address class for mapping to Oracle
ADDRES®bjects. We omit the details.

The following SQLJ sample declares and sets an input host variable of Java type
Address to update an ADDRES®bject in a column of the employees table. Both
before and after the update, the office address is selected into an output host
variable of type Address and printed for verification.

1-18 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle SQLJ

/I Updating an object

static void updateObject()
{

Address addr;
Address new_addr;
intempno =1001;

ty{
#sql{
SELECT office_addr
INTO :addr
FROM employees
WHERE empnumber =:empno};
System.out.printin(*Current office address of employee 1001.");

printAddressDetails(addr);
FNow update the street of address */

String street ="100 Oracle Parkway';
addr.setStreet(street);

I+ Put updated object back into the database */

ty{
#sal{
UPDATE employees
SET office_addr =:addr
WHERE empnumber =:empno};
System.out.printn
("Updated employee 1001 to new address at Oracle Parkway.";

P Select new address to verify update */

try{
#sol{
SELECT office_addr
INTO :new_addr
FROM employees
WHERE empnumber =:empno};

System.out.printin('New office address of employee 1001.");
printAddressDetails(new_addr);

Understanding the Oracle Programmatic Environments 1-19

Programming with J2EE, OC4J, SOAP, JAAS, Servlets, JSPs, EJBs, CORBA, and UDDI

} catch (SQLException exn) {
System.out printin(*Verification SELECT failed with "+exn); }

}catch (SQLException exn) {
System.outprinin("UPDATE failed with "“+exn); }

}catch (SQLException exn) {
System.out.printin("SELECT failed with "+exn); }
}

Note the use of the setStreet() accessor method of the Address instance.
Remember that JPublisher provides such accessor methods for all attributes in any
custom Java class that it produces.

SQLJ Stored Procedures in the Server

SQLJ applications can be stored and run in the server. You have the option of
translating, compiling, and customizing SQLJ source on a client and loading the
generated classes and resources into the server with the loadjava utility, typically
using a Java archive (.jar) file.

Or, you have a second option of loading SQLJ source code into the server, also
using loadjava , and having it translated and compiled by the server’s embedded
translator.

Programming with J2EE, OC4J, SOAP, JAAS, Servlets, JSPs, EJBS,
CORBA, and UDDI

To develop applications with all these industry-standard components, you use the
Java support in the Oracle9i Application Server. You can find Oracle9iAS
documentation at http://tahiti.oracle.com/

With the introduction of Oracle9i Application Server Containers for J2EE (OC4J)--a
new, lighter-weight, easier-to-use, faster, and certified J2EE container--Oracle will
desupport the Java 2 Enterprise Edition (J2EE) and CORBA stacks from the
database, starting with Oracle9i Database release 2. However, the
database-embedded Java VM (Oracle JVM) will still be present and will continue to
be enhanced to offer Java 2 Standard Edition (J2SE) features, Java Stored
Procedures, JDBC, and SQLJ in the database.

As of Oracle9i Database release 2 (version 9.2.0), Oracle will no longer support

1-20 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Pro*C/C++

the following technologies in the database:

« The J2EE stack, comprising:
« Enterprise Java Beans (EJB) Container
« Oracle JavaServer Pages engine (OJSP)
« Oracle Servlet Engine (OSE)

« The embedded Common Object Request Broker Architecture (CORBA)
framework, based on Visibroker for Java.

Customers will no longer be able to deploy servlets, JSP pages, EIBs, and CORBA
objects in Oracle databases. Oracle9i Database release 1 (version 9.0.1) will be the
last database release to support the J2EE and CORBA stack. Oracle is encouraging
customers to migrate existing J2EE applications running in the database to OC4J
now.

Overview of Pro*C/C++

The Pro*C/C++ precompiler is a software tool that allows the programmer to
embed SQL statements in a C or C++ source file. Pro*C/C++ reads the source file as
input and outputs a C or C++ source file that replaces the embedded SQL
statements with Oracle runtime library calls, and is then compiled by the C or C++
compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*C/C++ Application

Here is a simple code fragment from a C source file that queries the table EMPwhich
is in the schema SCOTT

#define UNAME_LEN 10

int emp_number;
* Define a host structure for the output values of a SELECT statement. */
F No declare section needed if precompiler option MODE=ORACLE ¥/
struct{
VARCHAR emp_name[lUNAME._LEN];
float salary;
float commission;
}emprec;

Understanding the Oracle Programmatic Environments 1-21

Overview of Pro*C/C++

* Define an indicator structure to correspond to the host output structure. */
struct {

shortemp_name _ind,

shortsal_ind;

short comm_ind;
}emprec_ind;

F* Select columns ename, sal, and comm given the user's input for empno. */
EXEC SQL SELECT ename, sal, comm
INTO :emprec INDICATOR :emprec_ind
FROM emp
WHERE empno =:emp_number,

The embedded SELECTstatement is only slightly different from an interactive
(SQL*PIlus) version. Every embedded SQL statement begins with EXEC SQL. The
colon, "’, precedes every host (C) variable. The returned values of data and
indicators (set when the data value is NULL or character columns have been
truncated) can be stored in structs (such as in the above code fragment), in arrays,
or in arrays of structs. Multiple result set values are handled very simply in a
manner that resembles the case shown, where there is only one result, because of
the unique employee number. You use the actual names of columns and tables in
embedded SQL.

Use the default precompiler option values, or you can enter values which give you
control over the use of resources, how errors are reported, the formatting of output,
and how cursors (which correspond to a particular connection or SQL statement)
are managed. Cursors are used when there are multiple result set values.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLEIf there
are no errors found, you can then compile, link, and execute the output source file,
like any other C program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*C/C++ allows you the freedom to design your own
user interfaces and to add database access to existing applications.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

1-22 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Pro*C/C++

Highlights of Pro*C/C++ Features

The following is a short subset of the capabilities of Pro*C/C++. For complete
details, see the Pro*C/C++ Precompiler Programmer’s Guide.

You can write your application in either C or C++.

You can write multi-threaded programs if your platform supports a threads
package. Concurrent connections are supported in either single-threaded or
multi-threaded applications.

You can improve performance by embedding PL/SQL blocks. These blocks can
call functions or procedures written by you or provided in Oracle packages, in
either Java or PL/SQL.

Using precompiler options, you can check the syntax and semantics of your
SQL or PL/SQL statements during precompilation, as well as at runtime.

You can call stored PL/SQL and Java subprograms. Modules written in COBOL
or in C can be called from Pro*C/C++. External C procedures in shared libraries
are callable by your program.

You can conditionally precompile sections of your code so that they can execute
in different environments.

You can use arrays, or structures, or arrays of structures as host and indicator
variables in your code to improve performance.

You can deal with errors and warnings so that data integrity is guaranteed. As a
programmer, you control how errors are handled.

Your program can convert between internal datatypes and C language
datatypes.

The Oracle Call Interface (OCI) and Oracle C++ Interface (OCCI), lower-level C
and C++ interfaces, are available for use in your precompiler source.

Pro*C/C++ supports dynamic SQL, a technique that allows users to input
variable values and statement syntax.

Pro*C/C++ can use special SQL statements to manipulate tables containing
user-defined object types. An Object Type Translator (OTT) will map the object
types and named collection types in your database to structures and headers
that you will then include in your source.

Two kinds of collection types, nested tables and VARRAYSs, are supported with
a set of SQL statements that allow a high degree of control over data.

Understanding the Oracle Programmatic Environments 1-23

Overview of Pro*COBOL

« Large Objects (LOBs, CLOBs, NCLOBs, and external files known as BFILES) are
accessed by another set of SQL statements.

« A new ANSI SQL standard for dynamic SQL is supported for new applications,
so that you can execute SQL statements with a varying number of host
variables. An older technique for dynamic SQL is still usable by pre-existing
applications.

« Globalization support lets you use multibyte characters and UCS2 Unicode
data.

« Using scrollable cursors, you can move backward and forward through a result
set. For example, you can fetch the last row of the result set, or jump forward or
backward to an absolute or relative position within the result set.

« A connection pool is a group of physical connections to a database that can be
shared by several named connections. Enabling the connection pool option
can help to optimise the performance of Pro*C/C++ application. The
connection pool option is not enabled by default.

Overview of Pro*COBOL

The Pro*COBOL precompiler is a software tool that allows the programmer to
embed SQL statements in a COBOL source code file. Pro*COBOL reads the source
file as input and outputs a COBOL source file that replaces the embedded SQL
statements with Oracle runtime library calls, and is then compiled by the COBOL
compiler.

When there are errors found during the precompilation or the subsequent
compilation, modify your precompiler input file and re-run the two steps.

How You Implement a Pro*COBOL Application

Here is a simple code fragment from a source file that queries the table EMPwhich is
in the schema SCOTT

WORKING-STORAGE SECTION.
*
* DEFINE HOST INPUT AND OUTPUT HOST AND INDICATOR VARIABLES.
*NO DECLARE SECTION NEEDED IF MODE=ORACLE.
*
01 EMP-RECVARS.
05 EMP-NAME PIC X(10) VARYING.
05 EMP-NUMBER PIC S9(4) COMP VALUE ZERO.

1-24 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Pro*COBOL

05 SALARY PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMMISSION PIC S9(5)V99 COMP-3 VALUE ZERO.
05 COMM-HIND PIC S9(4) COMP VALUE ZERO.

PROCEDURE DIVISION.

EXEC SQL
SELECT ENAME, SAL, COMM
INTO :EMP-NAME, :SALARY, :COMMISSION:COMM-IND
FROM EMP
WHERE EMPNO =:EMP_NUMBE
END-EXEC.

The embedded SELECTstatement is only slightly different from an interactive
(SQL*PIlus) version. Every embedded SQL statement begins with EXEC SQL. The
colon, ', precedes every host (COBOL) variable. The SQL statement is terminated
by END-EXEC. The returned values of data and indicators (set when the data value
is NULL or character columns have been truncated) can be stored in group items
(such as in the above code fragment), in tables, or in tables of group items. Multiple
result set values are handled very simply in a manner that resembles the case
shown, where there is only one result, given the unique employee number. You use
the actual names of columns and tables in embedded SQL.

Use the default precompiler option values, or you can enter values which give you
control over the use of resources, how errors are reported, the formatting of output,
and how cursors (which correspond to a particular connection or SQL statement)
are managed.

Enter the options either in a configuration file, on the command line, or inline inside
your source code with a special statement that begins with EXEC ORACLE. If there
are no errors found, you can then compile, link, and execute the output source file,
like any other COBOL program that you write.

Use the precompiler to create server database access from clients that can be on
many different platforms. Pro*COBOL allows you the freedom to design your own
user interfaces and to add database access to existing COBOL applications.

The embedded SQL statements available conform to an ANSI standard, so that you
can access data from many databases in a program, including remote servers
networked through Oracle Net.

Before writing your embedded SQL statements, you may want to test interactive
versions of the SQL in SQL*Plus. You then make only minor changes to start testing
your embedded SQL application.

Understanding the Oracle Programmatic Environments 1-25

Overview of OCI and OCCI

Highlights of Pro*COBOL Features

The following is a short subset of the capabilities of Pro*COBOL. For complete
details, see the Pro*xCOBOL Precompiler Programmer’s Guide.

You can call stored PL/SQL or Java subprograms. You can improve performance by
embedding PL/SQL blocks. These blocks can call PL/SQL functions or procedures
written by you or provided in Oracle packages.

Precompiler options allow you to define how cursors, errors, syntax-checking, file
formats, and so on, are handled.

Using precompiler options, you can check the syntax and semantics of your SQL or
PL/SQL statements during precompilation, as well as at runtime.

You can conditionally precompile sections of your code so that they can execute in
different environments.

Use tables, or group items, or tables of group items as host and indicator variables
in your code to improve performance.

You can program how errors and warnings are handled, so that data integrity is
guaranteed.

Pro*COBOL supports dynamic SQL, a technique that allows users to input variable
values and statement syntax.

Overview of OCl and OCCI

The Oracle Call Interface (OCI) and Oracle C++ Interface (OCCI) are application
programming interfaces (APIs) that allow you to create applications that use a
third-generation language’s native procedures or function calls to access an Oracle
database server and control all phases of SQL statement execution. These APIs
provide:

« Improved performance and scalability through the efficient use of system
memory and network connectivity

« Consistent interfaces for dynamic session and transaction management in a
two-tier client/server or multitier environment

« N-tiered authentication
« Comprehensive support for application development using Oracle objects

« Access to external databases

1-26 Oracle9i Application Developer’s Guide - Fundamentals

Overview of OCl and OCCI

« Ability to develop applications that service an increasing number of users and
requests without additional hardware investments

OCI lets you manipulate data and schemas in an Oracle database using a host
programming language, such as C. OCCI is an object-oriented interface suitable for
use with C++. These APIs provide a library of standard database access and
retrieval functions in the form of a dynamic runtime library (OCILIB) that can be
linked in an application at runtime. This eliminates the need to embed SQL or
PL/SQL within 3GL programs.

For more information about the OCI and OCCI calls, see Oracle Call Interface
Programmer’s Guide, Oracle C++ Call Interface Programmer’s Guide, Oracle9i Application
Developer’s Guide - Advanced Queuing, Oracle9i Globalization and National Language
Support Guide, and Oracle9i Data Cartridge Developer’s Guide.

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
database:

« More fine-grained control over all aspects of the application design.
« High degree of control over program execution.

« Use of familiar 3GL programming techniques and application development
tools such as browsers and debuggers.

« Support of dynamic SQL,method 4.

« Availability on the broadest range of platforms of all the Oracle programmatic
interfaces.

« Dynamic bind and define using callbacks.
« Describe functionality to expose layers of server metadata.
« Asynchronous event notification for registered client applications.

« Enhanced array data manipulation language (DML) capability for array
INSERTs, UPDATEs and DELETEs.

« Ability to associate a commit request with an execute to reduce round-trips.

« Optimization for queries using transparent prefetch buffers to reduce
round-trips.

« Thread safety so you do not have to use mutual exclusive locks (mutex) on OCI
handles.

Understanding the Oracle Programmatic Environments 1-27

Overview of OCI and OCCI

Parts of the OCI

The server connection in nonblocking mode means that control returns to the
OCI code when a call is still executing or could not complete.

The OCI encompasses four main sets of functionality:

OCIl relational functions, for managing database access and processing SQL
statements

OCI navigational functions, for manipulating objects retrieved from an Oracle
database server

OCI datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types

OCI external procedure functions, for writing C callbacks from PL/SQL

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) lets you develop applications that combine the
non-procedural data access power of Structured Query Language (SQL) with the
procedural capabilities of most programming languages, such as C and C++.

In a non-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

In a procedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

The OCI supports all SQL data definition, data manipulation, query, and
transaction control facilities that are available through an Oracle database server.
For example, an OCI program can run a query against an Oracle database. The

1-28 Oracle9i Application Developer’s Guide - Fundamentals

Overview of OCl and OCCI

gueries can require the program to supply data to the database using input (bind)
variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber
In the above SQL statement,:empnumber is a placeholder for a value that will be
supplied by the application.

You can also use PL/SQL, Oracle’s procedural extension to SQL. The applications
you develop can be more powerful and flexible than applications written in SQL
alone. The OCI also provides facilities for accessing and manipulating objects in an
Oracle database server.

Building an OCI Application

As Figure 1-1 shows, you compile and link an OCI program in the same way that
you compile and link a non-database application. There is no need for a separate
preprocessing or precompilation step.

Understanding the Oracle Programmatic Environments 1-29

Overview of OCI and OCCI

Figure 1-1 The OCI Development Process

Source Files

'

L Host Language Compiler J

Object Files OCI Library
I !
Host Linker
_—
Application
N—

Note: On some platforms, it may be necessary to include other libraries, in
addition to the OCI library, to properly link your OCI programs. Check your
Oracle system-specific documentation for further information about extra

libraries that may be required.

1-30 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

Overview of Oracle Objects for OLE (O040)

Oracle Objects for OLE (O040) is a product designed to allow easy access to data
stored in Oracle databases with any programming or scripting language that
supports the Microsoft COM Automation and ActiveX technology. This includes
Visual Basic, Visual C++, Visual Basic For Applications (VBA), IIS Active Server
Pages (VBScript and JavaScript), and others.

0040 consists of the following software layers:
« 0040 "In-Process" Automation Server

= Oracle Data Control

» Oracle Objects for OLE C++ Class Library

Figure 1-2, "Software Layers" illustrates the OO40 software components.

Figure 1-2 Software Layers

Data Aware
ActiveX
Controls

Automation
C++ Class Oracle Data Controllers

Libraries Control (VB, Excel, ASP)

COM/DCOM

0040
In-Process

Automation
Server

Oracle Client
Libraries
(OCl, CORE,
NLS)

Oracle
Database

Note: See the OO040 online help for detailed information about using O0O40.

Understanding the Oracle Programmatic Environments 1-31

Overview of Oracle Objects for OLE (0040)

0040 Automation Server

The O040 Automation Server is a set of COM Automation objects for connecting to
Oracle database servers, executing SQL statements and PL/SQL blocks, and
accessing the results.

Unlike other COM-based database connectivity APIs, such as Microsoft ADO, the
0040 Automation Server has been developed and evolved specifically for use with
Oracle database servers.

It provides an optimized API for accessing features that are unique to Oracle and
are otherwise cumbersome or inefficient to use from ODBC or OLE
database-specific components.

0040 provides key features for accessing Oracle databases efficiently and easily in
environments ranging from the typical two-tier client/server applications, such as
those developed in Visual Basic or Excel, to application servers deployed in
multitiered application server environments such as web server applications in
Microsoft Internet Information Server (11S) or Microsoft Transaction Server (MTS).

Features include:

« Support for execution of PL/SQL and Java stored procedures, and PL/SQL
anonymous blocks. This includes support for Oracle datatypes used as
parameters to stored procedures, including PL/SQL cursors. See "Support for
Oracle LOB and Object Datatypes" on page 1-37.

« Support for scrollable and updatable cursors for easy and efficient access to
result sets of queries.

« Thread-safe objects and Connection Pool Management Facility for developing
efficient web server applications.

« Full support for Oracle object-relational and LOB datatypes.
« Full support for Advanced Queuing.
« Support for array inserts and updates.

« Support for Microsoft Transaction Server (MTS).

0040 Object Model

The Oracle Objects for OLE object model is illustrated in Figure 1-3, "Objects and
Their Relation™.

1-32 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

Figure 1-3 Objects and Their Relation

[OraSession }

—(OraServer J

{ OraDatabase }

—(OraSQLStmt H OraField]J]
—(OraDynaset H OraParameter]J]
—(OraParameters J
—(OraParameterArray J
—(OraMetaData H OraMDAttribute]J]
—(OraAQ H OraAQMsg }

OraSession
An OrasSession object manages collections of OraDatabase, OraConnection, and
OraDynaset objects used within an application.

Typically, a single OraSession object is created for each application, but you can
create named OraSession objects for shared use within and between applications.

The OraSession object is the top-most level object for an application. It is the only
object created by the CreateObject VB/VBA API and not by an Oracle Objects for
OLE method. The following code fragment shows how to create an OraSession
object:

Dim OraSession as Object
Set OraSession = CreateObject("OraclelnProcServer.XOraSession')

OraServer
OraServer represents a physical network connection to an Oracle database server.

Understanding the Oracle Programmatic Environments 1-33

Overview of Oracle Objects for OLE (0040)

The OraServer interface is introduced to expose the connection multiplexing feature
provided in the Oracle Call Interface. After an OraServer object is created, multiple
user sessions (OraDatabase) can be attached to it by invoking the OpenDatabase
method. This feature is particularly useful for application components, such as
Internet Information Server (11S), that use Oracle Objects for OLE in an n-tier
distributed environments.

The use of connection multiplexing when accessing Oracle severs with a large
number of user sessions active can help reduce server processing and resource
requirements while improving the server scalability.

OraDatabase

An OraDatabase interface adds additional methods for controlling transactions and
creating interfaces representing of Oracle object types. Attributes of schema objects
can be retrieved using the Describe method of the OraDatabase interface.

In older releases, an OraDatabase object is created by invoking the OpenDatabase
method of an OraSession interface. The Oracle Net alias, user name, and password
are passed as arguments to this method. In Oracle8i and later, invocation of this
method results in implicit creation of an OraServer object.

As described in the OraServer interface description, an OraDatabase object can also
be created using the OpenDatabase method of the OraServer interface.

Transaction control methods are available at the OraDatabase (user session) level.
Transactions may be started as Read-Write (default), Serializable, or Read-only.
These include:

« BeginTrans

« CommitTrans
« RollbackTrans
For example:

UserSession.BeginTrans(O040_TXN_READ_WRITE)
UserSession.ExecuteSQL('delete emp where empno = 1234")
UserSession.CommitTrans

OraDynaset

An OraDynaset object permits browsing and updating of data created from a SQL
SELECT statement.

1-34 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

The OraDynaset object can be thought of as a cursor, although in actuality several
real cursors may be used to implement the OraDynaset's semantics. An OraDynaset
automatically maintains a local cache of data fetched from the server and
transparently implements scrollable cursors within the browse data. Large queries
may require significant local disk space; application implementers are encouraged
to refine queries to limit disk usage.

OraField
An OraField object represents a single column or data item within a row of a
dynaset.

If the current row is being updated, then the OraField object represents the
currently updated value, although the value may not yet have been committed to
the database.

Assignment to the Value property of a field is permitted only if a record is being
edited (using Edit) or a new record is being added (using AddNew). Other attempts
to assign data to a field's Value property results in an error.

OraMetaData

An OraMetaData object is a collection of OraMDAttribute objects that represent the
description information about a particular schema object in the database.

The OraMetaData object can be visualized as a table with three columns:
« Metadata Attribute Name

« Metadata Attribute Value

« Flag specifying whether the Value is another OraMetaData Object

The OraMDAttribute objects contained in the OraMetaData object can be accessed
by subscripting using ordinal integers or by using the name of the property.
Referencing a subscript that is not in the collection (0 to Count-1) results in the
return of a NULL OraMDAttribute object.

OraParameter
An OraParameter object represents a bind variable in a SQL statement or PL/SQL
block.

OraParameter objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value. You can automatically bind a parameter

Understanding the Oracle Programmatic Environments 1-35

Overview of Oracle Objects for OLE (0040)

to SQL and PL/SQL statements of other objects (as noted in the objects’
descriptions), by using the parameter’s name as a placeholder in the SQL or
PL/SQL statement. Such use of parameters can simplify dynamic queries and
increase program performance.

OraParamArray

An OraParamArray object represents an "array" type bind variable in a SQL
statement or PL/SQL block as opposed to a "scalar” type bind variable represented
by the OraParameter object.

OraParamArray objects are created, accessed, and removed indirectly through the
OraParameters collection of an OraDatabase object. Each parameter has an
identifying name and an associated value.

OraSQLStmt

An OraSQLStmt Object represents a single SQL statement. Use the CreateSQL
method to create the OraSQLStmt object from an OraDatabase.

During create and refresh, OraSQLStmt objects automatically bind all relevant,
enabled input parameters to the specified SQL statement, using the parameter
names as placeholders in the SQL statement. This can improve the performance of
SQL statement execution without re-parsing the SQL statement.

SQLStmt

The SQLStmt object (updateStmt) can be later used to execute the same query using
a different value for the :SALARY placeholder. This is done as follows:

OraDatabase.Parameters("SALARY").value = 200000
updateStmt.Parameters('ENAME").value = "KING"
updateStmt.Refresh

OraAQ

An OraAQ object is instantiated by invoking the CreateAQ method of the
OraDatabase interface. It represents a queue that is present in the database.

Oracle Objects for OLE provides interfaces for accessing Oracle’s Advanced
Queuing (AQ) Feature. It makes AQ accessible from popular COM-based
development environments such as Visual Basic. For a detailed description of
Oracle AQ, please refer to Oracle9i Application Developer’s Guide - Advanced Queuing.

1-36 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

OraAQMsg
The OraAQMsg object encapsulates the message to be enqueued or dequeued. The
message can be of any user-defined or raw type.

For a detailed description of Oracle AQ, please refer to Oracle9i Application
Developer’s Guide - Advanced Queuing.

OraAQAgent
The OraAQAgent object represents a message recipient and is only valid for queues
which allow multiple consumers.

The OraAQAgent object represents a message recipient and is only valid for queues
which allow multiple consumers.

An OraAQAgent object can be instantiated by invoking the AQAgent method. For
example:

Set agent = gMsg.AQAgent(name)
An OraAQAgent object can also be instantiated by invoking the AddRecipient
method. For example:

Set agent = gMsg.AddRecipient(name, address, protocol).

Support for Oracle LOB and Object Datatypes

Oracle Objects for OLE provides full support for accessing and manipulating
instances of object datatypes and LOBs in an Oracle database server. Figure 1-4,
"Supported Oracle Datatypes" illustrates the datatypes supported by O0O40.

Instances of these types can be fetched from the database or passed as input or
output variables to SQL statements and PL/SQL blocks, including stored
procedures and functions. All instances are mapped to COM Automation Interfaces
that provide methods for dynamic attribute access and manipulation. These
interfaces may be obtained from:

Understanding the Oracle Programmatic Environments 1-37

Overview of Oracle Objects for OLE (0040)

Figure 1-4 Supported Oracle Datatypes

—(OraObject H OraAttribute]J]
(OraField —(OraRef H OraAttribute]J]
(OraParameter —(OraCollection H Element Values]J]

)
—[OraCLOB J
)

—(Value of all other scalar types }

OraBLOB and OraCLOB

The OraBlob and OraClob interfaces in OO40 provide methods for performing
operations on large objects in the database of data types BLOB, CLOB, and NCLOB.
In this help file BLOB, CLOB, and NCLOB datatypes are also referred to as LOB
datatypes.

LOB data is accessed using Read and the CopyToFile methods.

LOB data is modified using Write, Append, Erase, Trim, Copy, CopyFromFile, and
CopyFromBFile methods. Before modifying the content of a LOB column in a row, a
row lock must be obtained. If the LOB column is a field of an OraDynaset, then the
lock is obtained by invoking the Edit method.

OraBFILE

The OraBFile interface in O040 provides methods for performing operations on
large objects BFILE data type in the database.

The BFILEs are large binary data objects stored in operating system files (external)
outside of the database tablespaces.

1-38 Oracle9i Application Developer’s Guide - Fundamentals

Overview of Oracle Objects for OLE (0040)

The Oracle Data Control

The Oracle Data Control (ODC) is an ActiveX Control that is designed to simplify
the exchange of data between an Oracle database and visual controls such edit, text,
list, and grid controls in Visual Basic and other development tools that support
custom controls.

ODC acts an agent to handle the flow of information from an Oracle database and a
visual data-aware control, such as a grid control, that is bound to it. The data
control manages various user interface (Ul) tasks such as displaying and editing
data. It also executes and manages the results of database queries.

The Oracle Data Control is compatible with the Microsoft data control included
with Visual Basic. If you are familiar with the Visual Basic data control, learning to
use the Oracle Data Control is quick and easy. Communication between data-aware
controls and a Data Control is governed by a protocol that has been specified by
Microsoft.

The Oracle Objects for OLE C++ Class Library

The Oracle Objects for OLE C++ Class Library is a collection of C++ classes that
provide programmatic access to the Oracle Object Server. Although the class library
is implemented using OLE Automation, neither the OLE development kit nor any
OLE development knowledge is necessary to use it. This library helps C++
developers avoid the chore of writing COM client code for accessing the 0040
interfaces.

Additional Sources of Information

For detailed information about Oracle Objects for OLE refer to the online help that
is provided with the O0O40 product:

« Oracle Objects for OLE Help
« Oracle Objects for OLE C++ Class Library Help

To view examples of the use of Oracle Object for OLE, see the samples located in the
ORACLE_HOME\OO40 directory of the Oracle installation. Additional O040
examples can be found in the following Oracle publications, including:

= Oracle9i Application Developer’s Guide - Large Objects (LOBs)
= Oracle9i Application Developer’s Guide - Advanced Queuing

« Oracle9i Supplied PL/SQL Packages and Types Reference

Understanding the Oracle Programmatic Environments 1-39

Choosing a Programming Environment

Choosing a Programming Environment

To choose a programming environment for a new development project:

Review the preceding overviews and the manuals for each environment.

Read the platform-specific manual that explains which compilers are approved
for use with your platforms.

If a particular language does not provide a feature you need, remember that
PL/SQL and Java stored procedures can both be called from code written in
any of the languages in this chapter. Stored procedures include triggers and
object type methods.

External procedures written in C can be called from OCI, Java, PL/SQL or SQL.
The external procedure itself can call back into the database using either SQL,
OCI, or Pro*C (but not C++).

The following examples illustrate easy choices:

Pro*COBOL does not support object types or collection types, while Pro*C/C++
does.

SQLJ does not support dynamic SQL the way that JDBC does.

Choosing Whether to Use OCI or a Precompiler

Precompiler applications typically contain less code than equivalent OCI
applications, which can help productivity.

Some situations require detailed control of the database and are suited for OCI
applications (either pure OCI or a precompiler application with embedded OCI
calls):

OCI provides more detailed control over multiplexing and migrating sessions.

OCI provides dynamic bind and define using callbacks that can be used for any
arbitrary structure, including lists.

OCI has many calls to handle metadata.

OCl allows asynchronous event notifications to be received by a client
application. It provides a means for clients to generate notifications for
propagation to other clients.

OCI allows DML statements to use arrays to complete as many iterations as
possible and then return a batch of errors.

1-40 Oracle9i Application Developer’s Guide - Fundamentals

Choosing a Programming Environment

« OCiI calls for special purposes include Advanced Queuing, globalization
support, Data Cartridges, and support of the date and time datatypes.

« OCiI calls can be embedded in a Pro*C/C++ application.

Using Built-In Packages and Libraries

Both Java and PL/SQL have built-in packages and libraries, as mentioned in the
overviews for those languages.

PL/SQL and Java interoperate in the server. You can execute a PL/SQL package
from Java or wrap a PL/SQL class with a Java wrapper so that it can be called from
distributed CORBA and EJB clients. The following table shows PL/SQL packages
and their Java equivalents:

Table 1-1 PL/SQL and Java Equivalent Software

PL/SQL Package

Java Equivalent

DBMS_ALERT
DBMS_DDL
DBMS_JOB
DBMS_LOCK
DBMS_MAIL
DBMS_OUTPUT

DBMS_PIPE
DBMS_SESSION
DBMS_SNAPSHOT
DBMS_SQL
DBMS_TRANSACTION
DBMS_UTILITY
UTL_FILE

Call package with SQLJ or JDBC.

JDBC has this functionality.

Schedule a job that has a Java Stored procedure.
Call with SQLJ or JDBC.

Use JavaMail.

Use subclass
oracle.aurora.rdbms.OracleDBMSOutputStream or
Java stored procedure DBMS_JAVA.SET_STREAMS

Call with SQLJ or JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

Use JDBC.

Use JDBC to execute an ALTER SESSION statement.
Call with SQLJ or JDBC.

Grant the JAVAUSERPRI\privilege and then use Java I/0
entry points.

Understanding the Oracle Programmatic Environments 1-41

Choosing a Programming Environment

Java versus PL/SQL

Both Java and PL/SQL can be used to build applications in the database and will
have future performance improvements. Here are guidelines for their use:

PL/SQL Is Optimized for Database Access

PL/SQL uses the same datatypes as SQL. SQL datatypes are thus easier to use and
SQL operations are faster than with Java, especially when a large amount of data is
involved, when mostly database access is done, or when bulk operations are used.

PL/SQL Is Integrated with the Database
PL/SQL is the extension to SQL and uses the same datatypes. PL/SQL has data
encapsulation, information hiding, overloading, and exception-handling.

Some advanced PL/SQL capabilities are not available for Java in Oracle9i.
Examples are autonomous transactions and the dblink facility for remote databases.
Code development is usually faster in PL/SQL than when using Java.

Both Java and PL/SQL Have Object-Oriented Features

Java has inheritance, polymorphism, and component models for developing
distributed systems. PL/SQL has inheritance and type evolution, the ability to
change methods and attributes of a type while preserving subtypes and table data
that use the type.

Java Is Used for Open Distributed Applications

Java has a richer type system than PL/SQL and is an object-oriented language. Java
can use CORBA (which can have many different computer languages in its clients)
and EJB. However, PL/SQL packages can also be called from CORBA or EJB clients.

You can run XML tools, the Internet File System, or JavaMail from Java.

Many Java-based development tools are available throughout the industry.

1-42 Oracle9i Application Developer’s Guide - Fundamentals

Part ||

Designing the Database

This part contains the following chapters:

« Chapter 2, "Managing Schema Objects"

« Chapter 3, "Selecting a Datatype"

« Chapter 4, "Maintaining Data Integrity Through Constraints"

« Chapter 5, "Selecting an Index Strategy"

« Chapter 6, "Speeding Up Index Access with Index-Organized Tables"
« Chapter 7, "How Oracle Processes SQL Statements"

« Chapter 8, "Coding Dynamic SQL Statements"

« Chapter 9, "Using Procedures and Packages"

« Chapter 10, "Calling External Procedures"

2

Managing Schema Objects

This chapter discusses the procedures necessary to create and manage the different
types of objects contained in a user’s schema. The topics include:

Managing Tables

Managing Temporary Tables

Managing Views

Modifying a Join View

Managing Sequences

Managing Synonyms

Creating Multiple Tables and Views in One Operation
Naming Schema Objects

Renaming Schema Objects

Listing Information about Schema Objects

Managing Schema Objects 2-1

Managing Tables

See Also:
« Indexes and clusters — Chapter 5, "Selecting an Index Strategy"

« Procedures, functions, and packages — Chapter 9, "Using
Procedures and Packages"

« Object types — Oracle9i Application Developer’s Guide -
Object-Relational Features

« Dependency information — Chapter 9, "Using Procedures and
Packages"

« If you use symmetric replication, then see Oracle9i Replication
for information on managing schema objects, such as
snapshots.

Managing Tables

A table is the data structure that holds data in a relational database. A table is
composed of rows and columns.

A table can represent a single entity that you want to track within your system. This
type of a table could represent a list of the employees within your organization, or
the orders placed for your company’s products.

A table can also represent a relationship between two entities. This type of a table
could portray the association between employees and their job skills, or the
relationship of products to orders. Within the tables, foreign keys are used to
represent relationships.

Although some well designed tables could represent both an entity and describe the
relationship between that entity and another entity, most tables should represent
either an entity or a relationship. For example, the EMP_TARable describes the
employees in a firm, but this table also includes a foreign key column, DEPTNQ
representing the relationships of employees to departments.

The following sections explain how to create, alter, and drop tables. Some simple
guidelines to follow when managing tables in your database are included.

See Also: The Oracle9i Database Administrator’s Guide has more
suggestions. You should also refer to a text on relational database or
table design.

2-2 Oracle9j Application Developer's Guide - Fundamentals

Managing Tables

Designing Tables

Consider the following guidelines when designing your tables:

Creating Tables

Use descriptive names for tables, columns, indexes, and clusters.

Be consistent in abbreviations and in the use of singular and plural forms of
table names and columns.

Document the meaning of each table and its columns with the COMMENT
command.

Normalize each table.
Select the appropriate datatype for each column.
Define columns that allow nulls last, to conserve storage space.

Cluster tables whenever appropriate, to conserve storage space and optimize
performance of SQL statements.

Before creating a table, you should also determine whether to use integrity
constraints. Integrity constraints can be defined on the columns of a table to enforce
the business rules of your database automatically.

See Also:

« Oracle9i Database Administrator’s Guide for guidelines about tables and
general guidelines for managing the space used by schema objects.

« Chapter 3, "Selecting a Datatype" for information about datatypes.

« Chapter 4, "Maintaining Data Integrity Through Constraints” for
guidelines on integrity constraints.

To create a table, use the SQL command CREATE TABLEFor example, the following
statement creates a non-clustered table named Emp_tab that is physically stored in
the USERSablespace. Notice that integrity constraints are defined on several
columns of the table.

CREATE TABLE Emp_tab (

Empno NUMBER() PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),

Mgr NUMBERG),

Hiredate DATE DEFAULT (sysdate),
Sa NUMBER(7.2),

Comm NUMBER(7,2),

Managing Schema Objects 2-3

Managing Temporary Tables

Depno NUMBER(3) NOT NULL,

CONSTRAINT dept_afkey REFERENCES Dept_tab(Deptno))

PCTFREE 10

PCTUSED 40
TABLESPACE users
STORAGE (' INITIAL 50K

NEXT 50K
MAXEXTENTS 10
PCTINCREASE 25);

Managing Temporary Tables

Oracle8i provides a special kind of table to hold temporary data. You specify
whether the data is specific to a session or to a transaction. When the session or
transaction finishes, the rows that it inserted are deleted. Multiple sessions or
transactions can use the same temporary table, and each session or transaction only
sees the rows that it created.

Temporary tables are useful any time you want to buffer a result set or construct a
result set by running multiple DML operations. Here are a few specific examples:

A Web-based airlines reservations application allows a customer to create
several optional itineraries. Each itinerary is represented by a row in a
temporary table. The application updates the rows to reflect changes in the
itineraries. When the customer decides which itinerary you want to use, the
application moves the row for that itinerary to a persistent table.

During the session, the itinerary data is private. At the end of the session, the
optional itineraries are dropped.

Several sales agents for a large bookseller use a single temporary table
concurrently while taking customer orders over the phone. To enter and modify
customer orders, each agent accesses the table in a session that is unavailable to
the other agents. When the agent closes a session, the data from that session is
automatically dropped, but the table structure persists for the other agents to
use.

An administrator uses temporary tables to improve performance when running
an otherwise complex and expensive query. To do this, the administrator caches
the values from a more complex query in temporary tables, then runs SQL
statements, such as joins, against those temporary tables. For a thorough
explanation of how this can be done, see "Example: Using Temporary Tables to
Improve Performance” on page 2-6.

2-4 Oracle9j Application Developer's Guide - Fundamentals

Managing Temporary Tables

Creating Temporary Tables

You create a temporary table by using special ANSI keywords. You specify the data
as session-specific by using the ON COMMIT PRESERVE RQ¥ABvords. You
specify the data as transaction-specific by using the ON COMMIT DELETE ROWS
keywords.

Example 2-1 Creating a Session-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
[ON COMMIT PRESERVE ROWS]

Example 2-2 Creating a Transaction-Specific Temporary Table

CREATE GLOBAL TEMPORARY TABLE ...
[ON COMMIT DELETE ROWS]

Using Temporary Tables
You can create indexes on temporary tables as you would on permanent tables.

For a session-specific temporary table, a session gets bound to the temporary table
with the first insert in the table in the session. This binding goes away at the end of
the session or by issuing a TRUNCATf the table in the session.

For a transaction-specific temporary table, a session gets bound to the temporary
table with the first insert in the table in the transaction. The binding goes away at
the end of the transaction.

DDL operations (except TRUNCATEare allowed on an existing temporary table
only if no session is currently bound to that temporary table.

Unlike permanent tables, temporary tables and their indexes do not automatically
allocate a segment when they are created. Instead, segments are allocated when the
first INSERT (or CREATE TABLE AS SELEQTs performed. This means that if a
SELECT UPDATEo or DELETE:is performed before the first INSERT, the table
appears to be empty.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

If you rollback a transaction, the data you entered is lost, although the table
definition persists.

Managing Schema Objects 2-5

Managing Temporary Tables

You cannot create a table that is simultaneously both transaction- and
session-specific.

A transaction-specific temporary table allows only one transaction at a time. If there
are several autonomous transactions in a single transaction scope, each autonomous
transaction can use the table only as soon as the previous one commits.

Because the data in a temporary table is, by definition, temporary, backup and
recovery of a temporary table’s data is not available in the event of a system failure.
To prepare for such a failure, you should develop alternative methods for
preserving temporary table data.

Examples: Using Temporary Tables

Example: A Session-Specific Temporary Table

The following statement creates a session-specific temporary table,
FLIGHT_SCHEDULEfor use in an automated airline reservation scheduling system.
Each client has its own session and can store temporary schedules. The temporary
schedules are deleted at the end of the session.

CREATE GLOBAL TEMPORARY TABLE fight _schedule (
startdate DATE,
enddate DATE,
cost NUMBER)

ON COMMIT PRESERVE ROWS;

Example: Using Temporary Tables to Improve Performance

You can use temporary tables to improve performance when you run complex
gueries. Running multiple such queries is relatively slow because the tables are
accessed multiple times for each returned row. It is faster to cache the values from a
complex query in a temporary table, then run the queries against the temporary
table.

For example, even with a view like this defined to simplify further queries, the
gueries against the view may be slow because the contents of the view are
recalculated each time:

CREATE OR REPLACE VIEW Profile_values_view AS
SELECT d.Profile_option_name, d.Profile_option_id, Profile_option_value,
u.User_name, Level id, Level code
FROM Profile_definiions d, Profile_values v, Profile_usersu
WHERE d.Profile_option_id =v.Profile_option_id
AND ((Level_code ='USER' AND Level id=U.User_id) OR

2-6 Oracle9j Application Developer's Guide - Fundamentals

Managing Temporary Tables

(Level code ='DEPARTMENT AND Level id =U.Department id) OR
(Level code ='SITE))
AND NOT EXISTS (SELECT 1 FROM PROFILE_VALUES P
WHERE P.PROFILE_OPTION_ID =V.PROFILE_OPTION_ID
AND ((Level_code ="USER' AND
level id=u.User_id) OR
(Level code ='DEPARTMENT AND
level id =u.Department _id) OR
(Level code ="SITE))
AND INSTR(USERDEPARTMENTSITE, v.Level_code) >
INSTR(USERDEPARTMENTSITE, p.Level code));

A temporary table allows us to run the computation once, and cache the result in
later SQL queries and joins:

CREATE GLOBAL TEMPORARY TABLE Prdfile_values_temp

(
Profile_option name VARCHAR(60) NOT NULL,
Profle_option id NUMBER(@4) NOT NULL,
Profile_option value VARCHAR2(20) NOT NULL,
Level code VARCHAR2(10) ,
Level id NUMBER(4) ,
CONSTRAINT Profile_values_temp_pk

PRIMARY KEY (Profile_option id)
) ON COMMIT PRESERVE ROWS ORGANIZATION INDEX;

INSERT INTO Profile_values_temp
(Profile_option_name, Profile_option_id, Profile_option_value,
Level_code, Level id)
SELECT Profile_option_name, Profile_option_id, Profile_option_value,
Level_code, Level id
FROM Profile_values_view,
COMMIT;

Now the temporary table can be used to speed up queries, and the results cached in
the temporary table are freed automatically by the database when the session ends.

Tip: Referencing the Same Subguery Multiple Times

In complex queries that process the same subquery multiple times, you might be
tempted to store the subquery results in a temporary table and perform additional
gueries against the temporary table. The WITHclause lets you factor out the
subquery, give it a name, then reference that name multiple times within the
original complex query.

Managing Schema Objects 2-7

Managing Temporary Tables

This technique lets the optimizer choose how to deal with the subquery results --
whether to create a temporary table or inline it as a view.

For example, the following query joins two tables and computes the aggregate
SUM(SAL) more than once. The bold text represents the parts of the query that are
repeated.

SELECT dname, SUM(sal) ASdept total

FROM emp, dept

WHERE emp.deptno = dept.deptno
GROUP BY dnameHAVING

SUM(sal) >
(

SELECT SUM(sal) *1/3

FROM emp, dept
WHERE emp.deptno = dept.deptno

)
ORDER BY SUM(sal) DESC;

You can improve the query by doing the subquery once, and referencing it at the
appropriate points in the main query. The bold text represents the common parts of
the subquery, and the places where the subquery is referenced.

WITH
summary AS
(
SELECT dname, SUM(sal) AS dept_total
FROM emp, dept
WHERE emp.deptno = dept.deptno
GROUP BY dname
)
SELECT dname, dept_total
FROM summary
WHERE dept _total >
(
SELECT SUM(dept_total) * 1/3
FROM summary

)
ORDER BY dept _total DESC;

2-8 Oracle9i Application Developer's Guide - Fundamentals

Managing Views

See Also:

« Oracle9i SQL Reference for the full syntax of the WITHclause.

« Oracle9i Database Performance Guide and Reference for techniques to use
this feature to improve performance.

Managing Views

A view is a logical representation of another table or combination of tables. A view
derives its data from the tables on which it is based. These tables are called base
tables. Base tables might in turn be actual tables or might be views themselves.

All operations performed on a view actually affect the base table of the view. You
can use views in almost the same way as tables. You can query, update, insert into,
and delete from views, just as you can standard tables.

Views can provide a different representation (such as subsets or supersets) of the
data that resides within other tables and views. Views are very powerful because
they allow you to tailor the presentation of data to different types of users.

The following sections explain how to create, replace, and drop views using SQL
commands.

Creating Views

Use the SQL command CREATE VIEWo create a view. For example, the following
statement creates a view on a subset of data in the EMP_TARable:

CREATE VIEW Sales_staff AS
SELECT Empno, Ename, Deptno
FROM Emp_tab
WHERE Deptno=10
WITH CHECK OPTION CONSTRAINT Sales_staff cnst;

The object names are resolved when the view is created or when the program
containing the SQL is compiled, relative to the schema of the view owner.

You can define views with any query that references tables, snapshots, or other
views.

The query that defines the SALES STAFFview references only rows in department
10. Furthermore, WITH CHECK OPTIObfeates the view with the constraint that
INSERT and UPDATEstatements issued against the view are not allowed to create
or result in rows that the view cannot select.

Managing Schema Objects 2-9

Managing Views

Considering the example above, the following INSERT statement successfully
inserts a row into the EMP_TARable through the SALES_STAFFview:

INSERT INTO Sales_staff VALUES (7584, 'OSTER, 10);

However, the following INSERT statement is rolled back and returns an error
because it attempts to insert a row for department number 30, which could not be
selected using the SALES STAFFview:

INSERT INTO Sales_staff VALUES (7591, 'WILLIAMS', 30);

The following statement creates a view that joins data from the Emp_tab and
Dept_tab tables:

CREATE VIEW Divisionl_staff AS
SELECT Ename, Empno, Job, Dname
FROM Emp_tab, Dept_tab
WHERE Emp_tab.Deptno IN (10, 30)
AND Emp_tab.Deptno =Dept_tab.Deptno;

The Division1_staff view is defined by a query that joins information from the
Emp_tab and Dept_tab tables. The WITH CHECK OPTIOM not specified in the
CREATE VIEWtatement because rows cannot be inserted into or updated in a view
defined with a query that contains a join that uses the WITH CHECK OPTION

Expansion of Defining Queries at View Creation Time

In accordance with the ANSI/ZISO standard, Oracle expands any wildcard in a
top-level view query into a column list when a view is created and stores the
resulting query in the data dictionary; any subqueries are left intact. The column
names in an expanded column list are enclosed in quote marks to account for the
possibility that the columns of the base object were originally entered with quotes
and require them for the query to be syntactically correct.

As an example, assume that the Dept_view view is created as follows:

CREATE VIEW Dept_view AS SELECT * FROM scott.Dept_tab;

Oracle stores the defining query of the Dept_view view as
SELECT "DEPTNO", "DNAME", "LOC" FROM scott.Dept tab;
Views created with errors do not have wildcards expanded. However, if the view is

eventually compiled without errors, then wildcards in the defining query are
expanded.

2-10 Oracle9i Application Developer's Guide - Fundamentals

Managing Views

Creating Views with Errors

A view can be created even if the defining query of the view cannot be executed, as
long as the CREATE VIEWommand has no syntax errors. We call such a view a
view with errors. For example, if a view refers to a non-existent table or an invalid
column of an existing table, or if the owner of the view does not have the required
privileges, then the view can still be created and entered into the data dictionary.

You can only create a view with errors by using the FORCBEoption of the CREATE
VIEWcommand:

CREATE FORCE VIEWAS....;

When a view is created with errors, Oracle returns a message and leaves the status
of the view as INVALID . If conditions later change so that the query of an invalid
view can be executed, then the view can be recompiled and become valid. Oracle
dynamically compiles the invalid view if you attempt to use it.

Privileges Required to Create a View
To create a view, you must have been granted the following privileges:

« You must have the CREATE VIEWystem privilege to create a view in your
schema, or the CREATE ANY VIEWYstem privilege to create a view in another
user’s schema. These privileges can be acquired explicitly or through a role.

« The owner of the view must be explicitly granted the necessary privileges to
access all objects referenced within the definition of the view; the owner cannot
obtain the required privileges through roles. Also, the functionality of the view
is dependent on the privileges of the view’s owner. For example, if you (the
view owner) are granted only the INSERT privilege for Scott’s EMP_TABRable,
then you can create a view on his EMP_TARable, but you can only use this
view to insert new rows into the EMP_TARBRable.

« If the view owner intends to grant access to the view to other users, then the
owner must receive the object privileges to the base objects with the GRANT
OPTIONOor the system privileges with the ADMIN OPTIONIf not, then the view
owner has insufficient privileges to grant access to the view to other users.

Replacing Views

To alter the definition of a view, you must replace the view using one of the
following methods:

Managing Schema Objects 2-11

Managing Views

« Aview can be dropped and then re-created. When a view is dropped, all grants
of corresponding view privileges are revoked from roles and users. After the
view is re-created, necessary privileges must be regranted.

« Aview can be replaced by redefining it with a CREATE VIEVEtatement that
contains the OR REPLACIEption. This option replaces the current definition of a
view, but preserves the present security authorizations.

For example, assume that you create the SALES_STAFFview, as given in a
previous example. You also grant several object privileges to roles and other
users. However, now you realize that you must redefine the SALES _STAFF
view to correct the department number specified in the WHER[Elause of the
defining query, because it should have been 30. To preserve the grants of object
privileges that you have made, you can replace the current version of the
SALES_STAFFview with the following statement:

CREATE OR REPLACE VIEW Sales_staff AS
SELECT Empno, Ename, Deptno
FROMEmp_tab
WHERE Deptno =30
WITH CHECK OPTION CONSTRAINT Sales_staff cnst;

Replacing a view has the following effects:

« Replacing a view replaces the view’s definition in the data dictionary. All
underlying objects referenced by the view are not affected.

« If previously defined but not included in the new view definition, then the
constraint associated with the WITH CHECK OPTIORbr a view’s definition is
dropped.

« Allviews and PL/SQL program units dependent on a replaced view become
invalid.

Privileges Required to Replace a View

To replace a view, you must have all of the privileges necessary to drop the view, as
well as all of those required to create the view.

Using Views in Queries

Views can be queried in the same manner as tables. For example, to query the
Divisionl_staff view, enter a valid SELECTstatement that references the view:

SELECT * FROM Divisionl._staff;

2-12 Oracle9i Application Developer's Guide - Fundamentals

Managing Views

ENAME EMPNO JOB DNAME

CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING
MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES

WARD 7521 SALESMAN SALES
JAMES 7900 CLERK SALES

TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a base
table using a view. The following statement inserts a new row into the EMP_TAB
table using the SALES_STAFFview:

INSERT INTO Sales_staff
VALUES (7954, 'OSTER,, 30);

Restrictions on DML operations for views use the following criteria in the order
listed:

1. If aview is defined by a query that contains SETor DISTINCT operators, a
GROUP BYlause, or a group function, then rows cannot be inserted into,
updated in, or deleted from the base tables using the view.

2. Ifaview is defined with WITH CHECK OPTIONhen a row cannot be inserted
into, or updated in, the base table (using the view), if the view cannot select the
row from the base table.

3. IfaNOT NULLcolumn that does not have a DEFAUL Tclause is omitted from the
view, then a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECOD&leptno, 10,
"SALES) ...), then rows cannot be inserted into or updated in the base table
using the view.

The constraint created by WITH CHECK OPTIONf the SALES_STAFFview only
allows rows that have a department number of 10 to be inserted into, or updated in,
the EMP_TARBable. Alternatively, assume that the SALES_STAFFview is defined by
the following statement (that is, excluding the DEPTNQolumn):

CREATE VIEW Sales_staff AS
SELECT Empno, Ename
FROM Emp_tab
WHERE Deptno =10

Managing Schema Objects 2-13

Managing Views

WITH CHECK OPTION CONSTRAINT Sales_staff_cnst;

Considering this view definition, you can update the EMPN@r ENAMHields of
existing records, but you cannot insert rows into the EMP_TABRable through the
SALES_ STAFFview because the view does not let you alter the DEPTNield. If
you had defined a DEFAULTvalue of 10 on the DEPTNdield, then you could
perform inserts.

Referencing Invalid Views ~ When a user attempts to reference an invalid view, Oracle
returns an error message to the user:

ORA-04063; view’ view_name ' has errors
This error message is returned when a view exists but is unusable due to errors in
its query (whether it had errors when originally created or it was created

successfully but became unusable later because underlying objects were altered or
dropped).

Privileges Required to Use a View

To issue a query or an INSERT, UPDATE or DELETEstatement against a view, you
must have the SELECT, INSERT, UPDATE, or DELETEobject privilege for the
view, respectively, either explicitly or through a role.

Dropping Views
Use the SQL command DROP VIEWo drop a view. For example:
DROP VIEW Sales_staff;

Privileges Required to Drop a View

You can drop any view contained in your schema. To drop a view in another user’s
schema, you must have the DROP ANY VIEWYstem privilege.

2-14 Oracle9i Application Developer's Guide - Fundamentals

Modifying a Join View

Modifying a Join View

Oracle allows you, with some restrictions, to modify views that involve joins.
Consider the following simple view:

CREATE VIEW Emp_view AS

SELECT Ename, Empno, deptno FROM Emp _tab;
This view does not involve a join operation. If you issue the SQL statement:
UPDATE Emp_view SET Ename ='CAESAR WHERE Empno = 7839;
then the EMP_TABbase table that underlies the view changes, and employee 7839’s
name changes from KING to CAESARN the EMP_TARable.
However, if you create a view that involves a join operation, such as:

CREATE VIEW Emp_dept view AS
SELECT e.Empno, e.Ename, e.Deptno, e.Sal, d.Dname, d.Loc
FROM Emp_tabe, Dept tabd #JOIN operation */
WHERE e.Deptno =d.Deptno
ANDd.Loc IN (DALLAS','NEW YORK’, BOSTON));

then there are restrictions on modifying either the EMP_TABor the DEPT_TABbase
table through this view, for example, using a statement such as:

UPDATE Emp_dept view SET Ename ="JOHNSON’
WHERE Ename ="SMITH,

A modifiable join view is a view that contains more than one table in the top-level
FROMIlause of the SELECTstatement, and that does not contain any of the
following:

« DISTINCT operator

« Aggregate functions: AVG COUNJTGLB MAXMIN, STDDEYSUMor VARIANCE
« Set operations: UNION UNION ALL INTERSECT MINUS

« GROUP BYr HAVINGclauses

« START WITHor CONNECT B¥auses

« ROWNUpseudocolumn

A further restriction on which join views are modifiable is that if a view is a join on
other nested views, then the other nested views must be mergeable into the top
level view.

Managing Schema Objects 2-15

Modifying a Join View

See Also:

Oracle9i Database Concepts for more information about mergeable
views.

"Modifying Complex Views (INSTEAD OF Triggers)" on page 15-7
for a way to simulate updating a join view by writing a customized
trigger.

Scenario for Modifying a Join View

The examples in this section use the EMP_TABand DEPT_TABtables. However, the
examples work only if you explicitly define the primary and foreign keys in these
tables, or define unique indexes. Here are the appropriately constrained table
definitions for EMP_TABand DEPT_TAB

CREATE TABLE Dept tab (
Depno NUMBER(®) PRIMARY KEY,
Dname VARCHAR2(14),
Loc VARCHAR2(13))

CREATE TABLE Emp_tab (
Empno NUMBER(4) PRIMARY KEY,
Ename VARCHAR2(10),
Job varchar2(9),
Mgr NUMBER(@),
Hiredate DATE,
Sal NUMBER(7,2),
Comm NUMBER(7,2),
Deptno NUMBER(2),
FOREIGN KEY (Deptno) REFERENCES Dept_tab(Deptno));

You could also omit the primary and foreign key constraints listed above, and create
a UNIQUE INDEXon DEPT_TAB (DEPTNO)o make the following examples work.

About Key-Preserved Tables

The concept of a key-preserved table is fundamental to understanding the
restrictions on modifying join views. A table is key preserved if every key of the
table can also be a key of the result of the join. So, a key-preserved table has its keys
preserved through a join.

2-16 Oracle9i Application Developer's Guide - Fundamentals

Modifying a Join View

Note:

« Itis not necessary that the key or keys of a table be selected for
it to be key preserved. It is sufficient that if the key or keys were
selected, then they would also be key(s) of the result of the join.

« The key-preserving property of a table does not depend on the
actual data in the table. It is, rather, a property of its schema
and not of the data in the table. For example, if in the EMP_TAB
table there was at most one employee in each department, then
DEPT_TAB.DEPTNQvould be unique in the result of a join of
EMP_TABand DEPT_TABbut DEPT_TABwould still not be a
key-preserved table.

If you SELECTall rows from EMP_DEPT_VIEWefined in the "Modifying a Join
View" section, then the results are:

EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEWYORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS

8 rows selected.

In this view, EMP_TABs a key-preserved table, because EMPNGs a key of the
EMP_TARable, and also a key of the result of the join. DEPT_TABIs not a
key-preserved table, because although DEPTNGs a key of the DEPT_TABtable, it is
not a key of the join.

Rule for DML Statements on Join Views

Any UPDATEINSERT, or DELETEstatement on a join view can modify only one
underlying base table.

Managing Schema Objects 2-17

Modifying a Join View

Updating a Join View
The following example shows an UPDATEstatement that successfully modifies the
EMP_DEPT_VIEWiew:

UPDATE Emp_dept view
SET Sal=Sal*1.10
WHERE Deptno = 10;

The following UPDATEstatement would be disallowed on the EMP_DEPT_VIEW
view:

UPDATE Emp_dept view
SET Loc ='BOSTON'
WHERE Ename ="SMITH;;

This statement fails with an ORA-01779 error ("cannot modify a column which
maps to a non key-preserved table"), because it attempts to modify the underlying
DEPT_TABtable, and the DEPT_TABtable is not key preserved in the EMP_DEPT
view.

In general, all modifiable columns of a join view must map to columns of a
key-preserved table. If the view is defined using the WITH CHECK OPTIOblause,
then all join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPWView were defined using WITH CHECK OPTION,
then the following UPDATEstatement would fail:

UPDATE Emp_dept view
SET Deptno =10
WHERE Ename = 'SMITH;

The statement fails because it is trying to update a join column.

Deleting from a Join View

You can delete from a join view provided there is one and only one key-preserved
table in the join.

The following DELETEstatement works on the EMP_DEP WView:

DELETE FROM Emp_dept view
WHERE Ename ="SMITH;

This DELETEstatement on the EMP_DEPWView is legal because it can be translated
to a DELETEoperation on the base EMP_TARable, and because the EMP_TABRable
is the only key-preserved table in the join.

2-18 Oracle9i Application Developer's Guide - Fundamentals

Modifying a Join View

In the following view, a DELETEoperation cannot be performed on the view
because both E1 and E2 are key-preserved tables:;

CREATE VIEW emp_emp AS
SELECT el.Ename, e2.Empno, el.Deptno
FROMEmp _tabel, Emp_tabe2
WHERE el.Empno = e2.Empno;
WHERE el.Empno =e2.Empno;

If a view is defined using the WITH CHECK OPTIOBlause and the key-preserved
table is repeated, then rows cannot be deleted from such a view. For example:

CREATE VIEW Emp_mgr AS
SELECT el.Ename, e2.Ename Mname
FROMEmp_tabel, Emp_tabe2
WHERE el.mgr=e2.Empno
WITH CHECK OPTION,;

No deletion can be performed on this view because the view involves a self-join of
the table that is key preserved.

Inserting into a Join View

The following INSERT statement on the EMP_DEPView succeeds, because only
one key-preserved base table is being modified (EMP_TAB, and 40 is a valid
DEPTNGN the DEPT_TABtable (thus satisfying the FOREIGN KEMntegrity
constraint on the EMP_TARable).

INSERT INTO Emp_dept (Ename, Empno, Deptno)
VALUES (KURODA, 9010, 40);

The following INSERT statement fails for the same reason: This UPDATEoN the base
EMP_TARable would fail: the FOREIGN KEMntegrity constraint on the EMP_TAB
table is violated.

INSERT INTO Emp_dept (Ename, Empno, Deptno)

VALUES (KURODA', 9010, 77);
The following INSERT statement fails with an ORA-01776 error ("cannot modify
more than one base table through a view").

INSERT INTO Emp_dept (Ename, Empno, Deptno)
VALUES (9010, KURODA',' BOSTON);

Managing Schema Objects 2-19

Modifying a Join View

An INSERT cannot, implicitly or explicitly, refer to columns of a non-key-preserved
table. If the join view is defined using the WITH CHECK OPTIOBlause, then you
cannot perform an INSERT to it.

Using the UPDATABLE_COLUMNS Views

Three views you can use for modifying join views are shown in Table 2-1.

Table 2-1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNshows all columns in all tables and views in the user’s
schema that are modifiable

DBA_UPDATABLE_COLUMNSShows all columns in all tables and views in the DBA
schema that are modifiable

ALL_UPDATABLE_COLUMNSShows all columns in all tables and views that are
modifiable

Outer Joins
Views that involve outer joins are modifiable in some cases. For example:

CREATE VIEW Emp_dept 01 AS
SELECT Empno, Ename, e.Deptno, Dname, Loc
FROM Emp_tabe, Dept tabd
WHERE e.Deptno = d.Deptno (+);

The statement:
SELECT * FROM Emp_dept_oj1;

Results in:

EMPNO ENAME DEPTNO DNAME LOC
7369 SMITH 40 OPERATIONS BOSTON
7499 ALLEN 30 SALES CHICAGO

7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO

7782 CLARK 10 ACCOUNTING NEW YORK
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEWYORK
7844 TURNER 30 SALES CHICAGO

2-20 Oracle9i Application Developer's Guide - Fundamentals

Modifying a Join View

7876 ADAMS 20 RESEARCH DALLAS
7900 JAMES 30 SALES CHICAGO

7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK
7521 WARD 30 SALES CHICAGO

14 rows selected.

Columns in the base EMP_TARable of EMP_DEPT_OJkre modifiable through the
view, because EMP_TAB:s a key-preserved table in the join.

The following view also contains an outer join:

CREATE VIEW Emp_dept o2 AS

SELECT e.Empno, e Ename, e.Deptno, d.Dname, d.Loc
FROM Emp_tabe, Dept_tabd

WHERE e.Deptno (+) = d.Deptno;

The statement:
SELECT * FROM Emp_dept_oj2;

Results in:
EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
OPERATIONS BOSTON
15 rows selected.

In this view, EMP_TABs no longer a key-preserved table, because the EMPNO
column in the result of the join can have nulls (the last row in the SELECTabove).
So, UPDATEDELETE and INSERT operations cannot be performed on this view.

Managing Schema Objects 2-21

Modifying a Join View

In the case of views containing an outer join on other nested views, a table is key
preserved if the view or views containing the table are merged into their outer
views, all the way to the top. A view which is being outer-joined is currently
merged only if it is "simple."” For example:

SELECT Col1, Col2, ... FROMT;

The select list of the view has no expressions, and there is no WHERElause.
Consider the following set of views:

CREATEVIEW Emp VAS
SELECT Empno, Ename, Deptno
FROM Emp _tab;
CREATE VIEW Emp_dept 0jLAS
SELECT e*, Loc, d.Dname
FROMEmp_ve, Dept tabd
WHERE e.Deptno =d.Deptno (+);

In these examples, EMP_Vis merged into EMP_DEPT_OJbecause EMP_Vis a
simple view, and so EMP_TABSs a key-preserved table. But if EMP_Vis changed as
follows:

CREATEVIEWEmMp_v 2AS
SELECT Empno, Ename, Deptno
FROM Emp_tab
WHERE Sal > 1000;

Then, because of the presence of the WHER[Elause, EMP_V_2cannot be merged into
EMP_DEPT_0Jland hence EMP_TABs no longer a key-preserved table.

If you are in doubt whether a view is modifiable, then you can SELECTfrom the
view USER_UPDATABLE_COLUMNSsee if it is. For example:

SELECT *FROM USER_UPDATABLE_COLUMNS WHERE TABLE NAME ="EMP_DEPT_VIEW;

This might return:
OWNER TABLE NAME COLUMN_NAM UPD

SCOTT EMP_DEPT_V EMPNO NO

SCOTT EMP_DEPT_V ENAME NO

SCOTT EMP_DEPT V DEPTNO NO
SCOTT EMP_DEPT_V DNAME NO

SCOTT EMP DEPT V LOC NO

5 rows selected.

2-22 Oracle9i Application Developer's Guide - Fundamentals

Managing Sequences

Managing Sequences

The sequence generator generates sequential numbers, which can help to generate
unique primary keys automatically, and to coordinate keys across multiple rows or
tables.

Without sequences, sequential values can only be produced programmatically. A
new primary key value can be obtained by selecting the most recently produced
value and incrementing it. This method requires a lock during the transaction and
causes multiple users to wait for the next value of the primary key; this waiting is
known as serialization. If you have such constructs in your applications, then you
should replace them with access to sequences. Sequences eliminate serialization and
improve the concurrency of your application.

The following sections explain how to create, alter, use, and drop sequences using
SQL commands.

Creating Sequences

Use the SQL command CREATE SEQUENGQE create a sequence. The following
statement creates a sequence used to generate employee numbers for the EMPNO
column of the EMP_TARable:

CREATE SEQUENCE Emp_sequence
INCREMENT BY 1
STARTWITH1
NOMAXVALUE
NOCYCLE
CACHE 10;

Notice that several parameters can be specified to control the function of sequences.
You can use these parameters to indicate whether the sequence is ascending or
descending, the starting point of the sequence, the minimum and maximum values,
and the interval between sequence values. The NOCYCLBption indicates that the
sequence cannot generate more values after reaching its maximum or minimum
value.

The CACHEBEoption of the CREATE SEQUENGEmMmand pre-allocates a set of
sequence numbers and keeps them in memory so that they can be accessed faster.
When the last of the sequence numbers in the cache have been used, another set of
numbers is read into the cache.

Managing Schema Objects 2-23

Managing Sequences

See Also: For additional implications for caching sequence
numbers when using Oracle Real Application Clusters, see Oracle9i
Parallel Server Documentation Set: Oracle8i Parallel Server Concepts;
Oracle8i Parallel Server Setup and Configuration Guide; Oracle8i Parallel
Server Administration, Deployment, and Performance.

General information about caching sequence numbers is included
in "Caching Sequence Numbers" on page 2-27.

Privileges Required to Create a Sequence

To create a sequence in your schema, you must have the CREATE SEQUENGEstem
privilege. To create a sequence in another user’s schema, you must have the
CREATE ANY SEQUENG@HVvilege.

Altering Sequences

You can change any of the parameters that define how corresponding sequence
numbers are generated; however, you cannot alter a sequence to change the starting
number of a sequence. To do this, you must drop and re-create the sequence.

Use the SQL command ALTER SEQUENCIS alter a sequence. For example:

ALTER SEQUENCE Emp_sequence
INCREMENT BY 10

MAXVALUE 10000

CYCLE

CACHE 20;

Privileges Required to Alter a Sequence

To alter a sequence, your schema must contain the sequence, or you must have the
ALTER ANY SEQUENGIHstem privilege.

Using Sequences

Once a sequence is defined, it can be accessed and incremented by multiple users
with no waiting. Oracle does not wait for a transaction that has incremented a
sequence to complete before that sequence can be incremented again.

The examples outlined in the following sections show how sequences can be used
in master/detail table relationships. Assume an order entry system is partially
comprised of two tables, ORDERS_TABmaster table) and LINE_ITEMS_TAB (detail

2-24 Oracle9i Application Developer's Guide - Fundamentals

Managing Sequences

table), that hold information about customer orders. A sequence named
ORDER_SE® defined by the following statement:

CREATE SEQUENCE Order_seq
STARTWITH1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 20;

Referencing a Sequence

A sequence is referenced in SQL statements with the NEXTVALand CURRVAL
pseudocolumns; each new sequence number is generated by a reference to the
sequence’s pseudocolumn NEXTVAL while the current sequence number can be
repeatedly referenced using the pseudo-column CURRVAL

NEXTVALand CURRVAlIare not reserved words or keywords and can be used as
pseudo-column names in SQL statements such as SELECT, INSERTSs, or UPDATE.

Generating Sequence Numbers with NEXTVAL To generate and use a sequence number,
reference seq_name.NEXTVAL For example, assume a customer places an order. The
sequence number can be referenced in a values list. For example:

INSERT INTO Orders_tab (Ordemo, Custno)
VALUES (Order_seq.NEXTVAL, 1032);

Or, the sequence number can be referenced in the SET clause of an UPDATE
statement. For example;

UPDATE Orders_tab
SET Ordemo = Order_seq.NEXTVAL
WHERE Ordemo =10112;

The sequence number can also be referenced outermost SELECTof a query or
subquery. For example:

SELECT Order_seq.NEXTVAL FROM dual;

As defined, the first reference to ORDER_SEQ.NEXTVAteturns the value 1. Each
subsequent statement that references ORDER_SEQ.NEXTVAgenerates the next
sequence number (2, 3, 4,. . .). The pseudo-column NEXTVALcan be used to generate
as many new sequence numbers as necessary. However, only a single sequence
number can be generated for each row. In other words, if NEXTVALIs referenced

Managing Schema Objects 2-25

Managing Sequences

more than once in a single statement, then the first reference generates the next
number, and all subsequent references in the statement return the same number.

Once a sequence number is generated, the sequence number is available only to the
session that generated the number. Independent of transactions committing or
rolling back, other users referencing ORDER_SEQ.NEXTVAdbtain unique values. If
two users are accessing the same sequence concurrently, then the sequence numbers
each user receives might have gaps because sequence numbers are also being
generated by the other user.

Using Sequence Numbers with CURRVAL To use or refer to the current sequence value
of your session, reference seq_name. CURRVALCURRVAIcan only be used if
seq_name.NEXTVALhas been referenced in the current user session (in the current or
a previous transaction). CURRVAIcan be referenced as many times as necessary,
including multiple times within the same statement. The next sequence number is
not generated until NEXTVALIs referenced. Continuing with the previous example,
you would finish placing the customer’s order by inserting the line items for the
order:

INSERT INTO Line_items_tab (Ordemo, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 20321, 3);

INSERT INTO Line_items_tab (Ordemo, Partno, Quantity)
VALUES (Order_seq.CURRVAL, 29374, 1);

Assuming the INSERT statement given in the previous section generated a new
sequence number of 347, both rows inserted by the statements in this section insert
rows with order numbers of 347.

Uses and Restrictions of NEXTVAL and CURRVAL ~ CURRVAland NEXTVALcan be used
in the following places:

« VALUESclause of INSERT statements

« The SELECTIist of a SELECTstatement

« The SETclause of an UPDATEstatement

CURRVAland NEXTVALcannot be used in these places:

« Asubquery

« Aview’s query or snapshot’s query

« A SELECTstatement with the DISTINCT operator

« A SELECTstatement with a GROUP B¥r ORDER B¥lause

2-26 Oracle9i Application Developer's Guide - Fundamentals

Managing Sequences

« A SELECTstatement that is combined with another SELECTstatement with the
UNION, INTERSECT, or MINUSset operator

« The WHERElause of a SELECTstatement
« DEFAULTvalue of a column in a CREATE TABLBr ALTER TABLEstatement
« The condition of a CHECKconstraint

Caching Sequence Numbers

Sequence numbers can be kept in the sequence cache in the System Global Area
(SGA). Sequence numbers can be accessed more quickly in the sequence cache than
they can be read from disk.

The sequence cache consists of entries. Each entry can hold many sequence
numbers for a single sequence.

Follow these guidelines for fast access to all sequence numbers:

« Be sure the sequence cache can hold all the sequences used concurrently by
your applications.

« Increase the number of values for each sequence held in the sequence cache.

The Number of Entries in the Sequence Cache ~ When an application accesses a sequence
in the sequence cache, the sequence numbers are read quickly. However, if an
application accesses a sequence that is not in the cache, then the sequence must be
read from disk to the cache before the sequence numbers are used.

If your applications use many sequences concurrently, then your sequence cache
might not be large enough to hold all the sequences. In this case, access to sequence
numbers might often require disk reads. For fast access to all sequences, be sure
your cache has enough entries to hold all the sequences used concurrently by your
applications.

The Number of Values in Each Sequence Cache Entry ~ When a sequence is read into the
sequence cache, sequence values are generated and stored in a cache entry. These
values can then be accessed quickly. The number of sequence values stored in the
cache is determined by the CACHEparameter in the CREATE SEQUENCGEtement.
The default value for this parameter is 20.

This CREATE SEQUENGEtement creates the SEQ2sequence so that 50 values of
the sequence are stored in the SEQUENCEache:

CREATE SEQUENCE Seq2
CACHESO ;

Managing Schema Objects 2-27

Managing Synonyms

The first 50 values of SEQ2can then be read from the cache. When the 51st value is
accessed, the next 50 values will be read from disk.

Choosing a high value for CACHHets you access more successive sequence
numbers with fewer reads from disk to the sequence cache. However, if there is an
instance failure, then all sequence values in the cache are lost. Cached sequence
numbers also could be skipped after an export and import if transactions continue
to access the sequence numbers while the export is running.

If you use the NOCACHRBption in the CREATE SEQUENGEtement, then the values
of the sequence are not stored in the sequence cache. In this case, every access to the
sequence requires a disk read. Such disk reads slow access to the sequence. This
CREATE SEQUENGEatement creates the SEQ3sequence so that its values are never
stored in the cache:

CREATE SEQUENCE Seq3
NOCACHE;

Privileges Required to Use a Sequence

To use a sequence, your schema must contain the sequence or you must have been
granted the SELECTobiject privilege for another user’s sequence.

Dropping Sequences

To drop a sequence, use the SQL command DROP SEQUENCIEor example, the
following statement drops the ORDER_SE®&equence:

DROP SEQUENCE Order_seq;

When you drop a sequence, its definition is removed from the data dictionary. Any
synonyms for the sequence remain, but return an error when referenced.

Privileges Required to Drop a Sequence

You can drop any sequence in your schema. To drop a sequence in another schema,
you must have the DROP ANY SEQUENS&stem privilege.

Managing Synonyms

A synonym is an alias for a table, view, snapshot, sequence, procedure, function,
package, or object type. Synonyms let you refer to objects from other schemas

2-28 Oracle9i Application Developer's Guide - Fundamentals

Managing Synonyms

without including the schema qualifier. The following sections explain how to
create, use, and drop synonyms using SQL commands.

Creating Synonyms
Use the SQL command CREATE SYNONYRb create a synonym. The following

statement creates a public synonym named PUBLIC_EMPon the EMP_TARable
contained in the schema of JWARD

CREATE PUBLIC SYNONYM Public_emp FOR jward.Emp_tab;

Privileges Required to Create a Synonym

You must have the CREATE SYNONYBystem privilege to create a private synonym
in your schema, or the CREATE ANY SYNON¥{tem privilege to create a private
synonym in another user’s schema. To create a public synonym, you must have the
CREATE PUBLIC SYNON¥Y\ystem privilege.

Using Synonyms in DML Statements

A synonym can be referenced in a DML statement the same way that the
underlying object of the synonym can be referenced. For example, if a synonym
named EMP_TARBrefers to a table or view, then the following statement is valid:

INSERT INTO Emp_tab (Empno, Ename, Job)
VALUES (Emp_sequence.NEXTVAL, 'SMITH','CLERK);

If the synonym named FIRE_EMPrefers to a standalone procedure or package
procedure, then you could execute it in SQL*Plus or Enterprise Manager with the
command

EXECUTE Fire_emp(7344);

You can also use synonyms for GRANT and REVOKE statements, but not with
other DML statements.

Privileges Required to Use a Synonym

You can successfully use any private synonym contained in your schema or any
public synonym, assuming that you have the necessary privileges to access the
underlying object, either explicitly, from an enabled role, or from PUBLIC. You can
also reference any private synonym contained in another schema if you have been
granted the necessary object privileges for the private synonym. You can only
reference another user’s synonym using the object privileges that you have been

Managing Schema Objects 2-29

Creating Multiple Tables and Views in One Operation

granted. For example, if you have the SELECTprivilege for the IWARIEMP_TAB
synonym, then you can query the IWARLCEMP_TABsynonym, but you cannot insert
rows using the synonym for JWARLCEMP_TAB

Dropping Synonyms
To drop a synonym, use the SQL command DROP SYNONYMo drop a private
synonym, omit the PUBLIC keyword; to drop a public synonym, include the

PUBLIC keyword. The following statement drops the private synonym named
EMP_TAB

DROP SYNONYM Emp_tab;

The following statement drops the public synonym named PUBLIC_EMP
DROP PUBLIC SYNONYM Public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All
objects that reference a dropped synonym remain (for example, views and
procedures) but become invalid.

Privileges Required to Drop a Synonym

You can drop any private synonym in your own schema. To drop a private
synonym in another user’s schema, you must have the DROP ANY SYNON¥ytem
privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM
system privilege.

Creating Multiple Tables and Views in One Operation

You can create several tables and views and grant privileges in one operation using
the SQL command CREATE SCHEMAhe CREATE SCHEMAmMmand is useful if
you want to guarantee the creation of several tables and views and grants in one
operation; if an individual table or view creation fails or a grant fails, then the entire
statement is rolled back, and none of the objects are created or the privileges
granted.

For example, the following statement creates two tables and a view that joins data
from the two tables:

CREATE SCHEMA AUTHORIZATION scott
CREATE VIEW Sales_staff AS

2-30 Oracle9i Application Developer's Guide - Fundamentals

Naming Schema Objects

SELECT Empno, Ename, Sal, Comm

FROM Emp_tab

WHERE Deptno =30 WITH CHECK OPTION CONSTRAINT
Sales_staff cnst

CREATE TABLE Dept tab (
Depno NUMBER(3) PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(25)

CREATE TABLE Emp_tab (
Empno NUMBER() PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(),
Hiredate DATE DEFAULT (sysdate),
Sa NUMBER(72),
Comm NUMBER(7,2),
Depno NUMBER(3) NOT NULL

CONSTRAINT Dept_fkey REFERENCES Dept_tab(Deptno))

GRANT SELECT ON Sales_staff TO human_resources;

The CREATE SCHEM¥mMmand does not support Oracle extensions to the ANSI
CREATE TABLENnd CREATE VIEWommands (for example, the STORAGElause).

Privileges Required to Create Multiple Schema Objects

To create schema objects, such as multiple tables, using the CREATE SCHEMA
command, you must have the required privileges for any included operation.

Naming Schema Objects

You should decide when you want to use partial and complete global object names
in the definition of views, synonyms, and procedures. Keep in mind that database
names should be stable, and databases should not be unnecessarily moved within a
network.

In a distributed database system, each database should have a unique global name.
The global name is composed of the database name and the network domain that
contains the database. Each schema object in the database then has a global object
name consisting of the schema object name and the global database name.

Because Oracle ensures that the schema object name is unique within a database,
you can ensure that it is unique across all databases by assigning unique global

Managing Schema Objects 2-31

Naming Schema Objects

database names. You should coordinate with your database administrator on this
task, because it is usually the DBA who is responsible for assigning database names.

Rules for Name Resolution in SQL Statements
An object name takes the following form:
[schema] namd@database |

Some examples include:

Emp_tab
ScottEmp_tab
ScottEmp_tab@Personnel

A session is established when a user logs onto a database. Object names are
resolved relative to the current user session. The username of the current user is the
default schema. The database to which the user has directly logged-on is the default
database.

Oracle has separate namespaces for different classes of objects. All objects in the
same namespace must have distinct names, but two objects in different namespaces
can have the same name. Tables, views, snapshots, sequences, synonyms,
procedures, functions, and packages are in a single namespace. Triggers, indexes,
and clusters each have their own individual namespace. For example, there can be a
table, trigger, and index all named SCOTTEMP_TAB

Based on the context of an object name, Oracle searches the appropriate namespace
when resolving the name to an object. For example, in the following statement:

DROP CLUSTER Test

Oracle looks up TEST in the cluster namespace.

Rather than supplying an object name directly, you can also refer to an object using
a synonym. A private synonym name has the same syntax as an ordinary object
name. A public synonym is implicitly in the PUBLIC schema, but users cannot
explicitly qualify a synonym with the schema PUBLIC.

Synonyms can only be used to reference objects in the same namespace as tables.
Due to the possibility of synonyms, the following rules are used to resolve a name
in a context that requires an object in the table namespace:

1. Look up the name in the table namespace.

2-32 Oracle9i Application Developer's Guide - Fundamentals

Renaming Schema Objects

2. If the name resolves to an object that is not a synonym, then no further work is
necessary.

3. If the name resolves to a private synonym, then replace the name with the
definition of the synonym and return to step 1.

4. If the name was originally qualified with a schema, then return an error;
otherwise, check if the name is a public synonym.

5. If the name is not a public synonym, return an error; otherwise, then replace the
name with the definition of the public synonym and return to step 1.

When global object names are used in a distributed database (either explicitly or
indirectly within a synonym), the local Oracle session resolves the reference as is
locally required (for example, resolving a synonym to a remote table’s global object
name). After the partially resolved statement is shipped to the remote database, the
remote Oracle session completes the resolution of the object as above.

See Also: See Oracle9i Database Concepts for more information
about name resolution in a distributed database.

Renaming Schema Objects

If necessary, you can rename some schema objects using two different methods:
drop and re-create the object, or rename the object using the SQL command
RENAME

Note: If you drop an object and re-create it, then all privilege
grants for the object are lost when the object is dropped. Privileges
must be granted again when the object is re-created.

If you use the RENAMEommand to rename a table, view, sequence, or a private
synonym of a table, view, or sequence, then grants made for the object are carried
forward for the new name, and the next statement renames the SALES_STAFF
view:

RENAME Sales_staff TO Dept_30;

You cannot rename a stored PL/SQL program unit, public synonym, index, or
cluster. To rename such an object, you must drop and re-create it.

Renaming a schema object has the following effects:

Managing Schema Objects 2-33

Switching to a Different Schema

« Allviews and PL/SQL program units dependent on a renamed object become
invalid (must be recompiled before next use).

« All synonyms for a renamed object return an error when used.

Privileges Required to Rename an Object
To rename an object, you must be the owner of the object.

Switching to a Different Schema

The following statement sets the current schema of the session to the schema name
given in the statement.

ALTER SESSION SET CURRENT_SCHEMA = <schema name>
Subsequent SQL statements use this schema name for the schema qualifier when
the qualifier is missing. Note that the session still has only the privileges of the

current user and does not acquire any extra privileges by the above ALTER
SESSIONstatement.

For example:

CONNECT scottftiger
ALTER SESSION SET CURRENT_SCHEMA =joe;
SELECT * FROM emp_tab;

Since emp_tab is not schema-qualified, the table name is resolved under schema
joe .Butif scott does not have select privilege on table joe .emp_tab , then
scott cannot execute the SELECTstatement.

Listing Information about Schema Objects

The data dictionary provides many views that provide information about schema
objects. The following is a summary of the views associated with schema objects:

« ALL_OBJECTSUSER_OBJECTS

« ALL_CATALOGUSER_CATALOG

« ALL_TABLES USER_TABLES

« ALL_TAB_COLUMNSJSER_TAB_COLUMNS

« ALL_TAB_COMMENTSSER_TAB_COMMENTS

2-34 Oracle9i Application Developer's Guide - Fundamentals

Listing Information about Schema Objects

« ALL COL_COMMENTBSER_COL_COMMENTS
« ALL VIEWS, USER_VIEWS

« ALL MVIEWS, USER_MVIEWS

« ALL_INDEXES, USER_INDEXES

« ALL_IND_COLUMNSUSER_IND_COLUMNS

« USER_CLUSTERS

« USER_CLU_COLUMNS

. ALL SEQUENCESJSER_SEQUENCES

« ALL_SYNONYMSUSER_SYNONYMS

« ALL DEPENDENCIESUSER_DEPENDENCIES
Example 1: Listing Different Schema Objects by Type The following query lists all of the
objects owned by the user issuing the query:

SELECT Object_name, Object_type FROM User_objects;

The query above might return results similar to the following:

OBJECT NAME OBJECT TYPE
EMP_DEPT CLUSTER
EMP_TAB TABLE

DEPT TAB TABLE
EMP_DEPT INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Listing Column Information ~ Column information, such as name, datatype,
length, precision, scale, and default data values, can be listed using one of the views
ending with the _COLUMNSuffix. For example, the following query lists all of the
default column values for the EMP_TABand DEPT TAB tables:

SELECT Table_name, Column_name, Data_default
FROM User _tab_columns
WHERE Table_name ='DEPT_TAB' OR Table_name =’'EMP_TAB;,

Considering the example statements at the beginning of this section, a display
similar to the one below is displayed:

Managing Schema Objects 2-35

Listing Information about Schema Objects

TABLE_NAME COLUMN_NAME DATA DEFAULT

DEPT TAB DEPTNO
DEPT_TAB DNAME

DEPT TAB LOC (NEW YORK)
EMP_TAB EMPNO

EMP_TAB ENAME

EMP_TAB JOB

EMP_TAB MGR

EMP_TAB HIREDATE (sysdate)
EMP TAB SAL

EMP_TAB COMM

EMP_TAB DEPTNO

Note: Not all columns have a user-specified default. These
columns assume NULL when rows that do not specify values for
these columns are inserted.

2-36 Oracle9i Application Developer's Guide - Fundamentals

Listing Information about Schema Objects

Example 3: Listing Dependencies of Views and Synonyms When you create a view or a
synonym, the view or synonym is based on its underlying base object. The
_DEPENDENCIESIata dictionary views can be used to reveal the dependencies for
aview and the _SYNONYM8ata dictionary views can be used to list the base object
of a synonym. For example, the following query lists the base objects for the
synonyms created by the user JWARD

SELECT Table_owner, Table_name

FROM All_synonyms
WHERE Owner ="JWARD;

This query could return information similar to the following:

TABLE_OWNER TABLE_NAME
SCOTT DEPT_TAB
SCOTT EMP_TAB

Managing Schema Objects 2-37

Listing Information about Schema Objects

2-38 Oracle9i Application Developer's Guide - Fundamentals

3

Selecting a Datatype

This chapter discusses how to use Oracle built-in datatypes in applications. Topics
include:

« Summary of Oracle Built-In Datatypes

« Representing Character Data

« Representing Numeric Data

« Representing Date and Time Data

« Representing Geographic Coordinate Data

« Representing Image, Audio, and Video Data
« Representing Searchable Text Data

« Representing Large Data Types

« Addressing Rows Directly with the ROWID Datatype
« ANSI/ISO, DB2, and SQL/DS Datatypes

« How Oracle Converts Datatypes

« Representing Dynamically Typed Data

« Representing XML Data

Selecting a Datatype 3-1

Summary of Oracle Built-In Datatypes

See Also:

. Oracle9i Application Developer’s Guide - Object-Relational Features , for
information about more complex types, such as object types, varrays,

and nested tables.

. Oracle9i Application Developer’s Guide - Large Objects (LOBs) , for
information about LOB datatypes.

. PL/SQL User’s Guide and Reference , for information the PL/SQL data
types. Many SQL datatypes are the same or similar in PL/SQL.

Summary of Oracle Built-In Datatypes

A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a procedure or function. These properties
cause Oracle to treat values of one datatype differently from values of another
datatype. For example, Oracle can add values of NUMBERatatype, but not values of

RAWHatatype.

Oracle supplies the following built-in datatypes:

« Character datatypes

CHAR

NCHAR

VARCHAR2 and VARCHAR
NVARCHAR2

CLOB

NCLOB

LONG

« NUMBERlatatype

« Time and date datatypes:

DATE

INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
TIMESTAMP

3-2 Oracle9j Application Developer's Guide - Fundamentals

Summary of Oracle Built-In Datatypes

— TIMESTAMP WITH TIME ZONE

— TIMESTAMP WITH LOCAL TIME ZONE

« Binary datatypes

- BLOB

— BFILE

- RAW

— LONG RAW

Another datatype, ROWIDis used for values in the ROWIDpseudocolumn, which
represents the unique address of each row in a table.

See Also: See Oracle9i SQL Reference for general descriptions of
these datatypes, and see Oracle9i Application Developer’s Guide -
Large Objects (LOBs) for information about the LOBdatatypes.

Table 3-1 summarizes the information about each Oracle built-in datatype.

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length and Default

CHAR (size [BYTE
| CHARY])

VARCHAR? (size
[BYTE | CHAR])

NCHAR (size)

Fixed-length character data
of length size bytes or
characters.

Variable-length character
data, with maximum length
size bytes or characters.

Fixed-length Unicode
character data of length size
characters.

Fixed for every row in the table
(with trailing blanks); maximum
size is 2000 bytes per row, default
size is 1 byte per row. Consider
the character set (single-byte or
multibyte) before setting size.

Variable for each row, up to 4000
bytes per row. Consider the
character set (single-byte or
multibyte) before setting size. A
maximum size must be specified.

Fixed for every row in the table
(with trailing blanks). Column
size is the number of characters.
(The number of bytes is 2 times
this number for the ALI6UTF16
encoding and 3 times this
number for the UTF8 encoding.)
The upper limit is 2000 bytes per
row. Default is 1 character.

Selecting a Datatype 3-3

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length and Default

NVARCHAR? (size)

CLOB
NCLOB

LONG

NUMBER (o,

DATE

INTERVAL YEAR
(precision) TO

MONTH

INTERVAL DAY
(precision) TO

SECOND
(precision)

3-4 Oracle9i Application Developer's Guide - Fundamentals

Variable-length Unicode
character data of length size
characters. A maximum size
must be specified.

Single-byte character data

Unicode national character

set (NCHARdata.

Variable-length character

data.

Variable-length numeric
data. Maximum precision p
and/or scale s is 38.

Fixed-length date and time
data, ranging from Jan. 1,
4712 B.C.E. to Dec. 31, 4712

C.E.

A period of time, represented
as years and months. The
precision value specifies the
number of digits in the YEAR
field of the date. The
precision can be from 0 to 9,
and defaults to 2 for years.

A period of time, represented
as days, hours, minutes, and
seconds. The precision values
specify the number of digits
in the DAYand the fractional
SECONDields of the date.
The precision can be from 0
to 9, and defaults to 2 for
days and 6 for seconds.

Variable for each row. Column
size is the number of characters.
(The number of bytes may be up
to 2 times this number for a the
AL16UTF16 encoding and 3
times this number for the UTF8
encoding.) The upper limit is
4000 bytes per row. Default is 1
character.

Up to 2% - 1 bytes, or 4 gigabytes.

Up to 2%2 - 1 bytes, or 4 gigabytes.

Variable for each row in the table,
up to 2% - 1 bytes, or 2 gigabytes,
per row. Provided for backward
compatibility.

Variable for each row. The
maximum space required for a
given column is 21 bytes per row.

Fixed at 7 bytes for each row in
the table. Default format is a
string (such as DDMONRR
specified by the
NLS_DATE_FORMAparameter.

Fixed at 5 bytes.

Fixed at 11 bytes.

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description Column Length and Default

TIMESTAMP
(precision)

TIMESTAMP
(precision) WITH
TIME ZONE

TIMESTAMP
(precision) WITH
LOCAL TIME ZONE

BLOB
BFILE

RAW (size)

LONG RAW

ROWID

A value representing a date
and time, including
fractional seconds. (The exact
resolution depends on the
operating system clock.)

The precision value specifies
the number of digits in the
fractional second part of the
SECONDiate field. The
precision can be from 0 to 9,
and defaults to 6

A value representing a date
and time, plus an associated
time zone setting. The time
zone can be an offset from

UTC, such as '-5:0’, ora
region name, such as
'US/Pacific’

Similar to TIMESTAMP WITH
TIME ZONE, except that the
data is normalized to the
database time zone when
stored, and adjusted to match
the client’s time zone when
retrieved.

Unstructured binary data

Binary data stored in an
external file

Variable-length raw binary
data

Variable-length raw binary
data

Binary data representing row
addresses

Varies from 7 to 11 bytes,
depending on the precision. The
default is determined by the
NLS_TIMESTAMP_FORMAT
initialization parameter.

Fixed at 13 bytes. The default is
determined by the
NLS_TIMESTAMP_TZ_FORMAT
initialization parameter.

Varies from 7 to 11 bytes,
depending on the precision. The
default is determined by the
NLS_TIMESTAMP_FORMAT
initialization parameter.

Up to 2%2 - 1 bytes, or 4 gigabytes.

Up to 2% - 1 bytes, or 4 gigabytes.

Variable for each row in the table,
up to 2000 bytes per row. A
maximum size must be specified.
Provided for backward
compatibility.

Variable for each row in the table,
up to 2% - 1 bytes, or 2 gigabytes,

per row. Provided for backward
compatibility.

Fixed at 10 bytes (extended
ROWID or 6 bytes (restricted
ROWID for each row in the table.

Selecting a Datatype 3-5

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length and Default

CHAR (size [BYTE

| CHAR])

VARCHAR? (size
[BYTE | CHARY])

NCHAR (size)

NVARCHAR? (size)

CLOB
NCLOB

LONG

NUMBER (o,

Fixed-length character data
of length size bytes or
characters.

Variable-length character
data, with maximum length
size bytes or characters.

Fixed-length Unicode
character data of length size
characters.

Variable-length Unicode
character data of length size
characters. A maximum size
must be specified.

Single-byte character data

Unicode national character
set (NCHARdata.

Variable-length character
data.

Variable-length numeric
data. Maximum precision p
and/or scale s is 38.

3-6 Oracle9i Application Developer's Guide - Fundamentals

Fixed for every row in the table
(with trailing blanks); maximum
size is 2000 bytes per row, default
size is 1 byte per row. Consider
the character set (single-byte or
multibyte) before setting size.

Variable for each row, up to 4000
bytes per row. Consider the
character set (single-byte or
multibyte) before setting size. A
maximum size must be specified.

Fixed for every row in the table
(with trailing blanks). Column
size is the number of characters.
(The number of bytes is 2 times
this number for the ALIBUTF16
encoding and 3 times this
number for the UTF8 encoding.)
The upper limit is 2000 bytes per
row. Default is 1 character.

Variable for each row. Column
size is the number of characters.
(The number of bytes may be up
to 2 times this number for a the
AL16UTF16 encoding and 3
times this number for the UTF8
encoding.) The upper limit is
4000 bytes per row. Default is 1
character.

Up to 2%2 - 1 bytes, or 4 gigabytes.

Up to 2% - 1 bytes, or 4 gigabytes.

Variable for each row in the table,
up to 2% - 1 bytes, or 2 gigabytes,
per row. Provided for backward
compatibility.

Variable for each row. The
maximum space required for a
given column is 21 bytes per row.

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

DATE Fixed-length date and time Fixed at 7 bytes for each row in
data, ranging from Jan. 1, the table. Default format is a
4712 B.C.E. to Dec. 31,4712 string (such as DDMONRR
C.E. specified by the

NLS_DATE_FORMA@arameter.

INTERVAL YEAR A period of time, represented Fixed at 5 bytes.
(precision) TO as years and months. The
MONTH precision value specifies the

number of digits in the YEAR

field of the date. The

precision can be from 0 to 9,

and defaults to 2 for years.

INTERVAL DAY A period of time, represented Fixed at 11 bytes.
(precision) TO as days, hours, minutes, and
SECOND seconds. The precision values
(precision) specify the number of digits

in the DAYand the fractional
SECONDjields of the date.
The precision can be from 0
to 9, and defaults to 2 for
days and 6 for seconds.

TIMESTAMP A value representing adate Varies from 7 to 11 bytes,

(precision) and time, including depending on the precision. The
fractional seconds. (The exact default is determined by the
resolution depends on the NLS_TIMESTAMP_FORMAT
operating system clock.) initialization parameter.

The precision value specifies
the number of digits in the
fractional second part of the
SECONDate field. The
precision can be from 0 to 9,
and defaults to 6

TIMESTAMP A value representing adate Fixed at 13 bytes. The default is
(precision) WITH and time, plus an associated determined by the
TIME ZONE time zone setting. The time NLS TIMESTAMP_TZ FORMAT
zone can be an offset from initialization parameter.
UTC, such as '-5:0’, ora
region name, such as
'US/Pacific’

Selecting a Datatype 3-7

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype Description

Column Length and Default

TIMESTAMP Similar to TIMESTAMP WITH Varies from 7 to 11 bytes,

(precision) WITH TIME ZONE, except that the

LOCAL TIME ZONE datais normalized to the
database time zone when
stored, and adjusted to match
the client’s time zone when

retrieved.

BLOB Unstructured binary data

BFILE Binary data stored in an
external file

RAW (size) Variable-length raw binary
data

LONG RAW Variable-length raw binary
data

ROWID Binary data representing row
addresses

CHAR (size [BYTE Fixed-length character data
| CHARY]) of length size bytes or
characters.

VARCHAR?2 (size Variable-length character
[BYTE | CHAR]) data, with maximum length
size bytes or characters.

3-8 Oracle9i Application Developer's Guide - Fundamentals

depending on the precision. The
default is determined by the
NLS_TIMESTAMP_FORMAT
initialization parameter.

Up to 2*2 - 1 bytes, or 4 gigabytes.

Up to 2%2 - 1 bytes, or 4 gigabytes.

Variable for each row in the table,
up to 2000 bytes per row. A
maximum size must be specified.
Provided for backward
compatibility.

Variable for each row in the table,
up to 2% - 1 bytes, or 2 gigabytes,
per row. Provided for backward
compatibility.

Fixed at 10 bytes (extended
ROWID or 6 bytes (restricted
ROWID for each row in the table.

Fixed for every row in the table
(with trailing blanks); maximum
size is 2000 bytes per row, default
size is 1 byte per row. Consider
the character set (single-byte or
multibyte) before setting size.

Variable for each row, up to 4000
bytes per row. Consider the
character set (single-byte or
multibyte) before setting size. A
maximum size must be specified.

Summary of Oracle Built-In Datatypes

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description

Column Length and Default

NCHAR (size)

NVARCHAR? (size)

CLOB
NCLOB

LONG

NUMBER (o, S)

DATE

INTERVAL YEAR

(precision) TO
MONTH

Fixed-length Unicode
character data of length size
characters.

Variable-length Unicode
character data of length size
characters. A maximum size
must be specified.

Single-byte character data

Unicode national character
set (NCHARdata.

Variable-length character
data.

Variable-length numeric
data. Maximum precision p
and/or scale s is 38.

Fixed-length date and time
data, ranging from Jan. 1,
4712 B.C.E. to Dec. 31, 4712
C.E.

A period of time, represented
as years and months. The
precision value specifies the
number of digits in the YEAR
field of the date. The
precision can be from 0 to 9,
and defaults to 2 for years.

Fixed for every row in the table
(with trailing blanks). Column
size is the number of characters.
(The number of bytes is 2 times
this number for the ALI6UTF16
encoding and 3 times this
number for the UTF8 encoding.)
The upper limit is 2000 bytes per
row. Default is 1 character.

Variable for each row. Column
size is the number of characters.
(The number of bytes may be up
to 2 times this number for a the
AL16UTF16 encoding and 3
times this number for the UTF8
encoding.) The upper limit is
4000 bytes per row. Default is 1
character.

Up to 2% - 1 bytes, or 4 gigabytes.

Up to 2%2 - 1 bytes, or 4 gigabytes.

Variable for each row in the table,
up to 2% - 1 bytes, or 2 gigabytes,
per row. Provided for backward
compatibility.

Variable for each row. The
maximum space required for a
given column is 21 bytes per row.

Fixed at 7 bytes for each row in
the table. Default format is a
string (such as DDMONRR
specified by the
NLS_DATE_FORMAparameter.

Fixed at 5 bytes.

Selecting a Datatype 3-9

Representing Character Data

Table 3-1 Summary of Oracle Built-In Datatypes

Datatype

Description Column Length and Default

INTERVAL DAY
(precision) TO
SECOND

(precision)

TIMESTAMP
(precision)

A period of time, represented Fixed at 11 bytes.
as days, hours, minutes, and

seconds. The precision values

specify the number of digits

in the DAYand the fractional

SECONDjields of the date.

The precision can be from 0

to 9, and defaults to 2 for

days and 6 for seconds.

A value representing adate Varies from 7 to 11 bytes,

and time, including depending on the precision. The
fractional seconds. (The exact default is determined by the
resolution depends on the NLS TIMESTAMP_FORMAT
operating system clock.) initialization parameter.

The precision value specifies
the number of digits in the
fractional second part of the
SECONDiate field. The
precision can be from 0 to 9,
and defaults to 6

Representing Character Data

Use the character datatypes to store alphanumeric data:

«» CHARand NCHARdatatypes store fixed-length character strings.

« VARCHAR2nd NVARCHAR®atatypes store variable-length character strings.
(The VARCHARIatatype is synonymous with the VARCHAR2latatype.)

« NCHARInd NVARCHAR®atatypes store Unicode character data only.

« CLOBand NCLOBdatatypes store single-byte and multibyte character strings of
up to four gigabytes.

See Also:

(LOBs)

Oracle9i Application Developer’s Guide - Large Objects

« The LONGdatatype stores variable-length character strings containing up to two
gigabytes, but with many restrictions.

3-10 Oracle9i Application Developer’s Guide - Fundamentals

Representing Character Data

See Also: "Restrictions on LONG and LONG RAW Datatypes"

This datatype is provided for backward compatibility with existing
applications; in general, new applications should use CLOBand NCLOB
datatypes to store large amounts of character data, and BLOBand BFILE to
store large amounts of binary data.

When deciding which datatype to use for a column that will store alphanumeric
data in a table, consider the following points of distinction:

Space Usage

« To store data more efficiently, use the VARCHARZ2latatype. The CHARdatatype
blank-pads and stores trailing blanks up to a fixed column length for all column
values, while the VARCHARZ2latatype does not add any extra blanks.

Comparison Semantics

« Use the CHARdatatype when you require ANSI compatibility in comparison
semantics (when trailing blanks are not important in string comparisons). Use
the VARCHARZ2vhen trailing blanks are important in string comparisons.

Future Compatibility

« The CHARand VARCHARZ2atatypes are and will always be fully supported. At
this time, the VARCHARIatatype automatically corresponds to the VARCHAR2
datatype and is reserved for future use.

CHARVARCHAR2and LONGdata is automatically converted from the database
character set to the character set defined for the user session by the NLS LANGUAGE
parameter, where these are different.

Column Lengths for Single-Byte and Multibyte Character Sets

The lengths of CHARand VARCHARZ2olumns can be specified as either bytes or
characters.

The lengths of NCHARind NVARCHARR2olumns are always specified in characters,
making them ideal for storing Unicode data, where a character might consist of
multiple bytes.

— ID contains only single-byte data, up to 32 bytes.

ID VARCHAR2(32 BYTE);

—NAME contains data in the database character set. The 32 characters might
— be physically stored as more than 32 bytes, if the database character set

Selecting a Datatype 3-11

Representing Character Data

allows

— multibyte characters.

NAME VARCHAR2(32 CHAR);

- BIOGRAPHY can represent 2000 characters in any Unicode-representable
language.

— The exact encoding depends on the national character set, but the column
— can contain multibyte values even if the database character setis
single-byte.

BIOGRAPHY NVARCHAR2(2000);

— The representation of COMMENT, as 2000 bytes or 2000 characters, depends
— on the initialization parameter NLS_LENGTH_SEMANTICS.

COMMENT VARCHAR2(2000);

When using a multibyte database character encoding scheme, consider carefully the
space required for tables with character columns. If the database character encoding
scheme is single-byte, then the number of bytes and the number of characters in a
column is the same. If it is multibyte, then there generally is no such
correspondence. A character might consist of one or more bytes depending upon
the specific multibyte encoding scheme, and whether shift-in/shift-out control
codes are present. To avoid overflowing buffers, specify data as NCHARor
NVARCHAR¥ it might use a Unicode encoding that is different from the database
character set.

See Also:

« Oracle9i Globalization and National Language Support Guide
« Oracle9i SQL Reference

« Oracle Time Series User’s Guide

for information about globalization support within Oracle and
support for different character encoding schemes.

Implicit Conversion Between CHAR/VARCHAR2 and NCHAR/NVARCHAR?2

In previous releases (Oracle8i and earlier), the NCHARind NVARCHAR®ypes were
difficult to use because they could not be interchanged with CHARand VARCHAR2
For example, an NVARCHARHteral required special notation, such as

N’ string_value ' . Now, you can specify NCHARind NVARCHAR®vithout the N
qualifier, and can mix them with CHARand VARCHARZalues in SQL statements
and functions.

3-12 Oracle9i Application Developer's Guide - Fundamentals

Representing Numeric Data

Comparison Semantics

Oracle compares CHARand NCHARvalues using blank-padded comparison
semantics. If two values have different lengths, then Oracle adds blanks at the end
of the shorter value, until the two values are the same length. Oracle then compares
the values character-by-character up to the first character that differs. The value
with the greater character in the first differing position is considered greater. Two
values that differ only in the number of trailing blanks are considered equal.

Oracle compares VARCHAR2nd NVARCHAR®alues using non-padded
comparison semantics. Two values are considered equal only if they have the same
characters and are of equal length. Oracle compares the values
character-by-character up to the first character that differs. The value with the
greater character in that position is considered greater.

Because Oracle blank-pads values stored in CHARcolumns but not in VARCHAR?2
columns, a value stored in a VARCHARZ2olumn may take up less space than if it
were stored in a CHARcolumn. For this reason, a full table scan on a large table
containing VARCHARZ2olumns may read fewer data blocks than a full table scan on
a table containing the same data stored in CHARcolumns. If your application often
performs full table scans on large tables containing character data, then you might
be able to improve performance by storing this data in VARCHARZ2olumns rather
than in CHARcolumns.

However, performance is not the only factor to consider when deciding which of
these datatypes to use. Oracle uses different semantics to compare values of each
datatype. You might choose one datatype over the other if your application is
sensitive to the differences between these semantics. For example, if you want
Oracle to ignore trailing blanks when comparing character values, then you must
store these values in CHARcolumns.

See Also: For more information on comparison semantics for
these datatypes, see the Oracle9i SQL Reference.

Representing Numeric Data

Use the NUMBERIatatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among different
Oracle platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 10*° through 9.99 x10'?°, as well
as zero, in a NUMBERolumn.

You can specify that a column contains a floating-point number, for example:

distance NUMBER

Selecting a Datatype 3-13

Representing Date and Time Data

Or, you can specify a precision (total number of digits) and scale (number of digits
to right of decimal point):

price NUMBER (8, 2)
Although not required, specifying precision and scale helps to identify bad input

values. If a precision is not specified, the column stores values as given. The
following table shows examples of how data different scale factors affect storage.

Table 3-2 How Scale Factors Affect Numeric Data Storage

Input Data Specified As Stored As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER (9) 7456124

7,456,123.89 NUMBER (9,2) 7456123.89

7,456,123.89 NUMBER (9,1) 7456123.9

7,456,123.89 NUMBER (6) (not accepted, exceeds precision)
7,456,123.89 NUMBER (7, -2) 7456100

See Also: For information about the internal format for the
NUMBERatatype, see Oracle9i Database Concepts.

Representing Date and Time Data

Use the DATEdatatype to store point-in-time values (dates and times) in a table. The
DATEdatatype stores the century, year, month, day, hours, minutes, and seconds.

Use the TIMESTAMPdatatype to store precise values, down to fractional seconds.
For example, an application that must decide which of two events occurred first
might use TIMESTAMPAN application that needs to specify the time for a job to
execute might use DATE

Because TIMESTAMP WITH TIME ZONE can also store time zone information, it is
particularly suited for recording date information that must be gathered or
coordinated across geographic regions.

3-14 Oracle9i Application Developer's Guide - Fundamentals

Representing Date and Time Data

Date Format

Use TIMESTAMP WITH LOCAL TIME ZONE values when the time zone is not
significant. For example, you might use it in an application that schedules
teleconferences, where each participant sees the start and end times for their own
time zone.

The TIMESTAMP WITH LOCAL TIME ZONE type is appropriate for two-tier
applications where you want to display dates and times using the time zone of the
client system. You should not use it in three-tier applications, such as those
involving a web server, because in that case the client is the web server, so data
displayed in a web browser is formatted according to the time zone of the web
server rather than the time zone of the browser.

Use INTERVAL DAY TO SECONDto represent the precise difference between two
datetime values. For example, you might use this value to set a reminder for a time
36 hours in the future, or to record the time between the start and end of a race. To
represent long spans of time, including multiple years, with high precision, you can
use a large value for the days portion.

Use INTERVAL YEAR TO MONTH represent the difference between two datetime
values, where the only significant portions are the year and month. For example,
you might use this value to set a reminder for a date 18 months in the future, or
check whether 6 months have elapsed since a particular date.

Oracle uses its own internal format to store dates. Date data is stored in fixed-length
fields of seven bytes each, corresponding to century, year, month, day, hour, minute,
and second.

See Also: See the Oracle Call Interface Programmer’s Guide for a
complete description of the Oracle internal date format.

For input and output of dates, the standard Oracle default date format is
DD-MON-RRFor example:

‘13-NOV-1992
To change this default date format on an instance-wide basis, use the
NLS_DATE_FORMAparameter. To change the format during a session, use the

ALTER SESSIONstatement. To enter dates that are not in the current default date
format, use the TO_DATHEfunction with a format mask. For example:

TO_DATE (November 13, 1992, MONTH DD, YYYY)

Selecting a Datatype 3-15

Representing Date and Time Data

Time Format

See Also: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms. For information about
Julian dates, see Oracle9i Database Concepts.

Be careful using a date format like DD-MON-YYThe YY indicates the year in the
current century. For example, 31-DEC-92 is December 31, 2092, not 1992 as you
might expect. If you want to indicate years in any century other than the current
one, use a different format mask, such as the default RR

Example: Printing a Date with BC/AD Notation

SQL> - By default, the date is printed without any BC or AD qualifier.
SQL> select sysdate from dual;

SYSDATE

24-JAN-02

SQL> - Adding BC to the format string prints the date with BC or AD
SQL> - as appropriate.

SQL>selectto_char(sysdate,' DD-MON-YYYY BC) from dual;

TO_CHAR(SYSDAT

24-JAN-2002 AD

Checking If Two DATE Values Refer to the Same Day

To compare dates that have time data, use the SQL function TRUNGQo ignore the
time component.

Displaying the Current Date and Time
Use the SQL function SYSDATRo return the system date and time.

Tip: Setting SYSDATE to a Constant Value

The FIXED_DATEInitialization parameter lets you set SYSDATRo a constant,
which can be useful for testing.

Time is stored in 24-hour format, HH24:MI:SS . By default, the time in a DATE
column is 12:00:00 A.M. (midnight) if no time portion is entered, or if the DATEis

3-16 Oracle9i Application Developer’s Guide - Fundamentals

Representing Date and Time Data

truncated. In a time-only entry, the date portion defaults to the first day of the
current month. To enter the time portion of a date, use the TO_DATEfunction with a
format mask indicating the time portion, as in:

Note: You may need to set up the following data structures for
certain examples to work:

CREATE TABLE Birthdays_tab (Bname VARCHAR2(20) Bday DATE)

INSERT INTO Birthdays_tab (bname, bday) VALUES
(ANNIE,TO_DATE(13-NOV-92 10:56 AM.,DD-MON-YY HH:MIAM.));

Performing Date Arithmetic

Oracle provides a number of features to help with date arithmetic, so that you do
not need to perform your own calculations on the number of seconds in a day, the
number of days in each month, and so on.

Some useful functions include:
« ADD_MONTHS

« SYSDATE

« SYSTIMESTAMP

« TRUNCWHhen applied to a DATE value, it trims off the time portion so that it
represents the very beginning of the day (the stroke of midnight). By truncating
two DATE values and comparing them, you can check whether they refer to the
same day. You can also use TRUNGilong with a GROUP BYtlause to produce
daily totals.

« Arithmetic operators such as + and -.

« INTERVAL datatype. To represent constants when performing date arithmetic,
you can use the INTERVAL datatype rather than performing your own
calculations. For example, you might add or subtract INTERVAL constants from
DATEvalues, or subtract two DATEvalues and compare the result to an
INTERVAL

« Comparison operators such as >, <, =, and BETWEEN

Converting Between Datetime Types
Some useful functions include:

Selecting a Datatype 3-17

Representing Date and Time Data

« EXTRACT

« NUMTODSINTERVAL

« NUMTOYMINTERVAL

« TO_DATHand its opposite, TO_CHAR
« TO_DSINTERVAL

« TO_TIMESTAMP

« TO_TIMESTAMP_TZ

« TO_YMINTERVAL

See Also: Oracle9i SQL Reference for full details about each
function.

Handling Time Zones

Oracle provides a number of functions to help with calculations involving time
zones. For example, TO_DATEdoes not work with values of type TIMESTAMP WITH
TIME ZONE; you must use TO_TIMESTAMP_T4nstead.

Some useful functions include:
«» CURRENT_DATE

« CURRENT_TIMESTAMP
«» DBTIMEZONE

« EXTRACT

«» FROM_TZ

« LOCALTIMESTAMP

« SESSIONTIMEZONE

« SYS_EXTRACT_UTC

« SYSTIMESTAMP

« TO_TIMESTAMP_TZ

3-18 Oracle9i Application Developer’s Guide - Fundamentals

Representing Date and Time Data

See Also: Oracle9i SQL Reference. for full details about each
function.

Importing and Exporting Datetime Types

TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE
values are always stored in normalized format, so that you can export, import, and
compare them without worrying about time zone offsets. DATEand TIMESTAMP
values do not store an associated time zone, and you must adjust them to account
for any time zone differences between source and target databases.

Establishing Year 2000 Compliance

An application must satisfy the following criteria to meet the requirements for Year
2000 (Y2K) compliance:

« Process date information before, during, and after 1st January 2000 without
error. This entails accepting date input, providing date output, storing date
information and performing calculation on dates or portions of dates.

« Provide services as published in its documentation before, during and after 1st
January 2000 without changes in operation resulting from the advent of the new
century.

« Respond to two digit date input in a way that resolves ambiguity as to the
century in a clearly defined manner.

« Manage the leap year occurring in the year 2000 according to the
guad-centennial rule.

These criteria are a superset of the Year 2000 conformance requirements set out by
the British Standards Institute in DISC PD-2000-1 A Definition of Year 2000
Conformity Requirements.

You can warrant your application as Y2K compliant only if you have validated its
conformance at all three of the following system levels:

« Hardware

« System software, including databases, transaction processors and operating
systems

« Application software, from third parties or developed in-house

Selecting a Datatype 3-19

Representing Date and Time Data

Centuries and the Year 2000

Oracle stores year data with the century information. For example, the Oracle
database stores 1996 or 2001, and not just 96 or 01. The DATEdatatype always stores
a four-digit year internally, and all other dates stored internally in the database have
four digit years. Oracle utilities such as import, export, and recovery also deal
properly with four-digit years.

Applications that use the Oracle RDBMS (Oracle7 or later) and exploit the DATE
data type (for dates or dates with time values) need have no concerns about their
stored data and the year 2000. Beginning with Oracle7, the DATEdata type stores
date and time data to a precision that includes a four digit year and a time
component down to seconds (typically ‘'YYYY:MM:DD:HH24:MI:SS’)

However, some applications might be written with an assumption about the year
(such as assuming that everything is 19xx). The application might hand over a
two-digit year to the database, and the procedures that Oracle uses for determining
the century could be different from what the programmer expects (see
"Troubleshooting Y2K Problems in Applications" on page 3-24). For this reason, you
should review and test your code with regard to the Year 2000.

Examples of The 'RR’ Date Format

The RR date format element of the TO_DATEand TO_CHARunctions allows a
database site to default the century to different values depending on the two-digit
year, so that years 50 to 99 default to 19xx and years 00 to 49 default to 20xx.
Therefore, regardless of the current century at the time the data is entered, the 'RR'
format will ensure that the year stored in the database is as follows:

« If the current year is in the second half of the century (50 - 99), and a two-digit
year between ‘00’ and ‘49’ is entered, this will be stored as a 'next century’ year.
For example, ‘02’ entered in 1996 will be stored as ‘2002’

« If the current year is in the second half of the century (50 - 99), and a two-digit
year between ‘50’ and ‘99’ is entered, this will be stored as a "current century’
year. For example, ‘97’ entered in 1996 will be stored as ‘1997’.

« Ifthe current year is in the first half of the century (00 - 49), and a two-digit year
between ‘00" and ‘49’ is entered, this will be stored as a ’current century’ year.
For example, ‘02’ entered in 2001 will be stored as ‘2002’

« Ifthe current year is in the first half of the century (00 - 49), and a two-digit year
between ‘50’ and ‘99’ is entered, this will be stored as a 'previous century’ year.
For example, ‘97" entered in 2001 will be stored as ‘1997,

3-20 Oracle9i Application Developer’s Guide - Fundamentals

Representing Date and Time Data

The ‘RR’ date format is available for inserting and updating DATEdata in the
database. It is not required for retrieval or query of data already stored in the
database as Oracle has always stored the YEARcomponent of a date in its four-digit
form.

Here is an example of the RR usage:
INSERT INTO emp (empno, deptno,hiredate) VALUES
(9999, 20, TO_DATE(01-jan-03, DD-MON-RRY);

INSERT INTO emp (empno, deptno hiredate) VALUES
(8888, 20, TO_DATE(01-an-67, 'DD-MON-RRY);

SELECT empno, deptno,

TO_CHAR(hiredate, DD-MON-YYYY') hiredate
FROM emp;

This produces the following data:
EMPNO DEPTNO HIREDATE

8888 20 01-JAN-1967
9999 20 01-JAN-2003

Examples of The 'CC’ Date Format
The CC date format element of the TO_CHAR function returns the century of a
given date. For example:

SELECT TO_CHAR(TO_DATE(01-JAN-2000,DD-MON-YYYY’),CC) CENTURY FROM DUAL,;

CENTURY

20
SELECT TO_CHAR(TO_DATE(01-JAN-2001,DD-MON-YYYY’),CC) CENTURY FROM DUAL,;

CENTURY

21

The CC date format element of the TO_CHARunction sets the century value to one
greater than the first two digits of a four-digit year (for example, '20' from '1900").
For years that are a multiple of 100, this is not the true century. Strictly speaking, the
century of '1900' is not the twentieth century (which began in 1901) but rather the
nineteenth century.

Selecting a Datatype 3-21

Representing Date and Time Data

The following workaround computes the correct century for any Common Era (CE,
formerly known as AD) date. If userdate is a CE date for which you want the true
century, use the following expression:

SELECT DECODE (TO_CHAR Hiredate, 'YY),
‘00, TO_CHAR(Hiredate - 366, 'CC),
TO CHAR(Hiredate, 'CC)) FROM Emp_tab;

This expression works as follows: Get the last two digits of the year. If it is '00', then
it is a year in which the Oracle century is one year too large, and compute a date in
the preceding year (whose Oracle century is the desired true century). Otherwise,
use the Oracle century.

See Also: For more information about date format codes, see
Oracle9i SQL Reference.

Storing Dates in Character Data Types

Where applications store date values in CHARor VARCHAR®2atatypes, and the
century information is not maintained, you will need to modify the application to
include routines which ensure that such dates are treated appropriately when
affected by the change in century. You can do this by changing the strings to
maintain century information or, with certain constraints, by using the 'RR’ date
format when interpreting the string as a date.

If you are creating a new application, or if you are modifying an application to
ensure that dates stored as character strings are Year 2000 compliant, we advise that
you convert dates to use the Oracle DATEdata type. If this is not feasible, store the
dates in a form which is language and format independent, and which handles full
years. For example, use 'SYYYY/MM/DD’ plus the time element as '"HH24:MI:SS’

if necessary. Note that dates stored in this form must be converted to the correct
external format whenever they are received or displayed.

The format 'SYYYY/MM/DD HH24:MI:SS' has the following advantages:
« Itis language-independent in that the months are numeric.
« It contains the full four-digit year so centuries are unambiguous.

« The time is represented fully. Since the most significant elements occur first,
character-based sort operations will process the dates correctly.

3-22 Oracle9i Application Developer's Guide - Fundamentals

Representing Date and Time Data

The “S” format element prefixes BC dates with “-“.

Viewing Date Settings
The following views let you verify what your settings are:
« VSNLS_DATABASE_PARAMETER®ws instance-wide Globalization Support

parameters, whether the default or a value explicitly declared in the
initialization parameter file.

« NLS_SESSION_PARAMETERSBoOws current session values, which may have
been changed by ALTER SESSION

A format model is a character that describes the format of DATEor NUMBERIata
stored in a character string. You may use the format model as an argument of the
TO_CHAPRr TO_DATEunction for one of the following:

« To specify the format for Oracle to use in returning a value from the database.

« To specify the format for a value you have specified for Oracle to store in the
database.

Please note that the format does not change the internal representation of the value
in the database.

To see the available values for time zone region and time zone abbreviation, you can
query the view V$TIMEZONE_NAMES

Altering Date Settings

You may set the date format in your environment or as the default for the entire
database. If you set this in your environment, it will override the setting in the
initialization parameter.

Change the NLS_DATE_FORMAparameter settings in the following order:

1. Set the Client side, such as the Windows NT registry and Unix environment
variables.

2. Set theSession using ALTER SESSION SET NLS_DATE_FORMATTo change
the date format for the session, issue the following SQL command:

ALTER SESSION SETNLS_DATE_FORMAT ='DD-MON-RR'

3. Set the Server using the init.ora NLS_DATE_FORMAparameter. To change the
default date format for the entire database, change INIT .ORAto include the
following

Selecting a Datatype 3-23

Representing Date and Time Data

NLS_DATE_FORMAT = DD-MON-RR

The NLS_DATE_FORMASetting relies on the above order. Therefore, for a
client/server application, NLS_DATE_FORMAMust be set on the server and on the
client.

Caution: Changing this parameter at the database level will change
all existing date fields as described above. Oracle Corporation
suggests that you make changes at the session level unless all users
and all currently running applications process dates in the range
1950-2049.

Troubleshooting Y2K Problems in Applications

In this section we describe some common programming problems around Y2K
compliance. These problems may seem to derive from incorrect Year 2000
processing by the database engine, but on closer inspection are seen to arise from
incorrect use of Oracle technology.

Y2K Example: Date Columns Too Short

Your application may have defined the year of a date using a column of CHAR(2)
or NUMBER(2)in order to save disk space. This can lead to unpredictable results
when 20xx dates are mixed with 19xx dates. To resolve this, modify your
application to use the full 4-digit year.

Y2K Example: 4-Digit Years Mixed with 2-Digit Years

You application may be designed to store a 4-digit year, but the code may allow for
the incorrect storage of 2-digit year rows with the 4-digit year rows. This will lead to
unpredictable results for queries by date if the date columns contains dates earlier
than 1900. To deal with this problem, have your application check for rows which
contain dates earlier than 1900, and then adjust for this.

Y2K Example: Wide Range of Years Stored as 2 Digits

Examine your applications to determine if it processes dates prior to 1950 or later
than 2049, and store the year as 2-digits. If both conditions are met, your application
should not use the 'RR’ format but should instead expand the 2 digit year ‘YY ‘ into
a4 digit year ‘“YYYY’, and store the 4 digit number in the database.

3-24 Oracle9i Application Developer's Guide - Fundamentals

Representing Date and Time Data

Y2K Example: Handling Feb. 29, 2000

The following unusual error helps illuminate the interaction between
NLS_DATE_FORMAANd the Oracle 'RR’ format mask. The following is a
syntactically correct statement but contains a logical flaw:

SELECT TO_CHAR(TO_DATE(LAST DAY(01-FEB-00)DD-MON-RR); MM/DD/RRRR)
FROM DUAL;

The above query returns 02/28/2000. This is consistent with the defined behavior of
the ‘RR’ format element, but it is incorrect because the year 2000 is a leap year.

The problem is that the operation is using the default NLS_DATE_FORMAWhich is
'DD-MON-YY'. If the NLS_DATE_FORMAIE changed to 'DD-MON-RR?, then the
same select returns 02/29/2000, which is the correct value.

Let us evaluate the query as the Oracle Server engine does. The first function
processed is the innermost function, LAST_DAYBecause NLS _DATE_FORMAIE YY,
this correctly returns 2/28, because it is using the year 1900 to evaluate the
expression. The value 2/28 is then returned to the next outer function. So, the
TO_DATEand TO_CHARunctions format the value 02/28/00 using the 'RR’ format
mask and display the result as 02/28/2000.

If SELECT LAST_DAYO01-FEB-00') FROM DUAIs issued, the result changes
depending on the NLS_DATE_FORMAWith 'YY’, the LAST_DAYreturned is
28-Feb-00 because the year is interpreted as 1900. With 'RR’, the LAST_DAYreturned
is 29-Feb-00 because the year is interpreted as 2000. The year 1900 is not a leap year,
but the year 2000 is.

Y2K Example: Implicit Date Conversion within DECODE

When the DECODHEunction is used and if the third argument has data type CHAR,
VARCHAR?Z, or if it is NULL, then Oracle converts the return value to datatype
VARCHAR2. Therefore, the following statement:

INSERT INTO destination_table (date_column)
SELECT DECODE('31.12.2000', ‘00000000, NULL,
TO_DATE(31.12.2000, DDMM.YYYY")
FROM DUAL;

inserts date 31.12.1900.
Another sample statement:

INSERT INTO destination_table (date_column)
SELECT DECODE('01.11.1999','00000000’, NULL, sysdate+1000)
FROM DUAL,

Selecting a Datatype 3-25

Representing Date and Time Data

inserts date 04.10.1901.

In the above examples, the third argument in the DECODRrgument list is a NULL
value, so Oracle implicitly converted the DATE value to a VARCHAR2 string using
the default format mask. This is DD-MON-YY, hence loses the first two digits of the
year.

Note: When inserting the record into a table, Oracle implicitly converts the string into a
date, using the first 2-digits of the current year. To ensure the correct year is interpreted, set
NLS _DATE _FORMATing 'RR’ or 'YYYY".

Y2K Example: Partitioning Tables Based on DATE Columns

If creating a partitioned table using a DATE data type column in the partition key,
use a 4-digit year when specifying date ranges. For example:

CREATE TABLE stock xactions (stock_symbol CHAR(S),

stock_series CHAR(1),
num_shares NUMBER(10),
price NUMBER(5,2),
trade_date DATE)
STORAGE (INITIAL 100K NEXT 50K) LOGGING
PARTITION BY RANGE (trade_date)

(PARTITION sx1992 VALUES LESS THAN (TO_DATE(01-JAN-1993,'DD-MON-YYYY)
TABLESPACE tsO

NOLOGGING,
PARTITION sx1993 VALUES LESS THAN (TO_DATE(01-JAN-1994''DD-MON-YYYY))

TABLESPACE ts1,

PARTITION sx1994 VALUES LESS THAN (TO_DATE(01-JAN-1995,DD-MON-YYYY")
TABLESPACE ts2);

Y2K Example: Views Defined Using 2-Digit Years

Oracle views depend on the session state. In particular, a predicate with a 2-digit
year, such as:

WHERE col >"12-MAY-99

is allowed in a view. Interpretation of the full 4-digit year depends on the setting of
NLS_DATE_FORMAT

3-26 Oracle9i Application Developer’s Guide - Fundamentals

Representing Large Data Types

Representing Geographic Coordinate Data

To represent Geographic Information System (GIS) or spatial data in the database,

you can use the Oracle Spatial features, including the type MDSYS.SDO_GEOMETRY
You can store the data in the database using either an object-relational or a relational
model, and manipulate and query the data using a set of PL/SQL packages.

For more information, see Oracle Spatial User’s Guide and Reference.

Representing Image, Audio, and Video Data

Whether you store such multimedia data inside the database as BLOB or BFILE s,
or store it externally on a web or other kind of server, you can use interMedia to
access the data using either an object-relational or a relational model, and
manipulate and query the data using a set of object types.

For more information, see Oracle interMedia User’s Guide and Reference.

Representing Searchable Text Data

Rather than writing low-level code to do full-text searches, you can use Oracle9i
Text, formerly known as ConText and interMedia Text. It stores the search data in a
special kind of index, and lets you query it with operators and PL/SQL packages.
This makes it simple to create your own search engine using data from tables, files,
or URLs, and combine the search logic with relational queries. You can also search
XML data this way, using XPath notation.

For more information, see Oracle Text Application Developer’s Guide.

Representing Large Data Types

In times gone by, the way to represent large data objects in the database was to use
the LONGRAWand LONG RAWYypes. Oracle recommends that current applications
use the various LOB types, such as CLOB BLOBand BFILE , for this data.

See the Oracle9i Application Developer’s Guide - Large Objects (LOBs) , for information
about LOB datatypes.

The following sections deal with ways to migrate data from the older datatypes to
the LOB types. The LOB types can be used in many situations that formerly
required other types such as LONGor VARCHAR2

Selecting a Datatype 3-27

Representing Large Data Types

Migrating LONG Datatypes to LOB Datatypes

The LONGdatatype can store variable-length character data containing up to two
gigabytes of information, depending upon available memory. LONGcolumns have
many of the characteristics of VARCHARZolumns. You can use them in SELECT
lists, SET clauses of UPDATEstatements, and VALUESclauses of INSERT statements.

Oracle Corporation recommends using the LONCGdatatype only for backward
compatibility with old applications. For new applications, you should use the CLOB
and NCLOBRdatatypes for large amounts of character data. Typically, you can
change LONCdata to LOBs in your tables without changing existing applications.
SQL, PL/SQL, and OCI interfaces for LONCGdata can all work on LOB data as well.

See Also:

. Oracle9i Application Developer’s Guide - Large Objects (LOBs) for
information about the CLOBand NCLOBdatatypes.

. Oracle Call Interface Programmer’s Guide for details about each of the
OCI functions.

. Oracle9i SQL Reference for syntax of the ALTER TABLE command.

Changing a LONG or LONG RAW Column to a LOB Datatype

You can use the ALTER TABLEcommand to change the underlying datatype of a
column from LONGio CLOB or LONG RAW BLOB For example:

ALTER TABLE employees MODIFY (resume BLOB) DISABLE STORAGE IN ROW;
ALTER TABLE newspaper MODIFY (article CLOB DEFAULT 'Has not been written yet);

This technique preserves all the constraints and triggers on the table. All indexes
must be rebuilt. Any domain indexes on a long column, such as indexes for data
cartridge or interMedia applications, must be dropped before changing the type of
the column.

Restrictions on Changing LONG or LONG RAW Columns to LOB Datatypes

1. LOBs are not allowed in clustered tables. So if a table is a part of a cluster, its
LONG or LONG RAW column cannot be changed to LOB.

2. Ifatableis replicated or has materialized views, and its LONCGcolumn is
changed to LOB, you might have to manually fix the replicas.

3. Notall triggers are preserved when the column is changed to a LOB datatype.
LOB columns are not allowed in the column list of an UPDATRrigger. For
example, the following trigger becomes invalid after changing the type of the
column to a LOB, and cannot be recompiled:

3-28 Oracle9i Application Developer’s Guide - Fundamentals

Representing Large Data Types

CREATE TABLE t(changed_col LONG);
CREATE TRIGGER trig BEFORE UPDATE OF lobcol ON't ...;

Transparent Access to LOBs from Applications that Use LONG and LONG RAW
Datatypes

If your application uses DML (INSERT, UPDATEDELETE statements from SQL or
PL/SQL for LONGor LONG RAWilata, these statements work the same after the
column is converted to a LOB datatype. You can use input parameters and output
buffers of various character types, and they are converted to and from the
corresponding LOB datatypes, and truncated if the output type is not large enough
to hold the entire result. For example, you can SELECTa CLOBInto a character
variable, or a BLOBinto a RAWariable.

The following SQL functions that accept or output character types now accept or
output CLOBdata as well:

[, CONCAT, INSTR, INSTRB, LENGTH, LENGTHB, LIKE, LOWER, LPAD, LTRIM, NLS _LOWER,
NLS_UPPER, NVL, REPLACE, RPAD, RTRIM, SUBSTR, SUBSTRB, TRIM, UPPER

In PL/SQL, all the SQLfunctions listed above and the comparison operators (>, =, <
and !=), and all user-defined procedures and functions, accept CLOB datatypes as
parameters or output types. You can also assign a CLOBto a character variable and
vice versa in PL/SQL.

If your application uses OCI calls to perform piecewise inserts, updates, or fetches
of LONCdata, these calls work the same after the column is converted to a LOB
datatype. You can define a CLOBcolumn as SQLT_CHPor a BLOBcolumn as
SQLT_BIN and select the LOB data directly into a CHARACTERr RAWbuffer
without selecting out the locator first. The OCI functions that provide this
transparent access, by accepting datatypes of SQLT_LNGSQLT_CHRSQLT_BIN,
and SQLT_LBI) are:

« OCIBindByName()
« OCIBindByPos()
« OCIDefineByPos()

Restrictions on LONG and LONG RAW Datatypes
You can reference LONGcolumns in SQL statements in these places:

« SELECTIists

Selecting a Datatype 3-29

Representing Large Data Types

SET clauses of UPDATEstatements
VALUESclauses of INSERT statements

The use of LONGvalues is subject to some restrictions:

A table can contain only one LONCGcolumn.
You cannot create an object type with a LONGattribute.

LONGcolumns cannot appear in WHERElauses or in integrity constraints
(except that they can appear in NULLand NOT NULLconstraints).

LONGCcolumns cannot be indexed.
A stored function cannot return a LONGvalue.

You can declare a variable or argument of a PL/SQL program unit using the
LONGdatatype. However, you cannot then call the program unit from SQL.

Within a single SQL statement, all LONCGcolumns, updated tables, and locked
tables must be located on the same database.

LONGand LONG RAMWbIlumns cannot be used in distributed SQL statements and
cannot be replicated.

If a table has both LONGand LOB columns, you cannot bind more than 4000
bytes of data to both the LONGand LOB columns in the same SQL statement.
However, you can bind more than 4000 bytes of data to either the LONGor the
LOB column.

A table with LONCGcolumns cannot be stored in a tablespace with automatic
segment-space management.

LONGcolumns cannot appear in certain parts of SQL statements:

GROUP B¥lauses, ORDER BY¥lauses, or CONNECT B¥lauses or with the
DISTINCT operator in SELECTstatements

The UNIQUEoperator of a SELECTstatement

The column list of a CREATE CLUSTERatement

The CLUSTERclause of a CREATE MATERIALIZED VIEVgtatement
SQL built-in functions, expressions, or conditions

SELECTIists of queries containing GROUP B¥lauses

SELECTIists of subqueries or queries combined by the UNION INTERSECT or
MINUSset operators

3-30 Oracle9i Application Developer’s Guide - Fundamentals

Representing Large Data Types

« SELECTIists of CREATE TABLE. AS SELECTstatements

« ALTER TABLE.. MOVEtatements

« SELECTIists in subqueries in INSERT statements

Triggers can use the LONGdatatype in the following manner:

« A SQL statement within a trigger can insert data into a LONGcolumn.

« If data from a LONGcolumn can be converted to a constrained datatype (such as
CHARand VARCHARR a LONGcolumn can be referenced in a SQL statement
within a trigger.

« Variables in triggers cannot be declared using the LONGdatatype.
« NEWANnd :OLDcannot be used with LONGcolumns.

You can use the Oracle Call Interface functions to retrieve a portion of a LONGvalue
from the database.

See Also: Oracle Call Interface Programmer’s Guide

Note: If you design tables containing LONGor LONG RAWata,
then you should place each LONGor LONG RAWbIumn in its own
table, along with a primary key value that lets you retrieve the
LONGor LONG RAV¢olumns through joins. This way, you can
guery the other columns without reading large amounts of
irrelevant data.

Example of LONG Datatype

To store information on magazine articles, including the texts of each article, create
two tables. For example:

CREATE TABLE Article_header
(d NUMBER PRIMARY KEY,
Tite VARCHAR2(200),
First author VARCHAR2(30),
Joumal VARCHAR2(50),
Pub_date DATE);

CREATE TABLE article_text

(d NUMBER
REFERENCES
Article_header,

Text LONG);

Selecting a Datatype 3-31

Representing Large Data Types

The ARTICLE_TEXT table stores only the text of each article. The
ARTICLE_HEADERable stores all other information about the article, including the
title, first author, and journal and date of publication. The two tables are related by
the referential integrity constraint on the ID column of each table.

This design allows SQL statements to query data other than the text of an article
without reading through the text. If you want to select all first authors published in
Nature magazine during July 1991, then you can issue this statement that queries
the ARTICLE_HEADERable:

SELECT First_author
FROM Article_header
WHERE Joumal ='NATURE'
AND TO_CHAR(Pub_date, MM YYYY')='07 1991"

If the text of each article were stored in the same table with the first author,

publication, and publication date, then Oracle would need to read through the text
to perform this query.

Using RAW and LONG RAW Datatypes

Note: The RAVANd LONG RAWatatypes are provided for
backward compatibility with existing applications. For new
applications, you should use the BLOBand BFILE datatypes for
large amounts of binary data.

See Also: See Oracle9i Application Developer’s Guide - Large Objects
(LOBs) for information about the BLOBand BFILE datatypes.

The RAWANd LONG RAWWatatypes store data that is not interpreted by Oracle (that
is, not converted when moving data between different systems). These datatypes
are intended for binary data and byte strings. For example, LONG RA\AN store
graphics, sound, documents, and arrays of binary data; the interpretation is
dependent on the use.

Oracle Net and the Export and Import utilities do not perform character conversion
when transmitting RAWor LONG RAWata. When Oracle automatically converts RAW
or LONG RAWata to and from CHARdata (as is the case when entering RAWHata as a
literal in an INSERT statement), the data is represented as one hexadecimal

3-32 Oracle9i Application Developer’s Guide - Fundamentals

Addressing Rows Directly with the ROWID Datatype

character representing the bit pattern for every four bits of RAWHata. For example,
one byte of RAWHata with bits 11001011 is displayed and entered as 'CB'.

LONG RAWata cannot be indexed, but RAWHata can be indexed.

See Also: For more information about restrictions on LONG RAW
data, see "Restrictions on LONG and LONG RAW Datatypes” on
page 3-29.

Addressing Rows Directly with the ROWID Datatype

Every row in an Oracle table is assigned a ROWIDthat corresponds to the physical
address of a row. If the row is too large to fit within a single data block, the ROWID
identifies the initial row piece. Although ROWIB are usually unique, different rows
can have the same ROWIDf they are in the same data block, but in different
clustered tables.

Each table in an Oracle database has a pseudocolumn named ROWID

See Also: Oracle9i Database Concepts for general information about
the ROWIDpseudocolumn and the ROWIDdatatype.

Extended ROWID Format

The Oracle Server uses an extended ROWI/Xormat, which supports features such as
table partitions, index partitions, and clusters.

The extended ROWIDincludes the following information:
« Data object (segment) identifier

« Datafile identifier

= Block identifier

« Row identifier

The data object identifier is an identification number that Oracle assigns to schema
objects in the database, such as nonpartitioned tables or partitions. For example:

SELECT DATA _OBJECT_ID FROMALL_OBJECTS
WHERE OWNER ="SCOTT AND OBJECT_NAME ="EMP_TAB;,

This query returns the data object identifier for the EMP_TARable in the SCOTT
schema.

Selecting a Datatype 3-33

Addressing Rows Directly with the ROWID Datatype

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
information about other ways to get the data object identifier, using
the DBMS_ROWIpackage functions.

Different Forms of the ROWID

Oracle documentation uses the term ROWIDin different ways, depending on
context.

ROWID Pseudocolumn Each table and nonjoined view has a pseudocolumn called
ROWIDFor example:

CREATE TABLE T_tab (coll Rowid);
INSERT INTO T_tab SELECT Rowid FROM Emp_tab WHERE Empno = 7499;

This command returns the ROWIDpseudocolumn of the row of the EMP_TABRable
that satisfies the query, and inserts it into the T1 table.

Internal ROWID The internal ROWIDs an internal structure that holds information
that the server code needs to access a row. The restricted internal ROWIDs 6 bytes
on most platforms; the extended ROWIDis 10 bytes on these platforms.

External Character ROWID The extended ROWIDpseudocolumn is returned to the

client in the form of an 18-character string (for example,

"AAAABMAALAAAAQKAAA, which represents a base 64 encoding of the

components of the extended ROWIDin a four-piece format, OOOOOOFFFBBBBBBRRR

O0O00Q0he data object number identifies the database segment (AAAA8MIN
the example). Schema objects in the same segment, such as a cluster of tables,
have the same data object number.

FFF: The datafile that contains the row (file AAL in the example). File numbers
are unique within a database.

BBBBBB The data block that contains the row (block AAAAQkin the example).
Block numbers are relative to their datafile, not tablespace. Therefore, two rows
with identical block numbers could reside in two different datafiles of the same
tablespace.

RRR The row in the block (row AAAiIn the example).

There is no need to decode the external ROWIDyou can use the functions in the
DBMS_ROWIpackage to obtain the individual components of the extended ROWID

3-34 Oracle9i Application Developer’s Guide - Fundamentals

Addressing Rows Directly with the ROWID Datatype

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
information about the DBMS_ROWIPackage.

The restricted ROWIDpseudocolumn is returned to the client in the form of an
18-character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID

External Binary ROWID Some client applications use a binary form of the ROWIDFor
example, OCI and some precompiler applications can map the ROWIDto a 3GL
structure on bind or define calls. The size of the binary ROWIDis the same for
extended and restricted ROWIB. The information for the extended ROWIDis
included in an unused field of the restricted ROWIDstructure.

The format of the extended binary ROWIDexpressed as a C struct, is:

struct riddef {
ub4 ridobjnum; /* data obt-this field is
unused in restricted ROWIDs %/
ub2 ridflenum;
ubl filler;
ub4 ridblocknum;
ub2 ridslotnum;

ROWID Migration and Compatibility Issues

For backward compatibility, the restricted form of the ROWIDis still supported.
These ROWIDsexist in Oracle7 data, and the extended form of the ROWIDis
required only in global indexes on partitioned tables. New tables always get
extended ROWID.

See Also: Oracle9i Database Administrator’s Guide.
It is possible for an Oracle7 client to access a more recent database, and vice versa.

A client in this sense can include a remote database accessing a server using
database links, as well as a client 3GL or 4GL application accessing a server.

Selecting a Datatype 3-35

Addressing Rows Directly with the ROWID Datatype

See Also: There is more information on the
ROWID_TO_EXTENDHDNction in Oracle9i Supplied PL/SQL
Packages and Types Reference and Oracle9i Database Migration.

Accessing an Oracle7 Database from an Oracle9i Client ~ The ROWIDvalues that are
returned are always restricted ROWIDs Also, Oracle9i uses restricted ROWIDswhen
returning a ROWIDvalue to an Oracle7 or earlier server.

The following ROWIDfunctionality works when accessing an Oracle7 Server:

« Selecting a ROWIDand using the obtained value in a WHEREIlause

« WHERE CURRENT Qfsor operations

« Storing ROWIB in user columns of ROWIDor CHARtype

« Interpreting ROWIB using the hexadecimal encoding (not recommended, use
the DBMS_ROWIEunctions)

Accessing an Oracle9i Database from an Oracle7 Client ~ Oracle9i returns ROWIB in the

extended format. This means that you can only:

« Select a ROWIDand use it in a WHERElause

« Use WHERE CURRENT Og¢ursor operations

« Store ROWIB in user columns of CHAR(18) datatype

Import and Export It is not possible for an Oracle7 client to import a table from a later

version that has a ROWIDcolumn (not the ROWIDpseudocolumn), if any row of the
table contains an extended ROWIDvalue.

3-36 Oracle9i Application Developer’s Guide - Fundamentals

ANSI/ISO, DB2, and SQL/DS Datatypes

ANSI/ISO, DB2, and SQL/DS Datatypes

You can define columns of tables in an Oracle database using ANSI/ISO, DB2, and
SQL/DS datatypes. Oracle internally converts such datatypes to Oracle datatypes.

The ANSI datatype conversions to Oracle datatypes are shown in Table 3-3. The
ANSI/I1SO datatypes NUMERICDECIMAL and DECcan specify only fixed-point
numbers. For these datatypes, s defaults to 0.

Table 3-3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype
CHARACTER (n), CHAR (n) CHAR (n)
NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)
INTEGER, INT, SMALLINT NUMBER (38)
FLOAT (p) FLOAT (p)
REAL FLOAT (63)
DOUBLE PRECISION FLOAT (126)
CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR?2 (n)
TIMESTAMP TIMESTAMP
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH
TIME ZONE

The IBM products SQL/DS, and DB2 datatypes TIME, GRAPHIC VARGRAPHICand
LONG VARGRAPHIKave no corresponding Oracle datatype and cannot be used.

Table 3—-4 shows the DB2 and SQL/DS conversions.

Table 3-4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype
CHARACTER (n) CHAR (n)
VARCHAR (n) VARCHAR2 (n)
LONG VARCHAR LONG
DECIMAL (p,s) NUMBER (p,s)
INTEGER, SMALLINT NUMBER (38)
FLOAT (p) FLOAT (p)

Selecting a Datatype 3-37

How Oracle Converts Datatypes

Table 3-4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype
DATE DATE
TIMESTAMP TIMESTAMP

How Oracle Converts Datatypes

In some cases, Oracle allows data of one datatype where it expects data of a
different datatype. Generally, an expression cannot contain values with different
datatypes. However, Oracle can use the following functions to automatically
convert data to the expected datatype:

. TO_NUMBER()

. TO_CHAR()

. TO_NCHAR()

. TO_DATE()

. HEXTORAW()

. RAWTOHEX()

. RAWTONHEX()

. ROWIDTOCHAR()
. ROWIDTONCHAR()
. CHARTOROWID()
. TO_CLOB()

. TO_NCLOB()

. TO_BLOB()

. TO_RAW()

Implicit datatype conversions work according to the rules explained below.

Datatype Conversion During Assignments
For assignments, Oracle can automatically convert the following:

« VARCHARNVARCHARZZHARor NCHARo NUMBER

3-38 Oracle9i Application Developer’s Guide - Fundamentals

How Oracle Converts Datatypes

NUMBERo VARCHAR2r NVARCHAR?2
VARCHARNVARCHARZHARor NCHARo DATE
DATEto VARCHAR®r NVARCHARZ2
VARCHARNVARCHARZHARor NCHARo ROWID
ROWIDto VARCHAR®r NVARCHAR?2
VARCHARNVARCHARZHARNCHARor LONGo CLOB
VARCHARNVARCHARZHARNCHARor LONGio NCLOB
CLOBto CHARNCHARVARCHAR2NVARCHARZNd LONG
NCLOBto CHARNCHARVARCHAR2NVARCHARZNd LONG
NVARCHARNCHARor BLOBto RAW

RAWo BLOB

VARCHAR®r CHARo HEX

HEXto VARCHAR?2

The assignment succeeds if Oracle can convert the datatype of the value used in the
assignment to that of the assignment’s target.

For the examples in the following list, assume a package with a public variable and
a table declared as in the following statements:

Note: You may need to set up the following data structures for
certain examples to work:

CREATE PACKAGE Test_Pack AS varl CHAR(S); END;
CREATE TABLE Tablel_tab (coll NUMBERY);

variable := expression

The datatype of expression must be either the same as, or convertible to, the
datatype of variable. For example, Oracle automatically converts the data
provided in the following assignment within the body of a stored procedure:

VARL =0;

INSERT INTO table VALUES (expressionl , expression2 ,..)

Selecting a Datatype 3-39

How Oracle Converts Datatypes

The datatypes of expressionl, expression2, and so on, must be either the same as,
or convertible to, the datatypes of the corresponding columns in table. For
example, Oracle automatically converts the data provided in the following
INSERT statement for TABLE1 (see table definition above):

INSERT INTO Tablel._tab VALUES (19));

« UPDATRable SET column = expression

The datatype of expression must be either the same as, or convertible to, the
datatype of column. For example, Oracle automatically converts the data
provided in the following UPDATEstatement issued against TABLEL

UPDATE Tablel_tab SET coll =30

« SELECTcolumn INTO variable FROMable

The datatype of column must be either the same as, or convertible to, the
datatype of variable. For example, Oracle automatically converts data selected
from the table before assigning it to the variable in the following statement:

SELECT Col1 INTO Varl FROM Tablel_tab WHERE Col1 = 30;

Datatype Conversion During Expression Evaluation

For expression evaluation, Oracle can automatically perform the same conversions
as for assignments. An expression is converted to a type based on its context. For
example, operands to arithmetic operators are converted to NUMBERand operands
to string functions are converted to VARCHAR2

Oracle can automatically convert the following:
« VARCHAR2r CHARto NUMBER
« VARCHAR2r CHARo DATE

Character to NUMBERonNversions succeed only if the character string represents a
valid number. Character to DATEconversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parameter
NLS_DATE_FORMAT

Some common types of expressions follow:
« Simple expressions, such as:

commission + 500’

3-40 Oracle9i Application Developer’s Guide - Fundamentals

Representing Dynamically Typed Data

« Boolean expressions, such as:
bonus > salary /'10'

« Function and procedure calls, such as:
MOD (counter, '2)

« WHERElause conditions, such as:

WHERE hiredate = TO_DATE(1997-01-01' yyyy-mm-dd)

« WHERElause conditions, such as:
WHERE rowid ='AAAAa0AATAAAADAAA

In general, Oracle uses the rule for expression evaluation when a datatype
conversion is needed in places not covered by the rule for assignment conversions.

In assignments of the form:

variable := expression

Oracle first evaluates expression using the conversion rules for expressions;
expression can be as simple or complex as desired. If it succeeds, then the evaluation
of expression results in a single value and datatype. Then, Oracle tries to assign this
value to the target variable using the conversion rules for assignments.

Representing Dynamically Typed Data

You might be familiar with features in some languages that allow datatypes to
change at runtime, or let a program check the type of a variable. For example, C has
the union keyword and the void * pointer, and Java has the typeof operator
and wrapper types such as Number. Oracle9i includes features that let you create
variables and columns that can hold data of any type, and test such data values to
see their underlying representation. Using these features, a single table column can
represent a numeric value in one row, a string value in another row, and an object in
another row.

You can use the built-in type SYS.ANYDATAto represent values of any scalar or
object type. This type is an object type with methods to bring in a scalar value of
any type, and turn the value back into a scalar or object.

In the same way, you can use the built-in type SYS.ANYDATASETo represent
values of any collection type.

Selecting a Datatype 3-41

Representing Dynamically Typed Data

To manipulate and check type information, you can use the built-in type
SYS.ANYTYPEin combination with the DBMS_TYPE®ackage. For example, the
following program represents data of different underlying types in a table, then
interprets the underlying type of each row and processes each value appropriately:

— The example below defines and executes a PL/SQL procedure that
— uses methods built into SYS.ANYDATA to access information about
— data stored in a SYS.ANYDATA table column.

DROP TYPE Employee FORCE;

DROP TABLE mytab;

CREATE OR REPLACE TYPE Employee AS OBJECT (empno NUMBER,
ename VARCHAR2(10));

/

CREATE TABLE mytab (id NUMBER, data SYS ANYDATA);

INSERT INTO mytab VALUES (1, SYS.ANYDATA.ConvertNumber(5));
INSERT INTO mytab VALUES (2, SYS.ANYDATA.ConvertObject(Employee(5555, john)));
COMMIE;

CREATE OR REPLACE procedure P IS
CURSOR cur IS SELECT id, data FROM mytab;
v_id mytab.id%TYPE;
v_data mytab.data%T YPE;
v_type SYSANYTYPE;
v_typecode PLS INTEGER,;
V_typename VARCHAR2(60);
v_dummy PLS INTEGER;

v_n NUMBER;

v_employee Employee;
non_null_anytype_for NUMBER exception;
unknown_typename exception;

BEGIN
OPEN cur;

LOOP
FETCH curINTOV id, v_data;
EXIT WHEN cur%eNOTFOUND;

F*The typecode is a number that signifies what type is represented by v_data.
GetType also produces a value of type SYS.AnyType with methods you can call
tofind precision and scale of a number, length of a string, and so on. */
V_typecode :=v_data.GetType (Vv_type ¥ OUT ¥/);

F*Now we compare the typecode against constants from DBMS_TYPES to see what
kind of data we have, and decide how to display it. */

3-42 Oracle9i Application Developer’s Guide - Fundamentals

Representing Dynamically Typed Data

CASE v_typecode

WHEN Dbms_Types.Typecode NUMBER THEN
IFv_type ISNOT NULL
— This condition should never happen, but we check justin case.
THEN RAISE non_null_anytype_for NUMBER; END IF;
—For each type, there is a Get method.
v_dummy :=v_data. GetNUMBER (v_n /*OUT */);
Dbms_OutputPut_Line (
To_Char(v_id) || : NUMBER ="|| To_Char(v_n));

WHEN Dbms_Types.Typecode_Object THEN
V_typename =v_data.GetTypeName();
— An object type's name is qualified with the schema name.
IFv_typename NOT IN ("'SCOTT.EMPLOYEE')
— Ifwe encounter any object type besides EMPLOYEE, raise an exception.
THEN RAISE unknown_typename; END IF;
v_dummy :=v_data.GetObject (v_employee #OUT ¥/);
Dbms_OutputPut_Line (
To_Char(v_id) || : user-defined type ="|| v_typename ||
"(*|| v_employee.empno ||, ' | v_employee.ename ||')');
END CASE;
END LOOP;
CLOSE cur,
EXCEPTION
WHEN non_null_anytype for NUMBER THEN
RAISE_Application_Error (-20000,
"Paradox: the retum AnyType instance FROM GetType'||
'should be NULL for all but user-defined types');
WHEN unknown_typename THEN
RAISE_Application Error (-20000, 'Unknown user-defined type ' ||
V_typename || ' - program written to handle only SCOTT.EMPLOYEE);
END;
/
— The query and the procedure P in the preceding code sample
— produce output like the following:

SQL> SELECT tdata.gettypename() FROM mytab t;

T.DATA.GETTYPENAME()

SYSNUMBER
SCOTT.EMPLOYEE

SQL>EXECP;

Selecting a Datatype 3-43

Representing XML Data

1:NUMBER =5
2: user-defined type = SCOTT.EMPLOYEE (5555, john)

You can access the same features through the OCI interface, using the OCIType,
OCIAnyData , and OCIAnyDataSet interfaces.

See Also:

Oracle9i Supplied PL/SQL Packages and Types Reference for details
about the DBMS_TYPE®ackage.

Oracle9i Application Developer’s Guide - Object-Relational Features for
information and examples using the ANYDATAANYDATASETand
ANYTYPRypes.

Oracle Call Interface Programmer’s Guide for details about the OCI
interfaces.

Representing XML Data

If you have information stored as files in XML format, or if you want to take an
object type and store it as XML, you can use the XMLType built-in type.

XMLType columns store their data as CLOB. You can take an existing CLOB
VARCHARZor any object type, and call the XMLType constructor to turn it into an
XML obiject.

Once an XML object is inside the database, you can use queries to traverse it (using
the XML XPath notation) and extract all or part of its data.

You can also produce XML output from existing relational data, and split XML
documents across relational tables and columns. You can use the DBMS_XMLQUERY
DBMS_XMLGERNd DBMS_XMLSAVgackages, and the SYS_XMLGEINNd
SYS_XMLAG@®@unctions to transfer XML data into and out of relational tables.

3-44 Oracle9i Application Developer’s Guide - Fundamentals

Representing XML Data

See Also:

Oracle9i XML Developer’s Kits Guide - XDK for information
about all aspects of working with XML.

Oracle9i Supplied PL/SQL Packages and Types Reference for details
about the XMLType type and the DBMS_XMLQuery
DBMS_XMLGEINd DBMS_XMLSaveackages.

Oracle9i SQL Reference for information about the SYS _XMLGEN
and SYS_XMLAG@®@unctions.

Selecting a Datatype 3-45

Representing XML Data

3-46 Oracle9i Application Developer’s Guide - Fundamentals

A

Maintaining Data Integrity Through
Constraints

This chapter explains how to enforce the business rules associated with your
database and prevent the entry of invalid information into tables by using integrity
constraints. Topics include the following:

Overview of Integrity Constraints

Enforcing Referential Integrity with Constraints
Managing Constraints That Have Associated Indexes
Guidelines for Indexing Foreign Keys

About Referential Integrity in a Distributed Database
When to Use CHECK Integrity Constraints
Examples of Defining Integrity Constraints

Enabling and Disabling Integrity Constraints
Altering Integrity Constraints

Dropping Integrity Constraints

Managing FOREIGN KEY Integrity Constraints

Viewing Definitions of Integrity Constraints

Maintaining Data Integrity Through Constraints 4-1

Overview of Integrity Constraints

Overview of Integrity Constraints

You can define integrity constraints to enforce business rules on data in your tables.
Business rules specify conditions and relationships that must always be true, or
must always be false. Because each company defines its own policies about things
like salaries, employee numbers, inventory tracking, and so on, you can specify a
different set of rules for each database table.

When an integrity constraint applies to a table, all data in the table must conform to
the corresponding rule. When you issue a SQL statement that modifies data in the
table, Oracle ensures that the new data satisfies the integrity constraint, without the
need to do any checking within your program.

When to Enforce Business Rules with Integrity Constraints

You can enforce rules by defining integrity constraints more reliably than by adding
logic to your application. Oracle can check that all the data in a table obeys an
integrity constraint faster than an application can.

Example of an Integrity Constraint for a Business Rule

To ensure that each employee works for a valid department, first create a rule that
all values in the department table are unique :

ALTER TABLE Dept_tab
ADD PRIMARY KEY (Deptno);

Then, create a rule that every department listed in the employee table must match
one of the values in the department table:

ALTER TABLE Emp_tab
ADD FOREIGN KEY (Deptno) REFERENCES Dept._tab(Deptno);

When you add a new employee record to the table, Oracle automatically checks that
its department number appears in the department table.

To enforce this rule without integrity constraints, you can use a trigger to query the
department table and test that each new employee’s department is valid. But this
method is less reliable than the integrity constrain, because SELECTin Oracle uses
"consistent read" and so the query might miss uncommitted changes from other
transactions.

4-2 Oracle9i Application Developer’'s Guide - Fundamentals

Overview of Integrity Constraints

When to Enforce Business Rules in Applications

You might enforce business rules through application logic as well as through
integrity constraints, if you can filter out bad data before attempting an insert or
update. This might let you provide instant feedback to the user, and reduce the load
on the database. This technique is appropriate when you can determine that data
values are wrong or out of range, without checking against any data already in the
table.

Creating Indexes for Use with Constraints

All enabled unique and primary keys require corresponding indexes. You should
create these indexes by hand, rather than letting the database create them for you.
Note that:

« Constraints use existing indexes where possible, rather than creating new ones.

« Unique and primary keys can use non-unique as well as unique indexes. They
can even use just the first few columns of non-unique indexes.

« At most one unique or primary key can use each non-unique index.
« The column orders in the index and the constraint do not need to match.

« If you need to check whether an index is used by a constraint, for example
when you want to drop the index, the object number of the index used by a
unique or primary key constraint is stored in CDEF$.ENABLED for that
constraint. It is not shown in any catalog view.

You should almost always index foreign keys, and the database does not do this for
you.

When to Use NOT NULL Integrity Constraints

By default, all columns can contain nulls. Only define NOT NULLconstraints for
columns of a table that absolutely require values at all times.

For example, a new employee’s manager or hire date might be temporarily omitted.
Some employees might not have a commission. Columns like these should not have
NOT NULLintegrity constraints. However, an employee name might be required
from the very beginning, and you can enforce this rule with a NOT NULLintegrity
constraint.

NOT NULLconstraints are often combined with other types of integrity constraints to
further restrict the values that can exist in specific columns of a table. Use the
combination of NOT NULLand UNIQUEKey integrity constraints to force the input of

Maintaining Data Integrity Through Constraints 4-3

Overview of Integrity Constraints

values in the UNIQUEKey; this combination of data integrity rules eliminates the
possibility that any new row’s data will ever attempt to conflict with an existing
row’s data.

Because Oracle indexes do not store keys that are all null, if you want to allow
index-only scans of the table or some other operation that requires indexing all
rows, put a NOT NULLconstraint on at least one indexed column.

See Also: "Defining Relationships Between Parent and Child
Tables" on page 4-11

A NOT NULLconstraint is specified like this:
ALTER TABLE emp MODIFY ename NOT NULL;

Figure 4-1 Table with NOT NULL Integrity Constraints
Table EMP
EMPNO | ENAME | JOB MGR HIREDATE SAL COMM | DEPTNO
7329 SMITH CEO 17-DEC-85 9,000.00 20
7499 ALLEN VP-SALES 7329 20-FEB-90 7,500.00 100.00 30
7521 WARD MANAGER 7499 22-FEB-90 5,000.00 200.00 | 30
7566 JONES | SALESMAN | 7521 02-APR-90 | 2,975.00 400.00 | 30

NOT NULL Constraint
(no row may contain a null
value for this column)

Absence of NOT NULL Constraint
(any row can contain a null
for this column)

When to Use Default Column Values

Assign default values to columns that contain a typical value. For example, in the
DEPT_TABtable, if most departments are located at one site, then the default value
for the LOCcolumn can be set to this value (such as NEW YORK

Default values can help avoid errors where there is a number, such as zero, that
applies to a column that has no entry. For example, a default value of zero can
simplify testing, by changing a test like this:

IF sal IS NOT NULL AND sal < 50000

to the simpler form:

4-4 Oracle9i Application Developer’'s Guide - Fundamentals

Overview of Integrity Constraints

IF sal <50000

Depending upon your business rules, you might use default values to represent
zero or false, or leave the default values as NULL to signify an unknown value.

Defaults are also useful when you use a view to make a subset of a table’s columns
visible. For example, you might allow users to insert rows through a view. The base
table might also have a column named INSERTER not included in the definition of
the view, to log the user that inserts each row. To record the user name
automatically, define a default value that calls the USERfunction:

CREATE TABLE audit_trail

(
valuel NUMBER,

value2 VARCHAR2(32),
inserter VARCHAR2(30) DEFAULT USER

)

See Also: For another example of assigning a default column
value, refer to the section "Creating Tables".

Setting Default Column Values

Default values can include any literal, or almost any expression, including calls to
SYSDATE, SYS_CONTEXJUSER USEREN)MnNd UID. Default values cannot
include expressions that refer to a sequence, PL/SQL function, column, LEVEL,
ROWNUNMr PRIOR The datatype of a default literal or expression must match or be
convertible to the column datatype.

Sometimes the default value is the result of a SQL function. For example, a call to
SYS_CONTEXTan set a different default value depending on conditions such as the
user name. To be used as a default value, a SQL function must have parameters that
are all literals, cannot reference any columns, and cannot call any other functions.

If you do not explicitly define a default value for a column, the default for the
column is implicitly set to NULL

You can use the keyword DEFAULTwithin an INSERT statement instead of a literal
value, and the corresponding default value is inserted.

Maintaining Data Integrity Through Constraints 4-5

Overview of Integrity Constraints

Figure 4-2 Table with a UNIQUE Key Constraint

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's column)

Table DEPT
DEPNO | DNAME |LOC
20 RESEARCH [DALLAS
30 SALES NEW
40 MARKETING |BOSTON
INSERT
INTO
50 SALES NEW YORK-f This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.
60 BOSTON —f% This row is allowed because a null value is
entered for the DNAME column; however, if a

NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

Choosing a Table’s Primary Key

Each table can have one primary key, which uniquely identifies each row in a table
and ensures that no duplicate rows exist. Use the following guidelines when
selecting a primary key:

« Whenever practical, use a column containing a sequence number. It is a simple
way to satisfy all the other guidelines.

« Minimize your use of composite primary keys. Although composite primary
keys are allowed, they do not satisfy all of the other recommendations. For
example, composite primary key values are long and cannot be assigned by
sequence numbers.

« Choose a column whose data values are unique, because the purpose of a
primary key is to uniquely identify each row of the table.

« Choose a column whose data values are never changed. A primary key value is
only used to identify a row in the table, and its data should never be used for

4-6 Oracle9i Application Developer’'s Guide - Fundamentals

Overview of Integrity Constraints

any other purpose. Therefore, primary key values should rarely or never be
changed.

« Choose a column that does not contain any nulls. A PRIMARY KEonstraint,
by definition, does not allow any row to contain a null in any column that is
part of the primary key.

« Choose a column that is short and numeric. Short primary keys are easy to type.
You can use sequence numbers to easily generate numeric primary keys.

When to Use UNIQUE Key Integrity Constraints

Choose columns for unique keys carefully. The purpose of these contraints is
different from that of primary keys. Unique key constraints are appropriate for any
column where duplicate values are not allowed. Primary keys identify each row of
the table uniquely, and typically contain values that have no significance other than
being unique.

Note: Although UNIQUEKey constraints allow null values, you
cannot have identical values in the non-null columns of a
composite UNIQUEKey constraint.

Some examples of good unique keys include:

« Anemployee’s social security number (the primary key is the employee
number)

« Atruck’s license plate number (the primary key is the truck number)

« A customer’s phone number, consisting of the two columns AREAand PHONE
(the primary key is the customer number)

« Adepartment’s name and location (the primary key is the department number)

Constraints On Views for Performance, Not Data Integrity
The constraints discussed throughout this chapter apply to tables, not views.

Although you can declare constraints on views, such constraints do not help
maintain data integrity. Instead, they are used to enable query rewrites on queries
involving views, which helps performance with materialized views and other data
warehousing features. Such constraints are always declared with the DISABLE
keyword, and you cannot use the VALIDATE keyword. The constraints are never
enforced, and there is no associated index.

Maintaining Data Integrity Through Constraints 4-7

Enforcing Referential Integrity with Constraints

See Also: Oracle9i Data Warehousing Guide for information on query
rewrite, materialized views, and the performance reasons for declaring
constraints on views.

Enforcing Referential Integrity with Constraints

Whenever two tables contain one or more common columns, Oracle can enforce the
relationship between the two tables through a referential integrity constraint. Define a
PRIMARYor UNIQUEKkey constraint on the column in the parent table (the one that has
the complete set of column values). Define a FOREIGN KEYtonstraint on the column in the
child table (the one whose values must refer to existing values in the other table).

See Also: Depending on this relationship, you may want to define
additional integrity constraints including the foreign key; as listed in the
section "Defining Relationships Between Parent and Child Tables" on
page 4-11.

Figure 4-3 shows a foreign key defined on the department number. It guarantees
that every value in this column must match a value in the primary key of the
department table. This constraint prevents erroneous department numbers from
getting into the employee table.

Foreign keys can be comprised of multiple columns. Such a composite foreign key
must reference a composite primary or unique key of the exact same structure, with
the same number of columns and the same datatypes. Because composite primary
and unique keys are limited to 32 columns, a composite foreign key is also limited
to 32 columns.

About Nulls and Foreign Keys

Foreign keys allow key values that are all null, even if there are no matching
PRIMARYor UNIQUEKkeys.

« By default (without any NOT NULLor CHECKclauses), the FOREIGN KEY
constraint enforces the "match none" rule for composite foreign keys in the
ANSI/ISO standard.

« Toenforce the "match full” rule for nulls in composite foreign keys, which
requires that all components of the key be null or all be non-null, define a
CHECKeonstraint that allows only all nulls or all non-nulls in the composite
foreign key. For example, with a composite key comprised of columns A, B, and
C:

4-8 Oracle9i Application Developer’'s Guide - Fundamentals

Enforcing Referential Integrity with Constraints

CHECK ((AISNULL AND B IS NULL AND CIS NULL) OR
(AISNOT NULL AND B IS NOT NULL AND C IS NOT NULL))

In general, it is not possible to use declarative referential integrity to enforce the
"match partial” rule for nulls in composite foreign keys, which requires the
non-null portions of the key to appear in the corresponding portions in the
primary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Chapter 15, "Using Triggers".

Maintaining Data Integrity Through Constraints 4-9

Enforcing Referential Integrity with Constraints

Figure 4-3 Tables with Referential Integrity Constraints

Parent Key
Primary key of
referenced table
Table DEPT
DEPTNO | DNAME | LOC
20 RESEARCH DALLAS
30 SALES NEW YORK
40 MARKETING | BOSTON Foreign Key
V.. (values in dependent
. table must match a value
Referenced or Seeol in unique key or primary
Parent Table el key of referenced table)
Table EMP TteellL ‘
EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO
7329 SMITH | CEO 17-DEC-85 | 9,000.00 20
7499 ALLEN | VP-SALES | 7329 20-FEB-90 | 7,500.00 | 100.00 | 30
7521 WARD | MANAGER | 7499 22-FEB-90 | 5,000.00 | 200.00 | 30
7566 JONES | SALESMAN | 7521 02-APR-90 | 2,975.00 | 400.00 | 20 This row violates
the referential
Dependent or Child Table ggg:a?glgon
is not present
in the referenced
INSERT tabl_e's primary
key; therefore,
INTO :
the row is not
allowed in
7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00 50 ——& the table.
7571 FORD MANAGER 7499 23-FEB-90 5,000.00 200.00 —4& Thisrowis
allowed in the
table because a
null value is
entered in the
DEPTNO column;

4-10 Oracle9i Application Developer’s Guide - Fundamentals

however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

Enforcing Referential Integrity with Constraints

Defining Relationships Between Parent and Child Tables

Several relationships between parent and child tables can be determined by the
other types of integrity constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key ~ When no other constraints are defined on the
foreign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a "one-to-many" relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. An example of such
a relationship is shown in Figure 4-3 on page 8 between the employee and
department tables. Each department (parent key) has many employees (foreign
key), and some employees might not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key ~ When nulls are not allowed in a foreign key,
each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key. However, any number of rows in
the child table can reference the same parent key value.

This model establishes a "one-to-many" relationship between the parent and foreign
keys. However, each row in the child table must have a reference to a parent key
value; the absence of a value (a null) in the foreign key is not allowed. The same
example in the previous section can be used to illustrate such a relationship.
However, in this case, employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key ~ When a UNIQUEconstraint is defined on the
foreign key, one row in the child table can reference a parent key value. This model
allows nulls in the foreign key.

This model establishes a "one-to-one" relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. For example,
assume that the employee table had a column named MEMBERN®eferring to an
employee’s membership number in the company’s insurance plan. Also, a table
named INSURANCHhas a primary key named MEMBERN@nd other columns of the
table keep respective information relating to an employee’s insurance policy. The
MEMBERNID the employee table should be both a foreign key and a unique key:

« To enforce referential integrity rules between the EMP_TABand INSURANCE
tables (the FOREIGN KEYconstraint)

« To guarantee that each employee has a unique membership number (the
UNIQUEKkey constraint)

Maintaining Data Integrity Through Constraints 4-11

Enforcing Referential Integrity with Constraints

UNIQUE and NOT NULL Constraints on the Foreign Key ~ When both UNIQUEand NOT
NULL constraints are defined on the foreign key, only one row in the child table can
reference a parent key value. Because nulls are not allowed in the foreign key, each
row in the child table must explicitly reference a value in the parent key.

This model establishes a "one-to-one" relationship between the parent and foreign
keys that does not allow undetermined values (nulls) in the foreign key. If you
expand the previous example by adding a NOT NULLconstraint on the MEMBERNO
column of the employee table, in addition to guaranteeing that each employee has a
unique membership number, you also ensure that no undetermined values (nulls)
are allowed in the MEMBERNE&Iumn of the employee table.

Rules for Multiple FOREIGN KEY Constraints

Oracle allows a column to be referenced by multiple FOREIGN KEtonstraints;
effectively, there is no limit on the number of dependent keys. This situation might
be present if a single column is part of two different composite foreign keys.

Deferring Constraint Checks

When Oracle checks a constraint, it signals an error if the constraint is not satisfied.
You can use the SET CONSTRAINTSstatement to defer checking the validity of
constraints until the end of a transaction.

Note: You cannot issue a SET CONSTRAINTstatement inside a
trigger.

The SET CONSTRAINTSsetting lasts for the duration of the transaction, or until
another SET CONSTRAINTSstatement resets the mode.

See Also: For more details about the SET CONSTRAINTStatement, see
the Oracle9i SQL Reference.

Guidelines for Deferring Constraint Checks

Select Appropriate Data You may wish to defer constraint checks on UNIQUEand
FOREIGNkKeys if the data you are working with has any of the following
characteristics:

« Tables are snapshots

4-12 Oracle9i Application Developer’s Guide - Fundamentals

Enforcing Referential Integrity with Constraints

« Tables that contain a large amount of data being manipulated by another
application, which may or may not return the data in the same order

« Update cascade operations on foreign keys

When dealing with bulk data being manipulated by outside applications, you can
defer checking constraints for validity until the end of a transaction.

Ensure Constraints Are Created Deferrable After you have identified and selected the
appropriate tables, make sure their FOREIGN UNIQUEand PRIMARYkey
constraints are created deferrable. You can do so by issuing a statement similar to
the following:

CREATE TABLE dept (
deptno NUMBER PRIMARY KEY,
dname VARCHARZ (30)
)
CREATE TABLE emp (
empno NUMBER,
ename VARCHAR? (30),
deptno NUMBER REFERENCES (dept),
CONSTRAINT epk PRIMARY KEY (empno) DEFERRABLE,
CONSTRAINT efk FOREIGN KEY (deptno)
REFERENCES (dept.deptno) DEFERRABLE);
INSERT INTO dept VALUES (10, 'Accounting’);
INSERT INTO dept VALUES (20, 'SALES);
INSERT INTO emp VALUES (1, '‘Corleone’, 10);
INSERT INTO emp VALUES (2, 'Costanza!, 20);
COMMIT;

SET CONSTRAINT efk DEFERRED;
UPDATE dept SET deptno = deptno + 10
WHERE deptno = 20;

SELECT *from emp ORDER BY deptno;
EMPNO ENAME DEPTNO
1 Coreone 10
2 Costanza 20
UPDATE emp SET deptno = deptno + 10
WHERE deptno = 20;
SELECT * FROM emp ORDER BY deptno;

EMPNO ENAME DEPTNO

1 Coreone 10
2 Costanza 30
COMMIT;

Maintaining Data Integrity Through Constraints 4-13

Managing Constraints That Have Associated Indexes

Set All Constraints Deferred ~ Within the application that manipulates the data, you
must set all constraints deferred before you begin processing any data. Use the
following DML statement to set all deferrable constraints deferred:

SET CONSTRAINTS ALL DEFERRED;

Note: The SET CONSTRAINTSstatement applies only to the
current transaction. The defaults specified when you create a
constraint remain as long as the constraint exists. The ALTER
SESSION SET CONSTRAINTSstatement applies for the current
session only.

Check the Commit (Optional) You can check for constraint violations before committing
by issuing the SET CONSTRAINTS ALL IMMEDIATE statement just before issuing
the COMMITIf there are any problems with a constraint, this statement will fail and
the constraint causing the error will be identified. If you commit while constraints
are violated, the transaction will be rolled back and you will receive an error
message.

Managing Constraints That Have Associated Indexes

When you create a UNIQUEor PRIMARYkey, Oracle checks to see if an existing
index can be used to enforce uniqueness for the constraint. If there is no such index,
Oracle creates one.

Minimizing Space and Time Overhead for Indexes Associated with Constraints

When Oracle uses a unique index to enforce a constraint, and constraints associated
with the unique index are dropped or disabled, the index is dropped. To preserve
the statistics associated with the index, or if it would take a long time to re-create it,
you can specify the KEEP INDEX clause on the DRORcommand for the constraint.

While enabled foreign keys reference a PRIMARYor UNIQUEkey, you cannot disable
or drop the PRIMARYor UNIQUEkey constraint or the index.

Note: Deferrable UNIQUEand PRIMARYkeys all must use
non-unique indexes.

4-14 Oracle9i Application Developer’s Guide - Fundamentals

About Referential Integrity in a Distributed Database

To reuse existing indexes when creating unique and primary key constraints, you
can include USING INDEX in the constraint clause. Fpr example:

CREATE TABLEDb

(
b1 INTEGER,

b2 INTEGER,
CONSTRAINT uniquel (b1, b2) USING INDEX (CREATE UNIQUE INDEX b_index on
b(bl, b2),
CONSTRAINT unique2 (b1, b2) USING INDEX b_index
)

Guidelines for Indexing Foreign Keys

You should almost always index foreign keys. The only exception is when the
matching unique or primary key is never updated or deleted.

See Also: Oracle9i Database Concepts for information on locking
mechanisms involving indexes and keys.

About Referential Integrity in a Distributed Database

The declaration of a referential integrity constraint cannot specify a foreign key that
references a primary or unique key of a remote table.

However, you can maintain parent/child table relationships across nodes using
triggers.

See Also: For more information about triggers that enforce
referential integrity, refer to Chapter 15, "Using Triggers".

Maintaining Data Integrity Through Constraints 4-15

When to Use CHECK Integrity Constraints

Note: If you decide to define referential integrity across the nodes
of a distributed database using triggers, be aware that network
failures can make both the parent table and the child table
inaccessible. For example, assume that the child table is in the
SALESdatabase, and the parent table is in the HQdatabase.

If the network connection between the two databases fails, then
some DML statements against the child table (those that insert rows
or update a foreign key value) cannot proceed, because the
referential integrity triggers must have access to the parent table in
the HQdatabase.

When to Use CHECK Integrity Constraints

Use CHECKeonstraints when you need to enforce integrity rules based on logical
expressions, such as comparisons. Never use CHECKeonstraints when any of the
other types of integrity constraints can provide the necessary checking.

See Also: "Choosing Between CHECK and NOT NULL Integrity
Constraints" on page 4-18
Examples of CHECKconstraints include the following:

« A CHECKonstraint on employee salaries so that no salary value is greater than
10000.

« A CHECKonstraint on department locations so that only the locations
"BOSTON "NEW YORKand "DALLAS' are allowed.

« A CHECKonstraint on the salary and commissions columns to prevent the
commission from being larger than the salary.

Restrictions on CHECK Constraints

A CHECKintegrity constraint requires that a condition be true or unknown for every
row of the table. If a statement causes the condition to evaluate to false, then the
statement is rolled back. The condition of a CHECkconstraint has the following
limitations:

« The condition must be a boolean expression that can be evaluated using the
values in the row being inserted or updated.

« The condition cannot contain subqueries or sequences.

4-16 Oracle9i Application Developer's Guide - Fundamentals

When to Use CHECK Integrity Constraints

« The condition cannot include the SYSDATEUID, USER or USEREN\SQL
functions.

« The condition cannot contain the pseudocolumns LEVEL, PRIOR or ROWNUM

See Also: Oracle9i SQL Reference for an explanation of these
pseudocolumns.

« The condition cannot contain a user-defined SQL function.

Designing CHECK Constraints

When using CHECKconstraints, remember that a CHECKeonstraint is violated only
if the condition evaluates to false; true and unknown values (such as comparisons

with nulls) do not violate a check condition. Make sure that any CHECkconstraint

that you define is specific enough to enforce the rule.

For example, consider the following CHECKconstraint:
CHECK (Sal >0 OR Comm >=0)

At first glance, this rule may be interpreted as "do not allow a row in the employee
table unless the employee’s salary is greater than zero or the employee’s
commission is greater than or equal to zero." But if a row is inserted with a null
salary, that row does not violate the CHECkconstraint regardless of whether the
commission value is valid, because the entire check condition is evaluated as
unknown. In this case, you can prevent such violations by placing NOT NULL
integrity constraints on both the SAL and COMMolumns.

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical operators ANDand
ORin Oracle9i SQL Reference

Rules for Multiple CHECK Constraints

A single column can have multiple CHECKeconstraints that reference the column in
its definition. There is no limit to the number of CHECKeconstraints that can be
defined that reference a column.

The order in which the constraints are evaluated is not defined, so be careful not to
rely on the order or to define multiple constraints that conflict with each other.

Maintaining Data Integrity Through Constraints 4-17

Examples of Defining Integrity Constraints

Choosing Between CHECK and NOT NULL Integrity Constraints

According to the ANSI/ZISO standard, a NOT NULLintegrity constraint is an
example of a CHECKintegrity constraint, where the condition is the following:

CHECK (Column_name IS NOT NULL)

Therefore, NOT NULLintegrity constraints for a single column can, in practice, be
written in two forms: using the NOT NULLconstraint or a CHECkKconstraint. For ease
of use, you should always choose to define NOT NULLintegrity constraints, instead
of CHECKconstraints with the IS NOT NULLcondition.

In the case where a composite key can allow only all nulls or all values, you must
use a CHECKintegrity constraint. For example, the following expression of a CHECK
integrity constraint allows a key value in the composite key made up of columns C1
and C2to contain either all nulls or all values:

CHECK ((C11S NULL AND C2 IS NULL) OR
(C1ISNOT NULL AND C2 IS NOT NULL))

Examples of Defining Integrity Constraints

Here are some examples showing how to create simple constraints during the
prototype phase of your database design.

Notice how all constraints are given a name. Naming the constraints prevents the
database from creating multiple copies of the same constraint, with different
system-generated names, if the DDL is run multiple times.

See Also: Oracle9i Database Administrator’s Guide for information
on creating and maintaining constraints for a large production
database.

Defining Integrity Constraints with the CREATE TABLE Command: Example

The following examples of CREATE TABLEtatements show the definition of several
integrity constraints:

CREATE TABLE Dept_tab (
Deptno NUMBER(3) CONSTRAINT Dept_pkey PRIMARY KEY,
Dname VARCHAR2(15),
Loc VARCHAR2(15),
CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
CONSTRAINT Loc_checkl

4-18 Oracle9i Application Developer's Guide - Fundamentals

Examples of Defining Integrity Constraints

CHECK (loc IN (NEW YORK’, BOSTON,'CHICAGO)));

CREATE TABLE Emp tab
Empno NUMBER() CONSTRAINT Emp_pkey PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(S) CONSTRAINT Mgr_fkey
REFERENCES Emp _tab,
Hiredate DATE,
Sa NUMBER(7,2),
Comm NUMBER(2),
Deptno NUMBER(3) NOT NULL
CONSTRAINT dept_fkey REFERENCES Dept_tab ON DELETE CASCADE);

Defining Constraints with the ALTER TABLE Command: Example

You can also define integrity constraints using the constraint clause of the ALTER
TABLEcommand. For example, the following examples of ALTER TABLEstatements
show the definition of several integrity constraints:

CREATE UNIQUE INDEX |_dept ON Dept_tab(deptno);
ALTER TABLE Dept_tab
ADD CONSTRAINT Dept_pkey PRIMARY KEY (deptno);

ALTER TABLE Emp_tab
ADD CONSTRAINT Dept_fkey FOREIGN KEY (Deptno) REFERENCES Dept_tab;
ALTER TABLE Emp_tab MODIFY (Ename VARCHAR2(15) NOT NULL);

You cannot create a validated constraint on a table if the table already contains any
rows that would violate the constraint.

Privileges Required to Create Constraints

The creator of a constraint must have the ability to create tables (the CREATE TABLE
or CREATE ANY TABLEystem privilege), or the ability to alter the table (the ALTER
object privilege for the table or the ALTER ANY TABLEystem privilege) with the
constraint. Additionally, UNIQUEand PRIMARY KEMntegrity constraints require
that the owner of the table have either a quota for the tablespace that contains the
associated index or the UNLIMITED TABLESPACEystem privilege. FOREIGN KEY
integrity constraints also require some additional privileges.

Maintaining Data Integrity Through Constraints 4-19

Enabling and Disabling Integrity Constraints

See Also: "Privileges Required to Create FOREIGN KEY Integrity
Constraints” on page 4-27

Naming Integrity Constraints

Assign names to NOT NULL.UNIQUE KEYPRIMARY KEYFOREIGN KEY,and
CHECKconstraints using the CONSTRAINToption of the constraint clause. This
name must be unique with respect to other constraints that you own. If you do not
specify a constraint name, one is assigned by Oracle.

Picking your own name makes error messages for constraint violations more
understandable, and prevents the creation of multiple constraints if the SQL
statements are run more than once.

See the previous examples of the CREATE TABLENnd ALTER TABLEstatements for
examples of the CONSTRAINToption of the constraint clause. Note that the
name of each constraint is included with other information about the constraint in
the data dictionary.

See Also: "Viewing Definitions of Integrity Constraints" on
page 4-29 for examples of data dictionary views.

Enabling and Disabling Integrity Constraints

This section explains the mechanisms and procedures for manually enabling and
disabling integrity constraints.

enabled constraint. When a constraint is enabled, the corresponding rule is
enforced on the data values in the associated columns. The definition of the
constraint is stored in the data dictionary.

disabled constraint. When a constraint is disabled, the corresponding rule is not
enforced. The definition of the constraint is still stored in the data dictionary.

An integrity constraint represents an assertion about the data in a database. This
assertion is always true when the constraint is enabled. The assertion may or may
not be true when the constraint is disabled, because data that violates the integrity
constraint can be in the database.

Why Disable Constraints?

During day-to-day operations, constraints should always be enabled. In certain
situations, temporarily disabling the integrity constraints of a table makes sense for
performance reasons. For example:

4-20 Oracle9i Application Developer’s Guide - Fundamentals

Enabling and Disabling Integrity Constraints

« When loading large amounts of data into a table using SQL*Loader

« When performing batch operations that make massive changes to a table (such
as changing everyone’s employee number by adding 1000 to the existing
number)

« When importing or exporting one table at a time

Turning off integrity constraints temporarily speeds up these operations.

About Exceptions to Integrity Constraints

If a row of a table disobeys an integrity constraint, then this row is in violation of
the constraint and is called an exception to the constraint. If any exceptions exist,
then the constraint cannot be enabled. The rows that violate the constraint must be
either updated or deleted before the constraint can be enabled.

You can identify exceptions for a specific integrity constraint as you try to enable
the constraint.

See Also: This procedure is discussed in the section "Fixing
Constraint Exceptions" on page 4-24.

Enabling Constraints

When you define an integrity constraint in a CREATE TABLEr ALTER TABLE
statement, Oracle automatically enables the constraint by default. For code clarity,
you can explicitly enable the constraint by including the ENABLEclause in its
definition.

Use this technique when creating tables that start off empty, and are populated a
row at a time by individual transactions. In such cases, you want to ensure that data
are consistent at all times, and the performance overhead of each DML operation is
small.

The following CREATE TABLENnd ALTER TABLEstatements both define and enable
integrity constraints:

CREATE TABLE Emp_tab (

Empno NUMBER(5) PRIMARY KEY);
ALTER TABLE Emp_tab

ADD PRIMARY KEY (Empno);

An ALTER TABLEstatement that tries to enable an integrity constraint will fail if

any rows of the table violate the integrity constraint. The statement is rolled back
and the constraint definition is not stored and not enabled.

Maintaining Data Integrity Through Constraints 4-21

Enabling and Disabling Integrity Constraints

See Also: "Fixing Constraint Exceptions” on page 4-24 for more
information about rows that violate integrity constraints.

Creating Disabled Constraints
The following CREATE TABLENd ALTER TABLEstatements both define and
disable integrity constraints:

CREATE TABLE Emp_tab (
Empno NUMBER(5) PRIMARY KEY DISABLE);

ALTER TABLE Emp_tab
ADD PRIMARY KEY (Empno) DISABLE;

Use this technique when creating tables that will be loaded with large amounts of
data before anybody else accesses them, particularly if you need to cleanse data
after loading it, or need to fill in empty columns with sequence numbers or
parent/child relationships.

An ALTER TABLEstatement that defines and disables an integrity constraints never
fails, because its rule is not enforced.

Enabling and Disabling Existing Integrity Constraints
Use the ALTER TABLEcommand to:

« Enable a disabled constraint, using the ENABLEclause.

« Disable an enabled constraint, using the DISABLE clause.

Enabling Existing Constraints

Once you have finished cleansing data and filling in empty columns, you can enable
constraints that were disabled during data loading.

The following statements are examples of statements that enable disabled integrity
constraints:

ALTER TABLE Dept_tab
ENABLE CONSTRAINT Dname._ukey;

ALTER TABLE Dept_tab
ENABLE PRIMARY KEY
ENABLE UNIQUE (Dname)
ENABLE UNIQUE (Loc);

4-22 Oracle9i Application Developer’s Guide - Fundamentals

Enabling and Disabling Integrity Constraints

An ALTER TABLEstatement that attempts to enable an integrity constraint fails
when the rows of the table violate the integrity constraint. The statement is rolled
back and the constraint is not enabled.

See Also: "Fixing Constraint Exceptions” on page 4-24 for more
information about rows that violate integrity constraints.

Disabling Existing Constraints

If you need to perform a large load or update when the table already contains data,
you can temporarily disable constraints to improve performance of the bulk
operation.

The following statements are examples of statements that disable enabled integrity
constraints:

ALTER TABLE Dept_tab
DISABLE CONSTRAINT Dname_ukey;,

ALTER TABLE Dept_tab
DISABLE PRIMARY KEY
DISABLE UNIQUE (Dname)
DISABLE UNIQUE (Loc);

Tip: Using the Data Dictionary to Find Constraints

The preceding examples require that you know constraint names and which
columns they affect. To find this information, you can query one of the data
dictionary views defined for constraints, USER_CONSTRAINTS&r
USER_CONS_COLUMNSr more information about these views, see "Viewing
Definitions of Integrity Constraints" on page 4-29 and Oracle9i Database Reference.

Guidelines for Enabling and Disabling Key Integrity Constraints

When enabling or disabling UNIQUE PRIMARY KEYand FOREIGN KEMntegrity
constraints, you should be aware of several important issues and prerequisites.
UNIQUEkey and PRIMARY KEonstraints are usually managed by the database
administrator.

Maintaining Data Integrity Through Constraints 4-23

Altering Integrity Constraints

See Also: "Managing FOREIGN KEY Integrity Constraints" on
page 4-27 and the Oracle9i Database Administrator’s Guide

Fixing Constraint Exceptions

When you try to create or enable a constraint, and the statement fails because
integrity constraint exceptions exist, the statement is rolled back. You cannot enable
the constraint until all exceptions are either updated or deleted. To determine which
rows violate the integrity constraint, include the EXCEPTIONSoption in the
ENABLEclause of a CREATE TABLBr ALTER TABLEstatement.

See Also: Oracle9i Database Administrator’s Guide for more
information about fixing constraint exceptions.

Altering Integrity Constraints
Starting with Oracle8i, you can alter the state of an existing constraint with the
MODIFY CONSTRAINTlause.

See Also: For information on the parameters you can modify, see
the ALTER TABLEsection in Oracle9i SQL Reference.

MODIFY CONSTRAINT Example #1
The following commands show several alternatives for whether the CHECK
constraint is enforced, and when the constraint checking is done:

CREATE TABLE X1._tab (a1 NUMBER CONSTRAINT y CHECK (a1>3) DEFERRABLE DISABLE);

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE;

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrit RELY;

ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt INITIALLY DEFERRED;
ALTER TABLE X1_tab MODIFY CONSTRAINT Y_cnstrt ENABLE NOVALIDATE;

MODIFY CONSTRAINT Example #2

The following commands show several alternatives for whether the NOT NULL
constraint is enforced, and when the checking is done:

CREATE TABLE X1_tab (A1 NUMBER CONSTRAINT Y_cnstrt
NOT NULL DEFERRABLE INITIALLY DEFERRED NORELY DISABLE);

ALTER TABLE X1_tab ADD CONSTRAINT One_cnstrt UNIQUE(AL)
DEFERRABLE INITIALLY IMMEDIATE RELY USING INDEX PCTFREE =30

4-24 Oracle9i Application Developer’s Guide - Fundamentals

Altering Integrity Constraints

ENABLE VALIDATE;

ALTER TABLE X1_tab MODIFY UNIQUE(AL)
INITIALLY DEFERRED NORELY USING INDEX PCTFREE =40
ENABLE NOVALIDATE;

ALTER TABLE X1._tab MODIFY CONSTRAINT One_cnstrit
INITIALLY IMMEDIATE RELY;

Modify Constraint Example #3

The following commands show several alternatives for whether the primary key
constraint is enforced, and when the checking is done:

CREATE TABLE T1_tab (AL INT, BLINT);

ALTER TABLE T tab add CONSTRAINT P1_cnstit PRIMARY KEY(al) DISABLE;
ALTER TABLE T1 _tab MODIFY PRIMARY KEY INITIALLY IMMEDIATE

USING INDEX PCTFREE =30 ENABLE NOVALIDATE;

ALTER TABLE T1_tab MODIFY PRIMARY KEY

USING INDEX PCTFREE =35 ENABLE;

ALTER TABLE T1_tab MODIFY PRIMARY KEY ENABLE NOVALIDATE;

Renaming Integrity Constraints

Because constraint names must be unique, even across multiple schemas, you can
encounter problems when you want to clone a table and all its constraints, but the
constraint name for the new table conflicts with the one for the original table. Or,
you might create a constraint with a default system-generated name, and later
realize that it’s better to give the constraint a name that is easy to remember, so that
you can easily enable and disable it.

One of the properties you can alter for a constraint is its name. The following
SQL*Plus script shows you you can find the system-generated name for a constraint
and change it to a name of your choosing:

prompt Enter table name to find its primary key:

accepttable_name

select constraint_name from user_constraints
where table_name = upper(&able_name.)
and constraint_type ="P’;

prompt Enter new name for its primary key:

Maintaining Data Integrity Through Constraints 4-25

Dropping Integrity Constraints

accept new_constraint
set serveroutput on

declare
—USER_CONSTRAINTS.CONSTRAINT_NAME is declared as VARCHAR2(30).
- Using % TYPE here protects us if the length changes in a future release.
constraint_name user_constraints.constraint_name%stype;
begin
select constraint_name into constraint_name from user_constraints
where table_name = upper(&able_name.’)
and constraint_type ='P’;

dbms_output.put_line(The primary key for’ || upper(&table_name.) ||’ is:
’|| constraint_name);

execute immediate
‘alter table &table_name. rename constraint’ || constraint_name ||
"to &new_constraint.’;
end;
/

Dropping Integrity Constraints

Drop an integrity constraint if the rule that it enforces is no longer true or if the
constraint is no longer needed. Drop an integrity constraint using the ALTER
TABLEcommand and the DRORclause. For example, the following statements drop
integrity constraints:

ALTER TABLE Dept_tab
DROP UNIQUE (Dname);

ALTER TABLE Dept_tab
DROP UNIQUE (Loc);

ALTER TABLE Emp_tab
DROP PRIMARY KEY,
DROP CONSTRAINT Dept fkey;
DROP TABLE Emp_tab CASCADE CONSTRAINTS;

When dropping UNIQUE PRIMARY KEYand FOREIGN KEMntegrity constraints,
you should be aware of several important issues and prerequisites. UNIQUEand
PRIMARY KEYonstraints are usually managed by the database administrator.

4-26 Oracle9i Application Developer's Guide - Fundamentals

Managing FOREIGN KEY Integrity Constraints

See Also: "Managing FOREIGN KEY Integrity Constraints” on
page 4-27 and the Oracle9i Database Administrator’s Guide.

Managing FOREIGN KEY Integrity Constraints

General information about defining, enabling, disabling, and dropping all types of
integrity constraints is given in the previous sections. The following section
supplements this information, focusing specifically on issues regarding FOREIGN
KEYintegrity constraints, which enforce relationships between columns in different
tables.

Rules for FOREIGN KEY Integrity Constraints

The following topics are of interest when defining FOREIGN KEMntegrity
constraints.

Datatypes and Names for Foreign Key Columns

You must use the same datatype for corresponding columns in the dependent and
referenced tables. The column names do not need to match.

Limit on Columns in Composite Foreign Keys

Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEYand UNIQUEKkey constraints are enforced using indexes, composite
foreign keys are limited to 32 columns.

Foreign Key References Primary Key by Default

If the column list is not included in the REFERENCESption when defining a
FOREIGN KEYonstraint (single column or composite), then Oracle assumes that
you intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle automatically checks to verify that this column list references a primary or
unique key of the parent table. If it does not, then an informative error is returned.

Privileges Required to Create FOREIGN KEY Integrity Constraints

To create a FOREIGN KEYonstraint, the creator of the constraint must have
privileged access to both the parent and the child table.

Maintaining Data Integrity Through Constraints 4-27

Managing FOREIGN KEY Integrity Constraints

« The Parent Table The creator of the referential integrity constraint must own
the parent table or have REFERENCESbject privileges on the columns that
constitute the parent key of the parent table.

« The Child Table The creator of the referential integrity constraint must have the
ability to create tables (that is, the CREATE TABLEr CREATE ANY TABLE
system privilege) or the ability to alter the child table (that is, the ALTERobject
privilege for the child table or the ALTER ANY TABLEystem privilege).

In both cases, necessary privileges cannot be obtained through a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow:

« The owner of the child table to explicitly decide what constraints are enforced
on her or his tables and the other users that can create constraints on her or his
tables

« The owner of the parent table to explicitly decide if foreign keys can depend on
the primary and unique keys in her tables

Choosing How Foreign Keys Enforce Referential Integrity

Oracle allows different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEtonstraint:

« Prevent Update or Delete of Parent Key The default setting prevents the
update or deletion of a parent key if there is a row in the child table that
references the key. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept _tab);

« Delete Child Rows When Parent Key Deleted The ON DELETE CASCADE
action allows parent key data that is referenced from the child table to be
deleted, but not updated. When data in the parent key is deleted, all rows in
the child table that depend on the deleted parent key values are also deleted. To
specify this referential action, include the ON DELETE CASCAD®ption in the
definition of the FOREIGN KEYtonstraint. For example:

CREATE TABLE Emp_tab
FOREIGN KEY (Deptio) REFERENCES Dept_tab
ON DELETE CASCADE);

« Set Foreign Keys to Null When Parent Key Deleted The ON DELETE SET
NULL action allows data that references the parent key to be deleted, but not

4-28 Oracle9i Application Developer's Guide - Fundamentals

Viewing Definitions of Integrity Constraints

updated. When referenced data in the parent key is deleted, all rows in the child
table that depend on those parent key values have their foreign keys set to null.
To specify this referential action, include the ON DELETE SET NULloption in
the definition of the FOREIGN KEtonstraint. For example:

CREATE TABLE Emp_tab (
FOREIGN KEY (Deptno) REFERENCES Dept_tab
ON DELETE SET NULL);

Restriction on Enabling FOREIGN KEY Integrity Constraints

FOREIGN KEMntegrity constraints cannot be enabled if the referenced primary or
unique key’s constraint is not present or not enabled.

Viewing Definitions of Integrity Constraints

The data dictionary contains the following views that relate to integrity constraints:

ALL_CONSTRAINTS
ALL_CONS_COLUMNS
USER_CONSTRAINTS
USER_CONS_COLUMNS
DBA_CONSTRAINTS
DBA_CONS_COLUMNS

You can query these views to find the names of constraints, what columns they
affect, and other information to help you manage constraints.

See Also: Refer to Oracle9i Database Reference for detailed
information about each view.

Examples of Defining Integrity Constraints

Consider the following CREATE TABLEtatements that define a number of integrity
constraints:

CREATE TABLE Dept tab (

Depno NUMBER(3) PRIMARY KEY,

Dname VARCHAR2(15),

Loc VARCHAR2(15),

CONSTRAINT Dname_ukey UNIQUE (Dname, Loc),
CONSTRAINT LOC_CHECK1

Maintaining Data Integrity Through Constraints 4-29

Viewing Definitions of Integrity Constraints

CHECK (Loc IN (NEW YORK’, BOSTON', 'CHICAGO));

CREATE TABLE Emp_tab (
Empno NUMBER() PRIMARY KEY,
Ename VARCHAR2(15)NOT NULL,
Job VARCHAR2(10),
Mgr NUMBER(S) CONSTRAINT Mgr_fkey
REFERENCES Emp_tab ON DELETE CASCADE,
Hiredate DATE,
Sa NUMBER(7,2),
Comm NUMBER(2),
Depno NUMBER(3) NOT NULL
CONSTRAINT Dept_fkey REFERENCES Dept tab);

Example 1: Listing All of Your Accessible Constraints The following query lists all
constraints defined on all tables accessible to the user:

SELECT Constraint_name, Constraint_type, Table_name,
R_constraint_name
FROM User_constraints;

Considering the example statements at the beginning of this section, a list similar to
the one below is returned:

CONSTRAINT_NAME CTABLE_NAME R_CONSTRAINT_NAME

SYS C00275 PDEPT TAB
DNAME_UKEY UDEPT TAB

LOC CHECK1 CDEPT TAB

SYS C00278 CEMP_TAB

SYS C00279 CEMP_TAB

SYS C00280 PEMP_TAB

MGR FKEY REMP_TAB SYS C00280
DEPT FKEY REMP_TAB SYS C00275

Notice the following:

« Some constraint names are user specified (such as DNAME_UKBYwhile others
are system specified (such as SYS_C00275).

« Each constraint type is denoted with a different character in the
CONSTRAINT_TYPEolumn. The following table summarizes the characters
used for each constraint type.

4-30 Oracle9i Application Developer's Guide - Fundamentals

Viewing Definitions of Integrity Constraints

Constraint Type Character
PRIMARY KEY P
UNIQUE KEY U
FOREIGN KEY R
CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character
"V" in the CONSTRAINT_TYPEolumn. This constraint type
corresponds to constraints created by the WITH CHECK OPTIORor
views. See Chapter 2, "Managing Schema Objects" for more
information about views and the WITH CHECK OPTION

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints In the previous
example, several constraints are listed with a constraint type of "C". To distinguish
which constraints are NOT NULLconstraints and which are CHECKconstraints in the
EMP_TABand DEPT_TABtables, issue the following query:

SELECT Constraint_name, Search_condition
FROM User_constraints
WHERE (Table_name ='DEPT_TAB' OR Table_name ="EMP_TAB) AND
Constraint_type ="C’;

Considering the example CREATE TABLEtatements at the beginning of this
section, a list similar to the one below is returned:

CONSTRAINT_NAME SEARCH_CONDITION

LOC _CHECK1 locIN(NEW YORK,BOSTON, 'CHICAGO)
SYS C00278 ENAMEISNOT NULL
SYS C00279 DEPTNO ISNOT NULL

Notice the following:
« NOT NULLconstraints are clearly identified in the SEARCH_CONDITIONolumn.

« The conditions for user-defined CHECKconstraints are explicitly listed in the
SEARCH_CONDITIONolumn.

Maintaining Data Integrity Through Constraints 4-31

Viewing Definitions of Integrity Constraints

Example 3: Listing Column Names that Constitute an Integrity Constraint The following
guery lists all columns that constitute the constraints defined on all tables accessible
to you, the user:

SELECT Constraint_name, Table_name, Column_name
FROM User_cons_columns;
Considering the example statements at the beginning of this section, a list similar to
the one below is returned:
CONSTRAINT_NAME TABLE_NAME COLUMN_NAME

DEPT FKEY EMP_TAB DEPTNO
DNAME_UKEY DEPT TAB DNAME
DNAME_UKEY DEPT TAB LOC
LOC CHECK1 DEPT TAB LOC
MGR FKEY EMP TAB MGR
SYS C00275 DEPT TAB DEPTNO
SYS C00278 EMP_TAB ENAME
SYS C00279 EMP_TAB DEPTNO
SYS C00280 EMP_TAB EMPNO

4-32 Oracle9i Application Developer's Guide - Fundamentals

D

Selecting an Index Strategy

This chapter discusses the considerations for using the different types of indexes in
an application. The topics include:

Guidelines for Application-Specific Indexes
Creating Indexes: Basic Examples

When to Use Function-Based Indexes

See Also:

« Oracle9i Database Performance Guide and Reference for detailed
information about using indexes.

=« Oracle9i Database Administrator’s Guide for information about creating
and managing indexes.

» Oracle9i SQL Reference for the syntax of commands to work with
indexes.

Selecting an Index Strategy 5-1

Guidelines for Application-Specific Indexes

Guidelines for Application-Specific Indexes

Indexes are used in Oracle to provide quick access to rows in a table. Indexes
provide faster access to data for operations that return a small portion of a table’s
rows.

Although Oracle allows an unlimited number of indexes on a table, the indexes
only help if they are used to speed up queries. Otherwise, they just take up space
and add overhead when the indexed columns are updated. You should use the
EXPLAIN PLAN feature to determine how the indexes are being used in your
gueries. Sometimes, if an index is not being used by default, you can use a query
hint so that the index is used.

The following sections explain how to create, alter, and drop indexes using SQL
commands. Some simple guidelines to follow when managing indexes are included.

See Also: Oracle9i Database Performance Guide and Reference for
information on query hints and measuring the performance benefits of
indexes.

Create Indexes After Inserting Table Data

Typically, you insert or load data into a table (using SQL*Loader or Import) before
creating indexes. Otherwise, the overhead of updating the index slows down the
insert or load operation. The exception to this rule is that you must create an index
for a cluster before you insert any data into the cluster.

Switch Your Temporary Tablespace to Avoid Space Problems Creating Indexes

When you create an index on a table that already has data, Oracle must use sort
space to create the index. Oracle uses the sort space in memory allocated for the
creator of the index (the amount for each user is determined by the initialization
parameter SORT_AREA_SIZE, but must also swap sort information to and from
temporary segments allocated on behalf of the index creation. If the index is
extremely large, it might be beneficial to complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACEommand.

2. Use the TEMPORARY TABLESPACHBption of the ALTER USERcommand to
make this your new temporary tablespace.

3. Create the index using the CREATE INDEXcommand.

4. Drop this tablespace using the DROP TABLESPACEommand. Then use the
ALTER USERcommand to reset your temporary tablespace to your original
temporary tablespace.

5-2 Oracle9j Application Developer's Guide - Fundamentals

Guidelines for Application-Specific Indexes

Under certain conditions, you can load data into a table with the SQL*Loader
"direct path load", and an index can be created as data is loaded.

See Also: Oracle9i Database Utilities for information on direct path
load.

Index the Correct Tables and Columns
Use the following guidelines for determining when to create an index:

Create an index if you frequently want to retrieve less than 15% of the rows in a
large table. The percentage varies greatly according to the relative speed of a
table scan and how clustered the row data is about the index key. The faster the
table scan, the lower the percentage; the more clustered the row data, the higher
the percentage.

Index columns used for joins to improve performance on joins of multiple
tables.

Primary and unique keys automatically have indexes, but you might want to
create an index on a foreign key; see Chapter 4, "Maintaining Data Integrity
Through Constraints” for more information.

Small tables do not require indexes; if a query is taking too long, then the table
might have grown from small to large.

Some columns are strong candidates for indexing. Columns with one or more of the
following characteristics are candidates for indexing:

Values are relatively unique in the column.
There is a wide range of values (good for regular indexes).
There is a small range of values (good for bitmap indexes).

The column contains many nulls, but queries often select all rows having a
value. In this case, a comparison that matches all the non-null values, such as:

WHERE COL_X >-9.99 *power(10,125)

is preferable to
WHERE COL_ XIS NOT NULL

This is because the first uses an index on COL_X(assuming that COL_Xis a
numeric column).

Columns with the following characteristics are less suitable for indexing:

Selecting an Index Strategy 5-3

Guidelines for Application-Specific Indexes

« There are many nulls in the column and you do not search on the non-null
values.

LONGand LONG RAWblumns cannot be indexed.

The size of a single index entry cannot exceed roughly one-half (minus some
overhead) of the available space in the data block. Consult with the database
administrator for assistance in determining the space required by an index.

Limit the Number of Indexes for EachTable

The more indexes, the more overhead is incurred as the table is altered. When rows
are inserted or deleted, all indexes on the table must be updated. When a column is
updated, all indexes on the column must be updated.

You must weigh the performance benefit of indexes for queries against the
performance overhead of updates. For example, if a table is primarily read-only,
you might use more indexes; but, if a table is heavily updated, you might use fewer
indexes.

Choose the Order of Columns in Composite Indexes

Although you can specify columns in any order in the CREATE INDEXommand,
the order of columns in the CREATE INDEX&tatement can affect query performance.
In general, you should put the column expected to be used most often first in the
index. You can create a composite index (using several columns), and the same
index can be used for queries that reference all of these columns, or just some of
them.

For example, assume the columns of the VENDOR_PART®ble are as shown in
Figure 5-1.

5-4 Oracle9i Application Developer's Guide - Fundamentals

Guidelines for Application-Specific Indexes

Figure 5-1 The VENDOR_PARTS Table

Table VENDOR_PARTS
VEND ID | PART NO | UNIT COST

1012 10-440 .25
1012 10-441 .39
1012 457 4.95
1010 10-440 .27
1010 457 5.10

1220 08-300 1.33
1012 08-300 1.19
1292 457 5.28

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PART®ble is commonly queried by SQL statements
such as the following:

SELECT * FROM vendor_parts
WHERE part_no =457 AND vendor_id=1012;

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Composite indexes speed up queries that use the leading portion of the index. So in
the above example, queries with WHERElauses using only the PART_NQolumn
also note a performance gain. Because there are only five distinct values, placing a
separate index on VENDOR_IDwould serve no purpose.

Gather Statistics to Make Index Usage More Accurate

The database can use indexes more effectively when it has statistical information
about the tables involved in the queries. You can gather statistics when the indexes
are created by including the keywords COMPUTE STATISTICSin the CREATE
INDEX statement. As data is updated and the distribution of values changes, you or
the DBA can periodically refresh the statistics by calling procedures like
DBMS_STATS.GATHER_TABLE_STATISTIC&nd
DBMS_STATS.GATHER_SCHEMA_STATISTICS

Selecting an Index Strategy 5-5

Guidelines for Application-Specific Indexes

Drop Indexes That Are No Longer Required
You might drop an index if:

« It does not speed up queries. The table might be very small, or there might be
many rows in the table but very few index entries.

« The queries in your applications do not use the index.
« The index must be dropped before being rebuilt.

When you drop an index, all extents of the index’s segment are returned to the
containing tablespace and become available for other objects in the tablespace.

Use the SQL command DROP INDEXo drop an index. For example, the following
statement drops a specific named index:

DROP INDEX Emp_ename;

If you drop a table, then all associated indexes are dropped.

To drop an index, the index must be contained in your schema or you must have the
DROP ANY INDEXystem privilege.

Privileges Required to Create an Index

When using indexes in an application, you might need to request that the DBA
grant privileges or make changes to initialization parameters.

To create a new index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE
system privilege. To create an index in another user’s schema, you must have the
CREATE ANY INDEXystem privilege.

Function-based indexes also require the QUERY_REWRITRrivilege, and that the
QUERY_REWRITE_ENABLERDItialization parameter to be set to TRUE

5-6 Oracle9i Application Developer's Guide - Fundamentals

Creating Indexes: Basic Examples

Creating Indexes: Basic Examples

You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 32 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

Oracle automatically creates an index to enforce a UNIQUEor PRIMARY KEY
integrity constraint. In general, it is better to create such constraints to enforce
uniqueness, instead of using the obsolete CREATE UNIQUE INDEXyntax.

Use the SQL command CREATE INDEXo create an index.

In this example, an index is created for a single column, to speed up queries that test
that column:

CREATE INDEX emp_ename ON emp_tab(ename);

In this example, several storage settings are explicitly specified for the index:

CREATE INDEX emp_ename ON emp_tab(ename)
TABLESPACE users
STORAGE (INITIAL 20K
NEXT 20k
PCTINCREASE 75)
PCTFREE O
COMPUTE STATISTICS;

In this example, the index applies to two columns, to speed up queries that test
either the first column or both columns:

CREATE INDEX emp_ename ON emp_tab(ename, empno) COMPUTE STATISTICS;

In this example, the query is going to sort on the function UPPER(ENAME)An
index on the ENAMEolumn itself would not speed up this operation, and it might
be slow to call the function for each result row. A function-based index precomputes

the result of the function for each column value, speeding up queries that use the
function for searching or sorting:

CREATE INDEX emp_upper_ename ON emp_tab(UPPER(ename)) COMPUTE STATISTICS;

Selecting an Index Strategy 5-7

When to Use Domain Indexes

When to Use Domain Indexes

Domain indexes are appropriate for special-purpose applications implemented
using data cartridges. The domain index helps to manipulate complex data, such as
spatial, time-series, audio, or video data. If you need to develop such an
application, see Oracle9i Data Cartridge Developer’s Guide .

Oracle supplies a number of specialized data cartridges to help manage these kinds
of complex data. So, if you need to create a search engine, or a geographic
information system, you can do much of the work simply by creating the right kind
of index.

When to Use Function-Based Indexes

A function-based index is an index built on an expression. It extends your indexing
capabilities beyond indexing on a column. A function-based index increases the
variety of ways in which you can access data.

Notes:
« You must set the QUERY_REWRITE_ENABLERBItialization parameter
to TRUE

« Theindex is more effective if you gather statistics for the table or
schema, using the procedures in the DBMS_STAT$ackage.

« The index cannot contain any null values. Either make sure the
appropriate columns contain no null values, or use the NVLfunction in
the index expression to substitute some other value for nulls.

The expression indexed by a function-based index can be an arithmetic expression
or an expression that contains a PL/SQL function, package function, C callout, or
SQL function. Function-based indexes also support linguistic sorts based on
collation keys, efficient linguistic collation of SQL statements, and case-insensitive
sorts.

Like other indexes, function-based indexes improve query performance. For
example, if you need to access a computationally complex expression often, then
you can store it in an index. Then when you need to access the expression, it is
already computed. You can find a detailed description of the advantages of
function-based indexes in "Advantages of Function-Based Indexes" on page 5-9.

Function-based indexes have all of the same properties as indexes on columns.
However, unlike indexes on columns which can be used by both cost-based and

5-8 Oracle9i Application Developer's Guide - Fundamentals

When to Use Function-Based Indexes

rule-based optimization, function-based indexes can be used by only by cost-based
optimization. Other restrictions on function-based indexes are described in
"Restrictions for Function-Based Indexes" on page 5-11.

See Also: For more information on function-based indexes, see
Oracle9i Database Concepts. For information on creating
function-based indexes, see Oracle9i Database Administrator’s Guide.

Advantages of Function-Based Indexes
Function-based indexes:

Increase the number of situations where the optimizer can perform a range
scan instead of a full table scan. For example, consider the expression in the
WHERElause below:

CREATE INDEX ldx ON Example_tab(Column_a + Column_b);
SELECT * FROM Example_tab WHERE Column_a + Column_b <10;

The optimizer can use a range scan for this query because the index is built on
(column_a + column_b). Range scans typically produce fast response times if
the predicate selects less than 15% of the rows of a large table. The optimizer
can estimate how many rows are selected by expressions more accurately if the
expressions are materialized in a function-based index. (Expressions of
function-based indexes are represented as virtual columns and ANALYZEcan
build histograms on such columns.)

Precompute the value of a computationally intensive function and store it in
the index. An index can store computationally intensive expression that you
access often. When you need to access a value, it is already computed, greatly
improving query execution performance.

Create indexes on object columns and REF columns. Methods that describe
objects can be used as functions on which to build indexes. For example, you
can use the MAPmethod to build indexes on an object type column.

Create more powerful sorts. You can perform case-insensitive sorts with the
UPPERand LOWERunctions, descending order sorts with the DESCkeyword,
and linguistic-based sorts with the NLSSORTfunction.

Selecting an Index Strategy 5-9

When to Use Function-Based Indexes

Note: Oracle sorts columns with the DESCkeyword in descending
order. Such indexes are treated as function-based indexes.
Descending indexes cannot be bitmapped or reverse, and cannot be
used in bitmapped optimizations. To get the pre-Oracle 8.1 release
DESCfunctionality, remove the DESCkeyword from the CREATE
INDEX statement.

Another function-based index calls the object method distance _from_equator

for each city in the table. The method is applied to the object column Reg_Obj . A
guery could use this index to quickly find cities that are more than 1000 miles from
the equator:

CREATE INDEX Distance_index
ON Weatherdata._tab (Distance_from_equator (Reg_obj));

SELECT *FROM Weatherdata_tab
WHERE (Distance_from_equator (Reg_Ohj)) >"1000’;

Another index stores the temperature delta and the maximum temperature. The
result of the delta is sorted in descending order. A query could use this index to
quickly find table rows where the temperature delta is less than 20 and the
maximum temperature is greater than 75.

CREATE INDEX compare_index
ON Weatherdata._tab ((Maxtemp - Mintemp) DESC, Maxtemp);

SELECT *FROM Weatherdata_tab
WHERE ((Maxtemp - Mintemp) < '20' AND Maxtemp >'75);

Examples of Function-Based Indexes

Example: Function-Based Index for Case-Insensitive Searches
The following command allows faster case-insensitive searches in table EMP_TAB

CREATE INDEX Idx ON Emp_tab (UPPER(Ename));

The SELECTcommand uses the function-based index on UPPERe_name) to return
all of the employees with name like :KEYCOL

SELECT *FROM Emp_tab WHERE UPPER(Ename) like KEYCOL;

5-10 Oracle9i Application Developer’s Guide - Fundamentals

When to Use Function-Based Indexes

Example: Precomputing Arithmetic Expressions with a Function-Based Index

The following command computes a value for each row using columns A, B, and C,
and stores the results in the index.

CREATE INDEX Idx ON Fbi_tab (A+B*(C-1), A B);

The SELECTstatement can either use index range scan (since the expression is a
prefix of index IDX) or index fast full scan (which may be preferable if the index has
specified a high parallel degree).

SELECT a FROM Fhi_tabWHERE A+B*(C - 1) <100;

Example: Function-Based Index for Language-Dependent Sorting

This example demonstrates how a function-based index can be used to sort based
on the collation order for a national language. The NLSSORTfunction returns a sort
key for each name, using the collation sequence GERMAN

CREATE INDEX Nis_index
ONNis_tab (NLSSORT(Name,'NLS_SORT = German));

The SELECTstatement selects all of the contents of the table and orders it by NAME
The rows are ordered using the German collation sequence. The Globalization
Support parameters are not needed in the SELECTstatement, because in a German
session, NLS_SORTis set to German and NLS_COMHBs set to ANSI.

SELECT *FROM Nis_tab WHERE Name IS NOT NULL
ORDER BY Name;

Restrictions for Function-Based Indexes
Note the following restrictions for function-based indexes:

« Only cost-based optimization can use function-based indexes. Remember to set
the QUERY_REWRITE_ENABLHEDIitialization parameter to TRUE and call
DBMS_STATS.GATHER_TABLE_STATISTICSr
DBMS_STATS.GATHER_SCHEMA_STATISTIC®r the function-based index to
be effective.

« Any top-level or package-level PL/SQL functions that are used in the index
expression must be declared as DETERMINISTIC. That is, they always return
the same result given the same input, like the UPPERfunction. You must ensure
that the subprogram really is deterministic, because Oracle does not check that
the assertion is true.

Selecting an Index Strategy 5-11

When to Use Function-Based Indexes

The following semantic rules demonstrate how to use the keyword
DETERMINISTIC:

« Atop level subprogram can be declared as DETERMINISTIC.

« A PACKAGHevel subprogram can be declared as DETERMINISTIC in the
PACKAGEpecification but not in the PACKAGE BODFrrors are raised if
DETERMINISTIC is used inside a PACKAGE BODY

« A private subprogram (declared inside another subprogram or a PACKAGE
BODY cannot be declared as DETERMINISTIC.

« A DETERMINISTIC subprogram can call another subprogram whether the
called program is declared as DETERMINISTIC or not.

« Expressions used in a function-based index cannot contain any aggregate
functions. The expressions should reference only columns in a row in the table.

« You must have the initialization parameters COMPATIBLEset to 8.1.0.0.0 or
higher, QUERY_REWRITE_ENABLED=TRdkd
QUERY_REWRITE_INTEGRITY=TRUSTED

« You must analyze the table or index before the index is used.
« Bitmap optimizations cannot use descending indexes.
« Function-based indexes are not used when OR-expansion is done.

« The index function cannot be marked NOT NULLTo avoid a full table scan, you
must ensure that the query cannot fetch null values.

« Function-based indexes cannot use expressions that return VARCHAR®r RAW
data types of unknown length from PL/SQL functions. A workaround is to
limit the size of the function’s output by indexing a substring of known length:

— The INITIALS() function might retum 1 letter, 2 letters, 3 letters, etc.

—We limit the retum value to 10 characters for purposes of the index.

CREATE INDEX func_substr_index ON
emp_tab(substr(initials(ename),1,10);

— Call SUBSTR both when creating the index and when referencing

—the function in queries.
SELECT SUBSTR(initials(ename),1,10) FROM emp_tab;

5-12 Oracle9i Application Developer's Guide - Fundamentals

6

Speeding Up Index Access with
Index-Organized Tables

This chapter covers the following topics:

What Are Index-Organized Tables?
Features of Index-Organized Tables
Why Use Index-Organized Tables?

Example of an Index-Organized Table

See Also: For the syntax of the ORGANIZATION INDEXlause of
the CREATE TABLEtatement, see Oracle9i SQL Reference.

Speeding Up Index Access with Index-Organized Tables 6-1

What Are Index-Organized Tables?

What Are Index-Organized Tables?

An index-organized table—in contrast to an ordinary table—has its own way of
structuring, storing, and indexing data. A comparison with an ordinary table may
help to explain its uniqueness.

Index-Organized Tables Versus Ordinary Tables

A row in an ordinary table has a stable physical location. Once this location is
established, the row never completely moves. Even if it is partially moved with the
addition of new data, there is always a row piece at the original physical
address—identified by the original physical rowid—from which the system can find
the rest of the row. As long as the row exists, its physical rowid does not change. An
index in an ordinary table stores both the column data and the rowid.

A row in an index-organized table does not have a stable physical location. It keeps
data in sorted order, in the leaves of a B*-tree index built on the table’s primary key.
These rows can move around to preserve the sorted order. For example, an insertion
can cause an existing row to move to a different slot, or even to a different block.

The leaves of the B*-tree index hold the primary key and the actual row data.
Changes to the table data—for example, adding new rows, or updating or deleting
existing rows—result only in updating the index.

See Also: For more information on B*-tree indexes, see Oracle9i
Database Concepts

Advantages of Index-Organized Tables

Because they store rows in a format optimized for access by the primary key,
index-organized tables offer the following advantages over ordinary tables:

Fast access to table data for queries involving exact match and/or range search on

a primary key Once a search has located the key values, the remaining data is
present at that location. The index-organized table eliminates the 1/0 operation of
following a rowid back to table data.

6-2 Oracle9j Application Developer's Guide - Fundamentals

What Are Index-Organized Tables?

Best table organization for 24x7 operations When your database must be
available 100% of the time, index-organized tables provide the following
advantages:

= You can reorganize an index-organized table or an index-organized table
partition (to recover space or improve performance) without rebuilding its
secondary indexes. This results in a short reorganization maintenance window.

= You can reorganize an index-organized table online.Along with online
reorganization of secondary indexes, this capability eliminates the
reorganization maintenance window.

Reduced storage requirements The key columns are not duplicated in both the

table and the index, and no additional storage is needed for rowids. When the key
columns take up a large part of the row, the storage savings can be as much as 50%.

Figure 6-1 Ordinary Table and an Index versus Index-Organized Table

Primary Key Index
All data stored
in index

DBMS 1
DBMS 2
Oracle 1
Oracle 2

DBMS 1
DBMS 2
Oracle 1
Oracle 2

ROWID 1
ROWID 2
ROWID 3
ROWID 4

DBMS1 17
DBMS 2 2
Oraclel 14
Oracle 2 31

Speeding Up Index Access with Index-Organized Tables 6-3

Features of Index-Organized Tables

Features of Index-Organized Tables

You can move your existing data into an index-organized table and do all the
operations you would perform in an ordinary table. Some of the features of
index-organized tables are:

Full Support for ALTER TABLE Options All of the alter options available on
ordinary tables are available for index-organized tables. This includes AD) MODIFY
and DROP COLUMNSAd CONSTRAINTSHowever, the primary key constraint for
an index-organized table cannot be dropped, deferred, or disabled.

Logical ROWID Support Because of the inherent movability of rows in a B*-tree
index, a secondary index on an index-organized table cannot be based on a physical
rowid, which is inherently fixed. Instead, a secondary index for an index-organized
table is based on the logical rowid. An index-organized table row has no permanent
physical address and can move across data blocks when new rows are inserted.
However, even if the physical location of a row changes, its logical rowid remains
valid.

A logical rowid includes the table’s primary key and a physical guess which
identifies the database block address at which the row is likely to be found. The
physical guess makes rowid-based access to non-volatile index-organized tables
comparable to similar access of ordinary tables.

Logical rowids are similar to physical rowids in the following ways:

= You can select ROWIDfrom an index-organized table, and access the rows using
ROWIDas a column name in a WHEREIlause.

« Access through the logical rowid is the fastest possible way to get to a specific
row, even if it takes more than one block access to get it.

« The same logical rowid can be used to access a row as long as the primary key
value for the row does not change.

The database server uses a single datatype, called universal rowid, to support both
logical and physical rowids.

To switch to index-organized tables, applications that use rowids might have to
change to universal rowids, but these changes are made easier by the UROWID
datatype, which lets applications access logical and physical rowids in a unified
manner.

For more information: See "Declaring a Universal Rowid
Datatype: Example” on page 6-11.

6-4 Oracle9/ Application Developer's Guide - Fundamentals

Features of Index-Organized Tables

Secondary Index Support Secondary indexes on index-organized tables differ from
indexes on ordinary tables in two ways:

« They store logical rowids instead of physical rowids. Thus, a table maintenance
operation such as ALTER TABLE MOV#oes not make the secondary index
unusable.

« The logical rowid also includes a physical guess that provides a direct access to
the index leaf block containing the index-organized table row. If the physical
guess is correct, a secondary index scan would incur a single additional 170
once the secondary key is found. The performance would be similar to that of a
secondary index-scan on an ordinary table.

Both unique and non-unique secondary indexes, as well as function-based
secondary indexes, are supported. Bitmap indexes on non-partitioned
index-organized tables are supported, provided the index-organized table is created
with a mapping table. For more information about mapping tables, see the
information about index-organized tables in Oracle9i Database Concepts

LOB Columns You can create internal and external LOBcolumns in
index-organized tables to store large unstructured data such as audio, video, and
images. The SQL DDL, DML, and piece-wise operations on LOBs in
index-organized tables exhibit the same behavior as in ordinary tables. The main
differences are:

« Tablespace mapping—BYy default (or unless specified otherwise), the LOB’s
data and index segments are created in the tablespace in which the primary key
index segment of the index-organized table is created.

« Inline versus Out-of-line storage—LOBs in index-organized tables with
overflow segments are the same as those in ordinary tables. All LOBsin
index-organized tables created without an overflow segment are stored
out-of-line (that is, the default storage attribute is DISABLE STORAGE IN ROW
Specifying an ENABLE STORAGE IN RC# such LOBs causes an error.

LOBcolumns are supported in range-partitioned index-organized tables.

Other LOBfeatures—such as BFILEs , temporary LOBs, and varying character
width LOBs—are also supported in index-organized tables. You use them as you
would in ordinary tables.

Parallel Query Queries on index-organized tables involving primary key index
scan can be executed in parallel.

Speeding Up Index Access with Index-Organized Tables 6-5

Features of Index-Organized Tables

Object Support Most of the object features are supported on index-organized
tables, including Object Type, VARRAYsNested Table, and REFColumns.

SQL*Loader This utility supports both ordinary and direct path load of
index-organized tables and their associated indexes (including partitioning
support). However, direct path parallel load to an index-organized table is not
supported. An alternate method of achieving the same result is to perform parallel
load to an ordinary table using SQL*Loader, then use the parallel CREATE TABLE
AS SELECT option to build the index-organized table.

Export/Import ~ This utility supports export (both ordinary and direct path) and
import of non-partitioned and partitioned index-organized tables.

Distributed Database and Replication Support You can replicate both
non-partitioned and partitioned index-organized tables.

Tools The Oracle Enterprise Manager supports generating SQL statements for
CREATEand ALTERoperations on an index-organized table.

Key Compression Key compression allows elimination of repeated occurrences of
key column prefixes in index-organized tables and indexes. The salient
characteristics of the scheme are:

« Key compression breaks an index key into a prefix entry and suffix entry.
Compression is achieved by sharing the prefix entries among all the suffix
entries in an index block.

« Only keys in the leaf blocks of a B*-tree are compressed. Keys in the branch
blocks of a B*-tree are still suffix truncated but not subjected to key
compression.

6-6 Oracle9/ Application Developer's Guide - Fundamentals

Why Use Index-Organized Tables?

Why Use Index-Organized Tables?

There are several occasions when you may prefer to use index-organized tables over
ordinary tables.

Index-Organized Tables Are Part of Oracle Advanced Queuing Oracle Advanced
Queuing provides message queuing as an integrated part of the database server,
and uses index-organized tables to hold metadata information for multiple
consumer queues.

Index-Organized Tables Avoid Redundant Data Storage For tables, where the
majority of columns form the primary key, there is a significant amount of
redundant data stored. You can avoid this redundant storage by using an
index-organized table. Also, by using an index-organized table, you increase the
efficiency of the primary key-based access to non-key columns.

Index-Organized Tables Are Suited to VLDB and OLTP Applications The ability to
partition index-organized tables on a range of column values makes them suitable
for VLDB applications.

One major advantage of an index-organized table comes from the logical nature of
its secondary indexes. After an ALTER TABLE MOVEand SPLIT operation, global
indexes on index-organized tables remain usable because the index rows contain
logical rowids. You can avoid a complete index rebuild, which can be very
expensive. Also, the ALTER TABLE MOVé&peration can be done on-line, making
index-organized tables ideal for applications requiring 24x7 availability.

Similarly, after an ALTER TABLE MOV&peration, local indexes on index-organized
tables are still usable.

These partition maintenance operations do make the local and global indexes on
index-organized table slower as the guess component of the logical rowid becomes
invalid. However, the indexes are still usable through the primary key-component
of the logical rowid. Note that the invalid physical guesses in these indexes can be
fixed online with the help of ALTER INDEX ... UPDATE BLOCK REFERENCES
operation.

Index-Organized Tables Are Suited to Time-Series Applications Time-series
applications use a set of time-stamped rows belonging to a single item, such as a
stock price. The ability to cluster rows based on the primary key makes
index-organized tables attractive for such applications. By defining an
index-organized table with primary key (stock symbol, time stamp), the Oracle8
Time Series option can store and manipulate time-series data efficiently. You can

Speeding Up Index Access with Index-Organized Tables 6-7

Why Use Index-Organized Tables?

achieve more storage savings by compressing repeated occurrences of the item
identifier (for example, the stock symbol) in a time series by using an
index-organized table with key compression.

Index-Organized Tables Store Nested Tables Efficiently For a nested table
column, Oracle internally creates a storage table to hold all the nested table rows.

You can store the nested table as an index-organized table:

CREATE TYPE Project_tAS OBJECT(Pno NUMBER, Pname VARCHAR2(80));
CREATE TYPE Project_setAS TABLE OF Project .
CREATE TABLE Employees (Eno NUMBER, Projects PROJECT SET)
NESTED TABLE Projects_ntab STORE AS Emp_project tab
(PRIMARY KEY(Nested _table_id, Pno)) ORGANIZATION INDEX)
RETURN AS LOCATOR;

The rows belonging to a single nested table instance are identified by a
NESTED_TABLE_IDcolumn. If an ordinary table is used to store nested table
columns, the nested table rows typically get de-clustered. But when you use an
index-organized table, the nested table rows can be clustered based on the
NESTED_TABLE_IDcolumn.

Index-Organized Tables can Store Extensible Index Data The Extensible Indexing
Framework lets you add a new access method to the database. Typically,
domain-specific indexing schemes need some storage mechanism to hold their
index data. Index-organized tables are ideal candidates for such domain index
storage. The interMedia Spatial and Text features use index-organized tables for
storing their index data.

6-8 Oracle9/ Application Developer's Guide - Fundamentals

Example of an Index-Organized Table

Example of an Index-Organized Table

Note: You may need to set up the following data structures for
certain examples to work; such as:

CONNECT system/manager

GRANT CREATE TABLESPACE TO scott;

CONNECT scott/tiger

CREATE TABLESPACE Ind_tbs DATAFILE 'diskl:moredata2’
SIZE 100K;

CREATE TABLESPACE Doc_tab DATAFILE 'diskl:moredata2’
SIZE 100K;

CREATE TABLESPACE Ovf_tbs DATAFILE 'disk1l:moredata3’
SIZE 100K;

CREATE TABLESPACE Ind_tsO DATAFILE 'diskl:moredata5’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts0 DATAFILE 'diskl:moredata6’
SIZE 100K REUSE;

CREATE TABLESPACE Ind_ts1 DATAFILE 'diskl:moredata?7’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts1 DATAFILE 'diskl:moredata8’
SIZE 100K REUSE;

CREATE TABLESPACE Ind_ts2 DATAFILE 'diskl:moredata9’
SIZE 100K REUSE;

CREATE TABLESPACE Ov_ts2 DATAFILE 'disk1l:moredatal0Q’
SIZE 100K REUSE;

CREATE TABLE Doc_tab (tok VARCHAR2(4),id
VARCHAR2(14),freq NUMBER);

This example illustrates some of the basic tasks in creating and using
index-organized tables. In this example, a text search engine keeps a record of all
the web pages that use specific words or phrases, so that it can return a list of
hypertext links in response to a search query.

This example illustrates the following tasks:

« Moving Existing Data from an Ordinary Table into an Index-Organized Table:
Example

« Creating Index-Organized Tables: Example
» Declaring a Universal Rowid Datatype: Example

« Creating Secondary Indexes on Index-Organized Tables: Example

Speeding Up Index Access with Index-Organized Tables 6-9

Example of an Index-Organized Table

« Manipulating Index-Organized Tables: Example
« Specifying an Overflow Data Segment: Example

« Determining the Last Non-Key Column Included in the Index Row Head Piece:
Example

« Storing Columns in the Overflow Segment: Example
« Modifying Physical and Storage Attributes: Example
« Partitioning an Index-Organized Table: Example

« Rebuilding an Index-Organized Table: Example

Moving Existing Data from an Ordinary Table into an Index-Organized Table:
Example

The CREATE TABLE AS SELECT command lets you move existing data from an
ordinary table into an index-organized table. In the following example, an
index-organized table, called docindex , is created from an ordinary table called
doctable

CREATE TABLE Docindex
(Token,
Doc id,
Token_frequency,
CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX TABLESPACE Ind_ths
PARALLEL (DEGREE 2)
AS SELECT *from Doc_tab;

Note that the PARALLELclause allows the table creation to be performed in parallel.

Creating Index-Organized Tables: Example

To create an index-organized table, you use the ORGANIZATION INDEXclause. In
the following example, an inverted index—typically used by Web text-search
engines—uses an index-organized table.

CREATE TABLE Docindex
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
CONSTRAINT Pk_docindex PRIMARY KEY (Token, Doc _id)

)

6-10 Oracle9i Application Developer’s Guide - Fundamentals

Example of an Index-Organized Table

ORGANIZATION INDEX TABLESPACE Ind_tbs;

Declaring a Universal Rowid Datatype: Example
The following example shows how you declare the UROWIDatatype.

DECLARE
Rid UROWID;
BEGIN
INSERT INTO Docindex VALUES ('Or80', 2, 30)
RETURNING Rowid INTO RID;
UPDATE Docindex SET Token="0r81' WHERE ROWID = Rid;
END;

Creating Secondary Indexes on Index-Organized Tables: Example

You can create secondary indexes on index-organized tables to provide multiple
access paths. The following example shows the creation of an index on (doc_id ,
token).

CREATE INDEX Doc _id_index on Docindex(Doc _id, Token);

This secondary index allows Oracle to efficiently process queries involving
predicates on doc_id , as the following example illustrates.

SELECT Token FROM Docindex WHERE Doc_id=1,;

Manipulating Index-Organized Tables: Example

Applications manipulate the index-organized tables just like an ordinary table,
using standard SQL statements for SELECT INSERT, UPDATEor DELETE
operations. For example, you can manipulate the docindex table as follows:

INSERT INTO Docindex VALUES (‘Oracle8.1, 3, 17);

SELECT * FROM Docindex;

UPDATE Docindex SET Token ='Oracle8 WHERE Token ='Oracle8.1’;
DELETE FROM Docindex WHERE Doc _id=1;

Also, you can use SELECT FOR UPDATEstatements to lock rows of an
index-organized table. All of these operations result in manipulating the primary
key B*-tree index. Both query and DML operations involving index-organized
tables are optimized by using this cost-based approach.

Speeding Up Index Access with Index-Organized Tables 6-11

Example of an Index-Organized Table

Specifying an Overflow Data Segment: Example

Storing all non-key columns in the primary key B*-tree index structure may not
always be desirable because, for example:

« Each additional non-key column stored in the primary key index reduces the
dense clustering of index rows in the B*-tree index leaf blocks

or because

« Aleaf block of aB*-tree must hold at least two index rows, and putting all
non-key columns as part of an index row may not be possible.

To overcome these problems, you can associate an overflow data segment with an
index-organized table. In the following example, an additional column,
token_offsets , is required for the docindex table. This example shows how
you can create an index-organized table and use the OVERFLOWftion to create an
overflow data segment.

CREATE TABLE Docindex2
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token _offsets VARCHAR(512),
CONSTRAINT Pk_docindex2 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX TABLESPACE Ind_ths PCTTHRESHOLD 20

OVERFLOW TABLESPACE Ovf_ths INITRANS 4;

For the overflow data segment, you can specify physical storage attributes such as
TABLESPACEINITRANS, and so on.

For an index-organized table with an overflow segment, the index row contains a
<key, row head> pair, where the row head contains the first few non-key columns
and a rowid that points to an overflow row-piece containing the remaining column
values. Although this approach incurs the storage cost of one rowid for each row, it
nevertheless avoids key column duplication.

6-12 Oracle9i Application Developer's Guide - Fundamentals

Example of an Index-Organized Table

Figure 6-2 Overflow Segment

Primary Key Index

Non-key Cols
b y

Key Cols | Non-key Cols | ROWID

Determining the Last Non-Key Column Included in the Index Row Head Piece:
Example

To determine the last non-key column to include in the index row head piece, you
use the PCTTHRESHOLBption specified as a percentage of the leaf block size. The
remaining non-key columns are stored in the overflow data segment as one or more
row-pieces. Specifically, the last non-key column to be included is chosen so that the
index row size (key +row head) does not exceed the specified threshold (which, in
the following example, is 20% of the index leaf block). By default, PCTTHRESHOLD
is set at 50 when omitted.

The PCTTHRESHOLBption determines the last non-key column to be included in

the index for each row. It does not, however, allow you to specify that the same set
of columns be included in the index for all rows in the table. For this purpose, the

INCLUDING option is provided.

The CREATE TABLEstatement in the following example includes all the columns
up to the token_frequency column in the index leaf block and forces the
token_offsets column to the overflow segment.

CREATE TABLE Docindex3
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token offsets VARCHAR(512),
CONSTRAINT Pk_docindex3 PRIMARY KEY (Token, Doc_id)

Speeding Up Index Access with Index-Organized Tables 6-13

Example of an Index-Organized Table

)
ORGANIZATION INDEX TABLESPACE Ind_ths INCLUDING Token_frequency

OVERFLOW TABLESPACE OVf_tbs;

Such vertical partitioning of a row between the index and data segments allows for
higher clustering of rows in the index. This results in better query performance for
the columns stored in the index. For example, if the token_offsets column is
infrequently accessed, then pushing this column out of the index results in better
clustering of index rows in the primary key B*-tree structure (Figure 6-3). This in
turn results in overall improved query performance. However, there is one
additional block access for columns stored in the overflow data segment, and this
can slow performance.

Storing Columns in the Overflow Segment: Example

The INCLUDING option ensures that all columns after the specified including

column are stored in the overflow segment. If the including column specified is

such that corresponding index row size exceeds the specified threshold, then the

last non-key column to be included is determined according to the PCTTHRESHOLD
option.

6-14 Oracle9i Application Developer's Guide - Fundamentals

Example of an Index-Organized Table

Figure 6-3 PCTTHRESHOLD versus INCLUDING Column Usage

PCTTHRESHOLD option forces

token_offsets into overflow DBMS 1 17 ROWID1
3789 ..
segments for some rows DBMS2 2 20 45) 510 32
Oracle 1 14 ROWID2
416 21 ...
Oracle 2
INCLUDING option forces
token_offsets into overflow DBMS 1 3789 ..
segment for all rows DBMS 2 2 ROWID3 51032 ...
Oracle1 14 ROWID2 2045 ...
Oracle 2 > 416 21 ...

Modifying Physical and Storage Attributes: Example

You can use the ALTER TABLEcommand to modify physical and storage attributes
for both the index and overflow data segments as well as alter PCTTHRESHOLBNd
INCLUDING column values. The following example sets the INITRANS of index
segment to 4, PCTTHRESHOL® 20, and the INITRANS of the overflow data
segment to 6. The altered values are used for subsequent operations on the table.

ALTER TABLE Docindex INITRANS 4 PCTTHRESHOLD 20 OVERFLOW INITRANS 6;
For index-organized tables created without an overflow data segment, you can add

an overflow data segment using ALTER TABLE ADD OVERFL@Wtion. The
following example shows how to add an overflow segment to the docindex table.

ALTER TABLE Docindex ADD OVERFLOW,

Speeding Up Index Access with Index-Organized Tables 6-15

Example of an Index-Organized Table

Analyzing an Index-Organized Table: Example

Index-organized tables are analyzed by the ANALYZEcommand, just like ordinary
tables. The following example analyzes the docindex table:

ANALYZE TABLE Docindex COMPUTE STATISTICS;

The ANALYZEcommand analyzes both the primary key index segment and the
overflow data segment, and computes logical as well as physical statistics for the
table. You can determine how many rows have one or more chained overflow
row-pieces using the ANALYZE LIST CHAINED ROWs$ption. With the logical rowid
feature, a separate CHAINED_ROW®ble is not needed.

Loading, Exporting, Importing, or Replicating an Index-Organized Table

Data can be loaded into both non-partitioned and partitioned index-organized
tables using the ordinary or direct path with the SQL*Loader. The data can also be
exported or imported using the Export/Import utility. Index-organized tables can
also be replicated in a distributed database just like ordinary tables.

Partitioning an Index-Organized Table: Example

You can partition index-organized tables by range of column values or by a hash
value derived from a set of columns. The set of partitioning columns must be a
subset of the primary key columns. Only a single partition needs to be searched for
to verify the uniqueness of the primary key during DML operations. This preserves
the partition independence property.

The following are key aspects of partitioned index-organized tables:

« You must specify the ORGANIZATION INDEXlause to create an
index-organized table as part of table-level attributes. This property is implicitly
inherited by all partitions.

» You must specify the OVERFLOW/ption as part of table-level attribute to create
an index-organized table with overflow data segment.

« The OVERFLOWption results in the creation of overflow data segments, which
are themselves equi-partitioned with the primary key index segments. That is,
each partition has an index segment and an overflow data segment.

« For hash-partitioned tables, include the ROW MOVEMENT ENABLkEuse of the
CREATE TABLEstatement. Rows might move from one partition to another
due to changes in the columns used to derive the hash value.

6-16 Oracle9i Application Developer’s Guide - Fundamentals

Example of an Index-Organized Table

« Asinordinary partitioned tables, you can specify default values for physical
attributes at the table-level. These can be overridden for each partition (both for
index and overflow data segment).

« The tablespace for index segment, if not specified for a partition, is set to the
table level default. If the table level default is not specified, then the default
tablespace for the user is used.

« The default values for PCTTHRESHOLEBNd INCLUDING column can only be
specified at the table level.

« All the attributes that are specified before the OVERFLOWeyword apply to
primary index segments. All the attributes specified after the OVERFLOW
keyword apply to overflow data segments.

« The tablespace for an overflow data segment, if not specified for a partition, is
set to the table-level default. If the table-level default is not specified, the
tablespace of the corresponding partition’s index segment is used.

The following example continues the example of the docindex table. It illustrates a
range partition on token values.

CREATE TABLE Docindex4
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT Pk_docindex4 PRIMARY KEY (Token, Doc_id)
)
ORGANIZATION INDEX INITRANS 4 INCLUDING Token_frequency
OVERFLOW INITRANS 6
PARTITION BY RANGE(token)
(PARTITION P1 VALUES LESS THAN ()
TABLESPACE Ind_tsO OVERFLOW TABLESPACE Ov_ts0,
PARTITION P2 VALUES LESS THAN (s)
TABLESPACE Ind_ts1 OVERFLOW TABLESPACE Ov_ts1,
PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2);

This creates the table shown in Figure 6-4. The INCLUDING clause stores the
token_offsets column in the overflow data segment for each partition.

Speeding Up Index Access with Index-Organized Tables 6-17

Example of an Index-Organized Table

Figure 6-4 Range-partitioned Index-organized Table with Overflow Segment

Primary key index on token <'j' token <'s' token < MAXVALL
(token, doc_id)

Table docindex
range-partitioned
on token

Overflow segment ov_ts0 ov_tsl ov_ts2
holds token_offsets - - -

Partitioned indexes on index-organized tables are supported. Local prefixed, local
non-prefixed, and global prefixed partitioned indexes are supported on
index-organized tables. The only difference is that these indexes store logical rowids
instead of physical rowids.

All of the ALTER TABLEoperations are available for partitioned index-organized
tables. These operations are slightly different with index-organized tables than with
ordinary tables:

« For ALTER TABLE MOVRartition operations, all indexes—Ilocal, global, and
non-partitioned—remain USABLEbecause the indexes contain logical rowids.
However, the guess stored in the logical rowid becomes invalid.

« For SPLIT partition operations, all non-partitioned indexes or global index
partitions remain usable.

« For ALTER TABLE EXCHANGtartition, the target table must be a compatible
index-organized table.

« Users can use the ALTER TABLE ADD OVERFLOWommand to add an
overflow segment and specify table-level default and partition-level physical
and storage attributes. This operation results in adding an overflow data
segment to each partition.

6-18 Oracle9i Application Developer’s Guide - Fundamentals

Example of an Index-Organized Table

ALTER INDEXoperations are very similar to those on ordinary tables. The only
difference is that operations that reconstruct the entire index—namely, ALTER
INDEX REBUILD and SPLIT_PARTITION —result in reconstructing the guess
stored as part of the logical rowid. New ALTER INDEX UPDATE BLOCK
REFERENCESyntax fixes the invalid physical guesses without reconstructing the
indexes.

Query and DML operations on partitioned index-organized tables work the same as
on ordinary partitioned tables.

Compressing the Keys of an Index-Organized Table: Example

You enable key compression by using the COMPRES8ause when specifying
physical attributes for the index segment. You can specify the prefix length (as
number of columns) to identify how the key can be broken into a prefix and a suffix.
Prefix length can be between 1 and the number of primary key columns minus 1.

CREATE TABLE Docindex5
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT pk_docindex5 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX TABLESPACE Ind_ths COMPRESS 1 INCLUDING Token_frequency
OVERFLOW TABLESPACE OVf_tbs;

Common prefixes of length 1 (that is, token column) are compressed in the primary
key (token, doc_id) occurrences. For the list of primary key values (‘DBMS’, 1),
(‘DBMS’, 2), (‘Oracle’, 1), (‘Oracle’, 2), the repeated occurrences of ‘DBMS’ and
‘Oracle’ are compressed away.

If a prefix length is not specified, by default it is set to the number of primary key
columns minus 1. You can specify the compress option when creating an
index-organized table or when moving an index-organized table using ALTER
TABLE MOVH-or example, you can disable compression as follows:

ALTER TABLE Docindex5 MOVE NOCOMPRESS;

Similarly, the indexes for ordinary tables and index-organized tables can be
compressed using the COMPRESSption.

Compressing the Keys for Partitioned Index-Organized Tables: Example You can also
compress the keys for partitioned index-organized tables, by specifying the

Speeding Up Index Access with Index-Organized Tables 6-19

Example of an Index-Organized Table

compression clause as part of the table-level defaults. Compression can be enabled
or disabled for each partition. The prefix length cannot be changed at the partition
level.

CREATE TABLE Docindex6
(Token CHAR(20),
Doc id NUMBER,
Token_frequency NUMBER,
Token_offsets VARCHAR(512),
CONSTRAINT Pk_docindex6 PRIMARY KEY (Token, Doc_id)

)
ORGANIZATION INDEX INITRANS 4 COMPRESS 1 INCLUDING Token _frequency
OVERFLOW INITRANS 6
PARTITION BY RANGE(Token)
(PARTITION P1VALUES LESS THAN (J)
TABLESPACE Ind_tsO OVERFLOW TABLESPACE Ov _ts0,
PARTITION P2 VALUES LESS THAN (s)
TABLESPACE Ind_ts1 NOCOMPRESS OVERFLOW TABLESPACE Ov _ts1,
PARTITION P3 VALUES LESS THAN (MAXVALUE)
TABLESPACE Ind_ts2 OVERFLOW TABLESPACE Ov_ts2

)

All partitions inherit the table-level default for prefix length. Partitions P1 and P3
are created with key-compression enabled. For partition P2, the compression is
disabled by the partition level NOCOMPRESfption.

For ALTER TABLE MOVE&nd SPLIT operations, the COMRPESption can be
altered. The following example rebuilds the partition with key compression
enabled.

ALTER TABLE Docindex6 MOVE PARTITION P2 COMPRESS;

Rebuilding an Index-Organized Table: Example

An SQL command, ALTER TABLE MOV,Hets you rebuild the table. This should be
used when the B*-tree structure containing an index-organized table gets
fragmented due to a large number of inserts, updates, or deletes. The MOVEBbption
rebuilds the primary key B*-tree index.

By default, the overflow data segment is not rebuilt, except when;
« The OVERFLOMWlause is explicitly specified,

« The PCTHRESHOLBNd/or INCLUDING column value are altered as part of
the MOVEtatement.

« Any LOBsare moved explicitly

6-20 Oracle9i Application Developer’s Guide - Fundamentals

Example of an Index-Organized Table

By default, LOBcolumns related to index and data segments are not rebuilt, except
when the LOBcolumns are explicitly specified as part of the MOVEtatement. The
following example rebuilds the B*-tree index containing the table data after setting
INITRANS to 6 for index blocks.

ALTER TABLE docindex MOVE INITRANS 6;

The following example rebuilds both the primary key index and overflow data
segment.

ALTER TABLE docindex MOVE TABLESPACE Ovf_ths OVERFLOW TABLESPACE ov_ts0;

By default, during the move, the table is not available for other operations.
However, you can move an index-organized table using the ONLINE option. The
following example allows the table to be available for DML and query operations
during the actual move operation. This feature makes the index-organized table
suitable for applications requiring 24x7 availability.

Caution: You may need to set your COMPATIBLEnitialization
parameter to ’8.1.3.0’ or higher to get the following to work.

ALTER TABLE Docindex MOVE ONLINE;

ONLINE move is supported only for index-organized tables that do not have an
overflow segment.

Speeding Up Index Access with Index-Organized Tables 6-21

Example of an Index-Organized Table

6-22 Oracle9i Application Developer's Guide - Fundamentals

v

How Oracle Processes SQL Statements

This chapter describes how Oracle processes Structured Query Language (SQL)
statements. Topics include the following:

Overview of SQL Statement Execution

Grouping Operations into Transactions

Ensuring Repeatable Reads with Read-Only Transactions
Using Cursors within Applications

Locking Data Explicitly

Explicitly Acquiring Row Locks

Letting Oracle Control Table Locking

About User Locks

Using Serializable Transactions for Concurrency Control
Autonomous Transactions

Resuming Execution After a Storage Error Condition

Querying Data at a Point in Time (Flashback Query)

Although some Oracle tools and applications simplify or mask the use of SQL, all
database operations are performed using SQL, to take advantage of the security and
data integrity features built into Oracle.

How Oracle Processes SQL Statements 7-1

Overview of SQL Statement Execution

Overview of SQL Statement Execution

Figure 7-1 outlines the stages commonly used to process and execute a SQL
statement. In some cases, these steps might be executed in a slightly different order.
For example, the DEFINE stage could occur just before the FETCHstage, depending
on how your code is written.

For many Oracle tools, several of the stages are performed automatically. Most
users do not need to be concerned with, or aware of, this level of detail. However,
you might find this information useful when writing Oracle applications.

See Also: Refer to Oracle9i Database Concepts for a description of
each stage of SQL statement processing for each type of SQL
statement.

Identifying Extensions to SQL92 (FIPS Flagging)

The Federal Information Processing Standard for SQL (FIPS 127-2) requires a way to
identify SQL statements that use vendor-supplied extensions. Oracle provides a
FIPS flagger to help you write portable applications.

When FIPS flagging is active, your SQL statements are checked to see whether they
include extensions that go beyond the ANSI/ZISO SQL92 standard. If any
non-standard constructs are found, then the Oracle Server flags them as errors and
displays the violating syntax.

The FIPS flagging feature supports flagging through interactive SQL statements
submitted using Enterprise Manager or SQL*Plus. The Oracle Precompilers and
SQL*Module also support FIPS flagging of embedded and module language SQL.

When flagging is on and non-standard SQL is encountered, the following message
is returned:

ORA-00097: Use of Oracle SQL feature notin SQL92 level Level

Where level can be either ENTRYINTERMEDIATE or FULL.

7-2 Oracle9i Application Developer's Guide - Fundamentals

Overview of SQL Statement Execution

Figure 7-1 The Stages in Processing a SQL Statement

OPEN I

yes

query? DESCRIBE -

v

no

more? yes

DEFINE I <+

v

no

yes v

reparse? bind? BIND <+

no yes

EXECUTE I

v

PARALLELIZE I

: '

execute
others?

How Oracle Processes SQL Statements 7-3

Grouping Operations into Transactions

Grouping Operations into Transactions

In general, only application designers using the programming interfaces to Oracle
are concerned with which types of actions should be grouped together as one
transaction. Transactions must be defined properly so that work is accomplished in
logical units and data is kept consistent. A transaction should consist of all of the
necessary parts for one logical unit of work, no more and no less. Data in all
referenced tables should be in a consistent state before the transaction begins and
after it ends. Transactions should consist of only the SQL statements or PL/SQL
blocks that comprise one consistent change to the data.

A transfer of funds between two accounts (the transaction or logical unit of work),
for example, should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other non-related actions, such as a new deposit to one account, should not
be included in the transfer of funds transaction.

Improving Transaction Performance

In addition to determining which types of actions form a transaction, when you
design an application, you must also determine if you can take any additional
measures to improve performance. You should consider the following performance
enhancements when designing and writing your application. Unless otherwise
noted, each of these features is described in Oracle9i Database Concepts.

» Use the BEGIN_DISCRETE_TRANSACTIOIrocedure to improve the
performance of short, non-distributed transactions.

« Use the SET TRANSACTIONommand with the USE ROLLBACK SEGMENT
parameter to explicitly assign a transaction to an appropriate rollback segment.
This can eliminate the need to dynamically allocate additional extents, which
can reduce overall system performance.

« Use the SET TRANSACTIONMommand with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ZISO serializable transactions.

See Also:

« "How Serializable Transactions Interact” on page 7-24

. Oracle9i Database Concepts.

« Establish standards for writing SQL statements so that you can take advantage
of shared SQL areas. Oracle recognizes identical SQL statements and allows

7-4 Oracle9j Application Developer's Guide - Fundamentals

Grouping Operations into Transactions

them to share memory areas. This reduces memory usage on the database
server and increases system throughput.

« Use the ANALYZEcommand to collect statistics that can be used by Oracle to
implement a cost-based approach to SQL statement optimization. You can
supply additional "hints" to the optimizer as needed.

« Call the DBMS_APPLICATION_INFOSET_ACTIONprocedure before beginning
a transaction to register and name a transaction for later use when measuring
performance across an application. You should specify what type of activity a
transaction performs so that the system tuners can later see which transactions
are taking up the most system resources.

« Increase user productivity and query efficiency by including user-written
PL/SQL functions in SQL expressions as described in "Calling Stored Functions
from SQL Expressions".

= Create explicit cursors when writing a PL/SQL application.

« When writing precompiler programs, increasing the number of cursors using
MAX_OPEN_CURSOR#h often reduce the frequency of parsing and improve
performance.

See Also: "Using Cursors within Applications” on page 7-9

Committing Transactions

To commit a transaction, use the COMMITcommand. The following two statements
are equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMITcommand lets you include the COMMEN@arameter along with a
comment (less than 50 characters) that provides information about the transaction
being committed. This option is useful for including information about the origin of
the transaction when you commit distributed transactions:

COMMIT COMMENT 'Dallas/Accts_pay/Trans_type 10B';

How Oracle Processes SQL Statements 7-5

Grouping Operations into Transactions

See Also: For additional information about committing in-doubt
distributed transactions, see Oracle8 Distributed Database Systems.

Rolling Back Transactions

To roll back an entire transaction, or to roll back part of a transaction to a savepoint,
use the ROLLBACK.ommand. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;

The WORKption of the ROLLBACK.ommand has no function.

To roll back to a savepoint defined in the current transaction, use the TOoption of
the ROLLBACKcommand. For example, either of the following statements rolls back
the current transaction to the savepoint named POINT1:

SAVEPOINT Pointl;

ROLLBACK TO SAVEPOQINT Pointl;
ROLLBACK TO Pointl;

See Also: For additional information about rolling back in-doubt
distributed transactions, see Oracle8 Distributed Database Systems.

Defining Transaction Savepoints

To define a savepoint in a transaction, use the SAVEPOINTcommand. The
following statement creates the savepoint named ADD_EMP1n the current
transaction:

SAVEPOINT Add_empl;
If you create a second savepoint with the same identifier as an earlier savepoint, the

earlier savepoint is erased. After creating a savepoint, you can roll back to the
savepoint.

There is no limit on the number of active savepoints for each session. An active
savepoint is one that has been specified since the last commit or rollback.

An Example of COMMIT, SAVEPOINT, and ROLLBACK

The following series of SQL statements illustrates the use of COMMITSAVEPOINT
and ROLLBACKtatements within a transaction:

7-6 Oracle9i Application Developer's Guide - Fundamentals

Grouping Operations into Transactions

SQL Statement

Results

SAVEPOINT a;
DELETE...;
SAVEPOINT b;
INSERT INTO...;
SAVEPOINT c;
UPDATE...;
ROLLBACK TO c;
ROLLBACK TO b;

ROLLBACK TO c;
INSERT INTO...;
COMMIT;

First savepoint of this transaction

First DML statement of this transaction

Second savepoint of this transaction

Second DML statement of this transaction

Third savepoint of this transaction

Third DML statement of this transaction.

UPDATE statement is rolled back, savepoint C remains defined

INSERT statement is rolled back, savepoint C is lost, savepoint B
remains defined

ORA-01086 error; savepoint C no longer defined
New DML statement in this transaction

Commits all actions performed by the first DML statement (the
DELETEstatement) and the last DML statement (the second
INSERT statement)

All other statements (the second and the third statements) of the
transaction were rolled back before the COMMITThe savepoint A
is no longer active.

Privileges Required for Transaction Management

No privileges are required to control your own transactions; any user can issue a
COMMITROLLBACKor SAVEPOINTstatement within a transaction.

How Oracle Processes SQL Statements 7-7

Ensuring Repeatable Reads with Read-Only Transactions

Ensuring Repeatable Reads with Read-Only Transactions

By default, the consistency model for Oracle guarantees statement-level read
consistency, but does not guarantee transaction-level read consistency (repeatable
reads). If you want transaction-level read consistency, and if your transaction does
not require updates, then you can specify a read-only transaction. After indicating
that your transaction is read-only, you can execute as many queries as you like
against any database table, knowing that the results of each query in the read-only
transaction are consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide
transaction-level read consistency. The multi-version consistency model used for
statement-level read consistency is used to provide transaction-level read
consistency; all queries return information with respect to the system control
number (SCN) determined when the read-only transaction begins. Because no data
locks are acquired, other transactions can query and update data being queried
concurrently by a read-only transaction.

Changed data blocks queried by a read-only transaction are reconstructed using
data from rollback segments. Therefore, long running read-only transactions
sometimes receive a "snapshot too old" error (ORA-01555). Create more, or larger,
rollback segments to avoid this. You can also issue long-running queries when
online transaction processing is at a minimum, or you can obtain a shared lock on
the table before querying it, preventing any other modifications during the
transaction.

A read-only transaction is started with a SET TRANSACTIONtatement that includes
the READ ONLYption. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTIONtatement must be the first statement of a new transaction;
if any DML statements (including queries) or other non-DDL statements (such as
SET ROLE) precede a SET TRANSACTION READ ONkttement, an error is
returned. Once a SET TRANSACTION READ ONEttement successfully executes,
only SELECT(without a FOR UPDATEclause), COMMITROLLBACKor non-DML
statements (such as SET ROLEALTER SYSTEM, LOCK TABDEre allowed in the
transaction. Otherwise, an error is returned. A COMMITROLLBACKor DDL
statement terminates the read-only transaction; a DDL statement causes an implicit
commit of the read-only transaction and commits in its own transaction.

7-8 Oracle9i Application Developer's Guide - Fundamentals

Using Cursors within Applications

Using Cursors within Applications

PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one
row, you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored procedure. Cursor variables
allow you to pass cursors as parameters in your 3GL application. Cursor variables
are described in PL/SQL User’s Guide and Reference.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded
within the application.

Declaring and Opening Cursors

There is no absolute limit to the total number of cursors one session can have open
at one time, subject to two constraints:

« Each cursor requires virtual memory, so a session’s total number of cursors is
limited by the memory available to that process.

« A system-wide limit of cursors for each session is set by the initialization
parameter named OPEN_CURSORSund in the parameter file (such as
INIT .ORA.

See Also: Parameters are described in Oracle9i Database Reference.

Explicitly creating cursors for precompiler programs can offer some advantages in
tuning those applications. For example, increasing the number of cursors can often
reduce the frequency of parsing and improve performance. If you know how many
cursors may be required at a given time, then you can make sure you can open that
many simultaneously.

Using a Cursor to Execute Statements Again

After each stage of execution, the cursor retains enough information about the SQL
statement to re-execute the statement without starting over, as long as no other SQL
statement has been associated with that cursor. This is illustrated in Figure 7-1.
Notice that the statement can be re-executed without including the parse stage.

How Oracle Processes SQL Statements 7-9

Using Cursors within Applications

By opening several cursors, the parsed representation of several SQL statements can
be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors
and parsing.

To understand the performance characteristics of a cursor, a DBA can retrieve the
text of the query represented by the cursor using the V$SQLcatalog view. Because
the results of EXPLAIN PLAN on the original query might differ from the way the
guery is actually processed, the DBA can get more precise information by
examining the V$SQL_PLANand V$SQL_PLAN_STATSatalog views. The
V$SQL_PLAN_EN\atalog view shows what parameters have changed from their
default values, which might cause the EXPLAIN PLAN output to differ from the
actual execution plan for the cursor.

See Also: Oracle9i Database Reference. for details about each of
these catalog views.

Closing Cursors

Closing a cursor means that the information currently in the associated private area
is lost and its memory is deallocated. Once a cursor is opened, it is not closed until
one of the following events occurs:

« The user program terminates its connection to the server.

« If the user program is an OCI program or precompiler application, then it
explicitly closes any open cursor during the execution of that program.
(Howvever, when this program terminates, any cursors remaining open are
implicitly closed.)

Cancelling Cursors

7-10

Cancelling a cursor frees resources from the current fetch.The information currently
in the associated private area is lost but the cursor remains open, parsed, and
associated with its bind variables.

Note: You cannot cancel cursors using Pro*C or PL/SQL.

See Also: For more information about cancelling cursors, see
Oracle Call Interface Programmer’s Guide.

Oracle9/ Application Developer’s Guide - Fundamentals

Locking Data Explicitly

Locking Data Explicitly

Oracle always performs necessary locking to ensure data concurrency, integrity, and
statement-level read consistency. You can override these default locking
mechanisms. For example, you might want to override the default locking of Oracle
if:

« You want transaction-level read consistency or "repeatable reads"—where
transactions query a consistent set of data for the duration of the transaction,
knowing that the data has not been changed by any other transactions. This
level of consistency can be achieved by using explicit locking, read-only
transactions, serializable transactions, or overriding default locking for the
system.

« A transaction requires exclusive access to a resource. To proceed with its
statements, the transaction with exclusive access to a resource does not have to
wait for other transactions to complete.

The automatic locking mechanisms can be overridden at two different levels:

Type of Explicit
Locking How to Enable

transaction level Transactions including the following SQL statements
override Oracle’s default locking: the LOCK TABLE
command, the SELECTcommand including the FOR
UPDATEclause, and the SET TRANSACTIONommand
with the READ ONLYr ISOLATION LEVEL
SERIALIZABLE options. Locks acquired by these
statements are released after the transaction is committed
or rolled back.

system level An instance can be started with nondefault locking by
adjusting the initialization parameters SERIALIZABLE
and ROW_LOCKING

The following sections describe each option available for overriding the default
locking of Oracle. The initialization parameter DML_LOCKSletermines the
maximum number of DML locks allowed.

See Also: See the Oracle9i Database Reference for a discussion of
parameters.

How Oracle Processes SQL Statements 7-11

Locking Data Explicitly

Although the default value is usually enough, you might need to increase it if you
use additional manual locks.

Caution: If you override the default locking of Oracle at any
level, be sure that the overriding locking procedures operate
correctly: Ensure that data integrity is guaranteed, data
concurrency is acceptable, and deadlocks are not possible or are
appropriately handled.

Choosing a Locking Strategy

A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLEstatement manually overrides default
locking. When a LOCK TABLEstatement is issued on a view, the underlying base
tables are locked. The following statement acquires exclusive table locks for the
EMP_TABand DEPT_TABtables on behalf of the containing transaction:

LOCK TABLE Emp_tab, Dept_tab
IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified for each LOCK TABLEstatement.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

You can also indicate if you do or do not want to wait to acquire the lock. If you
specify the NOWAIToption, then you only acquire the table lock if it is immediately
available. Otherwise an error is returned to notify that the lock is not available at
this time. In this case, you can attempt to lock the resource at a later time. If NOWAIT
is omitted, then the transaction does not proceed until the requested table lock is
acquired. If the wait for a table lock is excessive, then you might want to cancel the
lock operation and retry at a later time; you can code this logic into your
applications.

When to Lock with ROW SHARE and ROW EXCLUSIVE Mode

LOCK TABLE Emp_tab INROW SHARE MODE;
LOCK TABLE Emp_tab INROW EXCLUSIVE MODE;

7-12 Oracle9i Application Developer's Guide - Fundamentals

Locking Data Explicitly

ROW SHARENnd ROW EXCLUSIVEable locks offer the highest degree of
concurrency. You might use these locks if:

= Your transaction needs to prevent another transaction from acquiring an
intervening share, share row, or exclusive table lock for a table before the table
can be updated in your transaction. If another transaction acquires an
intervening share, share row, or exclusive table lock, no other transactions can
update the table until the locking transaction commits or rolls back.

« Your transaction needs to prevent a table from being altered or dropped before
the table can be modified later in your transaction.

When to Lock with SHARE Mode
LOCK TABLE Emp_tab IN SHARE MODE;
SHARRBable locks are rather restrictive data locks. You might use these locks if:

= Your transaction only queries the table, and requires a consistent set of the
table’s data for the duration of the transaction.

= You can hold up other transactions that try to update the locked table, until all
transactions that hold SHARHocks on the table either commit or roll back.

« Other transactions may acquire concurrent SHARRable locks on the same table,
also allowing them the option of transaction-level read consistency.

Caution: Your transaction may or may not update the table later
in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no
transaction can update the table (even if row locks are held as the
result of a SELECT.. FOR UPDATRKtatement). Therefore, if
concurrent share table locks on the same table are common,
updates cannot proceed and deadlocks are common. In this case,
use share row exclusive or exclusive table locks instead.

For example, assume that two tables, EMP_TABand BUDGET_TABrequire a
consistent set of data in a third table, DEPT_TAB For a given department number,
you want to update the information in both of these tables, and ensure that no new
members are added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the
DEPT_TABtable in SHARE MODB&s shown in the following example. Because the

How Oracle Processes SQL Statements 7-13

Locking Data Explicitly

DEPT_TABtable is rarely updated, locking it probably does not cause many other
transactions to wait long.

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE dept_tab(
deptno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13));

CREATE TABLE emp_tab (
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(4),
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(2));

CREATE TABLE Budget tab (
totsal NUMBER(7,2),
deptno NUMBER(2) NOT NULLY);

LOCK TABLE Dept_tab IN SHARE MODE;
UPDATE Emp_tab
SETsal=sal*1.1
WHERE deptno IN
(SELECT deptno FROM Dept_tab WHERE loc ='DALLAS);
UPDATE Budget tab
SET Totsal=Totsal * 1.1
WHERE Deptno IN
(SELECT Deptno FROM Dept_tab WHERE Loc ='DALLAS);

COMMIT; # This releases the lock */

When to Lock with SHARE ROW EXCLUSIVE Mode
LOCK TABLE Emp_tab IN SHARE ROW EXCLUSIVE MODE;

You might use a SHARE ROW EXCLUSIVHable lock if:

7-14 Oracle9i Application Developer's Guide - Fundamentals

Locking Data Explicitly

« Your transaction requires both transaction-level read consistency for the
specified table and the ability to update the locked table.

« You do not care if other transactions acquire explicit row locks (using SELECT..
FOR UPDATEwhich might make UPDATEand INSERT statements in the
locking transaction wait and might cause deadlocks.

« You only want a single transaction to have the above behavior.

When to Lock in EXCLUSIVE Mode
LOCK TABLE Emp_tab IN EXCLUSIVE MODE;

You might use an EXCLUSIVEtable if:

= Your transaction requires immediate update access to the locked table. When
your transaction holds an exclusive table lock, other transactions cannot lock
specific rows in the locked table.

= Your transaction also ensures transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

= You are not concerned about low levels of data concurrency, making
transactions that request exclusive table locks wait in line to update the table
sequentially.

Privileges Required

You can automatically acquire any type of table lock on tables in your schema. To
acquire a table lock on a table in another schema, you must have the LOCK ANY
TABLE system privilege or any object privilege (for example, SELECTor UPDATE
for the table.

Letting Oracle Control Table Locking

Letting Oracle control table locking means your application needs less
programming logic, but also has less control, than if you manage the table locks
yourself.

Issuing the command SET TRANSACTION ISOLATION LEVEL SERIALIZABLEr
ALTER SESSION ISOLATION LEVEL SERIALIZABLE preserves ANSI
serializability without changing the underlying locking protocol. This technique
allows concurrent access to the table while providing ANSI serializability. Getting
table locks greatly reduces concurrency.

How Oracle Processes SQL Statements 7-15

Locking Data Explicitly

Table locks are also controlled by the ROW_LOCKIN@nd SERIALIZABLE
initialization parameters. By default, SERIALIZABLE is set to FALSEand
ROW_LOCKING set to ALWAYSIn almost every case, these parameters should not
be altered. They are provided for sites that must run in ANSI/ISO compatible
mode, or that want to use applications written to run with earlier versions of
Oracle. Only these sites should consider altering these parameters, as there is a
significant performance degradation caused by using other than the defaults.

See Also: Oracle9i SQL Reference for details about the SET
TRANSACTIONind ALTER SESSION statements.

The settings for these parameters should be changed only when an instance is shut
down. If multiple instances are accessing a single database, then all instances
should use the same setting for these parameters.

Summary of Nondefault Locking Options

7-16

Three combinations of settings for SERIALIZABLE and ROW_LOCKINGther than
the default settings, are available to change the way locking occurs for transactions.
Table 7-1 summarizes the nondefault settings and why you might choose to execute
your transactions in a particular way.

Table 7-1 Summary of Nondefault Locking Options
Case Description SERIALIZABLE ROW_LOCKING

1 Equivalent to Version 5 and earlier Disabled INTENT
Oracle releases (no concurrent inserts, (default)
updates, or deletes in a table)

2 ANSI compatible Enabled ALWAYS

3 ANSI compatible, with table-level Enabled INTENT
locking (no concurrent inserts, updates,
or deletes in a table)

Table 7-2 illustrates the difference in locking behavior resulting from the three
possible settings of the SERIALIZABLE option and ROW_LOCKIN@hitialization
parameter, as shown in Table 7-1.

Oracle9/ Application Developer’s Guide - Fundamentals

Locking Data Explicitly

Table 7-2 Nondefault Locking Behavior

Case Case Case

Case 1: Case 2: Case 3:
Statement 1:row table 2:row table 3:row table
SELECT - - - S - S
INSERT X SRX X RX X SRX
UPDATE X SRX X SRX X SRX
DELETE X SRX X SRX X SRX
SELECT...FOR UPDATE X RS X S X S
LOCK TABLE... IN.. - - - - - -
ROW SHARE MODE - RS - RS - RS
ROW EXCLUSIVE MODE - RX - RX - RX
SHARE MODE - S - S - S
SHARE ROW EXCLUSIVE MODE SRX - SRX - SRX
EXCLUSIVE MODE - X - X - X
DDL statements - X - X - X

Explicitly Acquiring Row Locks
You can override default locking with a SELECTstatement that includes the FOR
UPDATElause. This statement acquires exclusive row locks for selected rows (as an

UPDATEstatement does), in anticipation of updating the selected rows in a
subsequent statement.

You can use a SELECT.. FOR UPDATEtatement to lock a row without actually
changing it. For example, several triggers in Chapter 15, "Using Triggers", show
how to implement referential integrity. In the EMP_DEPT_CHECKigger (see
"Foreign Key Trigger for Child Table"), the row that contains the referenced parent
key value is locked to guarantee that it remains for the duration of the transaction; if
the parent key is updated or deleted, referential integrity would be violated.

SELECT.. FOR UPDATEtatements are often used by interactive programs that allow
a user to modify fields of one or more specific rows (which might take some time);
row locks are acquired so that only a single interactive program user is updating the
rows at any given time.

How Oracle Processes SQL Statements 7-17

About User Locks

If a SELECT.. FOR UPDATEtatement is used when defining a cursor, the rows in
the return set are locked when the cursor is opened (before the first fetch) rather
than as they are fetched from the cursor. Locks are only released when the
transaction that opened the cursor is committed or rolled back, not when the cursor
is closed.

Each row in the return set of a SELECT.. FOR UPDATBtatement is locked
individually; the SELECT.. FOR UPDATEtatement waits until the other transaction
releases the conflicting row lock. If a SELECT.. FOR UPDATREtatement locks many
rows in a table, and if the table experiences a lot of update activity, it might be faster
to acquire an EXCLUSIVEtable lock instead.

When acquiring row locks with SELECT.. FOR UPDATEyou can specify the NOWAIT
option to indicate that you are not willing to wait to acquire the lock. If you cannot
acquire then lock immediately, an error is returned to signal that the lock is not
possible at this time. You can try to lock the row again later.

By default, the transaction waits until the requested row lock is acquired. If the wait
for a row lock is too long, you can code logic into your application to cancel the lock
operation and try again later.

About User Locks

You can use Oracle Lock Management services for your applications by making
calls to the DBMS_LOCIackage. It is possible to request a lock of a specific mode,
give it a unique name recognizable in another procedure in the same or another
instance, change the lock mode, and release it. Because a reserved user lock is the
same as an Oracle lock, it has all the features of an Oracle lock, such as deadlock
detection. Be certain that any user locks used in distributed transactions are released
upon COMMITor an undetected deadlock can occur.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
has detailed information on the DBMS_LOCackage.

When to Use User Locks

User locks can help to:

« Provide exclusive access to a device, such as a terminal

« Provide application-level enforcement of read locks

« Detect when a lock is released and cleanup after the application

= Synchronize applications and enforce sequential processing

7-18 Oracle9i Application Developer's Guide - Fundamentals

About User Locks

Example of a User Lock

The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people need to access a single
device.

* Print Check *

* Any cashier may issue a refund to a customer retuming goods. *
* Refunds under $50 are given in cash, above that by check. *
*This code prints the check. The one printer is opened by all *
*the cashiers to avoid the overhead of opening and closing it *
for every check. This means that lines of output from multiple

* cashiers could become interleaved if we don't ensure exclusive*
*access to the printer. The DBMS_LOCK packageisusedto *
* ensure exclusive access. *

CHECK-PRINT
*
* Get the lock "handle" for the printer lock.
MOVE "CHECKPRINT" TO LOCKNAME-ARR.
MOVE 10 TO LOCKNAME-LEN.
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:.LOCKNAME, :LOCKHANDLE);
END; END-EXEC.
*
* Lock the printer in exclusive mode (default mode).
EXEC SQL EXECUTE
BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
END; END-EXEC.
* We now have exclusive use of the printer, print the check.

*

* Unlock the printer so other people can use it

*

EXEC SQL EXECUTE
BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);

END; END-EXEC.

How Oracle Processes SQL Statements 7-19

Using Serializable Transactions for Concurrency Control

Viewing and Monitoring Locks

Oracle provides two facilities to display locking information for ongoing
transactions within an instance:

How to Display Lock
Information Description

Enterprise Manager The Monitor feature of Enterprise Manager provides two
Monitors monitors for displaying lock information of an instance.
Refer to Oracle Enterprise Manager Administrator’s Guide for
(Lock and Latch . : .
. complete information about the Enterprise Manager
Monitors) -
monitors.

UTLLOCKT.SQL The UTLLOCKTSQLscript displays a simple character lock
wait-for graph in tree structured fashion. Using any ad hoc
SQL tool (such as SQL*Plus) to execute the script, it prints
the sessions in the system that are waiting for locks and
the corresponding blocking locks. The location of this
script file is operating system dependent. (You must have
run the CATBLOCKSQLscript before using
UTLLOCKTSQL)

Using Serializable Transactions for Concurrency Control

By default, the Oracle Server permits concurrently executing transactions to modify,
add, or delete rows in the same table, and in the same data block. Changes made by
one transaction are not seen by another concurrent transaction until the transaction
that made the changes commits.

If a transaction A attempts to update or delete a row that has been locked by
another transaction B (by way of a DML or SELECT.. FOR UPDATEtatement), then
A’s DML command blocks until B commits or rolls back. Once B commits,
transaction A can see changes that B has made to the database.

For most applications, this concurrency model is the appropriate one, because it
provides higher concurrency and thus better performance. But some rare cases
require transactions to be serializable. Serializable transactions must execute in such
a way that they appear to be executing one at a time (serially), rather than
concurrently. Concurrent transactions executing in serialized mode can only make
database changes that they could have made if the transactions ran one after the
other.

7-20 Oracle9i Application Developer's Guide - Fundamentals

Using Serializable Transactions for Concurrency Control

The ANSI/ZISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against
these interactions. These interactions and isolation levels are summarized in

Table 7-3.

Table 7-3 Summary of ANSI Isolation Levels

Isolation Level

Dirty Read (1) Non-Repeatable Read (2) Phantom Read (3)

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible
REPEATABLE READ Not possible Not possible Possible
SERIALIZABLE Not possible Not possible Not possible
Notes: (1) A transaction can read uncommitted data changed by another

transaction.

(2) A transaction rereads data committed by another transaction
and sees the new data.

(3) A transaction can execute a query again, and discover new
rows inserted by another committed transaction.

The behavior of Oracle with respect to these isolation levels is summarized below:

Isolation Level

Description

READ UNCOMMITTED Oracle never permits "dirty reads." Although some other

READ COMMITTED

REPEATABLE READ

database products use this undesirable technique to
improve thoughput, it is not required for high throughput
with Oracle.

Oracle meets the READ COMMITTEDolation standard.
This is the default mode for all Oracle applications.
Because an Oracle query only sees data that was
committed at the beginning of the query (the snapshot
time), Oracle actually offers more consistency than is
required by the ANSI/ZISO SQL92 standards for READ
COMMITTEDsolation.

Oracle does not normally support this isolation level,
except as provided by SERIALIZABLE .

How Oracle Processes SQL Statements 7-21

Using Serializable Transactions for Concurrency Control

Isolation Level Description

SERIALIZABLE You can set this isolation level using the SET
TRANSACTIONommand or the ALTER SESSION
command.

7-22 Oracle9i Application Developer's Guide - Fundamentals

Using Serializable Transactions for Concurrency Control

Figure 7-2 Time Line for Two Transactions

TRANSACTION A TRANSACTION B

TIME

(arbitrary)

begin work
update row 2
in block 1

insert row 4]

commit

Issue update
"too recent" for B
to see

Change other row in

same block, see own
changes

Create possible
"phantom" row

Uncommitted changes
invisible

Make changes visible
to transactions that
begin later

Make changes
after A commits

B can see its own
changes but not the

committed changes of
transaction A.

Failure on attempt to
update row updated
& committed since

transaction B began

(serializable)

SET TRANSACTION
ISOLATION LEVEL <
SERIALIZABLE

read row 1 in block 1

update row 1 in block 1
read updated row 1 in
block 1

read old row 2 in block 1
search for row 4
(notfound)

update row 3 in block 1

re-read updated row 1

in block 1

search for row 4 (not found)
read old row 2 in block 1

update row 2 in block 1
FAILS; rollback and retry

How Oracle Processes SQL Statements 7-23

Using Serializable Transactions for Concurrency Control

How Serializable Transactions Interact

Figure 7-3 on page 7-26 shows how a serializable transaction (Transaction B)
interacts with another transaction (A, which can be either SERIALIZABLE or READ
COMMITTEDR

When a serializable transaction fails with an ORA-08177 error ("cannot serialize
access"), the application can take any of several actions:

« Commit the work executed to that point

« Execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

« Roll back the entire transaction and try it again

Oracle stores control information in each data block to manage access by concurrent
transactions. To use the SERIALIZABLE isolation level, you must use the
INITRANS clause of the CREATE TABLBr ALTER TABLEcommand to set aside
storage for this control information. To use serializable mode, INITRANS must be
set to at least 3.

Setting the Isolation Level of a Transaction

You can change the isolation level of a transaction using the ISOLATION LEVEL
clause of the SET TRANSACTIONMommand, which must be the first command
issued in a transaction.

Use the ALTER SESSIONommand to set the transaction isolation level on a
session-wide basis.

See Also: Oracle9i Database Reference for the complete syntax of
the SET TRANSACTIONNd ALTER SESSION:ommands.

The INITRANS Parameter

Oracle stores control information in each data block to manage access by concurrent
transactions. Therefore, if you set the transaction isolation level to serializable, then
you must use the ALTER TABLEcommand to set INITRANS to at least 3. This
parameter causes Oracle to allocate sufficient storage in each block to record the
history of recent transactions that accessed the block. Higher values should be used
for tables that will undergo many transactions updating the same blocks.

7-24 Oracle9i Application Developer's Guide - Fundamentals

Using Serializable Transactions for Concurrency Control

Referential Integrity and Serializable Transactions

Because Oracle does not use read locks, even in SERIALIZABLE transactions, data
read by one transaction can be overwritten by another. Transactions that perform
database consistency checks at the application level should not assume that the data
they read will not change during the execution of the transaction (even though such
changes are not visible to the transaction). Database inconsistencies can result
unless such application-level consistency checks are coded carefully, even when
using SERIALIZABLE transactions. Note, however, that the examples shown in
this section are applicable for both READ COMMITTE&nhd SERIALIZABLE
transactions.

Figure 7-3 on page 7-26 shows two different transactions that perform
application-level checks to maintain the referential integrity parent/child
relationship between two tables. One transaction checks that a row with a specific
primary key value exists in the parent table before inserting corresponding child
rows. The other transaction checks to see that no corresponding detail rows exist
before deleting a parent row. In this case, both transactions assume (but do not
ensure) that data they read will not change before the transaction completes.

How Oracle Processes SQL Statements 7-25

Using Serializable Transactions for Concurrency Control

Figure 7-3 Referential Integrity Check

B's query does

not prevent this

e TRANSACTION A TRANSACTION B
read parent (it exists) read child rows (not found)
e insert child row(s) delete parent <=
commit work commit work

A's query does

not prevent this
delete

The read issued by transaction A does not prevent transaction B from deleting the
parent row, and transaction B’s query for child rows does not prevent transaction A
from inserting child rows. This scenario leaves a child row in the database with no
corresponding parent row. This result occurs even if both A and B are
SERIALIZABLE transactions, because neither transaction prevents the other from
making changes in the data it reads to check consistency.

As this example shows, sometimes you must take steps to ensure that the data read
by one transaction is not concurrently written by another. This requires a greater
degree of transaction isolation than defined by SQL92 SERIALIZABLE mode.

Using SELECT FOR UPDATE
Fortunately, it is straightforward in Oracle to prevent the anomaly described above:

7-26 Oracle9i Application Developer's Guide - Fundamentals

Using Serializable Transactions for Concurrency Control

« Transaction A can use SELECT FOR UPDATH® query and lock the parent row
and thereby prevent transaction B from deleting the row.

« Transaction B can prevent Transaction A from gaining access to the parent row
by reversing the order of its processing steps. Transaction B first deletes the
parent row, and then rolls back if its subsequent query detects the presence of
corresponding rows in the child table.

Referential integrity can also be enforced in Oracle using database triggers, instead
of a separate query as in Transaction A above. For example, an INSERT into the
child table can fire a BEFORE INSERTrow-level trigger to check for the
corresponding parent row. The trigger queries the parent table using SELECT FOR
UPDATEensuring that parent row (if it exists) remains in the database for the
duration of the transaction inserting the child row. If the corresponding parent row
does not exist, the trigger rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL
statement that caused the trigger to fire. All SQL statements executed within a
trigger see the database in the same state as the triggering statement. Thus, in a
READ COMMITTEMansaction, the SQL statements in a trigger see the database as of
the beginning of the triggering statement’s execution, and in a transaction executing
in SERIALIZABLE mode, the SQL statements see the database as of the beginning
of the transaction. In either case, the use of SELECT FOR UPDATI®y the trigger
correctly enforces referential integrity.

READ COMMITTED and SERIALIZABLE Isolation
Oracle gives you a choice of two transaction isolation levels with different
characteristics. Both the READ COMMITTE&nd SERIALIZABLE isolation levels
provide a high degree of consistency and concurrency. Both levels reduce
contention, and are designed for deploying real-world applications. The rest of this
section compares the two isolation modes and provides information helpful in
choosing between them.

Transaction Set Consistency

A useful way to describe the READ COMMITTE&Nhd SERIALIZABLE isolation levels
in Oracle is to consider:

How Oracle Processes SQL Statements 7-27

Using Serializable Transactions for Concurrency Control

« A collection of database tables (or any set of data)
« A sequence of reads of rows in those tables
« The set of transactions committed at any moment

An operation (a query or a transaction) is transaction set consistent if its read
operations all return data written by the same set of committed transactions. When
an operation is not transaction set consistent, some reads reflect the changes of one
set of transactions, and other reads reflect changes made by other transactions. Such
an operation sees the database in a state that reflects no single set of committed
transactions.

Oracle transactions executing in READ COMMITTEDode are transaction set
consistent on a per-statement basis, because all rows read by a query must be
committed before the query begins.

Oracle transactions executing in SERIALIZABLE mode are transaction set
consistent on a per-transaction basis, because all statements in a SERIALIZABLE
transaction execute on an image of the database as of the beginning of the
transaction.

In other database systems, a single query run in READ COMMITTEDnode provides
results that are not transaction set consistent. The query is not transaction set
consistent, because it may see only a subset of the changes made by another
transaction. For example, a join of a master table with a detail table could see a
master record inserted by another transaction, but not the corresponding details
inserted by that transaction, or vice versa. Oracle’s READ COMMITTEDode avoids
this problem, and so provides a greater degree of consistency than read-locking
systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE REABolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means two
gueries issued by the same transaction can see data committed by different sets of
other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Comparison of READ COMMITTED and SERIALIZABLE Transactions

Table 7-4 summarizes key similarities and differences between READ COMMITTED
and SERIALIZABLE transactions.

7-28 Oracle9i Application Developer's Guide - Fundamentals

Using Serializable Transactions for Concurrency Control

Table 7-4 Read Committed Versus Serializable Transaction

Operation Read Committed Serializable
Dirty write Not Possible Not Possible
Dirty read Not Possible Not Possible
Non-repeatable read Possible Not Possible
Phantoms Possible Not Possible
Compliant with ANSI/ZISO SQL 92 Yes Yes

Read snapshot time Statement Transaction
Transaction set consistency Statement level Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to "can’t serialize access" error No Yes

Error after blocking transaction aborts No No

Error a_lfter blocking transaction No Yes
commits

Choosing an Isolation Level for Transactions

Choose an isolation level that is appropriate to the specific application and
workload. You might choose different isolation levels for different transactions. The
choice depends on performance and consistency needs, and consideration of
application coding requirements.

For environments with many concurrent users rapidly submitting transactions, you
must assess transaction performance against the expected transaction arrival rate
and response time demands, and choose an isolation level that provides the
required degree of consistency while performing well. Frequently, for high
performance environments, you must trade-off between consistency and
concurrency (transaction throughput).

How Oracle Processes SQL Statements 7-29

Using Serializable Transactions for Concurrency Control

Both Oracle isolation modes provide high levels of consistency and concurrency
(and performance) through the combination of row-level locking and Oracle’s
multi-version concurrency control system. Because readers and writers do not block
one another in Oracle, while queries still see consistent data, both READ
COMMITTERNd SERIALIZABLE isolation provide a high level of concurrency for
high performance, without the need for reading uncommitted ("dirty") data.

READ COMMITTEBolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and
non-repeatable reads) for some transactions. The SERIALIZABLE isolation level
provides somewhat more consistency by protecting against phantoms and
non-repeatable reads, and may be important where a read/write transaction
executes a query more than once. However, SERIALIZABLE mode requires
applications to check for the "can’t serialize access" error, and can significantly
reduce throughput in an environment with many concurrent transactions accessing
the same data for update. Application logic that checks database consistency must
take into account the fact that reads do not block writes in either mode.

Application Tips for Transactions

When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
causes an error;

ORA-08177: Cant serialize access for this transaction.
When you get this error, roll back the current transaction and execute it again. The
transaction gets a new transaction snapshot, and the operation is likely to succeed.

To minimize the performance overhead of rolling back transactions and executing
them again, try to put DML statements that might conflict with other concurrent
transactions near the beginning of your transaction.

7-30 Oracle9i Application Developer’s Guide - Fundamentals

Autonomous Transactions

Autonomous Transactions

This section gives a brief overview of autonomous transactions and what you can
do with them.

See Also: For detailed information on autonomous transactions,
see PL/SQL User’s Guide and Reference and Chapter 15, "Using
Triggers".

At times, you may want to commit or roll back some changes to a table
independently of a primary transaction’s final outcome. For example, in a stock
purchase transaction, you may want to commit a customer’s information regardless
of whether the overall stock purchase actually goes through. Or, while running that
same transaction, you may want to log error messages to a debug table even if the
overall transaction rolls back. Autonomous transactions allow you to do such tasks.

An autonomous transaction (AT) is an independent transaction started by another
transaction, the main transaction (MT). It lets you suspend the main transaction, do
SQL operations, commit or roll back those operations, then resume the main
transaction.

An autonomous transaction executes within an autonomous scope. An autonomous
scope is a routine you mark with the pragma (compiler directive)

AUTONOMOUS_TRANSACTIONe pragma instructs the PL/SQL compiler to mark
a routine as autonomous (independent). In this context, the term routine includes:

« Top-level (not nested) anonymous PL/SQL blocks

« Local, standalone, and packaged functions and procedures
« Methods of a SQL object type

« PL/SQL triggers

Figure 7-4 shows how control flows from the main routine (MT) to an autonomous
routine (AT) and back again. As you can see, the autonomous routine can commit
more than one transaction (AT1 and AT2) before control returns to the main routine.

How Oracle Processes SQL Statements 7-31

Autonomous Transactions

Figure 7-4 Transaction Control Flow

Main Routine

Autonomous Routine

PROCEDURE procl IS PROCEDURE proc2 IS
emp_id NUMBER; PRAGMA AUTON...
BEGIN dept_id NUMBER;
emp_id := 7788; BEGIN MT suspends
INSERT ... — MT begins dept_id := 20;
SELECT ... UPDATE ... ——+— AT1 begins
proc2; > INSERT ...
DELETE ... UPDATE ...
COMMIT;, ——— 1 MT ends COMMIT; — AT1 ends
END; INSERT ... — | AT2 begins
INSERT ...
COMMIT; — AT2 ends
END; MT resumes

When you enter the executable section of an autonomous routine, the main
transaction suspends. When you exit the routine, the main transaction resumes.
COMMITand ROLLBACkKend the active autonomous transaction but do not exit the
autonomous routine. As Figure 7-4 shows, when one transaction ends, the next SQL
statement begins another transaction.

A few more characteristics of autonomous transactions:

« The changes autonomous transactions effect do not depend on the state or the
eventual disposition of the main transaction. For example;

— Anautonomous transaction does not see any changes made by the main
transaction.

— When an autonomous transaction commits or rolls back, it does not affect
the outcome of the main transaction.

« The changes an autonomous transaction effects are visible to other transactions
as soon as that autonomous transaction commits. This means that users can
access the updated information without having to wait for the main transaction
to commit.

. Autonomous transactions can start other autonomous transactions.

Figure 7-5 illustrates some of the possible sequences autonomous transactions can
follow.

7-32 Oracle9i Application Developer’s Guide - Fundamentals

Autonomous Transactions

Figure 7-5 Possible Sequences of Autonomous Transactions

A main transaction scope

(MT Scope) begins the main
fransaction, MTx. MTx MT Scope AT Scope 1 AT Scope 2

AT Scope 3 AT Scope 4

invokes the first autonomous
transaction scope (AT MTx
Scopel). MTx suspends. AT
Scope 1 begins the

transaction Tx1.1. Tx1.1

A\ 4

A

At Scope 1 commits or rolls MT
back Tx1.1, than ends. MTx X ><
resumes.

MTx invokes AT Scope 2.
MT suspends, passing g
control to AT Scope 2 which,
initially, is performing queries.

AT Scope 2 then begins
Tx2.1 by, say, doing an
update. AT Scope 2 commits
or rolls back Tx2.1.

Tx2.1

Later, AT Scope 2 begins a
second transaction, Tx2.2, Tx22
then commits or rolls it back.

AT Scope 2 performs a few
queries, then ends, passing MTx ><
control back to MTx.

A

MTx invokes AT Scope 3.
MTx suspends, AT Scope 3
begins.

AT Scope 3 begins Tx3.1
which, in turn, invokes AT
Scope 4. Tx3.1 suspends, AT
Scope 4 begins.

AT Scope 4 begins Tx4.1,
commits or rolls it back, then
ends. AT Scope 3 resumes.

AT Scope 3 commits or rolls
back Tx3.1, then ends. MTx
resumes.

A 4

Tx3.1

Tx4.1

Tx3.1

A

A

Finally, MT Scope commits MTx
or rolls back MTx, then ends.

How Oracle Processes SQL Statements 7-33

Autonomous Transactions

Examples of Autonomous Transactions

The two examples in this section illustrate some of the ways you can use
autonomous transactions.

As these examples illustrate, there are four possible outcomes that can occur when
you use autonomous and main transactions. The following table presents these
possible outcomes. As you can see, there is no dependency between the outcome of
an autonomous transaction and that of a main transaction.

Autonomous Transaction Main Transaction
Commits Commits
Commits Rolls back
Rolls back Commits

Rolls back Rolls back

Entering a Buy Order

In this example, a customer enters a buy order. That customer’s information (such
as name, address, phone) is committed to a customer information table—even
though the sale does not go through.

7-34 Oracle9i Application Developer’s Guide - Fundamentals

Autonomous Transactions

Figure 7-6 Example: A Buy Order

MT Scope begins the main
transaction, MTx inserts the
buy order into a table.

MTx invokes the autonomous
transaction scope (AT
Scope). When AT Scope
begins, MT Scope suspends.

ATX, updates the audit table
with customer information.

MTx seeks to validate the
order, finds that the selected
item is unavailable, and
therefore rolls back the main
transaction.

MT Scope AT Scope
MTx
ATX
dl
o
MTx

X

Example: Making a Bank Withdrawal
In the following banking application, a customer tries to make a withdrawal from
his or her account. In the process, a main transaction calls one of two autonomous
transaction scopes (AT Scope 1, and AT Scope 2).

X

The following diagrams illustrate three possible scenarios for this transaction.

« Scenario 1: There are sufficient funds to cover the withdrawal and therefore the
bank releases the funds

« Scenario 2: There are insufficient funds to cover the withdrawal, but the
customer has overdraft protection. The bank therefore releases the funds.

« Scenario 3: There are insufficient funds to cover the withdrawal, the customer
does not have overdraft protection, and the bank therefore withholds the

requested funds.

How Oracle Processes SQL Statements 7-35

Autonomous Transactions

Scenario 1;

There are sufficient funds to cover the withdrawal and therefore the bank releases
the funds

Figure 7-7 Example: Bank Withdrawal—Sufficient Funds

MTx generates a

transaction ID. MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1 inserts the transaction Tx11
ID into the audit table and XL
commits.

A

MTx validates the balance on
the account. MTx ><

Tx2.1, updates the audit table > o1
using the transaction ID Xe.
generated above, then
commits.

A

MTx releases the funds. MT MT
Scope ends. X ><

7-36 Oracle9i Application Developer’s Guide - Fundamentals

Autonomous Transactions

Scenario 2;

There are insufficient funds to cover the withdrawal, but the customer has overdraft
protection. The bank therefore releases the funds.

Figure 7-8 Example: Bank Withdrawal—Insufficient Funds WITH Overdraft Protection

MT Scope AT Scope 1 AT Scope 2

MTx

Tx1.1

A

MTx discovers that there are
insufficient funds to cover the MTx ><
withdrawal. It finds that the

customer has overdraft
protection and sets a flag to
the appropriate value.

Tx2.1, updates the >

audit table. ™21
di

MTX, releases the funds. MT MT)

Scope ends. X ><

How Oracle Processes SQL Statements 7-37

Autonomous Transactions

Scenario 3;

There are insufficient funds to cover the withdrawal, the customer does not have
overdraft protection, and the bank therefore withholds the requested funds.

Figure 7-9 Example: Bank Withdrawal—Insufficient Funds WITHOUT Overdraft

Protection

MTx discovers that there are
insufficient funds to cover the
withdrawal. It finds that the
customer does not have
overdraft protection and sets
a flag to the appropriate
value.

Tx2.1, updates the
audit table.

MTx Scope rolls back MTx,
denying the release of funds.
MT Scope ends.

MT Scope AT Scope 1 AT Scope 2
MTx
>
Tx1.1
dl
o
MTx ><
> Tx2.1
dl
o
MTx

7-38 Oracle9i Application Developer’s Guide - Fundamentals

Autonomous Transactions

Defining Autonomous Transactions

Note: This section is provided here to round out your general
understanding of autonomous transactions. For a more thorough
understanding of autonomous transactions, see PL/SQL User’s Guide
and Reference.

To define autonomous transactions, you use the pragma (compiler directive)
AUTONOMOUS_TRANSACTIONe pragma instructs the PL/SQL compiler to mark
the procedure, function, or PL/SQL block as autonomous (independent).

You can code the pragma anywhere in the declarative section of a procedure,
function, or PL/SQL block. But, for readability, code the pragma at the top of the
section. The syntax follows:

PRAGMA AUTONOMOUS_TRANSACTION;

In the following example, you mark a packaged function as autonomous:

CREATE OR REPLACE PACKAGE Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL,;
—add additional functions and packages

END Banking;

CREATE OR REPLACE PACKAGE BODY Banking AS
FUNCTION Balance (Acct_id INTEGER) RETURN REAL IS
PRAGMA AUTONOMOUS_TRANSACTION;
My _bal REAL;
BEGIN
—add appropriate code
END;
— add additional functions and packages...
END Banking;

You cannot use the pragma to mark all subprograms in a package (or all methods in
an object type) as autonomous. Only individual routines can be marked
autonomous. For example, the following pragma is illegal:

CREATE OR REPLACE PACKAGE Banking AS
PRAGMA AUTONOMOUS_TRANSACTION; —illegal
FUNCTION Balance (Acct_id INTEGER) RETURN REAL;
END Banking;

How Oracle Processes SQL Statements 7-39

Resuming Execution After a Storage Error Condition

Resuming Execution After a Storage Error Condition

When a long-running transaction is interrupted by an out-of-space error condition,
your application can suspend the statement that encountered the problem and
resume it after the space problem is corrected. This capability is known as
resumable storage allocation. It lets you avoid time-consuming rollbacks, without
the need to split the operation into smaller pieces and write your own code to track
its progress.

See Also:

« Oracle9i Database Concepts
« Oracle9i Database Administrator’s Guide

What Operations Can Be Resumed After an Error Condition?

Queries, DML operations, and certain DDL operations can all be resumed if they
encounter an out-of-space error. The capability applies if the operation is performed
directly by a SQL statement, or if it is performed within a stored procedure,
anonymous PL/SQL block, SQL*Loader, or an OCI call such as

OCIStmtExecute()

Operations can be resumed after these kinds of error conditions:
« Out of space errors, such as ORA-01653.

« Space limit errors, such as ORA-01628.

« Space quota errors, such as ORA-01536.

Limitations on Resuming Operations After an Error Condition

Certain storage errors cannot be handled using this technique. In
dictionary-managed tablespaces, you cannot resume an operation if you run into
the limit for rollback segments, or the maximum number of extents while creating
an index or a table. Oracle encourages users to use locally managed tablespaces and
automatic undo management in combination with this feature.

Writing an Application to Handle Suspended Storage Allocation

When an operation is suspended, your application does not receive the usual error
code. Instead, perform any logging or notification by coding a trigger to detect the
AFTER SUSPENBvent and call the functions in the DBMS_RESUMABIfackage to
get information about the problem. Using this package, you can:

7-40 Oracle9i Application Developer’s Guide - Fundamentals

Resuming Execution After a Storage Error Condition

« Parse the error message with the DBMS_RESUMABLE.SPACE_ERROR_INFO
function. For details about this function, see Oracle9i Supplied PL/SQL Packages
and Types Reference.

« Setanew timeout value with the SET_TIMEOUTprocedure.

Within the body of the trigger, you can perform any notifications, such as sending a
mail message to alert an operator to the space problem.

Alternatively, the DBA can periodically check for suspended statements using the
data dictionary views DBA RESUMABLESER_RESUMABI.End
V$_SESSION_WAIT

When the space condition is corrected (usually by the DBA), the suspended
statement automatically resumes execution. If it is not corrected before the timeout
period expires, the operation causes a SERVERERRO#Xception.

To reduce the chance of out-of-space errors within the trigger itself, you must
declare it as an autonomous transaction so that it uses a rollback segment in the
SYSTEMablespace. If the trigger encounters a deadlock condition because of locks
held by the suspended statement, the trigger is aborted and your application
receives the original error condition, as if it was never suspended. If the trigger
encounters an out-of-space condition, the trigger and the suspended statement are
rolled back. You can prevent the rollback through an exception handler in the
trigger, and just wait for the statement to be resumed.

See Also: Oracle9i Database Reference for details on the
DBA_ RESUMABLESER_RESUMABI.End V$_SESSION_WAIT
data dictionary views.

Example of Resumable Storage Allocation

This trigger handles applicable storage errors within the database. For some kinds
of errors, it aborts the statement and alerts the DBA that this has happened through
a mail message. For other errors that might be temporary, it specifies that the
statement should wait for eight hours before resuming, with the expectation that
the storage problem will be fixed by then.

CREATE OR REPLACE TRIGGER suspend_example
AFTER SUSPEND
ON DATABASE
DECLARE
cur_sid NUMBER,;
cur_inst NUMBER,;
er_type VARCHAR2(64);

How Oracle Processes SQL Statements 7-41

Resuming Execution After a Storage Error Condition

object_owner VARCHAR2(64);

object_type VARCHAR2(64);

table_space_name VARCHAR2(64);

object_name VARCHAR2(64);

sub_object_name VARCHAR2(64);

msg_body VARCHAR2(64);

ret_value boolean;

eror_txt varchar2(64);

mail_connutl_smip.connection;

BEGIN

SELECT DISTINCT(sid) INTO cur_sid FROM vémystat;

cur_inst := userenv(instance);

ret value :=dbms_resumable.space_error_info(er_type, object_owner,
object_type, table_space_name, object name, sub_object name);

IF object_type ='ROLLBACK SEGMENT THEN

INSERT INTO sys.rhs_eror (SELECT sql_text, emor_msg, suspend_time FROM
dba_resumable WHERE session_id = cur_sid AND instance_id = cur_inst);

SELECT error_msg into error_txt FROM dba._resumable WHERE session_id = cur_sid
AND instance_id=cur_inst;

msg_body :="Subject: Space error occurred: Space limit reached for rollback
segment | object_name||'on’' || to_char(SYSDATE, Month dd, YYYY,
HH:Mlam) || . Error message was: ' || error_tx;

mail_conn :=utl_smip.open_connection(localhost, 25);

utl_smip.helo(mail_conn, localhost);

utl_smitp.mail(mail_conn, 'sender@localhost);

utl_smip.rept(mail_conn, recipient@localhost);

utl_smtp.data(mail_conn, msg_body);

utl_smitp.quit{mail_conn);

dbms_resumable.abort(cur_sid);

ELSE

dbms_resumable.set _timeout(3600*8);

ENDIF;

COMMIT;

END;

7-42 Oracle9i Application Developer's Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

Querying Data at a Point in Time (Flashback Query)

By default, operations on the database use the most recent committed data
available. If you want to query the database as it was at some time in the past, you
can do so with the flashback query feature. It lets you specify either a time or a
system change number (SCN) and query using the committed data from the
corresponding time.

Some potential applications of flashback query are:

« Recovering lost data or undoing incorrect changes, even after the changes are
committed. For example, a user who deletes or updates rows and then commits
can immediately repair a mistake.

« Comparing current data against the data at some time in the past. For example,
you might run a daily report that shows the change from yesterday, rather than
just the current data.

« Checking the state of transactional data at a particular time. For example, you
might want to verify an account balance on a certain day.

« Simplifying application design by removing the need to store some kinds of
temporal data.

« Enabling packaged applications, such as report generation tools, to work on
past versions of data.

The flashback query mechanism is most effective when you use automatic undo
management. The DBA requests that undo data be kept for a specified period of
time. Depending on the available storage capacity, the database might not always
be able to keep all the requested undo data. If you use flashback queries, you might
need to familiarize yourself with automatic undo management to understand its
capabilities and limitations.

Other features are available to recover lost data. The unique feature of flashback
guery is that you can see the data as it was in the past, then choose exactly how to
process the information; you might do an analysis, undoing the changes, or capture
changed data for further processing.

How Oracle Processes SQL Statements 7-43

Querying Data at a Point in Time (Flashback Query)

See Also:

Oracle9i Database Concepts for background information about flashback
guery and automatic undo management.

Oracle9i Database Administrator’s Guide for the associated DBA
responsibilities, such as setting up automatic undo management and
granting privileges.

Oracle9i Supplied PL/SQL Packages and Types Reference for details about
the DBMS_FLASHBACK package that you can use in combination
with flashback queries.

Oracle9i Database Reference and Oracle9i Recovery Manager User’s Guide
and Reference for information about system change numbers, which are
used in backup and recovery and are present in some V$ data
dictionary views.

Setting Up the Database for Flashback Query

Before you can perform flashback queries, enlist the help of your DBA. Ask them to:

Use automatic undo management to maintain read consistency, rather than the
older technique using rollback segments. In particular, the DBA should:

Set the UNDO_RETENTIOMitialization parameter to a value that
represents how far in the past you might want to query. The value depends
on your needs. If you only need to recover data immediately after a
mistaken change is committed, the parameter can be set to a small value. If
you need to recover deleted data from days before, you might need several
days worth of data.

Set the initialization parameter UNDO_MANAGEMENT=AUTO.

Create an UNDQablespace, with enough space to keep the required data.
The more often the data is updated, the more space is required. Calculating
the space requirements is a job for the DBA,; you can find the formula in the
Oracle9i Database Administrator’s Guide.

Grant FLASHBACHKorivilege on appropriate tables, or FLASHBACK ANY TABLE
privilege, to users, roles, or applications that need to perform flashback queries
through the AS OF clause of SQL.

Grant EXECUTHBprivilege on the DBMS_FLASHBACPackage to users, roles, or
applications that need to perform flashback queries using this package.

Use the ALTER TABLE command with the RETENTIONoption to enable
flashback queries on specific LOB columns, if appropriate. Because LOB

7-44 Oracle9i Application Developer's Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

columns might require significant amounts of storage to keep undo data, you
must define which LOB columns can be used with flashback query.

Writing an Application that Uses Flashback Query

To use the flashback query feature in an application, use these coding techniques:

Use the AS OF clause in SQL queries to specify a past time. You can specify or
omit this clause for each table, and specify different times for different tables.
You can perform DDL operations such as creating and truncating tables, and
DML operations such as inserts and deletes, in the same session as queries
using the AS OF clause.

Put calls to the DBMS_FLASHBACgackage around sets of queries that apply to
data at a past time, or queries whose SQL you cannot change:

« Before doing the first query, call DBMS_FLASHBACK.ENABLE_AT_ TIMé&r
DBMS_FLASHBACK.ENABLE_AT_SYSTEM_CHANGE_NUMBER

« After doing the query, call DBMS_FLASHBACK.DISABLE

« Between these calls, you can only perform queries and not any DDL or
DML statements.

To use the results of a flashback query in DDL or DML statements against the
current state of the database, it is simplest to use the AS OF clause inside
INSERT or CREATE TABLE AS SELECT statements.

If you use the DBMS_FLASHBACBackage, you must open a cursor before
calling DBMS_FLASHBACK.DISABLEYou can fetch results from past data from
the cursor, then issue INSERT or UPDATEstatements against the current state of
the database.

To compare current data against past data using the DBMS_FLASHBACK
package, you can open a cursor with the flashback feature enabled, then disable
it and open another cursor. Fetching from the first cursor retrieves data based
on the flashback time; fetching from the second cursor retrieves current data.
You can store the older data in a temporary table and then use set operators
such as MINUSor UNIONto show differences in the data or combine past and
current data.

At certain points in the application, you might call
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMB&Ran store the
returned number, and later use it to perform flashback queries against the data
at that point in time. Perform a COMM ITbefore calling this procedure, so that
the database is in a consistent state to which you can return.

How Oracle Processes SQL Statements 7-45

Querying Data at a Point in Time (Flashback Query)

Flashback Query Restrictions

Some DDLs that alter the structure of a table, such as drop/modify column,
move table, drop partition, truncate table/partition, and so on, invalidate the
old undo data for the table. It is not possible to retrieve a snapshot of data from
a point earlier than the time such DDLs were executed. Trying such a query
results in a ORA-1466 error. This restriction does not apply to DDL operations
that alter the storage attributes of a table, such as PCTFREEINITTRANS,
MAXTRANSnd so on.

The time specified in DBMS_FLASHBACK.ENABLE_AT_TIM& in the AS OF
TIMESTAMPRlause is mapped to an SCN value. Currently, the SCN-time
mapping is recorded every 5 minutes after database startup. Thus, it might
appear as if the specified time is being rounded down by up to 5 minutes.

For example, assume that the SCN values 1000 and 1005 are mapped to the
times 8:41 and 8:46 AM respectively. A flashback query for a time anywhere
between 8:41:00 and 8:45:59 AM is mapped to SCN 1000; a flashback query for
8:45 AM is mapped to SCN 1005.

Due to this time-to-SCN mapping, a flashback query for a time immediately
after creation of a table may result in an ORA-1466 error. An SCN-based
flashback query therefore gives you a more precise way to retrieve a past
snapshot of data.

Because SCNs are only recorded every 5 minutes for use by flashback queries,
you might specify a time or SCN that is slightly after a DDL operation, but the
database might use a slightly earlier SCN that is before the DDL operation. So
you might get the same error as in the previous restriction if you try to perform
flashback queries to a point just after a DDL operation.

Currently, the flashback query feature keeps track of times up to a maximum of
5 days. This period reflects server uptime, not wall-clock time. For example, if
the server is down for a day during this period, then you can specify as far back
as 6 days. To query data farther back than this, you must specify an SCN rather
than a date and time. You must record the SCN yourself at the time of interest,
such as before doing a DELETE

When using the DBMS_FLASHBACpackage, you must disable flashback before
enabling it again for a different time. You cannot nest ENABLE/DISABLE pairs.
You can call DISABLE multiple times in succession, although this introduces a
little extra overhead, as shown in the following examples.

7-46 Oracle9i Application Developer’s Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

Only the state of table data is affected by a flashback query. During a query, the
current state of the data dictionary is used. For example, if you have changed
the character set since storing the data, queries use the current character set.

You cannot perform a flashback query on a remote table through a database
link.

You cannot retrieve past data from a V$ view in the data dictionary. Performing
a flashback query on such a view just returns the current data. You can perform
flashback queries on other views in the data dictionary, such as USER_TABLES

The SYSuser cannot make calls to the DBMS_FLASHBACPBackage. This user
can still use the AS OF clause and perform flashback queries that way.

Flashback queries against materialized views do not take advantage of query
rewrite.

Tips for Using Flashback Query

For good performance, generate statistics on all tables involved in flashback
gueries by using the DBMS_STAT$ackage, and keep the statistics current.
Flashback queries always use the cost-based optimizer, which relies on these
statistics.

Use the AS OF SCNlause for any operations where the data is critical, because
it is not subject to the potential 5-minute rounding error. Use the AS OF
TIMESTAMPRclause more for ad-hoc queries and reporting, where convenience
in specifying the time is more important.

Because flashback queries on a table might not work for a few minutes after the
table is created, make sure that to create all tables well in advance, those with
the original data and any tables used for temporary storage. This tip applies
more to situations where you are demonstrating or testing flashback query,
rather than production environments where the tables would already be set up.

While experimenting with flashback queries, you might accidentally leave your
session with uncommitted data or in flashback mode. Make a habit of including
a COMMITor ROLLBACKstatement (where appropriate) and a call to
DBMS_FLASHBACK.DISABLEt the beginning of SQL scripts that perform
flashback queries.

The performance of a flashback query depends on how much data must be
re-created. Use flashback query mostly for selecting small sets of data using
indexes, rather than queries that require full table scans. If you must do a full
table scan, consider adding a parallel hint to the query.

How Oracle Processes SQL Statements 7-47

Querying Data at a Point in Time (Flashback Query)

You can create a view that refers to past data by using the AS OF clause in the
SELECTstatement that defines the view. If you specify a relative time by
subtracting from SYSDATEthe past time is recalculated for each query. For
example:

CREATE VIEW hour_ago AS
SELECT * FROM EMPLOYEES AS OF
TIMESTAMP (SYSTIMESTAMP - INTERVAL '60' MINUTE);

When using this technique, remember that daylight savings time and leap years
can cause anomalous results. For example, SYSDATE - 1 might refer to 23 or
25 hours ago, shortly after a change in daylight savings time.

You can compute or retrieve the past time used in the AS OF clause, by using a
function return value as the timestamp or SCN argument. For example, you can
do date and time calculations by adding or subtracting an INTERVAL value to
the value of the SYSTIMESTAMRunction.

You can use the AS OF clause in self-joins, or in set operations such as
INTERSECTand MINUS to extract or compare data from two different times.
You can store the results by wrapping the queries in CREATE TABLE AS
SELECTor INSERT INTO TABLE SELECT statements.

Use the AS OFclause for SQL that you write, because it is flexible enough to do
comparisons and store results in a single query. Put calls to the
DBMS_FLASHBACBackage around SQL that you do not control, or when you
want to use the same past time for several consecutive queries.

When you use the AS OF SCN form of the clause, you use
DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMiB&R find out the SCN to
which to return.

Remember that all processing is done using the current national language and
other settings, not the ones that were in effect in the past.

Examples of Flashback Query

The flashback query mechanism is flexible enough to be used in many situations.
You can:

Query data as it existed in the past.

Compare current data to past data. You can compare individual rows, or do
more complex comparisons such as finding the intersection or union.

Recover deleted or changed data.

7-48 Oracle9i Application Developer’s Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

« Refer to a point in time using a DATEor TIMESTAMPvalue, or record system
change numbers.

Retrieving Data in the Past: Example

—Find out someone's salary at the beginning of a specified day.
— Because of the limit on undo information, the date must be recent.

set serveroutput on;
set echo off;

—Use a single SQL query.
SELECT salary FROM employees AS OF TIMESTAMP
to_timestamp(20-FEB-2002,DD-MON-YY') WHERE employee_id = 205;

—Use the DBMS_FLASHBACK package. It involves more code, but several

— operations can be performed all referring to the same past time.

DECLARE
the_salary NUMBER,;
num_employees NUMBER,;

BEGIN
dbms_flashback.enable_at_time(to_timestamp(20-FEB-2002',DD-MON-YY);
SELECT salary INTO the_salary FROM employees WHERE employee_id = 205;
dbms_outputput_line(Salary =" || the_salary);

SELECT COUNT(*) INTO num_employees FROM employees,
dbms_outputput_line(Number of employees ="' || num_employees);
doms_flashback disable;

END;

/

Remember that a date with no time represents the very beginning of that day.
Because of the limited amount of mapping data that is stored for times, such a
guery might only be able to look back a few days in the past. To look back farther,
you need to store the SCN at the time of interest. Even then, the data might be
unavailable if the saved undo data does not extend back that far.

Recovering Incorrectly Updated or Deleted Data: Examples
This example makes an incorrect update, commits the changes, then immediately
recovers the old information using a flashback query:

— In this example, the deletion of a manager triggers the accidental
— deletion of everyone in the reporting chain.
— Using flashback query, we can recover and re-insert the missing employees.

How Oracle Processes SQL Statements 7-49

Querying Data at a Point in Time (Flashback Query)

Setup
setecho off;
set serveroutput on size 50000;

—KEEP_SCN is atemporary table to store SCNs that we are interested in.
DROP TABLE keep_scn;

CREATE TABLE keep_scn (scn NUMBERY);

DELETE FROM keep_scn;

COMMIT;

EXECUTE dbms_flashback disable;

DROP TABLE my_employees;
CREATE TABLE my_employees (
employee_no NUMBER(5) PRIMARY KEY,
employee_name VARCHAR2(20),
employee_mgr NUMBER(5)
CONSTRAINT mgr_fkey REFERENCES my_employees ON DELETE CASCADE,
salary NUMBER,
hiredate DATE);

DELETE FROM my_employees;

— Now populate the company with employees.

INSERT INTO my_employees values (1, Dennis Potter’, null, 1000000, 5ul-91Y);
INSERT INTO my_employees values (10, ‘Margaret O'Neil, 1, 500000,
"12-aug-94);

INSERT INTO my_employees values (20, ‘Charles Evans,, 10, 250000, '13-dec-97Y);
INSERT INTO my_employees values (100, 'Roger Smith, 20, 200000, '3-feb-96);
INSERT INTO my_employees values (200, ‘Juan Hemandez', 100, 150000,
"22-mar-98);

INSERT INTO my_employees values (210, ‘Jonathan Takeda!, 100, 100000,
"11-apr-97Y);

INSERT INTO my_employees values (220, Nancy Schoenfeld', 100, 100000,
"18-sep-95);

INSERT INTO my_employees values (300, 'Edward Ngai', 210, 75000, ‘4-nov-96);
INSERT INTO my_employees values (310, 'Amit Sharma!, 210, 65000, '3-may-95);
COMMIT;

—Wait a litle more than 5 minutes to avoid ORA-01466 error, because the
—table is so new. Only needed in demo situations like this.

EXECUTE dbms_outputput_line(Pausing for 5 minutes...");

EXECUTE dbms_lock sleep(320);

Real work
— Show the entire org

7-50 Oracle9i Application Developer’s Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

SELECT Ipad(*, 2(level-1)) || employee_name "Original Org Chart'
FROM my_employees CONNECT BY PRIOR employee_no =employee_mgr
START WITH employee_no =1 ORDER BY LEVEL,;

— Store this snapshot for later access through FlashBack.
DECLARE
| number,
BEGIN
I :=dbms_flashbackget system change _number;
INSERT INTO keep_scn VALUES (J);
COMMIT;
END;
/

—Now Roger decides its time to retire, but the HR department does

—the transaction incorrectly. The DELETE CASCADE deletes Roger's organization.
DELETE FROM my_employees WHERE employee_name = 'Roger Smith’;
COMMIT;

— Notice that all of Roger's employees are now gone.

SELECT Ipad(', 2*(level-1)) || employee_name "Post-Roger Org Chart"
FROM my_employees CONNECT BY PRIOR employee_no =employee_mgr
START WITH employee_no=1 ORDER BY LEVEL,

— Let's put back Roger's organization.
DECLARE
restore_scn NUMBER,;
rogers_emp NUMBER,;
rogers_mgr NUMBER,
—We use AS OF clauses on both the main query and the subquery.
CURSOR cl(the_scn NUMBER) IS
SELECT employee_no, employee_name, employee_mgr, salary, hiredate
FROM my_employees AS OF SCNthe_scn
CONNECT BY PRIOR employee_no =employee_mgr
START WITH employee_no=
(SELECT employee_no FROM my_employees AS OF SCN the_scn
WHERE employee_name ='Roger Smith);
cl rec c1%ROWTYPE;

BEGIN
SELECT scn INTO restore_scn FROM keep_scn;

— dbms_flashback.enable_at system_change_number(restore_scn);
dbms_output.put_line(Using system change number: " || restore_scn);

How Oracle Processes SQL Statements 7-51

Querying Data at a Point in Time (Flashback Query)

SELECT employee_no, employee_mgr INTO rogers_emp, rogers_mgr
FROM my_employees AS OF SCN restore_scn
WHERE employee_name ='Roger Smith’;

doms_outputput_line(Roger was employee # || rogers_emp ||
'and his manager was employee # || rogers_mgr);

— Open cl at the point specified by restore_scn.
OPEN c1(restore_scn);

— Only the cursor uses past information, so we can insert into the original
— table within the loop.
LOOP
FETCHCLINTOCL rec;
EXIT WHEN c1%NOTFOUND;
IF c1_recemployee_mgr=rogers_emp THEN
— If someone reported directly to Roger, we restore them but make
— them report to Roger's manager.
dbms_outputput_line(Inserting employee who used to report to Roger:*
|| c1_rec.employee_name);
INSERT INTO my_employees VALUES (c1_rec.employee no,
cl_rec.employee_name, rogers_mgr, c1_rec.salary, c1_rec.hiredate);
ELSIF cl_rec.employee_no =rogers_emp THEN
— If someone didn't report directly to Roger, we restore them with the same
—manager as before.
dbms_outputput_line(Inserting employee who didn't report directly to
Roger:' || c1_rec.employee_name);
INSERT INTO my_employees VALUES (c1_rec.employee no,
¢l _recemployee_name, cl_recemployee_mgr, cl_rec.salary,
cl_rechiredate);
ENDIF;
END LOOP;
END;
/

— Now show that Roger's org is back.

SELECT Ipad('', 2%(level-1)) || employee_name "Restored Org Chart"
FROM my_employees CONNECT BY PRIOR employee_no =employee_mgr
START WITH employee_no =1 ORDER BY LEVEL,;

Using the AS OF Clause with a System Change Number: Example

— A precise method of specifying the flashback point uses the SCN directly,
—instead of specifying a timestamp, but also requires that we store the SCN in

7-52 Oracle9i Application Developer’s Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

— advance. Go to this extra trouble whenever it is crucial to retrieve data
—from a precise point.

set serveroutput on;

— Make a copy of the EMPLOYEES table without the constraints, so we
— can make arbitrary changes.

DROP TABLE employees?2;

CREATE TABLE employees2 AS SELECT * FROM employees;
COMMIT;

—Wait for slightty more than 5 minutes, because the table is so new.

— Only needed in demo situations like this.

EXECUTE dbms_lock sleep(320);

SELECT count(*) FROM employees2 WHERE salary = 9000;

DECLARE
TYPE employee_cursor IS REF CURSOR,;
cemployee_cursor,
cvar employees¥eROWTYPE;
old_scn NUMBER,;

BEGIN
COMMIT;
dbms_flashback.disable;
old_scn:=dbms_flashback get system_change_number;
DELETE FROM employees2 WHERE salary =9000;
COMMIT;

— Those updates and deletes were in error. We need to recover the data.
— Use the data as it existed immediately before the update and delete.
OPEN ¢ FOR 'SELECT * FROM employees2 AS OF SCN :1 WHERE salary = 9000
USING old_scn;
LOOP
FETCH cINTO cvar;
EXIT WHEN c%NOTFOUND;
dbms_outputput_line(Recovering employee: ' || cvarlast_name);
INSERT INTO employees2 VALUES cvar;
END LOOP,;
COMMIT;
END;
/

select count(*) from employees2 where salary = 9000;

How Oracle Processes SQL Statements 7-53

Querying Data at a Point in Time (Flashback Query)

Finding All Rows That Were Added Today: Example

— TRUNC(SYSDATE) gives us midnight this moming, the start of the day.

— By using the MINUS operator, we can see which rows are present now but
—were not present at the start of the day. They might be entirely new

- employees, or employees whose data was changed today so their row doesnt
—match the row from yesterday.

DROP TABLE employees _changed_today;
CREATE TABLE employees_changed_today AS
SELECT * FROM employees
MINUS
SELECT * FROM employees AS OF TIMESTAMP TRUNC(SYSDATE);

Performing a Flashback Query Using a Subquery: Example

— A query similar to the previous one shows the flashback query

—can beinside a subquery.

SELECT MAX(salary) FROM

(

SELECT * FROM employees

MINUS

SELECT * FROM employees AS OF TIMESTAMP TRUNC(SYSDATE)

)

Using Explicit and Implicit Cursors with DBMS_FLASHBACK: Example

— Itis more efficient to use an explicit cursor than a FOR loop with an
—implicit cursor. To use flashback query effectively, it helps to understand
— different techniques for using cursors.

— Before: many employees have null values for this column.
select count(*) from employees where commission_pctis null;

— Most efficient technique. Open the cursor, disable flashback, then use
— the older data in DML statements on the current table.
DECLARE
TYPE employee_cursor IS REF CURSOR,;
cemployee_cursor,
cvar employees¥%oROWTYPE;
BEGIN
— Make sure at the start that we aren't in the middle of a transaction.
COMMIT;
—Make sure we are not already in flashback mode.

7-54 Oracle9i Application Developer’s Guide - Fundamentals

Querying Data at a Point in Time (Flashback Query)

doms_flashback.disable;

— Hashback to a known time.

dbms_flashback.enable_at time(SYSDATE - 1);
— Open a cursor to retrieve data from the past.

OPEN ¢ FOR 'SELECT * FROM employees WHERE employee_id <200}
—When flashback is disabled, the cursor continues to refer to past data,
—and we can perform DML again.

dboms_flashback disable;

LOOP
FETCHCcINTO cvar;
EXIT WHEN c%NOTFOUND;
— Ifthe employee had a null value for commission_pct yesterday,
— then overwrite the current row, setting the value to zero.
IF cvar.commission_pct IS NULL THEN
cvar.commission_pct:=0;
UPDATE employees SET ROW = cvar WHERE employee_id = cvar.employee_id;
ENDIF;
COMMIT;
END LOOP;
END;
/

— After: no employee should have a null value for this column.
select count(*) from employees where commission_pct is null;

You can also use an implicit cursor, although this is slightly less efficient because
DBMS_FLASHBACK.DISABLEs called for each loop iteration:

— Setup: create an empty table with the same definition as EMPLOYEES.
drop table yesterdays_employees;

create table yesterdays _employees as select * from employees where 1 =0
set serveroutput on size 500000;

— Less efficient technique. To allow DML statements against the current
— table within the loop body, DISABLE must be called for each loop iteration.

— Make sure database is in a consistent state.

COMMIT;

— First make sure flashback is tumed off initially.

EXECUTE DBMS_FLASHBACK.DISABLE;

— Then set it to a known value.

EXECUTE DBMS_FLASHBACK.ENABLE _AT_TIME(SYSDATE - 1);

How Oracle Processes SQL Statements 7-55

Querying Data at a Point in Time (Flashback Query)

BEGIN
— The FOR loop is examining data values from the past.
FOR cin (SELECT * FROM employees WHERE employee _id < 200)
LOOP
— DISABLE gets called multiple times, but that's OK.
DBMS_FLASHBACK DISABLE;

dbms_output.put_line(Inserting employee # || c.employee_id);

— Because flashback is disabled within the loop body, we can access the
— present state of the data, and issue DML statements to undo the changes
— or store the old data somewhere else.
INSERT INTO yesterdays_employees VALUES c;
END LOOP;
END;
/

— After the loop, once more make sure flashback is tumed off.
EXECUTE DBMS_FLASHBACK DISABLE;

select count(*) from yesterdays_employees;

7-56 Oracle9i Application Developer’s Guide - Fundamentals

8

Coding Dynamic SQL Statements

Dynamic SQL is a programming technique that enables you to build SQL
statements dynamically at runtime. You can create more general purpose, flexible
applications by using dynamic SQL because the full text of a SQL statement may be
unknown at compilation. For example, dynamic SQL lets you create a procedure
that operates on a table whose name is not known until runtime.

Oracle includes two ways to implement dynamic SQL in a PL/SQL application:

« Native dynamic SQL, where you place dynamic SQL statements directly into
PL/SQL blocks.

« Calling procedures in the DBMS_SQIpackage.

This chapter covers the following topics:

« "What Is Dynamic SQL?" on page 8-2

« "Why Use Dynamic SQL?" on page 8-3

« "A Dynamic SQL Scenario Using Native Dynamic SQL" on page 8-8

« "Choosing Between Native Dynamic SQL and the DBMS_SQL Package" on
page 8-11

« "Using Dynamic SQL in Languages Other Than PL/SQL" on page 8-21

« "Using PL/SQL Records in SQL INSERT and UPDATE Statements" on
page 8-21

You can find details about the DBMS_SQIpackage in the Oracle9i Supplied PL/SQL
Packages and Types Reference.

Coding Dynamic SQL Statements 8-1

What Is Dynamic SQL?

What Is Dynamic SQL?

Dynamic SQL enables you to write programs that reference SQL statements whose
full text is not known until runtime. Before discussing dynamic SQL in detail, a
clear definition of static SQL may provide a good starting point for understanding
dynamic SQL. Static SQL statements do not change from execution to execution.
The full text of static SQL statements are known at compilation, which provides the
following benefits:

« Successful compilation verifies that the SQL statements reference valid database
objects.

« Successful compilation verifies that the necessary privileges are in place to
access the database objects.

« Performance of static SQL is generally better than dynamic SQL.

Because of these advantages, you should use dynamic SQL only if you cannot use
static SQL to accomplish your goals, or if using static SQL is cumbersome compared
to dynamic SQL. However, static SQL has limitations that can be overcome with
dynamic SQL. You may not always know the full text of the SQL statements that
must be executed in a PL/SQL procedure. Your program may accept user input that
defines the SQL statements to execute, or your program may need to complete some
processing work to determine the correct course of action. In such cases, you should
use dynamic SQL.

For example, a reporting application in a data warehouse environment might not
know the exact table name until runtime. These tables might be named according
to the starting month and year of the quarter, for example INV_01_1997 ,
INV_04_1997 ,INV_07_1997 ,INV_10_1997 ,INV_01_1998 , and so on. You can
use dynamic SQL in your reporting application to specify the table name at
runtime.

You might also want to run a complex query with a user-selectable sort order.
Instead of coding the query twice, with different ORDER BYclauses, you can
construct the query dynamically to include a specified ORDER BYclause.

Dynamic SQL programs can handle changes in data definitions, without the need to
recompile. This makes dynamic SQL much more flexible than static SQL. Dynamic
SQL lets you write reusable code because the SQL can be easily adapted for
different environments..

Dynamic SQL also lets you execute data definition language (DDL) statements and
other SQL statements that are not supported in purely static SQL programs.

8-2 Oracle9j Application Developer's Guide - Fundamentals

Why Use Dynamic SQL?

Why Use Dynamic SQL?

You should use dynamic SQL in cases where static SQL does not support the
operation you want to perform, or in cases where you do not know the exact SQL
statements that must be executed by a PL/SQL procedure. These SQL statements
may depend on user input, or they may depend on processing work done by the
program. The following sections describe typical situations where you should use
dynamic SQL and typical problems that can be solved by using dynamic SQL

Executing DDL and SCL Statements in PL/SQL

In PL/SQL, you can only execute the following types of statements using dynamic
SQL, rather than static SQL:

« Data definition language (DDL) statements, such as CREATEDROPGRANTand
REVOKE

« Session control language (SCL) statements, such as ALTER SESSIONand
SET ROLE

See Also: Oracle9i SQL Reference for information about DDL and
SCL statements.

Also, you can only use the TABLE clause in the SELECTstatement through dynamic
SQL. For example, the following PL/SQL block contains a SELECTstatement that
uses the TABLE clause and native dynamic SQL:

CREATE TYPE t emp AS OBJECT (d NUMBER, name VARCHAR2(20))
/

CREATE TYPE t_emplist AS TABLE OF t emp

/

CREATE TABLE dept_new (id NUMBER, empst_emplist)
NESTED TABLE emps STORE AS emp_table;

INSERT INTO dept_new VALUES (
10,
t_emplist(
t emp(d,'SCOTT),
t emp(2, BRUCE)));

DECLARE

deptid NUMBER;

ename VARCHAR2(20);
BEGIN

Coding Dynamic SQL Statements 8-3

Why Use Dynamic SQL?

EXECUTE IMMEDIATE 'SELECT d.id, ename
FROM dept_new d, TABLE(d.emps) e — not allowed in static SQL

-inPL/SQL
WHERE eid=1
INTO deptid, ename;
END;

/

Executing Dynamic Queries

You can use dynamic SQL to create applications that execute dynamic queries,
whose full text is not known until runtime. Many types of applications need to use
dynamic queries, including:

« Applications that allow users to input or choose query search or sorting criteria
at runtime

« Applications that allow users to input or choose optimizer hints at run time

« Applications that query a database where the data definitions of tables are
constantly changing

« Applications that query a database where new tables are created often

For examples, see "Querying Using Dynamic SQL: Example" on page 8-17, and see
the query examples in "A Dynamic SQL Scenario Using Native Dynamic SQL" on
page 8-8.

Referencing Database Objects that Do Not Exist at Compilation

Many types of applications must interact with data that is generated periodically.
For example, you might know the tables definitions at compile time, but not the
names of the tables.

Dynamic SQL can solve this problem, because it lets you wait until runtime to
specify the table names. For example, in the sample data warehouse application
discussed in "What Is Dynamic SQL?" on page 8-2, new tables are generated every
guarter, and these tables always have the same definition. You might let a user
specify the name of the table at runtime with a dynamic SQL query similar to the
following:

CREATE OR REPLACE PROCEDURE query_invoice(
month VARCHAR?2,
year VARCHAR?) IS
TYPE cur_typ IS REF CURSOR,;

ccur_typ;

8-4 Oracle9i Application Developer's Guide - Fundamentals

Why Use Dynamic SQL?

query_str VARCHAR2(200);
inv_num NUMBER;
inv_cust VARCHAR2(20);
inv_amt NUMBER;
BEGIN
query_str :="SELECT num, cust, amt FROM inv_" || month ||| year
[I' WHERE invnum = :idl;
OPEN ¢ FOR query_str USING inv_num;
LOOP
FETCH cINTO inv_num, inv_cust, inv_amt;
EXIT WHEN c%NOTFOUND;
— process row here
END LOOP;
CLOSEC;
END;
/

Optimizing Execution Dynamically

You can use dynamic SQL to build a SQL statement in a way that optimizes the
execution by concatenating the hints into a SQL statement dynamically. This lets
you change the hints based on your current database statistics, without requiring
recompilation.

For example, the following procedure uses a variable called a_hint to allow users
to pass a hint option to the SELECTstatement:

CREATE OR REPLACE PROCEDURE query_emp
(@_hint VARCHAR?) AS
TYPE cur_typ IS REF CURSOR;

ceour_typ;
BEGIN

OPEN ¢ FOR 'SELECT’ || a_hint ||
' empno, ename, sal, job FROM emp WHERE empno = 7566';
— process
END;
/

In this example, the user can pass any of the following values for a_hint

a_hint = '/*+ ALL_ROWS */'
a_hint = '/*+ FIRST_ROWS */'
a_hint = '/*+ CHOOSE */

or any other valid hint option.

Coding Dynamic SQL Statements 8-5

Why Use Dynamic SQL?

See Also: Oracle9i Database Performance Guide and Reference for
more information about using hints.

Executing Dynamic PL/SQL Blocks

You can use the EXECUTE IMMEDIATEtatement to execute anonymous PL/SQL
blocks. You can add flexibility by constructing the block contents at runtime.

For example, suppose ythroughthroughou want to write an application that takes
an event number and dispatches to a handler for the event. The name of the handler
is in the form EVENT_HANDLERevent num , where event_num is the number of
the event. One approach is to implement the dispatcher as a switch statement,
where the code handles each event by making a static call to its appropriate handler.
This code is not very extensible because the dispatcher code must be updated
whenever a handler for a new event is added.

CREATE OR REPLACE PROCEDURE event_handler_1(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_handler_2(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_handler_3(param number) AS BEGIN
— process event
RETURN,;

END;

/

CREATE OR REPLACE PROCEDURE event_dispatcher
(event number, param number) IS
BEGIN
IF (event=1) THEN
EVENT_HANDLER_1(param);
ELSIF (event=2) THEN
EVENT_HANDLER_2(param);
ELSIF (event=3) THEN
EVENT_HANDLER_3(param);
ENDIF;
END;

8-6 Oracle9/ Application Developer's Guide - Fundamentals

Why Use Dynamic SQL?

/

Using native dynamic SQL, you can write a smaller, more flexible event dispatcher
similar to the following:

CREATE OR REPLACE PROCEDURE event_dispatcher
(event NUMBER, param NUMBER) IS
BEGIN
EXECUTE IMMEDIATE
'BEGIN
EVENT_HANDLER '||to_char(event) || ‘(:1);
END;
USING param;
END;
/

Performing Dynamic Operations Using Invoker-Rights

By using the invoker-rights feature with dynamic SQL, you can build applications
that issue dynamic SQL statements under the privileges and schema of the invoker.
These two features, invoker-rights and dynamic SQL, enable you to build reusable
application subcomponents that can operate on and access the invoker’s data and
modules.

See Also: PL/SQL User’s Guide and Reference for information about
using invokers-rights and native dynamic SQL.

Coding Dynamic SQL Statements 8-7

A Dynamic SQL Scenario Using Native Dynamic SQL

A Dynamic SQL Scenario Using Native Dynamic SQL

This scenario shows you how to perform the following operations using native
dynamic SQL.:

« Execute DDL and DML operations
« Execute single row and multiple row queries

The database in this scenario is a company’s human resources database (named hr)
with the following data model:

A master table named offices contains the list of all company locations. The
offices table has the following definition:

Column Name Null? Type
LOCATION NOT_NULL VARCHAR2(200)

Multiple emp_Jlocation tables contain the employee information, where
location is the name of city where the office is located. For example, a table
named emp_houston contains employee information for the company’s Houston
office, while a table named emp_boston contains employee information for the
company’s Boston office.

Each emp_location table has the following definition:

Column Name Null? Type

EMPNO NOT NULL NUMBER()
ENAME NOT NULL VARCHAR2(10)
JoB NOT NULL VARCHAR2(9)
SAL NOT NULL NUMBER(7.2)
DEPTNO NOT NULL NUMBER()

The following sections describe various native dynamic SQL operations that can be
performed on the data in the hr database.

8-8 Oracle9i Application Developer's Guide - Fundamentals

A Dynamic SQL Scenario Using Native Dynamic SQL

Sample DML Operation Using Native Dynamic SQL

The following native dynamic SQL procedure gives a raise to all employees with a
particular job title:

CREATE OR REPLACE PROCEDURE salary_raise (raise_percent NUMBER, job VARCHAR?) IS
TYPE loc_array_type IS TABLE OF VARCHAR2(40)
INDEX BY binary_integer;
dml_str VARCHAR2(200);
loc_array loc_array type;
BEGIN
— bulk fetch the list of office locations
SELECT location BULK COLLECT INTO loc_array
FROM dffices;
—for each location, give a raise to employees with the given job'
FORIIN loc_arrayfirst.loc_amay.last LOOP
dml_str:="UPDATE emp_ || loc_array(i)
|| SET sal =sal * (1+(raise_percent/100))
I WHERE job =job _title";
EXECUTE IMMEDIATE dml_str USING raise_percent, job;
END LOOP;
END;
/
SHOW ERRORS;

Sample DDL Operation Using Native Dynamic SQL

The EXECUTE IMMEDIATEstatement can perform DDL operations. For example,
the following procedure adds an office location:

CREATE OR REPLACE PROCEDURE add_location (Joc VARCHAR2) IS
BEGIN
— insert new location in master table
INSERT INTO offices VALUES (loc);
— create an employee information table
EXECUTE IMMEDIATE
'‘CREATE TABLE ' ||'emp_"|| loc ||
(
empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
sa NUMBER(7,2),
deptno NUMBER(2)
)
END;

Coding Dynamic SQL Statements 8-9

A Dynamic SQL Scenario Using Native Dynamic SQL

/
SHOW ERRORS;

The following procedure deletes an office location:

CREATE OR REPLACE PROCEDURE drop_location (loc VARCHAR?2) IS
BEGIN
— delete the employee table for location ‘loc'
EXECUTE IMMEDIATE 'DROP TABLE ' ||'emp_'|| loc;
— remove location from master table
DELETE FROM offices WHERE location = loc;
END;
/
SHOW ERRORS;

Sample Single-Row Query Using Native Dynamic SQL

The EXECUTE IMMEDIATEtatement can perform dynamic single-row queries. You
can specify bind variables in the USINGclause and fetch the resulting row into the
target specified in the INTO clause of the statement.

The following function retrieves the number of employees at a particular location
performing a specified job:

CREATE OR REPLACE FUNCTION get_ num_of_employees (loc VARCHAR?Z, job VARCHAR?)
RETURN NUMBER IS
query_str VARCHAR2(1000);
num_of_employees NUMBER;

BEGIN
query_str:='SELECT COUNT(*) FROM'
[I'emp_||loc

|I"WHERE job =:job title";
EXECUTE IMMEDIATE query_str
INTO num_of_employees
USING job;
RETURN num_of_employees;
END;
/
SHOW ERRORS;

8-10 Oracle9i Application Developer’s Guide - Fundamentals

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Sample Multiple-Row Query Using Native Dynamic SQL

The OPEN-FORFETCH and CLOSEstatements can perform dynamic multiple-row
gueries. For example, the following procedure lists all of the employees with a
particular job at a specified location:

CREATE OR REPLACE PROCEDURE list employees(loc VARCHAR?2, job VARCHAR2) IS
TYPE cur_typ IS REF CURSOR,;
c cur_typ;
query_str VARCHAR2(1000);
emp_name VARCHAR2(20);
emp_num NUMBER;
BEGIN
query_str :="SELECT ename, empno FROM emp_'||loc
|I"WHERE job =:job title’;
—find employees who perform the specified job
OPEN ¢ FOR query_str USING job;
LOOP
FETCH cINTO emp_name, emp_num;
EXIT WHEN c%NOTFOUND;
— process row here
END LOOP;
CLOSE ;
END;
/
SHOW ERRORS;

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Oracle provides two methods for using dynamic SQL within PL/SQL: native
dynamic SQL and the DBMS_SQIpackage. Native dynamic SQL lets you place
dynamic SQL statements directly into PL/SQL code. These dynamic statements
include DML statements (including queries), PL/SQL anonymous blocks, DDL
statements, transaction control statements, and session control statements.

To process most native dynamic SQL statements, you use the EXECUTE IMMEDIATE
statement. To process a multi-row query (SELECTstatement), you use OPEN-FOR
FETCH and CLOSEstatements.

Note: To use native dynamic SQL, the COMPATIBLHENitialization
parameter must be set to 8.1.0 or higher. See Oracle9i Database
Migration for more information about the COMPATIBLEparameter.

Coding Dynamic SQL Statements 8-11

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

The DBMS_SQIpackage is a PL/SQL library that offers an API to execute SQL
statements dynamically. The DBMS_SQIpackage has procedures to open a cursor,
parse a cursor, supply binds, and so on. Programs that use the DBMS_SQIpackage
make calls to this package to perform dynamic SQL operations.

The following sections provide detailed information about the advantages of both
methods.

See Also: The PL/SQL User’s Guide and Reference for detailed
information about using native dynamic SQL and the Oracle9i
Supplied PL/SQL Packages and Types Reference for detailed
information about using the DBMS_SQIpackage. In the PL/SQL
User’s Guide and Reference, native dynamic SQL is referred to simply
as dynamic SQL.

Advantages of Native Dynamic SQL

Native dynamic SQL provides the following advantages over the DBMS_SQL
package:

Native Dynamic SQL is Easy to Use

Because native dynamic SQL is integrated with SQL, you can use it in the same way
that you use static SQL within PL/SQL code. Native dynamic SQL code is typically
more compact and readable than equivalent code that uses the DBMS_SQIpackage.

With the DBMS_SQIpackage you must call many procedures and functions in a
strict sequence, making even simple operations require a lot of code. You can avoid
this complexity by using native dynamic SQL instead.

Table 8-1 illustrates the difference in the amount of code required to perform the
same operation using the DBMS_SQIpackage and native dynamic SQL.

8-12 Oracle9i Application Developer's Guide - Fundamentals

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Table 8-1 Code Comparison of DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Package

Native Dynamic SQL

CREATE PROCEDURE insert into_table (

table_name VARCHAR?2,
deptnumber NUMBER,
deptname VARCHAR2,
location VARCHAR?2)IS
cur_hd INTEGER;
smt_str VARCHAR2(200);

rows_processed BINARY_INTEGER;

BEGIN
stmt_str:="INSERT INTO" ||
table_name||' VALUES
(:deptno, :dname, loc);

—open cursor
cur_hdl:=dbms_sqgl.open_cursor,

— parse cursor
dbms_sgl.parse(cur_hdl, stmt_str,
doms_sqgl.native);

- supply binds
dbms_sgl.bind_variable

(cur_hdl, “deptno’, deptnumber);
dbms_sgl.bind_variable

(cur_hdl, *dname’, deptname);
dbms_sgl.bind_variable

(cur_hdl, *loc', location);

— execute cursor
rows_processed =
dbms_sgl.execute(cur_hdl);

- close cursor
dbms_sqgl.close_cursor(cur_hdi);

END;
/
SHOW ERRORS;

CREATE PROCEDURE insert_into_table (
table_name VARCHAR?2,
deptnumber NUMBER,
depiname VARCHAR2,
locaion VARCHAR?2)IS
stmt_ str VARCHAR2(200);

BEGIN
stmt_str:='INSERT INTO’ ||
table_name ||’ values
(:deptno, :-dname, loc)’;

EXECUTE IMMEDIATE stmt_str
USING
deptnumber, deptname, location;

END;
/
SHOW ERRORS;

Coding Dynamic SQL Statements 8-13

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Native Dynamic SQL is Faster than DBMS_SQL

Native dynamic SQL in PL/SQL performs comparably to the performance of static
SQL, because the PL/SQL interpreter has built-in support for it. Programs that use
native dynamic SQL are much faster than programs that use the DBMS_SQL
package. Typically, native dynamic SQL statements perform 1.5 to 3 times better
than equivalent DBMS_SQlcalls. (Your performance gains may vary depending on
your application.)

Native dynamic SQL bundles the statement preparation, binding, and execution
steps into a single operation, which minimizes the data copying and procedure call
overhead and improves performance.

The DBMS_SQIpackage is based on a procedural APl and incurs high procedure
call and data copy overhead. Each time you bind a variable, the DBMS_SQlpackage
copies the PL/SQL bind variable into its space for use during execution. Each time
you execute a fetch, the data is copied into the space managed by the DBMS_SQL
package and then the fetched data is copied, one column at a time, into the
appropriate PL/SQL variables, resulting in substantial overhead.

Performance Tip: Using Bind Variables ~ When using either native dynamic SQL or the
DBMS_SQIpackage, you can improve performance by using bind variables, because
bind variables allow Oracle to share a single cursor for multiple SQL statements.

For example, the following native dynamic SQL code does not use bind variables:

CREATE OR REPLACE PROCEDURE del_dept (
my_deptno deptdeptno%TYPE) IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno = to_char (my_deptno);
END;
/
SHOW ERRORS;

For each distinct my_deptno variable, a new cursor is created, causing resource
contention and poor performance. Instead, bind my_deptno as a bind variable:

CREATE OR REPLACE PROCEDURE del_dept (
my_deptno deptdeptno%TYPE) IS
BEGIN
EXECUTE IMMEDIATE 'DELETE FROM dept WHERE deptno = :1' USING my_deptno;
END;
/
SHOW ERRORS;

8-14 Oracle9i Application Developer's Guide - Fundamentals

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Here, the same cursor is reused for different values of the bind my_deptno ,
improving performance and scalabilty.

Native Dynamic SQL Supports User-Defined Types

Native dynamic SQL supports all of the types supported by static SQL in PL/SQL,
including user-defined types such as user-defined objects, collections, and REFs.
The DBMS_SQIpackage does not support these user-defined types.

Note: The DBMS_SQIpackage provides limited support for
arrays. See the Oracle9i Supplied PL/SQL Packages and Types Reference
for information.

Native Dynamic SQL Supports Fetching Into Records

Native dynamic SQL and static SQL both support fetching into records, but the
DBMS_SQIlpackage does not. With native dynamic SQL, the rows resulting from a
guery can be directly fetched into PL/SQL records.

In the following example, the rows from a query are fetched into the emp_rec
record:

DECLARE
TYPE EmpCurTyp IS REF CURSOR,;
¢ EmpCurTyp;
emp_rec emp%ROWTYPE;
stmt_str VARCHAR2(200);
e_job empjob%TYPE;

BEGIN
stmt_str :="SELECT * FROM emp WHERE job =1,
—inamulti-row query
OPEN c FOR smt_sir USING 'MANAGER;
LOOP
FETCH cINTO emp_rec;
EXIT WHEN c%NOTFOUND;
END LOOP;
CLOSEC;
—inasingle-row query
EXECUTE IMMEDIATE stmt_str INTO emp_rec USING 'PRESIDENT;,

END;
/

Coding Dynamic SQL Statements 8-15

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Advantages of the DBMS_SQL Package

The DBMS_SQIpackage provides the following advantages over native dynamic
SQL:

DBMS_SQL is Supported in Client-Side Programs

The DBMS_SQIpackage is supported in client-side programs, but native dynamic
SQL is not. Every call to the DBMS_SQIpackage from the client-side program
translates to a PL/SQL remote procedure call (RPC); these calls occur when you
need to bind a variable, define a variable, or execute a statement.

DBMS_SQL Supports DESCRIBE

The DESCRIBE_COLUMN&ocedure in the DBMS_SQIpackage can be used to
describe the columns for a cursor opened and parsed through DBMS_SQLThis
feature is similar to the DESCRIBEcommand in SQL*Plus. Native dynamic SQL
does not have a DESCRIBEfacility.

DBMS_SQL Supports Multiple Row Updates and Deletes with a RETURNING
Clause
The DBMS_SQIpackage supports statements with a RETURNING lause that update

or delete multiple rows. Native dynamic SQL only supports a RETURNING lause if
a single row is returned.

See Also: "Performing DML with RETURNING Clause Using
Dynamic SQL: Example" on page 8-20 for examples of DBMS_SQL
package code and native dynamic SQL code that uses a
RETURNINGlause.

DBMS_SQL Supports SQL Statements Larger than 32KB

The DBMS_SQIpackage supports SQL statements larger than 32KB; native dynamic
SQL does not.

DBMS_SQL Lets You Reuse SQL Statements

The PARSEprocedure in the DBMS_SQlpackage parses a SQL statement once. After
the initial parsing, you can use the statement multiple times with different sets of
bind arguments.

Native dynamic SQL prepares a SQL statement each time the statement is used,
which typically involves parsing, optimization, and plan generation. Although the

8-16 Oracle9i Application Developer’s Guide - Fundamentals

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

extra prepare operations incur a small performance penalty, the slowdown is
typically outweighed by the performance benefits of native dynamic SQL.

Examples of DBMS_SQL Package Code and Native Dynamic SQL Code

The following examples illustrate the differences in the code necessary to complete
operations with the DBMS_SQIpackage and native dynamic SQL. Specifically, the
following types of examples are presented:

« Aquery
« A DML operation
« A DML returning operation

In general, the native dynamic SQL code is more readable and compact, which can
improve developer productivity.

Querying Using Dynamic SQL: Example
The following example includes a dynamic query statement with one bind variable
(:jobname) and two select columns (ename and sal):

stmt_str :="SELECT ename, sal FROM emp WHERE job = jobname’;
This example queries for employees with the job description SALESMANN the job

column of the emptable. Table 8-2 shows sample code that accomplishes this query
using the DBMS_SQlpackage and native dynamic SQL.

Coding Dynamic SQL Statements 8-17

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Table 8-2 Querying Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL Query Operation

Native Dynamic SQL Query Operation

DECLARE

stmt_str varchar2(200);

cur_hdlint;

rows_processed int;

name varchar2(10);

salary int;
BEGIN
cur_hdl :=dbms_sql.open_cursor; — open cursor
stmt_str :="SELECT ename, sal FROM emp WHERE
job = jobname’;
dbms_sgl.parse(cur_hdl, stmt_str,
dbms_sgl.native);

- supply binds (bind by name)
dbms_sqjl.bind_variable(
cur_hdl, jobname’,'SALESMAN);

- describe defines
dbms_sgl.define_column(cur_hdl, 1, name, 200);
dbms_sqgl.define_column(cur_hdl, 2, salary);

rows_processed :=dbms_sql.execute(cur_hdl); —
execute

LOOP
—fetcharow
IF doms_sqlfetch_rows(cur_hdl) >0 then

—fetch columns from the row
doms_sgl.column_value(cur_hdl, 1, name);
dbms_sgl.column_value(cur_hdl, 2, salary);

— <process data>

ELSE
EXIT;
END IF;
END LOOP;
dbms_sqgl.close_cursor(cur_hdl); - close cursor
END;
/

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
cur EmpCurTyp;
stmt_str VARCHAR2(200);
name VARCHAR2(20);
salary NUMBER;
BEGIN
stmt_str:="SELECT ename, sal FROM emp
WHERE job =1,
OPEN cur FOR stmt_str USING 'SALESMAN;;

LOOP
FETCH cur INTO name, salary;
EXIT WHEN cureNOTFOUND;
— <process data>

END LOOP;

CLOSE cur,

END,;

/

8-18 Oracle9i Application Developer’s Guide - Fundamentals

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Performing DML Using Dynamic SQL: Example
The following example includes a dynamic INSERT statement for a table with three
columns:

stmt_str:="INSERT INTO dept_new VALUES (:deptno, :dname, :loc);;
This example inserts a new row for which the column values are in the PL/SQL
variables deptnumber , deptname , and location . Table 8-3 shows sample code

that accomplishes this DML operation using the DBMS_SQIpackage and native
dynamic SQL.

Table 8-3 DML Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Operation

Native Dynamic SQL DML Operation

DECLARE
stmt_str VARCHAR2(200);
cur_hdNUMBER;
deptnumber NUMBER :=99;
deptname VARCHAR2(20);
location VARCHAR2(10);
rows_processed NUMBER;
BEGIN
stmt_str:="INSERT INTO dept_new VALUES
(:deptno, :dname, :loc)’;
cur_hdl:=DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(
cur_hdl, stmt_str, DBMS_SQL.NATIVE);
—supply binds
DBMS_SQL.BIND_VARIABLE
(cur_hdl, :deptno’, deptnumber);
DBMS_SQL.BIND_VARIABLE
(cur_hdl, :dname’, deptname);
DBMS_SQL.BIND_VARIABLE
(cur_hdl, loc, location);

rows_processed = dbms_sql.execute(cur_hdl);

—execute

DBMS_SQL.CLOSE_CURSOR(cur_hdl); — close

END;
/

DECLARE
stmt_str VARCHAR2(200);
deptumber NUMBER :=99;
deptname VARCHAR2(20);
location VARCHAR2(10);
BEGIN
stmt_str:="INSERT INTO dept_new VALUES
(:deptno, :dname, loc)’;
EXECUTE IMMEDIATE stmt_str
USING deptnumber, deptname, location;
END;
/

Coding Dynamic SQL Statements 8-19

Choosing Between Native Dynamic SQL and the DBMS_SQL Package

Performing DML with RETURNING Clause Using Dynamic SQL: Example

The following example uses a dynamic UPDATEstatement to update the location of
a department, then returns the name of the department:

stmt_str :="UPDATE dept_new

SET loc =:newloc

WHERE deptno = :deptno
RETURNING dname INTO :dname’

Table 8-4 shows sample code that accomplishes this operation using both the
DBMS_SQIlpackage and native dynamic SQL.

Table 8—-4 DML Returning Operation Using the DBMS_SQL Package and Native Dynamic SQL

DBMS_SQL DML Returning Operation

lative Dynamic SQL DML Returning Operation

DECLARE
deptname_array doms_sql.Varchar2_Table;
cur_hdlINT;
stmt_str VARCHAR2(200);
location VARCHAR2(20);
deptnumber NUMBER := 10;
rows_processed NUMBER;
BEGIN
stmt_str:="UPDATE dept_new
SET loc =:newioc
WHERE deptno = :deptno
RETURNING dname INTO :dname’;

cur_hdl :=dbms_sqgl.open_cursor;
doms_sqgl.parse
(cur_hdl, stmt_str, dbms_sql.native);
- supply binds
dbms_sglbind_variable
(cur_hdl, :newioc’, location);
dbms_sglbind_variable
(cur_hdl, :deptno’, deptnumber);
dbms_sgl.bind_array
(cur_hdl, :dname’, deptname_array);
— execute cursor
rows_processed :=dbms_sql.execute(cur_hdl);
- get RETURNING column into OUT bind array
dbms_sgl.variable_value
(cur_hdl, :dname’, deptname_array);
dbms_sgl.close_cursor(cur_hdi);
END;
/

DECLARE

deptname_array doms_sqgl.Varchar2_Table;
stmt_str VARCHAR2(200);

location VARCHAR2(20);

deptnumber NUMBER = 10;

deptname VARCHAR2(20);

BEGIN
stmt_str:="UPDATE dept_new
SET loc =:newloc

WHERE deptno = :deptno
RETURNING dname INTO :dname’;
EXECUTE IMMEDIATE stmt_str
USING location, deptnumber, OUT deptname;
END;
/

8-20 Oracle9i Application Developer’s Guide - Fundamentals

Using PL/SQL Records in SQL INSERT and UPDATE Statements

Using Dynamic SQL in Languages Other Than PL/SQL

Although this chapter discusses PL/SQL support for dynamic SQL, you can call
dynamic SQL from other languages:

« Ifyou use C/C++, you can call dynamic SQL with the Oracle Call Interface
(OCI), or you can use the Pro*C/C++ precompiler to add dynamic SQL
extensions to your C code.

« If you use COBOL, you can use the Pro*COBOL precompiler to add dynamic
SQL extensions to your COBOL code.

« If you use Java, you can develop applications that use dynamic SQL with JDBC.

If you have an application that uses OCI, Pro*C/C++, or Pro*COBOL to execute
dynamic SQL, you should consider switching to native dynamic SQL inside
PL/SQL stored procedures and functions. The network round-trips required to
perform dynamic SQL operations from client-side applications might hurt
performance. Stored procedures can reside on the server, eliminating the network
overhead. You can call the PL/SQL stored procedures and stored functions from the
OCI, Pro*C/C++, or Pro*COBOL application.

See Also: For information about calling Oracle stored procedures
and stored functions from various languages, refer to:

« Oracle Call Interface Programmer’s Guide

« Pro*C/C++ Precompiler Programmer’s Guide

« Pro*COBOL Precompiler Programmer’s Guide

« Oracle9i Java Stored Procedures Developer’s Guide

Using PL/SQL Records in SQL INSERT and UPDATE Statements

Although you can enumerate each field of a PL/SQL record when inserting or
updating rows in a table, the resulting code is not especially readable or
maintainable. Instead, you can use PL/SQL records directly in these statements.
The most convenient technique is to declare the record using a %ROWTYPE
attribute, so that it has exactly the same fields as the SQL table.

DECLARE
emp_rec emp%ROWTYPE;
BEGIN
emp_rec.eno = 1500
emp_recename :='Steven Hil';
emp_rec.sal :='40000;

Coding Dynamic SQL Statements 8-21

Using PL/SQL Records in SQL INSERT and UPDATE Statements

- A%ROWTYPE value canfill in all the row fields.
INSERT INTO emp VALUES emp_rec;

— The fields of a %ROWTYPE can completely replace the table columns.
UPDATE emp SET ROW =emp_rec WHERE eno =100,

END;

/

Although this technique helps to integrate PL/SQL variables and types more
closely with SQL DML statements, you cannot use PL/SQL records as bind
variables in dynamic SQL statements.

See Also: PL/SQL User’s Guide and Reference, for more information
about PL/SQL records.

8-22 Oracle9i Application Developer's Guide - Fundamentals

9

Using Procedures and Packages

This chapter describes some of the procedural capabilities of Oracle for application
development, including:

Overview of PL/SQL Program Units

Hiding PL/SQL Code with the PL/SQL Wrapper
Remote Dependencies

Cursor Variables

Handling PL/SQL Compile-Time Errors
Handling Run-Time PL/SQL Errors

Debugging Stored Procedures

Calling Stored Procedures

Calling Remote Procedures

Calling Stored Functions from SQL Expressions
Returning Large Amounts of Data from a Function

Coding Your Own Aggregate Functions

Using Procedures and Packages 9-1

Overview of PL/SQL Program Units

Overview of PL/SQL Program Units

PL/SQL is a modern, block-structured programming language. It provides several
features that make developing powerful database applications very convenient. For
example, PL/SQL provides procedural constructs, such as loops and conditional
statements, that are not available in standard SQL.

You can directly enter SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use procedures, supplied by Oracle, to perform data
definition language (DDL) statements.

PL/SQL code runs on the server, so using PL/SQL lets you centralize significant
parts of your database applications for increased maintainability and security. It
also enables you to achieve a significant reduction of network overhead in
client/server applications.

Note: Some Oracle tools, such as Oracle Forms, contain a PL/SQL
engine that lets you run PL/SQL locally.

You can even use PL/SQL for some database applications in place of 3GL programs
that use embedded SQL or the Oracle Call Interface (OCI).

PL/SQL program units include:
= Anonymous Blocks
« Stored Program Units (Procedures, Functions, and Packages)

« Triggers

See Also,: PL/SQL User’s Guide and Reference. for syntax and
examples of operations on PL/SQL packages.

Oracle9i Supplied PL/SQL Packages and Types Reference. for
information about the PL/SQL packages that come with the Oracle
database server.

Anonymous Blocks

9-2

An anonymous block is a PL/SQL program unit that has no name and it does not
require the explicit presence of the BEGIN and ENDkeywords to enclose the
executable statements. An anonymous block consists of an optional declarative
part, an executable part, and one or more optional exception handlers.

Oracle9/ Application Developer’s Guide - Fundamentals

Overview of PL/SQL Program Units

The declarative part declares PL/SQL variables, exceptions, and cursors. The
executable part contains PL/SQL code and SQL statements, and can contain nested
blocks. Exception handlers contain code that is called when the exception is raised,
either as a predefined PL/SQL exception (such as NO_DATA_FOUNa&r
ZERO_DIVIDE) or as an exception that you define.

The following short example of a PL/SQL anonymous block prints the names of all
employees in department 20 in the Emp_tab table, using the DBMS_OUTPUT
package:

DECLARE
Emp_name VARCHAR2(10);
Cursor c1IS SELECT Ename FROM Emp_tab
WHERE Deptno = 20;
BEGIN
OPENCcI;
LOOP
FETCH 1 INTO Emp_name;
EXIT WHEN c1%NOTFOUND,;
DBMS_OUTPUT.PUT_LINE(Emp_name);
END LOOP;
END;

Note: If you test this block using SQL*Plus, then enter the
statement SET SERVEROUTPUT (¢ that output using the
DBMS_OUTPUprocedures (for example, PUT_LINE) is activated.
Also, end the example with a slash (/) to activate it.

See Also: For complete information about the DBMS_OUTPUT
package, see Oracle9i Supplied PL/SQL Packages and Types Reference.

Exceptions let you handle Oracle error conditions within PL/SQL program logic.
This allows your application to prevent the server from issuing an error that could
cause the client application to abend. The following anonymous block handles the
predefined Oracle exception NO_DATA_FOUN@vhich would result in an
ORAQ01403 error if not handled):

Using Procedures and Packages 9-3

Overview of PL/SQL Program Units

DECLARE
Emp_number INTEGER :=9999;
Emp_name VARCHAR2(10);
BEGIN
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno =Emp_number; - no such number
DBMS_OUTPUT.PUT_LINE(Employee nameis’ || Emp_name);
EXCEPTION
WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(No such employee:’ || Emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a
block, and define them in the exception part of the block. An example follows:

DECLARE
Emp_name VARCHAR2(10);
Emp _number INTEGER;
Empno_out_of range EXCEPTION;
BEGIN
Emp_number :=10001;
IF Emp_number >9999 OR Emp_number < 1000 THEN
RAISE Empno_out_of range;
ELSE
SELECT Ename INTO Emp_name FROM Emp_tab
WHERE Empno = Emp_number;
DBMS_OUTPUT.PUT_LINECEmployee nameis’ || Emp_name);
ENDIF;
EXCEPTION
WHEN Empno_out_of range THEN
DBMS_OUTPUT.PUT_LINE(Employee number’ || Emp_number ||
'isoutofrange.’;
END;

See Also: "Handling Run-Time PL/SQL Errors" on page 9-36 and
see the PL/SQL User’s Guide and Reference.

Anonymous blocks are usually used interactively from a tool, such as SQL*Plus, or
in a precompiler, OCI, or SQL*Module application. They are usually used to call
stored procedures or to open cursor variables.

See Also: "Cursor Variables" on page 9-31.

9-4 Oracle9i Application Developer's Guide - Fundamentals

Overview of PL/SQL Program Units

Stored Program Units (Procedures, Functions, and Packages)
A stored procedure, function, or package is a PL/SQL program unit that:

« Hasaname.
« Can take parameters, and can return values.
« Isstored in the data dictionary.

« Can be called by many users.

Note: The term stored procedure is sometimes used generically
for both stored procedures and stored functions. The only
difference between procedures and functions is that functions
always return a single value to the caller, while procedures do not
return a value to the caller.

Naming Procedures and Functions

Because a procedure or function is stored in the database, it must be named. This
distinguishes it from other stored procedures and makes it possible for applications
to call it. Each publicly-visible procedure or function in a schema must have a
unique name, and the name must be a legal PL/SQL identifier.

Note: If you plan to call a stored procedure using a stub generated
by SQL*Module, then the stored procedure name must also be a
legal identifier in the calling host 3GL language, such as Ada or C.

Parameters for Procedures and Functions

Stored procedures and functions can take parameters. The following example
shows a stored procedure that is similar to the anonymous block in "Anonymous
Blocks" on page 9-2.

Caution: To execute the following, use CREATE OR REPLACE
PROCEDURE

Using Procedures and Packages 9-5

Overview of PL/SQL Program Units

PROCEDURE Get_emp_names (Dept_num IN NUMBER) IS
Emp_name VARCHAR2(10);
CURSOR cl1(Depno NUMBER)IS
SELECT Ename FROM Emp_tab
WHERE deptno = Depno;
BEGIN
OPEN c1(Dept_num);
LOOP
FETCH c1 INTO Emp_name;
EXIT WHEN C1%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(Emp_name);
END LOOP;
CLOSEccl;
END;

In this stored procedure example, the department number is an input parameter
which is used when the parameterized cursor c1 is opened.

The formal parameters of a procedure have three major attributes:

Parameter Attribute Description
Name This must be a legal PL/SQL identifier.
Mode This indicates whether the parameter is an input-only

parameter (IN), an output-only parameter (OUT), or is
both an input and an output parameter (IN OUT). If the
mode is not specified, then IN is assumed.

Datatype This is a standard PL/SQL datatype.

Parameter Modes Parameter modes define the behavior of formal parameters. The
three parameter modes, IN (the default), OUTand IN OUT, can be used with any
subprogram. However, avoid using the OUTand IN OUT modes with functions. The
purpose of a function is to take no arguments and return a single value. It is poor
programming practice to have a function return multiple values. Also, functions
should be free from side effects, which change the values of variables not local to
the subprogram.

Table 9-1 summarizes the information about parameter modes.

9-6 Oracle9/ Application Developer's Guide - Fundamentals

Overview of PL/SQL Program Units

See Also: Parameter modes are explained in detail in the PL/SQL
User’s Guide and Reference.

Table 9—-1 Parameter Modes

IN ouT IN OUT

The default. Must be specified. Must be specified.

Passes values to a Returns values to the caller. Passes initial values to a

subprogram. subprogram; returns
updated values to the
caller.

Formal parameter acts like Formal parameter acts like Formal parameter acts like
a constant. an uninitialized variable. an initialized variable.

Formal parameter cannot ~ Formal parameter cannot Formal parameter should
be assigned a value. be used in an expression; be assigned a value.
must be assigned a value.

Actual parameter canbea Actual parameter must be Actual parameter must be
constant, initialized a variable. a variable.

variable, literal, or

expression.

Parameter Datatypes The datatype of a formal parameter consists of one of the
following:

« Anunconstrained type name, such as NUMBERr VARCHARZ2
« Atype that is constrained using the % TYPEor %ROWTY Rétributes.

Note: Numerically constrained types such as NUMBER) or
VARCHARRO) are not allowed in a parameter list.

%TYPE and %ROWTYPE Attributes _ Use the type attributes % TYPEand %ROWTYRA
constrain the parameter. For example, the Get_emp_names procedure specif