
Oracle Data Guard

Concepts and Administration

Release 2 (9.2)

October 2002

Part No. A96653-02

Oracle Data Guard Concepts and Administration, Release 2 (9.2)

Part No. A96653-02

Copyright © 1999, 2002, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle8i, Oracle9i, Oracle Store, PL/SQL, and SQL*Plus are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

 iii

Contents

List of ExamplesList of FiguresList of Tables

Send Us Your Comments ... xix

Preface.. xxi

Audience ... xxi
Documentation Accessibility .. xxii
Organization.. xxii
Related Documentation .. xxiv
Conventions.. xxvi

What’s New in Data Guard? .. xxxi

Oracle9i Release 2 (9.2) New Features in Data Guard.. xxxi
Oracle9i Release 1 (9.0.1) New Features in Data Guard... xxxvi

Part I Concepts and Administration

1 Introduction to Oracle Data Guard

1.1 Data Guard Configurations ... 1-1
1.1.1 Primary Database ... 1-2
1.1.2 Standby Databases ... 1-2
1.1.3 Configuration Example ... 1-3
1.2 Data Guard Services.. 1-4
1.2.1 Log Transport Services .. 1-4

iv

1.2.2 Log Apply Services .. 1-4
1.2.3 Role Management Services ... 1-5
1.3 Data Guard Broker .. 1-5
1.4 Data Guard Protection Modes ... 1-6
1.5 Summary of Data Guard Benefits ... 1-7

2 Getting Started with Data Guard

2.1 Choosing a Standby Database Type ... 2-1
2.1.1 Physical Standby Databases.. 2-2
2.1.2 Logical Standby Databases ... 2-3
2.2 Choosing a Data Guard User Interface .. 2-4
2.3 Data Guard Operational Prerequisites ... 2-5
2.4 Standby Database Directory Structure Considerations ... 2-7

3 Creating a Physical Standby Database

3.1 Preparing the Primary Database for Standby Database Creation 3-1
3.1.1 Enable Forced Logging.. 3-2
3.1.2 Enable Archiving and Define a Local Archiving Destination 3-2
3.2 Creating a Physical Standby Database ... 3-2
3.2.1 Identify the Primary Database Datafiles ... 3-3
3.2.2 Make a Copy of the Primary Database.. 3-4
3.2.3 Create a Control File for the Standby Database... 3-4
3.2.4 Prepare the Initialization Parameter File to be Copied to the Standby Database. 3-5
3.2.5 Copy Files from the Primary System to the Standby System 3-5
3.2.6 Set Initialization Parameters on a Physical Standby Database................................ 3-5
3.2.7 Create a Windows Service .. 3-7
3.2.8 Configure Listeners for the Primary and Standby Databases 3-8
3.2.9 Enable Dead Connection Detection on the Standby System.................................... 3-8
3.2.10 Create Oracle Net Service Names .. 3-8
3.2.11 Create a Server Parameter File for the Standby Database.. 3-9
3.2.12 Start the Physical Standby Database ... 3-9
3.2.13 Initiate Log Apply Services... 3-9
3.2.14 Enable Archiving to the Physical Standby Database .. 3-9
3.3 Verifying the Physical Standby Database .. 3-10

v

4 Creating a Logical Standby Database

4.1 Preparing the Primary Database for Standby Database Creation.................................. 4-1
4.1.1 Enable Forced Logging.. 4-2
4.1.2 Enable Archiving and Define a Local Archiving Destination 4-2
4.1.3 Verify the LOG_PARALLELISM Initialization Parameter 4-3
4.1.4 Determine Support for Datatypes or Tables .. 4-3
4.1.5 Ensure That Table Rows in the Primary Database Can Be Uniquely Identified .. 4-6
4.1.6 Ensure That Supplemental Logging Is Enabled .. 4-8
4.1.7 Create an Alternate Tablespace.. 4-10
4.2 Creating a Logical Standby Database... 4-11
4.2.1 Identify the Primary Database Datafiles and Log Files .. 4-12
4.2.2 Make a Copy of the Primary Database ... 4-13
4.2.3 Prepare the Initialization Parameter File to Be Copied to the Standby System.. 4-15
4.2.4 Copy Files from the Primary Database Location to the Standby Location.......... 4-15
4.2.5 Set Initialization Parameters on the Logical Standby Database 4-15
4.2.6 Create a Windows Service .. 4-17
4.2.7 Configure the Listener for Both the Primary and Standby Databases 4-17
4.2.8 Enable Dead Connection Detection on the Standby System 4-18
4.2.9 Create Oracle Net Service Names.. 4-18
4.2.10 Start and Mount the Logical Standby Database .. 4-18
4.2.11 Rename the Datafiles on the Logical Standby Database .. 4-18
4.2.12 Rename Online Redo Logs on the Logical Standby Database............................... 4-19
4.2.13 Turn On the Database Guard ... 4-19
4.2.14 Reset the Database Name of the Logical Standby Database.................................. 4-19
4.2.15 Change the Database Name in the Parameter File.. 4-20
4.2.16 Create a New Temporary File for the Logical Standby Database......................... 4-21
4.2.17 Register the Archived Redo Log and Start SQL Apply Operations 4-22
4.2.18 Enable Archiving to the Logical Standby Database.. 4-23
4.3 Verify the Logical Standby Database ... 4-24

5 Log Transport Services

5.1 Introduction to Log Transport Services ... 5-1
5.2 Data Protection Modes ... 5-3
5.3 Transporting Redo Data ... 5-4
5.3.1 Online Redo Logs... 5-4

vi

5.3.2 Archived Redo Logs... 5-5
5.3.3 Standby Redo Logs... 5-6
5.4 Destination Parameters and Attributes... 5-11
5.4.1 Specifying Archive Destinations for Redo Logs .. 5-12
5.4.2 Specifying Storage Locations for Archived Redo Logs and Standby Redo Logs 5-13
5.4.3 Specifying Mandatory and Optional Destinations.. 5-14
5.4.4 Sharing a Log File Destination Among Multiple Standby Databases 5-15
5.4.5 Specifying Archive Failure Policies ... 5-16
5.4.6 Other Destination Types ... 5-17
5.5 Transmission and Reception of Redo Data.. 5-17
5.5.1 Specifying the Process that Transmits Redo Data ... 5-18
5.5.2 Specifying Network Transmission Mode ... 5-18
5.5.3 Writing Redo Data to Disk.. 5-19
5.6 Log Transport Services in Sample Configurations ... 5-19
5.7 Setting the Data Protection Mode of a Data Guard Configuration.............................. 5-25
5.8 Log Transport Services Administration ... 5-26
5.8.1 Database Initialization Parameters .. 5-26
5.8.2 Preparing Initialization Parameters for Role Transitions....................................... 5-27
5.9 Monitoring Redo Log Archival Information ... 5-31

6 Log Apply Services

6.1 Introduction to Log Apply Services.. 6-1
6.2 Applying Redo Data to Physical Standby Databases... 6-2
6.2.1 Starting the Physical Standby Instance ... 6-3
6.2.2 Starting Managed Recovery Operations ... 6-4
6.2.3 Controlling Redo Apply Operations ... 6-5
6.2.4 Datafile Management... 6-6
6.3 Applying Redo Data to Logical Standby Databases .. 6-7
6.3.1 Starting and Stopping Log Apply Services .. 6-9
6.3.2 Ensuring That Redo Logs Are Being Applied.. 6-9
6.4 Managing Archive Gaps... 6-10
6.4.1 What Is an Archive Gap?... 6-11
6.4.2 When Is an Archive Gap Discovered?... 6-11
6.4.3 Determining If an Archive Gap Exists on a Physical Standby Database 6-11
6.4.4 How Is a Gap Resolved?.. 6-13

vii

6.5 Monitoring Log Apply Services for Physical Standby Databases................................ 6-15
6.5.1 Accessing the V$MANAGED_STANDBY Fixed View .. 6-15
6.5.2 Accessing the V$ARCHIVE_DEST_STATUS Fixed View 6-16
6.5.3 Accessing the V$ARCHIVED_LOG Fixed View ... 6-16
6.5.4 Accessing the V$LOG_HISTORY Fixed View ... 6-17
6.5.5 Accessing the V$DATAGUARD_STATUS Fixed View ... 6-17
6.6 Monitoring Log Apply Services for Logical Standby Databases.................................. 6-19
6.6.1 Accessing the DBA_LOGSTDBY_EVENTS View ... 6-19
6.6.2 Accessing the DBA_LOGSTDBY_LOG View .. 6-20
6.6.3 Accessing the DBA_LOGSTDBY_PROGRESS View... 6-21
6.6.4 Accessing the V$LOGSTDBY Fixed View .. 6-22
6.6.5 Accessing the V$LOGSTDBY_STATS Fixed View.. 6-23
6.7 Setting Archive Tracing.. 6-24
6.7.1 Determining the Location of the Trace Files .. 6-24
6.7.2 Setting the Log Trace Parameter .. 6-24
6.7.3 Choosing an Integer Value ... 6-25

7 Role Management

7.1 Introduction to Role Transitions ... 7-1
7.1.1 Which Role Transition to Use... 7-2
7.1.2 Switchover Operations .. 7-4
7.1.3 Failover Operations ... 7-8
7.2 Role Transitions Involving Physical Standby Databases... 7-11
7.2.1 Switchover Operations Involving a Physical Standby Database 7-11
7.2.2 Failover Operations Involving a Physical Standby Database............................... 7-14
7.3 Role Transitions Involving Logical Standby Databases .. 7-19
7.3.1 Switchover Operations Involving a Logical Standby Database 7-19
7.3.2 Failover Operations Involving a Logical Standby Database 7-22

8 Managing a Physical Standby Database

8.1 Starting Up and Shutting Down a Physical Standby Database...................................... 8-1
8.1.1 Starting Up a Physical Standby Database... 8-1
8.1.2 Shutting Down a Physical Standby Database .. 8-2
8.2 Using a Standby Database That Is Open for Read-Only Access 8-3
8.2.1 Assessing Whether to Open a Standby Database for Read-Only Access 8-4

viii

8.2.2 Opening a Standby Database for Read-Only Access .. 8-4
8.2.3 Sorting Considerations For Standby Databases Open for Read-Only Access....... 8-5
8.3 Creating Primary Database Back Up Files Using a Physical Standby Database.......... 8-8
8.4 Managing Primary Database Events That Affect the Standby Database 8-8
8.4.1 Adding a Datafile or Creating a Tablespace... 8-10
8.4.2 Dropping a Tablespace in the Primary Database .. 8-12
8.4.3 Renaming a Datafile in the Primary Database ... 8-13
8.4.4 Adding or Dropping Online Redo Logs ... 8-14
8.4.5 Altering the Primary Database Control File... 8-15
8.4.6 NOLOGGING or Unrecoverable Operations... 8-15
8.5 Monitoring the Primary and Standby Databases.. 8-16
8.5.1 Alert Log .. 8-17
8.5.2 Dynamic Performance Views (Fixed Views).. 8-18
8.5.3 Monitoring Recovery Progress... 8-18

9 Managing a Logical Standby Database

9.1 Configuring and Managing Logical Standby Databases ... 9-1
9.1.1 Managing SQL Apply Operations ... 9-2
9.1.2 Controlling User Access to Tables in a Logical Standby Database 9-3
9.1.3 Modifying a Logical Standby Database .. 9-4
9.1.4 Handling Triggers and Constraints on a Logical Standby Database...................... 9-6
9.1.5 Skipping SQL Apply Operations on a Logical Standby Database.......................... 9-7
9.1.6 Adding or Re-Creating Tables on a Logical Standby Database 9-8
9.1.7 Viewing and Controlling Logical Standby Events .. 9-10
9.1.8 Viewing SQL Apply Operations Activity... 9-10
9.1.9 Delaying the Application of Archived Redo Logs .. 9-12
9.1.10 Determining How Much Redo Log Data Was Applied ... 9-12
9.1.11 Recovering from Errors ... 9-13
9.1.12 Refreshing Materialized Views .. 9-16
9.2 Tuning Logical Standby Databases... 9-17

10 Data Guard Scenarios

10.1 Choosing the Best Available Standby Database for a Role Transition 10-1
10.1.1 Example: Best Physical Standby Database for a Failover Operation.................... 10-2
10.1.2 Example: Best Logical Standby Database for a Failover Operation.................... 10-10

ix

10.2 Using a Physical Standby Database with a Time Lag.. 10-16
10.2.1 Establishing a Time Lag on a Physical Standby Database 10-17
10.2.2 Failing Over to a Physical Standby Database with a Time Lag........................... 10-17
10.3 Switching Over to a Physical Standby Database That Has a Time Lag 10-18
10.4 Recovering from a Network Failure ... 10-20
10.5 Recovering After the NOLOGGING Clause Is Specified.. 10-21
10.5.1 Recovery Steps for Logical Standby Databases ... 10-21
10.5.2 Recovery Steps for Physical Standby Databases ... 10-22
10.5.3 Determining If a Backup Is Required After Unrecoverable Operations............ 10-24

Part II Reference

11 Initialization Parameters

11.1 Viewing Initialization Parameters .. 11-2
11.2 Modifying a Server Parameter File ... 11-2
11.2.1 Exporting a Server Parameter File to an Editable File for Modifications 11-2
11.2.2 Using SQL ALTER SYSTEM SET to Modify a Server Parameter File 11-4
11.3 Initialization Parameters for Instances in a Data Guard Configuration 11-4

ARCHIVE_LAG_TARGET .. 11-6

COMPATIBLE ... 11-7

CONTROL_FILE_RECORD_KEEP_TIME .. 11-8

CONTROL_FILES ... 11-9

DB_FILE_NAME_CONVERT ... 11-10

DB_FILES.. 11-11

DB_NAME.. 11-12

FAL_CLIENT ... 11-13

FAL_SERVER... 11-14

LOCK_NAME_SPACE ... 11-15

LOG_ARCHIVE_DEST_n .. 11-16

LOG_ARCHIVE_DEST_STATE_n.. 11-17

LOG_ARCHIVE_FORMAT ... 11-18

LOG_ARCHIVE_MAX_PROCESSES... 11-19

LOG_ARCHIVE_MIN_SUCCEED_DEST ... 11-20

x

LOG_ARCHIVE_START .. 11-21

LOG_ARCHIVE_TRACE ... 11-22

LOG_FILE_NAME_CONVERT... 11-23

LOG_PARALLELISM ... 11-24

PARALLEL_MAX_SERVERS .. 11-25

REMOTE_ARCHIVE_ENABLE .. 11-26

SHARED_POOL_SIZE.. 11-27

SORT_AREA_SIZE.. 11-28

STANDBY_ARCHIVE_DEST .. 11-29

STANDBY_FILE_MANAGEMENT.. 11-30

USER_DUMP_DEST ... 11-31

12 LOG_ARCHIVE_DEST_n Parameter Attributes

12.1 About LOG_ARCHIVE_DEST_n Parameter Attributes .. 12-2
12.2 Changing Destination Attributes Using SQL Statements.. 12-2
12.3 Incrementally Changing LOG_ARCHIVE_DEST_n Parameter Settings 12-3
12.3.1 Viewing Current Settings of Destination Initialization Parameters 12-5

AFFIRM and NOAFFIRM .. 12-6

ALTERNATE and NOALTERNATE.. 12-9

ARCH and LGWR ... 12-14

DELAY and NODELAY ... 12-16

DEPENDENCY and NODEPENDENCY... 12-19

LOCATION and SERVICE... 12-23

MANDATORY and OPTIONAL... 12-26

MAX_FAILURE and NOMAX_FAILURE ... 12-29

NET_TIMEOUT and NONET_TIMEOUT... 12-32

QUOTA_SIZE and NOQUOTA_SIZE.. 12-36

QUOTA_USED and NOQUOTA_USED ... 12-39

REGISTER and NOREGISTER .. 12-42

REGISTER=location_format .. 12-44

REOPEN and NOREOPEN.. 12-46

xi

SYNC and ASYNC .. 12-48

TEMPLATE and NOTEMPLATE.. 12-51
12.4 Attribute Compatibility for Archive Destinations.. 12-54

13 SQL Statements

13.1 ALTER DATABASE ACTIVATE STANDBY DATABASE ... 13-1
13.2 ALTER DATABASE ADD [STANDBY] LOGFILE... 13-2
13.3 ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER 13-3
13.4 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA.. 13-4
13.5 ALTER DATABASE COMMIT TO SWITCHOVER... 13-5
13.6 ALTER DATABASE CREATE STANDBY CONTROLFILE AS 13-6
13.7 ALTER DATABASE DROP [STANDBY] LOGFILE... 13-7
13.8 ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER 13-7
13.9 ALTER DATABASE [NO]FORCE LOGGING .. 13-8
13.10 ALTER DATABASE MOUNT STANDBY DATABASE .. 13-9
13.11 ALTER DATABASE OPEN READ ONLY... 13-9
13.12 ALTER DATABASE RECOVER MANAGED STANDBY DATABASE...................... 13-9
13.13 ALTER DATABASE REGISTER LOGFILE.. 13-13
13.14 ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION |

AVAILABILITY | PERFORMANCE} 13-14
13.15 ALTER DATABASE START LOGICAL STANDBY APPLY 13-15
13.16 ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY 13-16

14 Views

About Views... 14-3

DBA_LOGSTDBY_EVENTS (Logical Standby Databases Only) 14-4

DBA_LOGSTDBY_LOG (Logical Standby Databases Only) .. 14-5

DBA_LOGSTDBY_NOT_UNIQUE (Logical Standby Databases Only) 14-6

DBA_LOGSTDBY_PARAMETERS (Logical Standby Databases Only)...................... 14-7

DBA_LOGSTDBY_PROGRESS (Logical Standby Databases Only) 14-8

DBA_LOGSTDBY_SKIP (Logical Standby Databases Only) .. 14-9

DBA_LOGSTDBY_SKIP_TRANSACTION (Logical Standby Databases Only) 14-10

DBA_LOGSTDBY_UNSUPPORTED (Logical Standby Databases Only)................. 14-11

xii

V$ARCHIVE_DEST .. 14-12

V$ARCHIVE_DEST_STATUS ... 14-15

V$ARCHIVE_GAP .. 14-17

V$ARCHIVED_LOG... 14-18

V$DATABASE ... 14-20

V$DATAFILE... 14-24

V$DATAGUARD_STATUS ... 14-26

V$LOG... 14-28

V$LOGFILE .. 14-29

V$LOG_HISTORY... 14-30

V$LOGSTDBY (Logical Standby Databases Only)... 14-31

V$LOGSTDBY_STATS (Logical Standby Databases Only)... 14-32

V$MANAGED_STANDBY (Physical Standby Databases Only) 14-33

V$STANDBY_LOG ... 14-35

Part III Appendixes and Glossary

A Troubleshooting the Standby Database

A.1 Problems During Standby Database Preparation... A-1
A.1.1 The Standby Archive Destination Is Not Defined Properly A-1
A.1.2 The Standby Site Does Not Receive Logs Archived by the Primary Database A-2
A.1.3 You Cannot Mount the Physical Standby Database ... A-3
A.2 Log Destination Failures... A-3
A.3 Ignoring Logical Standby Database Failures... A-4
A.4 Problems Switching Over to a Standby Database .. A-4
A.4.1 Switchover Fails.. A-5
A.4.2 Recovering After An Unsuccessful Switchover Operation...................................... A-6
A.4.3 Startup of Second Physical Standby Database Fails.. A-7
A.4.4 Archived Redo Logs Are Not Applied After a Switchover A-8
A.4.5 Switchover Fails When SQL Sessions Are Active.. A-8
A.5 What to Do If SQL Apply Operations to a Logical Standby Database Stop A-10
A.6 Network Tuning for Redo Log Transmission .. A-11
A.7 Managing Data Guard Network Timeout .. A-12

xiii

B Manual Recovery

B.1 Preparing a Standby Database for Manual Recovery: Basic Tasks B-1
B.2 Placing the Standby Database in Manual Recovery Mode ... B-2
B.2.1 Initiating Manual Recovery Mode... B-3
B.2.2 When Is Manual Recovery Required?... B-5
B.3 Resolving Archive Gaps Manually ... B-5
B.3.1 What Causes Archive Gaps? .. B-5
B.3.2 Determining If an Archive Gap Exists .. B-8
B.3.3 Manually Transmitting the Logs in the Archive Gap to the Standby Site............. B-9
B.3.4 Manually Applying the Logs in the Archive Gap to the Standby Database B-11
B.4 Renaming Standby Database Files Manually.. B-12

C Standby Database Real Application Clusters Support

C.1 Configuring Standby Databases in a Real Application Clusters Environment C-1
C.1.1 Setting Up a Multi-Instance Primary Database with a Single-Instance Standby

Database C-2
C.1.2 Setting Up a Multi-Instance Primary Database with a Multi-Instance Standby

Database C-3
C.1.3 Setting Up a Cross-Instance Archival Database Environment................................ C-6
C.2 Configuration Considerations in Real Application Clusters Environments C-6
C.2.1 Archived Log File Format ... C-7
C.2.2 Archive Destination Quotas ... C-7
C.2.3 Data Protection Modes .. C-8
C.2.4 Role Transitions.. C-9
C.3 Troubleshooting.. C-10
C.3.1 Switchover Fails in a Real Application Clusters Configuration........................... C-10
C.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage C-10

D Cascaded Redo Log Destinations

D.1 Configuring Cascaded Redo Log Destinations... D-2
D.1.1 Configuring Cascaded Redo Log Destinations for Physical Standby Databases . D-2
D.1.2 Configuring Cascaded Redo Log Destinations for Logical Standby Databases ... D-3
D.2 Examples of Cascaded Redo Log Destinations... D-4
D.2.1 Scenario 1... D-4

xiv

D.2.2 Scenario 2.. D-5
D.2.3 Scenario 3.. D-6
D.2.4 Scenario 4.. D-6
D.2.5 Scenario 5.. D-7

E Sample Disaster Recovery ReadMe File

Glossary

Index

xv

List of Examples

3–1 Modifying Initialization Parameters for a Physical Standby Database......................... 3-5
4–1 Modifying Initialization Parameters for a Logical Standby Database......................... 4-16
4–2 V$LOGSTDBY Output During the Initialization Phase .. 4-26
4–3 V$LOGSTDBY Output During the Applying Phase.. 4-27
5–1 Setting a Mandatory Archiving Destination ... 5-14
5–2 Setting a Retry Time and Limit ... 5-16
5–3 Specifying a Single Attribute on One Line .. 5-27
5–4 Specifying Multiple Attributes on One Line ... 5-27
5–5 Specifying a Single Attribute on One Line .. 5-27
5–6 Primary Database: Primary Role Initialization Parameters .. 5-28
5–7 Primary Database: Standby Role Initialization Parameters .. 5-28
5–8 Standby Database: Standby Role Initialization Parameters .. 5-29
5–9 Standby Database: Primary Role Initialization Parameters .. 5-30
5–10 Logical Standby Database: Standby Role Initialization Parameters 5-31
5–11 Primary Database: Standby Role Initialization Parameters ... 5-31
9–1 Skipping a Table in a Logical Standby Database.. 9-7
9–2 Skipping ALTER or CREATE TABLESPACE Statements... 9-7
9–3 Adding a Table to a Logical Standby Database .. 9-9
12–1 Replacing a Destination Specification .. 12-4
12–2 Specifying Multiple Attributes Incrementally .. 12-4
12–3 Specifying Multiple Attributes for Multiple Destinations .. 12-4
12–4 Replaced Destination Specification... 12-5
12–5 Clearing a Destination Specification... 12-5
12–6 Automatically Failing Over to an Alternate Destination .. 12-13
12–7 Defining an Alternate Oracle Net Service Name to the Same Standby Database ... 12-13
A–1 Setting a Retry Time and Limit ... A-3
A–2 Specifying an Alternate Destination... A-4
C–1 Setting Destinations for Cross-Instance Archiving .. C-6
E–1 Sample Disaster Recovery ReadMe File... E-1

xvi

List of Figures

1–1 Typical Data Guard Configuration ... 1-3
2–1 Possible Standby Configurations ... 2-8
5–1 Archiving Redo Logs .. 5-2
5–2 Redo Log Reception Options .. 5-7
5–3 Data Guard Configuration with Dependent Destinations .. 5-15
5–4 Primary Database Archiving When There Is No Standby Database 5-21
5–5 Basic Data Guard Configuration .. 5-22
5–6 Archiving to a Physical Standby Destination Using the Logwriter Process 5-23
5–7 Archiving to a Logical Standby Destination Using the Logwriter Process 5-24
6–1 Automatic Updating of a Physical Standby Database ... 6-4
6–2 Automatic Updating of a Logical Standby Database ... 6-8
7–1 Role Transition Decision Tree.. 7-3
7–2 Data Guard Configuration Before a Switchover Operation.. 7-4
7–3 Standby Databases Before Switchover to the New Primary Database.......................... 7-5
7–4 Data Guard Environment After Switchover.. 7-6
7–5 Failover to a Standby Database ... 7-9
8–1 Standby Database Open for Read-Only Access .. 8-3
12–1 Archiving Operation to an Alternate Destination Device ... 12-11
12–2 Specifying Disk Quota for a Destination.. 12-37
B–1 Standby Database in Manual Recovery Mode .. B-3
B–2 Manual Recovery of Archived Logs in an Archive Gap.. B-6
C–1 Archiving Redo Logs from a Multi-instance Primary Database C-2
C–2 Standby Database in Real Application Clusters .. C-4
D–1 Cascaded Redo Log Destination Configuration Example.. D-1

xvii

List of Tables

2–1 Standby Database Location and Directory Options... 2-9
3–1 Preparing the Primary Database for Physical Standby Database Creation 3-1
3–2 Creating a Physical Standby Database ... 3-3
4–1 Preparing the Primary Database for Logical Standby Database Creation.................... 4-2
4–2 Create a Logical Standby Database... 4-11
5–1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Attributes...................... 5-12
5–2 Requirements for Data Protection Modes.. 5-25
6–1 Task List: Configuring Log Apply Services for Physical Standby Databases 6-3
6–2 Task List: Configuring Log Apply Services for Logical Standby Databases 6-8
8–1 Actions Required on a Standby Database After Changes to a Primary Database....... 8-9
8–2 Location Where Common Actions on the Primary Database Can Be Monitored 8-16
9–1 Procedures of the DBMS_LOGSTDBY PL/SQL Package.. 9-3
10–1 Data Guard Scenarios ... 10-1
10–2 Identifiers for the Physical Standby Database Example .. 10-3
10–3 Identifiers for Logical Standby Database Example .. 10-11
12–1 Changing Destination Attributes Using SQL.. 12-2
12–2 LOG_ARCHIVE_DEST_n Attribute Compatibility ... 12-54
13–1 Keywords for the ACTIVATE STANDBY DATABASE Clause 13-2
13–2 Keywords for the ADD STANDBY LOGFILE Clause ... 13-2
13–3 Keywords for the ADD STANDBY LOGFILE MEMBER Clause................................. 13-3
13–4 Keywords for the ADD SUPPLEMENTAL LOG DATA Clause.................................. 13-4
13–5 Keywords for the COMMIT TO SWITCHOVER Clause... 13-5
13–6 Keywords for the CREATE STANDBY CONTROLFILE AS Clause 13-6
13–7 Keywords for the DROP [STANDBY] LOGFILE Clause... 13-7
13–8 Keywords for the DROP LOGFILE MEMBER Clause ... 13-8
13–9 Keywords for the [NO]FORCE LOGGING Clause .. 13-9
13–10 Keywords for the RECOVER MANAGED STANDBY DATABASE Clause............ 13-11
13–11 Keywords for the REGISTER LOGFILE Clause.. 13-14
13–12 Keywords for the SET STANDBY TO MAXIMIZE Clause ... 13-14
13–13 Keywords for the START LOGICAL STANDBY APPLY Clause............................... 13-16
13–14 Keywords for the {STOP | ABORT} LOGICAL STANDBY APPLY Clause 13-16
A–1 Common Processes That Prevent Switchover... A-10
A–2 Fixing Typical SQL Apply Operations Errors... A-11
B–1 Task List: Preparing for Manual Recovery .. B-2

xviii

xix

Send Us Your Comments

Oracle Data Guard Concepts and Administration, Release 2 (9.2)

Part No. A96653-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle Data Guard Documentation
■ Postal service:

Oracle Corporation
Oracle Data Guard Documentation
One Oracle Drive
Nashua, NH 03062-2804
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xx

xxi

Preface

A standby database is the most effective disaster recovery solution for an Oracle
database because a standby database can be used to run your production system if
your primary database becomes unusable. A standby database can also be used to
remedy problems caused by user errors, data corruption, and other operational
difficulties.

This guide describes Oracle Data Guard concepts, and helps you configure and
implement standby databases.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Audience
Oracle Data Guard Concepts and Administration is intended for database
administrators (DBAs) who administer the backup, restoration, and recovery
operations of an Oracle database system.

To use this document, you should be familiar with relational database concepts and
basic backup and recovery administration. You should also be familiar with the
operating system environment under which you are running Oracle.

xxii

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Organization
This document contains:

Part I, "Concepts and Administration"

Chapter 1, "Introduction to Oracle Data Guard"
This chapter offers a general overview of the Oracle9i Data Guard architecture.

Chapter 2, "Getting Started with Data Guard"
This chapter introduces physical, logical, and cascading standby databases.

Chapter 3, "Creating a Physical Standby Database"
This chapter explains how to create a physical standby database and start applying
redo logs to it.

Chapter 4, "Creating a Logical Standby Database"
This chapter explains how to create a logical standby database and start applying
redo logs to it.

xxiii

Chapter 5, "Log Transport Services"
This chapter introduces log transport services. It describes the data protection
modes that protect the production database against loss in the event of an
unplanned outage and it provides procedures and guidelines for configuring log
transport services on a primary and standby database.

Chapter 6, "Log Apply Services"
This chapter introduces log apply services. It provides guidelines for managing log
apply services for physical and logical standby databases.

Chapter 7, "Role Management"
This chapter introduces role management services. It provides information about
database failover and switchover role transitions.

Chapter 8, "Managing a Physical Standby Database"
This chapter describes how to manage a physical standby database. It provides
information on monitoring and responding to events that affect the database role.

Chapter 9, "Managing a Logical Standby Database"
This chapter describes how to manage a logical standby database. It provides
information on applying redo logs, system tuning, and tablespace management.

Chapter 10, "Data Guard Scenarios"
This chapter describes common database scenarios such as creating, recovering,
failing over, switching over, configuring, and backing up standby and primary
databases.

Part II, "Reference"

Chapter 11, "Initialization Parameters"
This reference chapter describes initialization parameters for each Oracle instance,
including the primary database and each standby database in the Data Guard
environment.

Chapter 12, "LOG_ARCHIVE_DEST_n Parameter Attributes"
This reference chapter provides syntax and examples for the attributes of the LOG_
ARCHIVE_DEST_n initialization parameter.

xxiv

Chapter 13, "SQL Statements"
This reference chapter provides SQL statements that are useful for performing
operations on a standby database.

Chapter 14, "Views"
This reference chapter lists views that contain useful information for monitoring the
Data Guard environment. It summarizes the columns contained in each view and
provides a description for each column.

Part III, "Appendixes and Glossary"

Appendix A, "Troubleshooting the Standby Database"
This appendix discusses troubleshooting for the standby database.

Appendix B, "Manual Recovery"
This appendix describes managing a physical standby database in manual recovery
mode. It provides instructions for manually resolving archive gaps and renaming
standby files not captured by conversion parameters.

Appendix C, "Standby Database Real Application Clusters Support"
This appendix describes the primary and standby database configurations in a Real
Application Clusters environment.

Appendix D, "Cascaded Redo Log Destinations"
This appendix describes how to implement cascaded redo log destinations,
whereby a standby database receives its redo logs from another standby database,
instead of directly from the primary database.

Appendix E, "Sample Disaster Recovery ReadMe File"
This appendix provides a sample ReadMe file that includes the kind of information
that the person who is making disaster recovery decisions would need when
deciding which standby database should be the target of the failover operation.

Glossary

Related Documentation
Every reader of Oracle Data Guard Concepts and Administration should have read:

xxv

■ The beginning of Oracle9i Database Concepts, which provides an overview of the
concepts and terminology related to the Oracle database server and a
foundation for the more detailed information in this guide. The rest of Oracle9i
Database Concepts explains the Oracle architecture and features in detail.

■ The chapters in the Oracle9i Database Administrator’s Guide that deal with
managing the control file, online redo logs, and archived redo logs.

You will often need to refer to the following guides:

■ Oracle9i Data Guard Broker

■ Oracle9i SQL Reference

■ Oracle9i Database Reference

■ Oracle9i User-Managed Backup and Recovery Guide

■ Oracle9i Recovery Manager User’s Guide

■ Oracle9i Net Services Administrator’s Guide

■ SQL*Plus User’s Guide and Reference

If you need to migrate existing standby databases to this Oracle9i release, see
Oracle9i Database Migration for complete instructions. In addition, refer to Oracle9i
Database Concepts for information about other Oracle products and features that
provide disaster recovery and high data availability solutions.

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

xxvi

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms
that are defined in the text or
terms that appear in a glossary,
or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book
titles or emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE monospace
(fixed-width font)

Uppercase monospace typeface
indicates elements supplied by
the system. Such elements
include parameters, privileges,
datatypes, RMAN keywords,
SQL keywords, SQL*Plus or
utility commands, packages
and methods, as well as
system-supplied column
names, database objects and
structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xxvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase monospace
(fixed-width font)

Lowercase monospace typeface
indicates executables,
filenames, directory names,
and sample user-supplied
elements. Such elements
include computer and database
names, network service names,
and connect identifiers, as well
as user-supplied database
objects and structures, column
names, packages and classes,
usernames and roles, program
units, and parameter values.

Note: Some programmatic
elements use a mixture of
UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase monospace
(fixed-width font)
italic

Lowercase monospace italic
font represents placeholders or
variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_release
refers to the release you installed prior to
upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

Convention Meaning Example

xxviii

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fs1/dbs/tbs_01/dbf
/fs1/dbs/tbs_02/dbf
 .
 .
 .
/fs1/dbs/tbs_09/dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

Convention Meaning Example

xxix

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example

xxx

xxxi

What’s New in Data Guard?

This section describes the new Data Guard features in Oracle9i release 2 (9.2) and
provides pointers to additional information. Information about new features from
previous releases is retained to help those users who are upgrading to the current
release.

The following sections describe the new features in Data Guard:

■ Oracle9i Release 2 (9.2) New Features in Data Guard

■ Oracle9i Release 1 (9.0.1) New Features in Data Guard

Oracle9i Release 2 (9.2) New Features in Data Guard
The features and enhancements described in this section were added to Data Guard
in Oracle9i release 2 (9.2).

■ Logical standby database

Until now, there has been only the physical standby database implementation,
in which the standby database performs either managed recovery or read-only
operations. A physical standby database is physically equivalent to the primary
database. While redo logs are being applied to a physical standby database, it
cannot be opened for reporting, and when the physical standby database is
open for reporting, redo logs cannot be applied to it. A logical standby database
has the same logical schema as the primary database, but it may have different
physical objects, such as additional indexes. With logical standby databases, the
database can be available for reporting at the same time you are applying redo
logs to it.

xxxii

■ Data protection modes

The database administrator (DBA) can place the database into one of the
following modes:

– Maximum protection

– Maximum availability

– Maximum performance

These modes replace the guaranteed, instant, rapid, and delayed modes of data
protection available in Oracle9i release 1 (9.0.1).

■ Cascading redo log destinations

A cascaded redo log destination is a standby database that receives its redo data
from another standby database and not from the original primary database. A
physical or logical standby database can be set up to send the incoming redo
data to other remote destinations in the same manner as the primary database,
with up to one level of redirection.

■ Oracle9i Data Guard broker

The broker now supports:

– Up to nine physical or logical standby destinations

– Failover and switchover operations

■ New keywords for the REMOTE_ARCHIVE_ENABLE initialization parameter
include:

– send

– receive

See Also: Chapter 5, "Log Transport Services" and Chapter 13,
"SQL Statements"

See Also: Appendix D, "Cascaded Redo Log Destinations"

See Also: Oracle9i Data Guard Broker

See Also: Section 5.3.2.1, "Setting Permission to Archive Redo
Logs"

xxxiii

■ New attributes for the LOG_ARCHIVE_DEST_n initialization parameter
include:

– [NO]TEMPLATE

Defines a directory specification and format for archived redo logs at the
standby destination.

– [NO]NET_TIMEOUT

Specifies the number of seconds the log writer process will wait for status
from the network server of a network operation issued by the log writer
process.

– PARALLEL qualifier to the SYNC attribute

Indicates if I/O operations to multiple destinations are done in parallel or
in series.

■ New syntax added to the ALTER DATABASE statement includes:

– ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [SKIP
[STANDBY LOGFILE]]

– COMMIT TO SWITCHOVER TO {PHYSICAL | LOGICAL} {PRIMARY |
STANDBY} [[WITH | WITHOUT] SESSION SHUTDOWN [WAIT |
NOWAIT]]

– [NO]FORCE LOGGING

– RECOVER MANAGED STANDBY DATABASE [FINISH [SKIP [STANDBY
LOGFILE] [WAIT | NOWAIT]]

– RECOVER MANAGED STANDBY DATABASE [THROUGH {ALL | NEXT |
LAST} SWITCHOVER]

– RECOVER MANAGED STANDBY DATABASE [THROUGH ALL ARCHIVELOG
| [THREAD n] SEQUENCE n]

– REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE
filespec

– SET STANDBY DATABASE TO MAXIMIZE {PROTECTION |
AVAILABILITY | PERFORMANCE}

– START LOGICAL STANDBY APPLY

See Also: Chapter 12, "LOG_ARCHIVE_DEST_n Parameter
Attributes"

xxxiv

– {STOP | ABORT} LOGICAL STANDBY APPLY

■ New views were added:

– DBA_LOGSTDBY_EVENTS

– DBA_LOGSTDBY_LOG

– DBA_LOGSTDBY_NOT_UNIQUE

– DBA_LOGSTDBY_PARAMETERS

– DBA_LOGSTDBY_PROGRESS

– DBA_LOGSTDBY_SKIP

– DBA_LOGSTDBY_SKIP_TRANSACTION

– DBA_LOGSTDBY_UNSUPPORTED

– V$DATAGUARD_STATUS

– V$LOGSTDBY

– V$LOGSTDBY_STATS

■ New columns were added to existing fixed views:

– V$ARCHIVE_DEST view:

* NET_TIMEOUT

* TYPE

– V$ARCHIVE_DEST_STATUS view:

* PROTECTION_MODE

* SRL

– V$DATABASE view:

* GUARD_STATUS

* SUPPLEMENTAL_LOG_DATA_MIN

* SUPPLEMENTAL_LOG_DATA_PK

See Also: Chapter 13, "SQL Statements"

See Also: Chapter 14, "Views"

xxxv

* SUPPLEMENTAL_LOG_DATA_UI

* FORCE_LOGGING

* PROTECTION_LEVEL

■ Existing columns were renamed in existing fixed views:

– V$ARCHIVE_DEST view:

* MANIFEST has been renamed to REGISTER and values have been
changed to YES and NO.

* REGISTER has been renamed to REMOTE_TEMPLATE.

– V$DATABASE view:

* STANDBY_MODE has been renamed to PROTECTION_MODE and values
MAXIMUM PROTECTED, MAXIMUM AVAILABILITY,
RESYNCHRONIZATION, MAXIMUM PERFORMANCE, and UNPROTECTED
have been added.

■ New values were added to existing columns of existing fixed views:

– TRANSMIT_MODE column of the V$ARCHIVE_DEST view:

* PARALLELSYNC

* SYNCHRONOUS

* ASYNCHRONOUS

– REMOTE_ARCHIVE column of the V$DATABASE view:

* send

* receive

■ New integer values were added for the LOG_ARCHIVE_TRACE parameter:

– 1024: RFS physical client tracking

– 2048: ARCn or RFS heartbeat tracking

See Also: Chapter 14, "Views"

See Also: Chapter 14, "Views"

See Also: Chapter 14, "Views"

xxxvi

Oracle9i Release 1 (9.0.1) New Features in Data Guard
The features and enhancements described in this section were added to Data Guard
in Oracle9i release 1 (9.0.1).

■ Oracle9i Data Guard.

Oracle8i Standby Database was renamed to Oracle9i Data Guard.

■ Oracle9i Data Guard broker.

■ No data loss.

■ Database switchover.

■ Archive gaps are automatically detected and transmitted.

■ Add new datafiles to the primary database without having to manually add
the corresponding datafile to the standby databases.

■ Background managed recovery mode.

■ Parallel recovery allows faster recovery on physical standby databases.

■ Specify up to 10 archive destinations.

■ Incrementally modify individual attributes of the LOG_ARCHIVE_DEST_n
initialization parameter.

■ Standby redo logs.

■ Archiver process (ARCn) on physical standby databases can archive standby
redo logs.

■ Archive the current redo log, archive an online redo log based on the SCN
(system change number) value when the database is mounted, but not open,
or archive an online redo log when a backup control file is being used. In
previous releases, a current control file was required.

■ New control options: DELAY, DISCONNECT, EXPIRE, FINISH, NEXT, NODELAY

■ Support for Standby Databases in Real Application Clusters.

■ New archive log repository, which is a standalone standby database.

■ Relationship defined between an archived redo log and an archive
destination.

See Also: Section 6.7.3

xxxvii

■ New initialization parameters: REMOTE_ARCHIVE_ENABLE, FAL_CLIENT,
FAL_SERVER, STANDBY_FILE_MANAGEMENT, ARCHIVE_LAG_TARGET

■ New attributes for the LOG_ARCHIVE_DEST_n initialization parameter
include:

– ARCH | LGWR

– [NO]AFFIRM

– [NO]ALTERNATE

– [NO]DELAY

– [NO]DEPENDENCY

– [NO]MAX_FAILURE

– [NO]QUOTA_SIZE

– [NO]QUOTA_USED

– [NO]REGISTER | REGISTER [=location_format]

– NOREOPEN

– SYNC | ASYNC

■ A new range of values and the ALTERNATE keyword were added to the LOG_
ARCHIVE_DEST_STATE_n initialization parameter.

■ One to ten destinations (compared with one to five in Oracle8i) must archive
successfully before the log writer process (LGWR) can overwrite the online
redo logs.

■ New tracing levels (128, 256, and 512) have been added to the LOG_ARCHIVE_
TRACE initialization parameter.

■ New clauses have been added to the ALTER DATABASE statement:

– ACTIVATE [PHYSICAL] STANDBY DATABASE
[SKIP [STANDBY LOGFILE]]

– ADD [STANDBY] LOGFILE TO [THREAD integer]
[GROUP integer] filespec

– ADD [STANDBY] LOGFILE MEMBER ’filename’ [REUSE] TO
’logfile-descriptor’

– COMMIT TO SWITCHOVER TO [PHYSICAL]
{PRIMARY | STANDBY} [[NO]WAIT]

xxxviii

– REGISTER [PHYSICAL] LOGFILE filespec

– SET STANDBY DATABASE {PROTECTED | UNPROTECTED}

■ New keywords were added to the RECOVER MANAGED STANDBY DATABASE
clause:

– NODELAY

– CANCEL [IMMEDIATE] [NOWAIT]

– [DISCONNECT [FROM SESSION]]

– [FINISH [NOWAIT]]

– [PARALLEL [integer]]

– NEXT

– EXPIRE

– DELAY

■ New fixed views were added:

– V$ARCHIVE_DEST_STATUS

– V$ARCHIVE_GAP

– V$MANAGED_STANDBY

– V$STANDBY_LOG

■ New columns were added to existing fixed views:

– V$ARCHIVE_DEST view:

* AFFIRM

Note: In Oracle9i release 2, this syntax was further revised. See the
"Oracle9i Release 2 (9.2) New Features in Data Guard" section.

Note: In Oracle9i release 2, this syntax was further revised. See the
"Oracle9i Release 2 (9.2) New Features in Data Guard" section.

See Also: Chapter 14, "Views"

xxxix

* ALTERNATE

* ARCHIVER

* ASYNC_BLOCKS

* DELAY_MINS

* DEPENDENCY

* FAILURE_COUNT

* LOG_SEQUENCE

* MANIFEST (This column name was new in Oracle9i release 1; it was
changed to REGISTER in Oracle9i release 2.)

* MAX_FAILURE

* MOUNTID

* PROCESS

* QUOTA_SIZE

* QUOTA_USED

* REGISTER (This column name was new in Oracle9i release 1; it was
changed to REMOTE_TEMPLATE in Oracle9i release 2.)

* SCHEDULE

* TRANSMIT_MODE

* TYPE

* New values, ALTERNATE and FULL, have been added to the STATUS
column.

– V$ARCHIVED_LOG view:

* APPLIED

* BACKUP_COUNT

* COMPLETION_TIME

* CREATOR

* DELETED

* DEST_ID

* DICTIONARY_BEGIN

xl

* DICTIONARY_END

* REGISTRAR

* STANDBY_DEST

* STATUS

* END_OF_REDO

* ARCHIVAL_THREAD#

– V$LOG view:

* A new value, INVALIDATED, was added to the STATUS column.

– V$LOGFILE view:

* TYPE

– V$DATABASE view:

* ACTIVATION#

* ARCHIVELOG_CHANGE#

* DATABASE_ROLE

* REMOTE_ARCHIVE

* STANDBY_MODE

* SWITCHOVER_STATUS

– V$ARCHIVE_DEST_STATUS view:

* STANDBY_LOGFILE_COUNT

* STANDBY_LOGFILE_ACTIVE

Note: In Oracle9i release 2, new values were added and existing
columns renamed in the V$DATABASE and V$ARCHIVE_DEST fixed
views. See the "Oracle9i Release 2 (9.2) New Features in Data
Guard" section.

Part I
 Concepts and Administration

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle Data Guard"

■ Chapter 2, "Getting Started with Data Guard"

■ Chapter 3, "Creating a Physical Standby Database"

■ Chapter 4, "Creating a Logical Standby Database"

■ Chapter 5, "Log Transport Services"

■ Chapter 6, "Log Apply Services"

■ Chapter 7, "Role Management"

■ Chapter 8, "Managing a Physical Standby Database"

■ Chapter 9, "Managing a Logical Standby Database"

■ Chapter 10, "Data Guard Scenarios"

Introduction to Oracle Data Guard 1-1

1
Introduction to Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery
for enterprise data. Data Guard provides a comprehensive set of services that create,
maintain, manage, and monitor one or more standby databases to enable
production Oracle databases to survive disasters and data corruptions. Data Guard
maintains these standby databases as transactionally consistent copies of the
production database. Then, if the production database becomes unavailable because
of a planned or an unplanned outage, Data Guard can switch any standby database
to the production role, thus minimizing the downtime associated with the outage.
Data Guard can be used with traditional backup, restoration, and cluster techniques
to provide a high level of data protection and data availability.

This chapter includes the following topics that describe the highlights of Oracle
Data Guard:

■ Data Guard Configurations

■ Data Guard Services

■ Data Guard Broker

■ Data Guard Protection Modes

■ Summary of Data Guard Benefits

1.1 Data Guard Configurations
A Data Guard configuration consists of one production database and up to nine
standby databases. The databases in a Data Guard configuration are connected by
Oracle Net and may be dispersed geographically. There are no restrictions on where
the databases are located, provided that they can communicate with each other. For
example, you can have a standby database on the same system as the production
database, along with two standby databases on another system.

Data Guard Configurations

1-2 Oracle Data Guard Concepts and Administration

You can manage primary and standby databases using the command-line interface
or the Data Guard broker, which includes a graphical user interface called Oracle
Data Guard Manager.

1.1.1 Primary Database
A Data Guard configuration contains one production database, also referred to as
the primary database, that functions in the primary role. This is the database that is
accessed by most of your applications.

The primary database can be either a single-instance Oracle database or an Oracle
Real Application Clusters database.

1.1.2 Standby Databases
A standby database is a transactionally consistent copy of the primary database. A
standby database is initially created from a backup copy of the primary database.
Once created, Data Guard automatically maintains the standby database by
transmitting primary database redo data to the standby system and then applying
the redo logs to the standby database.

Similar to a primary database, a standby database can be either a single-instance
Oracle database or an Oracle Real Application Clusters database.

A standby database can be either a physical standby database or a logical standby
database:

■ Physical standby database

Provides a physically identical copy of the primary database, with on-disk
database structures that are identical to the primary database on a
block-for-block basis. The database schema, including indexes, are the same. A
physical standby database is kept synchronized with the primary database by
recovering the redo data received from the primary database.

■ Logical standby database

Contains the same logical information as the production database, although the
physical organization and structure of the data can be different. It is kept
synchronized with the primary database by transforming the data in the redo
logs received from the primary database into SQL statements and then
executing the SQL statements on the standby database. A logical standby
database can be used for other business purposes in addition to disaster
recovery requirements. This allows users to access a logical standby database

Data Guard Configurations

Introduction to Oracle Data Guard 1-3

for queries and reporting purposes at any time. Thus, a logical standby
database can be used concurrently for data protection and reporting.

1.1.3 Configuration Example
Figure 1–1 shows a Data Guard configuration that contains a primary database
instance that transmits redo data to physical and logical standby databases that are
both in remote locations from the primary database instance. In this configuration, a
physical standby database is configured for disaster recovery and backup
operations, and a logical standby database is configured primarily for reporting, but
it can also be used for disaster recovery. You could configure either standby
database at the same location as the primary database. However, for disaster
recovery, Oracle Corporation recommends that you configure standby databases at
remote locations.

Figure 1–1 shows a typical Data Guard configuration in which archived redo logs
are being applied to both physical and logical standby databases.

Figure 1–1 Typical Data Guard Configuration

0001

0002

0003

Archived
Redo Logs

Transform
Redo Data

into SQL
Statements

Redo Data

Execute SQL
Statements

Apply Redo Logs

Primary
Database

Disaster Recovery
Database Backup Operations

Logical
Standby

Database

Physical
Standby

Database

0001

0002

0003

Archived
Redo Logs

Redo Data

Disaster Recovery
Reporting Operations

Oracle
Net

Data Guard Services

1-4 Oracle Data Guard Concepts and Administration

1.2 Data Guard Services
The following sections explain how Data Guard manages the transmission of redo
data, the application of redo logs, and changes to the database roles:

■ Log Transport Services

Control the automated transfer of redo data within a Data Guard configuration.

■ Log Apply Services

Apply archived redo logs on the standby database to maintain transactional
synchronization with the primary database.

■ Role Management Services

Change the role of a database from a standby database to a primary database,
or from a primary database to a standby database using either a switchover or a
failover operation.

1.2.1 Log Transport Services
Log transport services control the automated transfer of redo data within a Data
Guard configuration.

Log transport services perform the following tasks:

■ Transmit redo data from the primary system to the standby systems in the
configuration

■ Enforce the database protection modes (described in Section 1.4)

1.2.2 Log Apply Services
The redo data transmitted from the primary database is archived on the standby
system in the form of archived redo logs. Log apply services automatically apply
archived redo logs on the standby database to maintain transactional
synchronization with the primary database and to allow transactionally consistent
read-only access to the data.

The main difference between physical and logical standby databases is the manner
in which log apply services apply the archived redo logs:

■ For physical standby databases, Data Guard uses redo apply technology, which
applies redo data on the standby database using standard recovery techniques
of the Oracle database server.

Data Guard Broker

Introduction to Oracle Data Guard 1-5

■ For logical standby databases, Data Guard uses SQL apply technology, which
first transforms the received redo data into SQL statements and then executes
the generated SQL statements on the logical standby database.

Log apply services perform the following tasks:

■ Automatic application of archived redo logs on the standby database

■ Automatic detection of missing redo logs on a standby system and automatic
retrieval of missing redo logs from the primary database or another standby
database

1.2.3 Role Management Services
An Oracle database operates in one of two roles: primary or standby. Using Data
Guard, you can change the role of a database using either a switchover or a failover
operation. The services that control these aspects are called role management
services.

A switchover is a role reversal between the primary database and one of its standby
databases. A switchover operation guarantees no data loss. This is typically done
for planned maintenance of the primary system. During a switchover, the primary
database transitions to a standby role and the standby database transitions to the
primary role. The transition occurs without having to re-create either database.

A failover is an irreversible transition of a standby database to the primary role.
This is only done in the event of a catastrophic failure of the primary database. The
database administrator can configure Data Guard to ensure no data loss.

1.3 Data Guard Broker
The Data Guard broker is a distributed management framework that automates and
centralizes the creation, maintenance, and monitoring of Data Guard
configurations. The following list describes some of the operations that the broker
automates or simplifies:

■ Creating and enabling one or more Data Guard configurations, including
setting up log transport services and log apply services.

■ Creating a physical or logical standby database from a backup copy of the
primary database.

■ Adding new or existing standby databases to an existing Data Guard
configuration.

Data Guard Protection Modes

1-6 Oracle Data Guard Concepts and Administration

■ Managing an entire Data Guard configuration from any system in the
configuration.

■ Monitoring log apply rates, capturing diagnostic information, and detecting
problems quickly with centralized monitoring, testing, and performance tools

1.4 Data Guard Protection Modes
In some situations, a business cannot afford to lose data at any cost. In other
situations, the availability of the database may be more important than the loss of
data. Some applications require maximum database performance and can tolerate a
potential loss of data.

Data Guard provides three distinct modes of data protection:

■ Maximum protection

This mode offers the highest level of data protection. Data is synchronously
transmitted to the standby database from the primary database, and
transactions are not committed on the primary database unless the redo data is
available on at least one standby database configured in this mode. If the last
standby database configured in this mode becomes unavailable, processing
stops on the primary database. This mode guarantees no data loss.

■ Maximum availability

This mode is similar to the maximum protection mode, including the guarantee
of no data loss. However, if a standby database becomes unavailable (for
example, due to network connectivity problems), processing continues on the
primary database. When the fault is corrected, the standby database is
resynchronized with the primary database. If there is a need to fail over before
the standby database is resynchronized, some data may be lost.

■ Maximum performance

This mode offers slightly less data protection on the primary database, but
higher performance than maximum availability mode. In this mode, as the
primary database processes transactions, redo data is asynchronously shipped
to the standby database. The commit operation on the primary database does
not wait for the standby database to acknowledge receipt of redo data before
completing write operations on the primary database. If any standby
destination becomes unavailable, processing continues on the primary
database, and there is little effect on primary database performance.

Summary of Data Guard Benefits

Introduction to Oracle Data Guard 1-7

1.5 Summary of Data Guard Benefits
Data Guard offers many overall benefits, as well as benefits provided by each kind
of standby database. Note that you need to consider all benefits, including those
specific to each type of standby database, when you design your Data Guard
configuration.

Data Guard offers these benefits:

■ Disaster recovery, data protection and high availability

Data Guard provides an efficient and comprehensive disaster recovery, data
protection, and high availability solution. Easy-to-manage switchover and
failover capabilities allow role reversals between primary and standby
databases, minimizing the downtime of the primary database for planned and
unplanned outages.

■ Complete data protection

With its standby databases, Data Guard guarantees no data loss, even in the
face of unforeseen disasters. A standby database provides a safeguard against
data corruption and user errors. Storage level physical corruptions on the
primary database do not propagate to the standby database. Similarly, logical
corruptions or user errors that cause the primary database to be permanently
damaged can be resolved. Finally, the redo data is validated when it is applied
to the standby database.

■ Efficient use of system resources

The standby database tables that are updated with redo logs received from the
primary database can be used for other tasks such as backup operations,
reporting, summations, and queries, thereby reducing the primary database
workload necessary to perform these tasks, saving valuable CPU and I/O
cycles. With a logical standby database, users can perform normal data
manipulation operations on tables in schemas that are not updated from the
primary database. A logical standby database can remain open while the tables
are updated from the primary database, and the tables are simultaneously
available for read-only access. Finally, additional indexes and materialized
views can be created on the maintained tables for better query performance and
to suit specific business requirements.

■ Flexibility in data protection to balance availability against performance
requirements

Summary of Data Guard Benefits

1-8 Oracle Data Guard Concepts and Administration

Oracle Data Guard offers maximum protection, maximum availability, and
maximum performance modes to help enterprises balance data availability
against system performance requirements.

■ Centralized and simple management

The Data Guard broker provides the Data Guard Manager graphical user
interface and the Data Guard command-line interface to automate management
and operational tasks across multiple databases in a Data Guard configuration.
The broker also monitors all of the systems within a single Data Guard
configuration.

■ Automatic gap detection and resolution

If connectivity is lost between the primary and one or more standby databases
(for example, due to network problems), redo data being generated on the
primary database cannot be sent to those standby databases. Once connectivity
is re-established, the missing log sequence (or the gap) is automatically detected
by Data Guard, and the necessary redo logs are automatically transmitted to the
standby databases. The standby databases are resynchronized with the primary
database, with no manual intervention by the DBA.

Getting Started with Data Guard 2-1

2
Getting Started with Data Guard

A Data Guard configuration contains a primary database and up to nine associated
standby databases. This chapter describes the following considerations for getting
started with Data Guard:

■ Choosing a Standby Database Type

■ Choosing a Data Guard User Interface

■ Data Guard Operational Prerequisites

■ Standby Database Directory Structure Considerations

2.1 Choosing a Standby Database Type
A standby database is a transactionally consistent copy of an Oracle production
database that is initially created from a backup copy of the primary database. Once
the standby database is created and configured, Data Guard automatically
maintains the standby database by transmitting primary database redo data to the
standby system where the redo data is archived, and then applying the redo logs to
the standby database.

A standby database can be one of two types: a physical standby database or a
logical standby database. If needed, either type of standby database can assume the
role of the primary database and take over production processing. A Data Guard
configuration can include physical standby databases, logical standby databases, or
a combination of both types.

Choosing a Standby Database Type

2-2 Oracle Data Guard Concepts and Administration

2.1.1 Physical Standby Databases
A physical standby database is physically identical to the primary database, with
on-disk database structures that are identical to the primary database on a
block-for-block basis. The database schema, including indexes, must be the same.

Data Guard maintains a physical standby database by performing managed
recovery operations. When it is not performing recovery operations, a physical
standby database can be open for read-only operations.

■ Managed recovery

The physical standby database is maintained by applying the archived redo
logs on the standby system using the Oracle recovery mechanism. The recovery
operation applies changes block-for-block using the physical row ID. The
database cannot be opened for read or read/write operations while redo data is
being applied.

■ Open read-only

The physical standby database can be open for read-only operations so that you
can execute queries on the database. While open for read-only operations, the
standby database can continue to receive redo logs but application of the data
from the logs is deferred until the database resumes managed recovery
operations.

Although the physical standby database cannot perform both managed recovery
and read-only operations at the same time, you can switch between them. For
example, you can run a physical standby database to perform managed recovery
operations, then open it so applications can perform read-only operations to run
reports, and then change it back to perform managed recovery operations to apply
outstanding archived redo logs. You can repeat this cycle, alternating between
managed recovery and read-only operations, as necessary.

In either case, the physical standby database is available to perform backup
operations. Furthermore, the physical standby database will continue to receive
redo logs even if they are not being applied at that moment.

Benefits of a Physical Standby Database
A physical standby database provides the following benefits:

■ Disaster recovery and high availability

A physical standby database enables a robust and efficient disaster recovery
and high availability solution. Easy-to-manage switchover and failover
capabilities allow easy role reversals between primary and physical standby

Choosing a Standby Database Type

Getting Started with Data Guard 2-3

databases, minimizing the downtime of the primary database for planned and
unplanned outages.

■ Data protection

Using a physical standby database, Data Guard can ensure no data loss, even in
the face of unforeseen disasters. A physical standby database supports all
datatypes, and DDL and DML operations that the primary can support. It also
provides safeguard against data corruptions and user errors. Storage level
physical corruptions on the primary database do not propagate to the standby
database. Similarly, logical corruptions or user errors that cause the primary
database to be permanently damaged can be resolved. Finally, the redo data is
validated when it is applied to the standby database.

■ Reduction in primary database workload

Oracle Recovery Manager (RMAN) can use physical standby databases to
off-load backups from the primary database saving valuable CPU and I/O
cycles. The physical standby database can also be opened in read-only mode to
perform reporting and queries.

■ Performance

The redo apply technology used by the physical standby database applies
changes using low-level recovery mechanisms, which bypass all SQL level code
layers and therefore is the most efficient mechanism for applying changes. This
makes the redo apply technology a highly efficient mechanism to propagate
changes among databases.

2.1.2 Logical Standby Databases
A logical standby database is initially created as an identical copy of the primary
database, but it later can be altered to have a different structure. The logical standby
database is updated by applying SQL statements. This allows users to access the
standby database for queries and reporting purposes at any time. Thus, the logical
standby database can be used concurrently for data protection and reporting
operations.

Data Guard automatically applies archived redo log information to the logical
standby database by transforming data in the redo logs into SQL statements and
then executing the SQL statements on the logical standby database. Because the
logical standby database is updated using SQL statements, it must remain open.
Although the logical standby database is open for read/write operations, its target
tables for the regenerated SQL are available only for read-only operations. While
those tables are being updated, they can be used simultaneously for other tasks

Choosing a Data Guard User Interface

2-4 Oracle Data Guard Concepts and Administration

such as reporting, summations, and queries. Moreover, these tasks can be optimized
by creating additional indexes and materialized views on the maintained tables.

A logical standby database has some restrictions on datatypes, types of tables, and
types of data definition language (DDL) and data manipulation language (DML)
operations. Unsupported datatypes and tables are described in more detail in
Section 4.1.4.

Benefits of a Logical Standby Database
A logical standby database provides similar disaster recovery, high availability, and
data protection benefits as a physical standby database. It also provides the
following specialized benefits:

■ Efficient use of standby hardware resources

A logical standby database can be used for other business purposes in addition
to disaster recovery requirements. It can host additional databases schemas
beyond the ones that are protected in a Data Guard configuration, and users can
perform normal DDL or DML operations on those schemas any time. Because
the logical standby tables that are protected by Data Guard can be stored in a
different physical layout than on the primary database, additional indexes and
materialized views can be created to improve query performance and suit
specific business requirements.

■ Reduction in primary database workload

A logical standby database can remain open at the same time its tables are
updated from the primary database, and those tables are simultaneously
available for read access. This makes a logical standby database an excellent
choice to do queries, summations, and reporting activities, thereby off-loading
the primary database from those tasks and saving valuable CPU and I/O
cycles.

2.2 Choosing a Data Guard User Interface
You can use the following interfaces to configure, implement, and manage a Data
Guard configuration:

■ Command-line interface:

– SQL*Plus

Several SQL*Plus statements use a STANDBY keyword to specify operations
on a standby database. Other SQL statements do not include

Data Guard Operational Prerequisites

Getting Started with Data Guard 2-5

standby-specific syntax, but are useful for performing operations on a
standby database.

– Initialization parameters

Several initialization parameters are used to define the Data Guard
environment.

■ Data Guard broker command-line interface

The Data Guard broker command-line interface is an alternative to using the
Oracle Data Guard Manager graphical user interface (GUI). The command-line
interface is useful if you want to use the broker to manage a Data Guard
configuration from batch programs or scripts.

■ Oracle Data Guard Manager

The Oracle Data Guard Manager is the GUI that automates many of the tasks
involved in creating, configuring, and monitoring a Data Guard environment.

The discussions and examples in this manual use the Data Guard broker
command-line interface.

2.3 Data Guard Operational Prerequisites
 The following are operational requirements for using Data Guard:

■ The same edition of Oracle Enterprise Edition must be installed on all systems
in a Data Guard configuration.

■ The primary database must run in ARCHIVELOG mode.

■ The same Oracle software release must be used on both the primary and
standby databases. The operating system running on the primary and standby

See Also: Chapter 13 describes the relevant statements

See Also: Section 11.3 describes relevant initialization parameters

See Also: Oracle9i Data Guard Broker

See Also: Oracle9i Data Guard Broker and the Oracle9i Data Guard
Manager online help for information on the Data Guard Manager
GUI and the Oracle9i Data Guard Manager Wizard

Data Guard Operational Prerequisites

2-6 Oracle Data Guard Concepts and Administration

locations must be the same, but the operating system release does not need to
be the same. In addition, the standby database can use a different directory
structure from the primary database.

■ The hardware and operating system architecture on the primary and standby
locations must be the same. For example, this means a Data Guard
configuration with a primary database on a 32-bit Sun system must have a
standby database that is configured on a 32-bit Sun system. Similarly, a primary
database on a 64-bit HP-UX system must be configured with a standby database
on a 64-bit HP-UX system, and a primary database on a 32-bit Linux on Intel
system must be configured with a standby database on a 32-bit Linux on Intel
system, and so forth.

■ The primary database can be a single instance database or a multi-instance Real
Application Clusters database. The standby databases can be single instance
databases or multi-instance Real Application Clusters databases, and these
standby databases can be a mix of both physical and logical types.

■ The hardware (for example, the number of CPUs, memory size, storage
configuration) can be different between the primary and standby systems. If the
standby system is smaller than the primary system, you may have to restrict the
work that can be done on the standby system after a switchover or failover
operation. Also, the standby system must have enough resources available to
receive and apply all redo data from the primary database. The logical standby
database requires additional resources to translate the redo data to SQL
statements and then execute the SQL on the logical standby database.

■ Each primary database and standby database must have its own control file.

■ If you place your primary and standby databases on the same system, you must
adjust the initialization parameters correctly.

■ To protect against unlogged direct writes in the primary database that cannot be
propagated to the standby database, turn on FORCE LOGGING at the primary
database before performing datafile backup operations for standby creation.
Keep the database in FORCE LOGGING mode as long as the standby database is
required.

■ If you are currently running Oracle Data Guard on Oracle8i database software,
see Oracle9i Database Migration for complete information on upgrading to Oracle
Data Guard on Oracle9i database software.

■ The user accounts you use to manage the primary and standby database
instances must have SYSDBA system privileges.

Standby Database Directory Structure Considerations

Getting Started with Data Guard 2-7

2.4 Standby Database Directory Structure Considerations
The directory structure of the various standby databases is important because it
determines the path names for the standby datafiles and redo logs. If you have a
standby database on the same system as the primary database, you must use a
different directory structure; otherwise, the standby database attempts to overwrite
the primary database files.

For standby databases, use the same path names for the standby files if possible.
Otherwise, you will need to set filename conversion parameters (as shown in
Table 2–1). Nevertheless, if you need to use a system with a different directory
structure or place the standby and primary databases on the same system, you can
do so with a minimum of extra administration.

The three basic configuration options are illustrated in Figure 2–1. These include:

■ A standby database on the same system as the primary database that uses a
different directory structure than the primary system (Standby1).

■ A standby database on a separate system that uses the same directory structure
as the primary system (Standby2). This is the recommended method.

■ A standby database on a separate system that uses a different directory
structure than the primary system (Standby3).

Standby Database Directory Structure Considerations

2-8 Oracle Data Guard Concepts and Administration

Figure 2–1 Possible Standby Configurations

Table 2–1 describes possible configurations of primary and standby databases and
the consequences of each.

Computer System at Location 1

Computer System at Location 2 Computer System at Location 3

Primary1

Standby1

Standby2 Standby3

/oracle/dbs

/oracle/standby/dbs

/oracle/dbs /disk2/FS3/oracle/dbs

Oracle
Net

Oracle
Net

Standby Database Directory Structure Considerations

Getting Started with Data Guard 2-9

Table 2–1 Standby Database Location and Directory Options

Standby
System

Directory
Structure Consequences

Same as
primary
system

Different
than
primary
system
(required)

■ You must set the LOCK_NAME_SPACE initialization
parameter.

■ You must manually rename primary database datafiles and
redo logs in the standby database control file (see
Appendix B). For physical standby databases, you could
alternatively set up the DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT initialization parameters on
the standby database to automatically rename the datafiles
(see Section 6.2.4).

■ The standby database does not protect against disasters
that destroy the system on which both the primary and
standby databases reside, but it does provide switchover
capabilities for planned maintenance.

Separate
system

Same as
primary
system

■ You do not need to rename primary database files and redo
logs in the standby database control file, although you can
still do so if you want a new naming scheme (for example,
to spread the files among different disks).

■ Using separate physical media for your databases
safeguards your primary data.

Separate
system

Different
than
primary
system

■ You must manually rename primary database datafiles and
redo logs in the standby database control file (see
Appendix B). For physical standby databases, you could
alternatively set up the DB_FILE_NAME_CONVERT and
LOG_FILE_NAME_CONVERT initialization parameters on
the standby database to automatically rename the datafiles
(see Section 6.2.4).

■ Using separate physical media for your databases
safeguards your primary data.

Standby Database Directory Structure Considerations

2-10 Oracle Data Guard Concepts and Administration

Creating a Physical Standby Database 3-1

3
Creating a Physical Standby Database

This chapter steps you through the process of creating a physical standby database.
It includes the following main topics:

■ Preparing the Primary Database for Standby Database Creation

■ Creating a Physical Standby Database

■ Verifying the Physical Standby Database

The discussions in this chapter assume that you specify initialization parameters in
a server parameter file (SPFILE) instead of in a traditional text initialization
parameter file (PFILE). See the Oracle9i Database Administrator’s Guide for
information about creating and using server parameter files.

3.1 Preparing the Primary Database for Standby Database Creation
Before you create a standby database you must first ensure that the primary
database is properly configured.

Table 3–1 provides a checklist of the tasks that you perform on the primary database
to prepare for physical standby database creation. There is also a reference to the
section that describes the task in more detail.

See Also: Oracle9i Data Guard Broker and the Oracle Data Guard
Manager online help system for information about using the Data
Guard Manager graphical user interface to automatically create a
physical standby database

Table 3–1 Preparing the Primary Database for Physical Standby Database Creation

Reference Task

Section 3.1.1 Enable Forced Logging

Creating a Physical Standby Database

3-2 Oracle Data Guard Concepts and Administration

3.1.1 Enable Forced Logging
Place the primary database in FORCE LOGGING mode after database creation using
the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement may take a considerable amount of time to complete, because it
waits for all unlogged direct write I/O operations to finish.

3.1.2 Enable Archiving and Define a Local Archiving Destination
Ensure that the primary database is in ARCHIVELOG mode, that automatic
archiving is enabled, and that you have defined a local archiving destination.

Set the local archive destination using the following SQL statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll
 2> MANDATORY’ SCOPE=BOTH;

3.2 Creating a Physical Standby Database
This section describes the tasks you perform to create a physical standby database.

Table 3–2 provides a checklist of the tasks that you perform to create a physical
standby database and the database or databases on which you perform each task.
There is also a reference to the section that describes the task in more detail.

Section 3.1.2 Enable Archiving and Define a Local Archiving Destination

See Also: Oracle9i Database Administrator’s Guide for a description
of archiving and Chapter 11 and the Oracle9i Database Reference for
information about initialization parameters

Table 3–1 Preparing the Primary Database for Physical Standby Database Creation

Reference Task

Creating a Physical Standby Database

Creating a Physical Standby Database 3-3

3.2.1 Identify the Primary Database Datafiles
On the primary database, query the V$DATAFILE view to list the files that will be
used to create the physical standby database, as follows:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/oradata/payroll/system01.dbf
/disk1/oracle/oradata/payroll/undotbs01.dbf
/disk1/oracle/oradata/payroll/cwmlite01.dbf
.
.
.

Table 3–2 Creating a Physical Standby Database

Reference Task Database

Section 3.2.1 Identify the Primary Database Datafiles Primary

Section 3.2.2 Make a Copy of the Primary Database Primary

Section 3.2.3 Create a Control File for the Standby Database Primary

Section 3.2.4 Prepare the Initialization Parameter File to be Copied to the Standby
Database

Primary

Section 3.2.5 Copy Files from the Primary System to the Standby System Primary

Section 3.2.6 Set Initialization Parameters on a Physical Standby Database Standby

Section 3.2.7 Create a Windows Service Standby

Section 3.2.8 Configure Listeners for the Primary and Standby Databases Primary and
Standby

Section 3.2.9 Enable Dead Connection Detection on the Standby System Standby

Section 3.2.10 Create Oracle Net Service Names Primary and
Standby

Section 3.2.11 Create a Server Parameter File for the Standby Database Standby

Section 3.2.12 Start the Physical Standby Database Standby

Section 3.2.13 Initiate Log Apply Services Standby

Section 3.2.14 Enable Archiving to the Physical Standby Database Primary

Creating a Physical Standby Database

3-4 Oracle Data Guard Concepts and Administration

3.2.2 Make a Copy of the Primary Database
On the primary database, perform the following steps to make a closed backup
copy of the primary database.

Step 1 Shut down the primary database.
Issue the following SQL*Plus statement to shut down the primary database:

SQL> SHUTDOWN IMMEDIATE;

Step 2 Copy the datafiles to a temporary location.
Copy the datafiles that you identified in Section 3.2.1 to a temporary location using
an operating system utility copy command. The following example uses the UNIX
cp command:

cp /disk1/oracle/oradata/payroll/system01.dbf
/disk1/oracle/oradata/payroll/standby/system01.dbf

Copying the datafiles to a temporary location will reduce the amount of time that
the primary database must remain shut down.

Step 3 Restart the primary database.
Issue the following SQL*Plus statement to restart the primary database:

SQL> STARTUP;

3.2.3 Create a Control File for the Standby Database
On the primary database, create the control file for the standby database, as shown
in the following example:

SQL> ALTER DATABASE CREATE STANDBY CONTROLFILE AS
 2> '/disk1/oracle/oradata/payroll/standby/payroll2.ctl';

The filename for the newly created standby control file must be different from the
filename of the current control file of the primary database. The control file must
also be created after the last time stamp for the backup datafiles.

Note: You cannot use a single control file for both the primary and
standby databases.

Creating a Physical Standby Database

Creating a Physical Standby Database 3-5

3.2.4 Prepare the Initialization Parameter File to be Copied to the Standby Database
Create a traditional text initialization parameter file from the server parameter file
used by the primary database; a traditional text initialization parameter file can be
copied to the standby location and modified. For example:

SQL> CREATE PFILE=’/disk1/oracle/dbs/initpayroll2.ora’ FROM SPFILE;

Later, in Section 3.2.11, you will convert this file back to a server parameter file after
it is modified to contain the parameter values appropriate for use with the physical
standby database.

3.2.5 Copy Files from the Primary System to the Standby System
On the primary system, use an operating system copy utility to copy the following
binary files from the primary system to the standby system:

■ Backup datafiles created in Section 3.2.2

■ Standby control file created in Section 3.2.3

■ Initialization parameter file created in Section 3.2.4

3.2.6 Set Initialization Parameters on a Physical Standby Database
Although most of the initialization parameter settings in the text initialization
parameter file that you copied from the primary system are also appropriate for the
physical standby database, some modifications need to be made.

Example 3–1 shows the portion of the standby initialization parameter file where
values were modified for the physical standby database. Parameter values that
changed are shown in bold typeface.

Example 3–1 Modifying Initialization Parameters for a Physical Standby Database

.

.

.
db_name=PAYROLL
compatible=9.2.0.1.0
control_files=’/disk1/oracle/oradata/payroll/standby/payroll2.ctl’
log_archive_start=TRUE
standby_archive_dest=’/disk1/oracle/oradata/payroll/standby’
db_file_name_convert=(’/disk1/oracle/oradata/payroll/’,
’/disk1/oracle/oradata/payroll/standby/’)
log_file_name_convert=(’/disk1/oracle/oradata/payroll/’,

Creating a Physical Standby Database

3-6 Oracle Data Guard Concepts and Administration

’/disk1/oracle/oradata/payroll/standby/’)
log_archive_format=log%d_%t_%s.arc
log_archive_dest_1=(’LOCATION=/disk1/oracle/oradata/payroll/standby/’)
standby_file_management=AUTO
remote_archive_enable=TRUE
instance_name=PAYROLL2
The following parameter is required only if the primary and standby databases
are located on the same system.
lock_name_space=PAYROLL2
.
.
.

The following list provides a brief explanation about the parameter settings shown
in Example 3–1:

■ db_name - Not modified. The same name as the primary database.

■ compatible - Not modified. The same as the primary database, 9.2.0.1.0.

■ control_files - Specify the path name and filename for the standby control
file.

■ log_archive_start - Not modified. The same as the setting for the primary
database, TRUE.

■ standby_archive_dest - Specify the location of the archived redo logs that
will be received from the primary database.

■ db_file_name_convert - Specify the location of the primary database
datafiles followed by the standby location of the datafiles. This parameter will
convert the filename of the primary database datafiles to the filename of the
standby datafile filenames. If the standby database is on the same system as the
primary database or if the directory structure where the datafiles are located on
the standby site is different from the primary site then this parameter is
required. See Section 3.2.1 for the location of the datafiles on the primary
database.

■ log_file_name_convert - Specify the location of the primary database logs
followed by the standby location of the logs. This parameter will convert the
filename of the primary database log to the filenames of the standby log. If the
standby database is on the same system as the primary database or if the
directory structure where the logs are located on the standby site is different
from the primary site then this parameter is required. See Section 3.2.1 for the
location of the logs on the primary database.

Creating a Physical Standby Database

Creating a Physical Standby Database 3-7

■ log_archive_format - Specify the format for the archived redo logs using a
DBID (%d), thread (%t), and sequence number (%s).

■ log_archive_dest_1 - Specify the location where the redo logs are to be
archived on the standby system. (If a switchover occurs and this instance
becomes the primary database, then this parameter will specify the location
where the online redo logs will be archived.)

■ standby_file_management - Set to AUTO.

■ remote_archive_enable - Set to TRUE.

■ instance_name - If this parameter is defined, specify a different value for the
standby database than the primary database when the primary and standby
databases reside on the same host.

■ lock_name_space - Specify the standby database instance name.

Use this parameter when you create the physical standby database on the same
system as the primary database. Change the INSTANCE_NAME parameter to a
value other than its primary database value, and set this LOCK_NAME_SPACE
initialization parameter to the same value that you specified for the standby
database INSTANCE_NAME initialization parameter.

3.2.7 Create a Windows Service
If the standby system is running on a Windows system, use the ORADIM utility to
create a Windows Service. For example:

WINNT> oradim -NEW -SID payroll2 -STARTMODE manual

Caution: Review the initialization parameter file for additional
parameters that may need to be modified. For example, you may
need to modify the dump destination parameters (background_
dump_dest, core_dump_dest, user_dump_dest) if the
directory location on the standby database is different from those
specified on the primary database. In addition, you may have to
create some directories on the standby system if they do not
already exist.

See Also: Chapter 11 for a complete explanations of all the
initialization parameters that can be used to modify a Data Guard
environment

Creating a Physical Standby Database

3-8 Oracle Data Guard Concepts and Administration

3.2.8 Configure Listeners for the Primary and Standby Databases
On both the primary and standby sites, use Oracle Net Manager to configure a
listener for the respective databases. If you plan to manage the configuration using
the Data Guard broker, you must configure the listener to use the TCP/IP protocol
and statically register service information for each database using the SID for the
database instance.

To restart the listeners (to pick up the new definitions), enter the following
LSNRCTL utility commands on both the primary and standby systems:

% lsnrctl stop
% lsnrctl start

3.2.9 Enable Dead Connection Detection on the Standby System
Enable dead connection detection by setting the SQLNET.EXPIRE_TIME parameter
to 2 in the SQLNET.ORA parameter file on the standby system. For example:

SQLNET.EXPIRE_TIME=2

3.2.10 Create Oracle Net Service Names
On both the primary and standby systems, use Oracle Net Manager to create a
network service name for the primary and standby databases that will be used by
log transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and SID that you specified when you configured
the listeners for the primary and standby databases. The connect descriptor must
also specify that a dedicated server be used.

See Also: Oracle9i Database Administrator’s Guide for Windows for
more information about using the ORADIM utility

See Also: Oracle9i Net Services Administrator’s Guide

See Also: Oracle9i Net Services Administrator’s Guide and the
Oracle9i Database Administrator’s Guide

Creating a Physical Standby Database

Creating a Physical Standby Database 3-9

3.2.11 Create a Server Parameter File for the Standby Database
On an idle standby database, use the SQL CREATE statement to create a server
parameter file for the standby database from the text initialization parameter file
that was edited in Section 3.2.6. For example:

SQL> CREATE SPFILE FROM PFILE=’initpayroll2.ora’;

3.2.12 Start the Physical Standby Database
On the standby database, issue the following SQL statements to start and mount the
database in standby mode:

SQL> STARTUP NOMOUNT;
SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

3.2.13 Initiate Log Apply Services
On the standby database, start log apply services as shown in the following
example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

The example includes the DISCONNECT FROM SESSION option so that log apply
services run in a background session.

3.2.14 Enable Archiving to the Physical Standby Database
This section describes the minimum amount of work you must do on the primary
database to set up and enable archiving to the physical standby database.

Step 1 Set initialization parameters to define archiving.
To configure archive logging from the primary database to the standby site the
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters must be
defined.

See Also: Section 6.2, "Applying Redo Data to Physical Standby
Databases"

See Also: Chapter 5 for information about log transport services
and Chapter 12 for reference information about additional
attributes you can set on the LOG_ARCHIVE_DEST_n initialization
parameter

Verifying the Physical Standby Database

3-10 Oracle Data Guard Concepts and Administration

The following example sets the initialization parameters needed to enable archive
logging to the standby site:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=payroll2’ SCOPE=BOTH;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

Step 2 Start remote archiving.
Archiving of redo logs to the remote standby location does not occur until after a
log switch. A log switch occurs, by default, when an online redo log becomes full.
To force the current redo logs to be archived immediately, use the SQL ALTER
SYSTEM statement on the primary database. For example:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

3.3 Verifying the Physical Standby Database
Once you create the physical standby database and set up log transport services,
you may want verify that database modifications are being successfully shipped
from the primary database to the standby database.

To see the new archived redo logs that were received on the standby database, you
should first identify the existing archived redo logs on the standby database,
archive a few logs on the primary database, and then check the standby database
again. The following steps show how to perform these tasks.

Step 1 Identify the existing archived redo logs.
On the standby database, query the V$ARCHIVED_LOG view to identify existing
archived redo logs. For example:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2 FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03

3 rows selected.

See Also: Section 6.2, "Applying Redo Data to Physical Standby
Databases"

Verifying the Physical Standby Database

Creating a Physical Standby Database 3-11

Step 2 Archiving the current log.
On the primary database, archive the current log using the following SQL
statement:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Step 3 Verify that the new archived redo log was received.
On the standby database, query the V$ARCHIVED_LOG view to verify the redo log
was received:

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME
 2> FROM V$ARCHIVED_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME
---------- ------------------ ------------------
 8 11-JUL-02 17:50:45 11-JUL-02 17:50:53
 9 11-JUL-02 17:50:53 11-JUL-02 17:50:58
 10 11-JUL-02 17:50:58 11-JUL-02 17:51:03
 11 11-JUL-02 17:51:03 11-JUL-02 18:34:11

4 rows selected.

The logs are now available for log apply services to apply redo data to the standby
database.

Step 4 Verify that the new archived redo log was applied.
On the standby database, query the V$ARCHIVED_LOG view to verify the archived
redo log was applied.

SQL> SELECT SEQUENCE#,APPLIED FROM V$ARCHIVED_LOG
 2 ORDER BY SEQUENCE#;

SEQUENCE# APP
--------- ---
 8 YES
 9 YES
 10 YES
 11 YES

4 rows selected.

Verifying the Physical Standby Database

3-12 Oracle Data Guard Concepts and Administration

See Also: Section 5.9, "Monitoring Redo Log Archival
Information" and Section 6.5, "Monitoring Log Apply Services for
Physical Standby Databases" for information about how to verify
that both log transport services and log apply services are working
correctly

Creating a Logical Standby Database 4-1

4
Creating a Logical Standby Database

This chapter steps you through the process of creating a logical standby database
and then configuring log apply services to maintain the standby database using
SQL apply technology. It includes the following main topics:

■ Preparing the Primary Database for Standby Database Creation

■ Creating a Logical Standby Database

■ Verify the Logical Standby Database

The steps described in this chapter configure a logical standby database for
maximum performance mode, which is the default data protection mode. Chapter 5
provides information about configuring the different data protection modes.

4.1 Preparing the Primary Database for Standby Database Creation
Before performing the tasks described in this chapter, you must ensure that the user
account you use on the primary database during the logical standby database
creation process is configured to have the following database roles:

■ LOGSTDBY_ADMINISTRATOR role (to use the logical standby functionality)

■ SELECT_CATALOG_ROLE role (to have SELECT privileges on all data dictionary
views)

Also, the discussions in this chapter assume that you specify initialization
parameters in a server parameter file (SPFILE), instead of a text initialization
parameter file (PFILE).

See Also: Oracle9i Data Guard Broker and the Oracle Data Guard
Manager online help system for information about using the Data
Guard Manager graphical user interface to automatically create a
logical standby database

Preparing the Primary Database for Standby Database Creation

4-2 Oracle Data Guard Concepts and Administration

Table 4–1 provides a checklist of the tasks that you perform on the primary database
to prepare for logical standby database creation. There is also a reference to the
section that describes the task in more detail.

4.1.1 Enable Forced Logging
Place the primary database in FORCE LOGGING mode after database creation using
the following SQL statement:

SQL> ALTER DATABASE FORCE LOGGING;

This statement can take a considerable amount of time to complete because it waits
for all unlogged direct write I/O operations to finish.

4.1.2 Enable Archiving and Define a Local Archiving Destination
Ensure that the primary database is in ARCHIVELOG mode, that automatic
archiving is enabled, and that you defined a local archiving destination.

Set the local archive destination using the following SQL statement:

See Also: Oracle9i Database Administrator’s Guide for information
about creating and using server parameter files

Table 4–1 Preparing the Primary Database for Logical Standby Database Creation

Reference Task

Section 4.1.1 Enable Forced Logging

Section 4.1.2 Enable Archiving and Define a Local Archiving Destination

Section 4.1.3 Verify the LOG_PARALLELISM Initialization Parameter

Section 4.1.4 Determine Support for Datatypes or Tables

Section 4.1.5 Ensure That Table Rows in the Primary Database Can Be Uniquely Identified

Section 4.1.6 Ensure That Supplemental Logging Is Enabled

Section 4.1.7 Create an Alternate Tablespace

Note: Perform the steps listed in Table 4–1 only once. After you
complete these steps, the database is prepared to serve as the
primary database for one or more logical standby databases.

Preparing the Primary Database for Standby Database Creation

Creating a Logical Standby Database 4-3

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll
 2> MANDATORY’ SCOPE=BOTH;

4.1.3 Verify the LOG_PARALLELISM Initialization Parameter
On the primary database, use the SHOW PARAMETER parameter_name statement
to determine the current values of the LOG_PARALLELISM initialization parameter.
Logical standby databases require that you set this initialization parameter to one,
which is the default value. If the LOG_PARALLELISM initialization parameter is
already set to one, then skip to Section 4.1.4. Otherwise, set LOG_PARALLELISM=1
by issuing the SQL ALTER SYSTEM SET statement on the primary database and
include the SCOPE=SPFILE clause to ensure the value is updated in the server
parameter file. For example:

SQL> ALTER SYSTEM SET LOG_PARALLELISM=1 SCOPE=SPFILE;

If you change the LOG_PARALLELISM initialization parameter, you must shut down
and restart the primary database so that the new initialization parameter value will
take effect. For example:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

4.1.4 Determine Support for Datatypes or Tables
Before setting up a logical standby database, ensure the logical standby database
can maintain the datatypes and tables in your primary database.

The following lists the various database objects that are supported and unsupported
in logical standby databases.

Supported Datatypes
CHAR
NCHAR
VARCHAR2 and VARCHAR

See Also: Oracle9i Database Administrator’s Guide for a description
of archiving, and Chapter 11 and the Oracle9i Database Reference for
information about initialization parameters

See Also: Oracle9i SQL Reference for more information about the
ALTER SET statement, and Chapter 11 and the Oracle9i Database
Reference for information about initialization parameters

Preparing the Primary Database for Standby Database Creation

4-4 Oracle Data Guard Concepts and Administration

NVARCHAR2
NUMBER
DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND
RAW
CLOB
BLOB

Unsupported Datatypes
NCLOB
LONG
LONG RAW
BFILE
ROWID
UROWID
user-defined types
object types REFs
varrays
nested tables

Unsupported Tables, Sequences, and Views
User-defined tables and sequences in the SYS schema
Tables with unsupported datatypes
Tables using data segment compression
Index-organized tables

To determine if the primary database contains unsupported objects, query the DBA_
LOGSTDBY_UNSUPPORTED view. For example, use the following query on the
primary database to list the schema and table names of primary database tables that
are not supported by logical standby databases:

SQL> SELECT DISTINCT OWNER,TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED
 2> ORDER BY OWNER,TABLE_NAME;

OWNER TABLE_NAME
----------- --------------------------
HR COUNTRIES
OE ORDERS

Preparing the Primary Database for Standby Database Creation

Creating a Logical Standby Database 4-5

OE CUSTOMERS
OE WAREHOUSES
.
.
.

To view the column names and datatypes for one of the tables listed in the previous
query, use a SELECT statement similar to the following:

SQL> SELECT COLUMN_NAME,DATA_TYPE FROM DBA_LOGSTDBY_UNSUPPORTED
 2> WHERE OWNER=’OE’ AND TABLE_NAME = ’CUSTOMERS’;

COLUMN_NAME DATA_TYPE
------------------------------- -------------------
CUST_ADDRESS CUST_ADDRESS_TYP
PHONE_NUMBERS PHONE_LIST_TYP
CUST_GEO_LOCATION SDO_GEOMETRY

If the primary database contains unsupported tables, log apply services
automatically exclude these tables when applying redo logs to the logical standby
database.

Skipped SQL Statements on a Logical Standby Database
By default, all SQL statements except those in the following list are applied to a
logical standby database if they are executed on a primary database:

ALTER DATABASE
ALTER SESSION
ALTER SNAPSHOT
ALTER SNAPSHOT LOG
ALTER SYSTEM SWITCH LOG
CREATE CONTROL FILE
CREATE DATABASE

Note: If you determine that the critical tables in your primary
database are not supported by logical standby databases, then you
might want to consider using a physical standby database. See
Chapter 3 for information about creating a physical standby
database.

See Also: Chapter 14, "Views" for more information about the
DBA_LOGSTDBY_UNSUPPORTED view

Preparing the Primary Database for Standby Database Creation

4-6 Oracle Data Guard Concepts and Administration

CREATE DATABASE LINK
CREATE PFILE FROM SPFILE
CREATE SCHEMA AUTHORIZATION
CREATE SNAPSHOT
CREATE SNAPSHOT LOG
CREATE SPFILE FROM PFILE
CREATE TABLE AS SELECT FROM A CLUSTER TABLE
DROP DATABASE LINK
DROP SNAPSHOT
DROP SNAPSHOT LOG
EXPLAIN
LOCK TABLE
RENAME
SET CONSTRAINTS
SET ROLE
SET TRANSACTION

Determine Support for Objects and Operations
PL/SQL procedures that modify metadata are not applied on the standby database,
therefore their effects are not visible on the standby database. An example of this is
the DBMS_AQADM advanced queuing package, which is not supported by logical
standby databases. Another example is DBMS_MVIEW_REFRESH,which when
executed on the primary database, is not maintained by SQL apply operations on
the standby database.

The only exception to this is the DBMS_JOB package. Jobs metadata is applied to the
logical standby database, but jobs are not executed.

4.1.5 Ensure That Table Rows in the Primary Database Can Be Uniquely Identified
Because the ROWIDs on a logical standby database might not be the same as the
ROWIDs on the primary database, another mechanism must be used to match the
updated row on the primary database to its corresponding row on the standby
database. You can use one of the following to match up the corresponding rows:

■ Primary key

Note: The DBMS_MVIEW_REFRESH routine must be invoked on
the standby database where you want to refresh the materialized
views.

Preparing the Primary Database for Standby Database Creation

Creating a Logical Standby Database 4-7

■ Unique index

Oracle Corporation recommends that you add a primary key or a unique index to
tables on the primary database, whenever appropriate and possible, to ensure that
SQL apply operations can efficiently apply data updates to the logical standby
database.

Perform the actions described in Section 4.1.5.1 and Section 4.1.5.2 to ensure that log
apply services can uniquely identify table rows.

4.1.5.1 Finding Tables Without a Unique Identifier in the Primary Database
Query the DBA_LOGSTDBY_NOT_UNIQUE view to identify tables in the primary
database that do not have a primary key or unique index. The following query
displays a list of tables that SQL apply operations might not be able to uniquely
identify:

SQL> SELECT OWNER, TABLE_NAME,BAD_COLUMN FROM DBA_LOGSTDBY_NOT_UNIQUE
 2> WHERE TABLE_NAME NOT IN (SELECT TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED);

Some of the tables displayed in the DBA_LOGSTDBY_NOT_UNIQUE view can still be
supported because supplemental logging (that you will enable in Section 4.1.6)
adds information that uniquely identifies the row in the redo logs. The presence or
absence of a primary key or unique index can affect supplemental logging as
follows:

■ If the table has a primary key or a unique index, the amount of information
added to the redo log during supplemental logging is minimal.

■ If the table does not have a primary key or a unique index, supplemental
logging will automatically log all scalar values for each row to the redo log.

The value of the BAD_COLUMN column will be either Y or N, as described in the
following list:

■ Y

Indicates that a table column is defined using an unbounded datatype, such as
CLOB or BLOB. SQL apply operations attempt to maintain these tables, but you
must ensure that the application provides uniqueness in unbounded columns
only. Note that if two rows in the table match except for in the LOB column,
then the table cannot be maintained properly.

■ N

Indicates the table contains enough column information to maintain the table in
a logical standby database.

Preparing the Primary Database for Standby Database Creation

4-8 Oracle Data Guard Concepts and Administration

4.1.5.2 Adding a Disabled Primary Key RELY Constraint
If your application ensures the rows in a table are unique, you can create a disabled
primary key RELY constraint on the table. This will avoid the overhead of
maintaining a primary key on the primary database.

To create a disabled RELY constraint on a primary database table:

Use the ALTER TABLE statement with a RELY DISABLE clause. The following
example creates a disabled RELY constraint on a table named mytab where rows
can be uniquely identified using the id and name columns:

SQL> ALTER TABLE mytab ADD PRIMARY KEY (id, name) RELY DISABLE;

The RELY constraint tells the system to assume the rows are unique. Be careful to
select columns for the disabled RELY constraint that will uniquely identify a row. If
the columns selected for the RELY constraint do not uniquely identify the row, log
apply services fail to apply data from the redo logs to the logical standby database.

To improve the performance of SQL apply operations, add an index to the columns
that uniquely identify the row on the logical standby database. Failure to do this
results in full table scans.

4.1.6 Ensure That Supplemental Logging Is Enabled
Supplemental logging must be enabled on the primary database before you create
the logical standby database. Because Oracle only logs the columns that were
modified, this is not always sufficient to uniquely identify the row that changed and
additional (supplemental) information must be put into the redo log. The
supplemental information that is added to the redo logs helps log apply services to
correctly identify and maintain tables in the logical standby database.

To determine if supplemental logging is enabled on the primary database, query the
V$DATABASE fixed view. For example:

See also: Oracle9i SQL Reference for ALTER TABLE statement
syntax and usage information

See Also: Chapter 14, "Views" for more information about the
DBA_LOGSTDBY_NOT_UNIQUE view and Oracle9i SQL Reference for
more information about creating RELY constraints, and Section 9.2
for information about RELY constraints and actions you can take to
increase performance on a logical standby database

Preparing the Primary Database for Standby Database Creation

Creating a Logical Standby Database 4-9

SQL> SELECT SUPPLEMENTAL_LOG_DATA_PK, SUPPLEMENTAL_LOG_DATA_UI FROM V$DATABASE;
SUP SUP
--- ---
NO NO

In this example, the NO values indicate that supplemental logging is not enabled on
the primary database.

If supplemental logging is enabled, then go to Section 4.1.7. If supplemental logging
is not enabled, then perform the steps in the following sections to enable
supplemental logging.

4.1.6.1 Enable Supplemental Logging
On the primary database, issue the following statement to add primary key and
unique index information to the archived redo logs:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA (PRIMARY KEY, UNIQUE INDEX) COLUMNS;

This SQL statement adds the information to uniquely identify the row that changed
on the primary database so that log apply services can correctly identify and
maintain the same row on the standby database.

4.1.6.2 Switch to a New Redo Log
On the primary database, issue the following statement to switch to a new redo log:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

By switching to a new log file, you ensure that the redo logs do not contain both
supplemental log data and nonsupplemental log data. Logical standby databases
cannot use a redo log that contains both supplemental and nonsupplemental log
data.

4.1.6.3 Verify That Supplemental Logging Is Enabled
On the primary database, verify that supplemental logging is enabled by issuing the
same query used previously. For example:

SQL> SELECT SUPPLEMENTAL_LOG_DATA_PK, SUPPLEMENTAL_LOG_DATA_UI FROM V$DATABASE;
SUP SUP
--- ---
YES YES

In this example, the YES values indicate that supplemental logging is enabled on
the primary database. For all tables with a primary key (SUPPLEMENTAL_LOG_
DATA_PK) or unique index (SUPPLEMENTAL_LOG_DATA_UI), all columns of the

Preparing the Primary Database for Standby Database Creation

4-10 Oracle Data Guard Concepts and Administration

primary key and unique index are placed into the redo log whenever an update
operation is performed.

4.1.7 Create an Alternate Tablespace
If you expect to perform switchover operations between the primary database and a
logical standby database, you should create an alternate tablespace in the primary
database and move the logical standby system tables to that separate tablespace.

Logical standby databases use a number of tables defined in the SYS and SYSTEM
schemas. By default, these tables are created in the SYSTEM tablespace. Some of
these tables can rapidly become very large. By preparing an alternate tablespace in
advance and moving the logical standby system tables to a separate tablespace, you
will prevent these tables from filling the entire SYSTEM tablespace. Move the tables
to the new tablespace before they are populated during the logical standby creation
process described in Section 4.2.

To create a new tablespace for the logical standby tables, issue the SQL CREATE
TABLESPACE statement. Then, use the DBMS_LOGMNR_D.SET_TABLESPACE
procedure to move the tables into the new tablespace on the primary database. For
example, the following statements create a new tablespace named logmnrts and
move the LogMiner tables into that tablespace:

SQL> CREATE TABLESPACE logmnrts DATAFILE ’/disk1/oracle/dbs/logmnrts.dbf’
 2> SIZE 25M AUTOEXTEND ON MAXSIZE UNLIMITED;
SQL> EXECUTE DBMS_LOGMNR_D.SET_TABLESPACE(’logmnrts’);

Note that creating an alternate tablespace can take several minutes to complete.

Note: If you enable supplemental logging on a primary database
in a Data Guard configuration that already contains physical
standby databases, then you must issue the ALTER DATABASE
ADD SUPPLEMENTAL LOG DATA statement on each physical
standby database to ensure that future switchover operations work
correctly.

See Also: Chapter 14, "Views" for more information about the
V$DATABASE view and the Oracle9i SQL Reference for more
information about the ALTER DATABASE ADD SUPPLEMENTAL
LOG DATA statements

Creating a Logical Standby Database

Creating a Logical Standby Database 4-11

By creating an alternate tablespace on the primary database, any standby databases
created from the primary database will contain the new tablespace. If the primary
database later becomes a standby database, it will be set up correctly.

4.2 Creating a Logical Standby Database
This section describes the tasks you must perform to set up and create a logical
standby database. Table 4–2 provides a checklist of the tasks that you perform to
create a logical standby database and the database on which you perform each step.
There is also a reference to the section that describes the task in more detail.

Note: If this primary database is part of a Data Guard
configuration that already contains a standby database and the
standby database has the initialization parameter STANDBY_FILE_
MANAGEMENT set to AUTO, then the previous commands will
automatically be applied to the standby database. If the STANDBY_
FILE_MANAGEMENT initialization parameter is not set to AUTO, then
the previous commands must be issued on the standby database to
ensure that future switchovers work correctly.

See Also: Oracle9i SQL Reference for information about the
CREATE TABLESPACE statement and the Oracle9i Supplied PL/SQL
Packages and Types Reference for information about the DBMS_
LOGMNR_D supplied package

Table 4–2 Create a Logical Standby Database

Reference Task Database

Section 4.2.1 Identify the Primary Database Datafiles and Log Files Primary

Section 4.2.2 Make a Copy of the Primary Database Primary

Section 4.2.3 Prepare the Initialization Parameter File to Be Copied to the Standby System Primary

Section 4.2.4 Copy Files from the Primary Database Location to the Standby Location Primary

Section 4.2.5 Set Initialization Parameters on the Logical Standby Database Standby

Section 4.2.6 Create a Windows Service Standby

Section 4.2.7 Configure the Listener for Both the Primary and Standby Databases Primary and
Standby

Section 4.2.8 Enable Dead Connection Detection on the Standby System Standby

Creating a Logical Standby Database

4-12 Oracle Data Guard Concepts and Administration

4.2.1 Identify the Primary Database Datafiles and Log Files
On the primary database, query the V$DATAFILE view to list the files that will be
used to create the logical standby database. For example:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/oradata/payroll/system01.dbf
/disk1/oracle/oradata/payroll/undotbs01.dbf
/disk1/oracle/oradata/payroll/cwmlite01.dbf
.
.
.

On the primary database, query the V$LOGFILE view to list the primary database
logs. (This information will be used in later steps.) For example:

SQL> SELECT GROUP#,TYPE,MEMBER FROM V$LOGFILE;
GROUP# TYPE MEMBER

Section 4.2.9 Create Oracle Net Service Names Primary and
Standby

Section 4.2.10 Start and Mount the Logical Standby Database Standby

Section 4.2.11 Rename the Datafiles on the Logical Standby Database Standby

Section 4.2.12 Rename Online Redo Logs on the Logical Standby Database Standby

Section 4.2.13 Turn On the Database Guard Standby

Section 4.2.14 Reset the Database Name of the Logical Standby Database Standby

Section 4.2.15 Change the Database Name in the Parameter File Standby

Section 4.2.16 Create a New Temporary File for the Logical Standby Database Standby

Section 4.2.17 Register the Archived Redo Log and Start SQL Apply Operations Standby

Section 4.2.18 Enable Archiving to the Logical Standby Database Primary

Note: Perform the steps listed in Table 4–2 for each logical
standby database that you want to create.

Table 4–2 Create a Logical Standby Database

Reference Task Database

Creating a Logical Standby Database

Creating a Logical Standby Database 4-13

--
1 ONLINE /disk1/oracle/oradata/payroll/redo01.log
2 ONLINE /disk1/oracle/oradata/payroll/redo02.log
3 ONLINE /disk1/oracle/oradata/payroll/redo03.log
.
.
.

4.2.2 Make a Copy of the Primary Database
Perform the following steps to make a closed backup copy of the primary database.

Step 1 Shut down the primary database.
On the primary database, use the following SQL*Plus statement to shut it down:

SQL> SHUTDOWN IMMEDIATE;

Step 2 Copy the datafiles to a temporary location.
On the primary database, copy the datafiles that you identified in Section 4.2.1 to a
temporary location using an operating system utility copy command. The following
example uses the UNIX cp command:

cp /disk1/oracle/oradata/payroll/system01.dbf
/disk1/oracle/oradata/payroll/standby/system01.dbf

cp /disk1/oracle/oradata/payroll/undotbs01.dbf
/disk1/oracle/oradata/payroll/standby/undotbs01.dbf

cp /disk1/oracle/oradata/payroll/cwmlite01.dbf
/disk1/oracle/oradata/payroll/standby/cwmlite01.dbf
.
.
.
Copying the datafiles to a temporary location reduces the amount of time that the
primary database must remain shut down.

Step 3 Restart the primary database.
On the primary database, use the following SQL*Plus command to restart and
mount the primary database:

SQL> STARTUP MOUNT;

Creating a Logical Standby Database

4-14 Oracle Data Guard Concepts and Administration

Step 4 Create a backup copy of the control file for the standby database.
On the primary database, create a backup copy of the control file for the standby
database:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO
 2> '/disk1/oracle/oradata/payroll/standby/payroll3.ctl';

Step 5 Enable restricted session mode on the primary database.
On the primary database, enable restricted session mode to reduce the likelihood of
users or applications performing any DML or DDL operations.

The following statement enables restricted session mode:

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;

Step 6 Build the LogMiner dictionary.
To create a logical standby database, you must manually build the dictionary for the
logical standby database. On the primary database, issue the following statements
to build the LogMiner dictionary:

SQL> ALTER DATABASE OPEN;
SQL> EXECUTE DBMS_LOGSTDBY.BUILD;

Step 7 Disable restricted session mode on the primary database.
On the primary database, disable restricted session mode using the following SQL
statement:

SQL> ALTER SYSTEM DISABLE RESTRICTED SESSION;

Step 8 Identify the latest archived redo log.
To obtain a starting point for building the logical standby database, query the
V$ARCHIVED_LOG view, identify the latest archived redo log, and record its name
for use later in the creation process. The following query includes the
DICTIONARY_BEGIN clause to find the name of the new dictionary and the
STANDBY_DEST clause to show information only for the local destination. (Without
the STANDBY_DEST clause, the information will include output for both the local
and standby destinations.) For example:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Caution: Do not allow any DML or DDL operations to occur until
after restricted session mode is disabled in step 7.

Creating a Logical Standby Database

Creating a Logical Standby Database 4-15

SQL> SELECT NAME FROM V$ARCHIVED_LOG
 2> WHERE (SEQUENCE#=(SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG
 3> WHERE DICTIONARY_BEGIN = ’YES’ AND STANDBY_DEST= ’NO’));

NAME

/disk1/oracle/oradata/payroll/arc0004.001

Remember to record the name of the archived redo log for use later in the creation
process.

4.2.3 Prepare the Initialization Parameter File to Be Copied to the Standby System
Create a text initialization parameter file from the server parameter file used by the
primary database; a text initialization parameter file can be copied to the standby
location and modified. The following example shows the statement you use on the
primary database to create a text initialization parameter file from an spfile:

SQL> CREATE PFILE=’/disk1/oracle/dbs/initpayroll3.ora’ FROM SPFILE;

Later, in Section 4.2.15, you will convert this file back to a server parameter file after
it is modified to contain the parameter values appropriate for use with the logical
standby database.

4.2.4 Copy Files from the Primary Database Location to the Standby Location
On the primary database, use an operating system copy utility to copy the
following binary files from the primary database site to the standby site:

■ Backup datafiles and control files created in Section 4.2.2.

■ Latest archived redo log that was identified in step 8 of Section 4.2.2.

■ Database initialization parameter file created in Section 4.2.3.

4.2.5 Set Initialization Parameters on the Logical Standby Database
Although most of the initialization parameter settings in the text initialization
parameter file that you copied from the primary system are also appropriate for the
logical standby database, some modifications need to be made.

Example 4–1 shows the portion of the standby text initialization parameter file
where values have been modified for the logical standby database. Parameter
values that were changed are shown in bold typeface.

Creating a Logical Standby Database

4-16 Oracle Data Guard Concepts and Administration

Example 4–1 Modifying Initialization Parameters for a Logical Standby Database

.

.

.
db_name=PAYROLL
compatible=9.2.0.1.0
control_files=’/disk1/oracle/oradata/payroll/standby/payroll3.ctl’
log_archive_start=TRUE
standby_archive_dest=’/disk1/oracle/oradata/payroll/standby’
log_archive_format=log%d_%t_%s.arc
log_archive_dest_1=’LOCATION=/disk1/oracle/oradata/payroll/arch/’
log_parallelism=1
parallel_max_servers=9
instance_name=PAYROLL3
The following parameter is required only if the primary and standby databases
are located on the same system.
lock_name_space=PAYROLL3
.
.
.
The following list provides a brief explanation about the setting of the parameters
shown in Example 4–1:

■ db_name - Not modified. The same name as the primary database.

■ compatible - Not modified. The same as the primary database, 9.2.0.1.0.

■ control_files - Specify the path name and filename for the standby control
file.

■ log_archive_start - Not modified. The same as the setting for the primary
database, TRUE.

■ standby_archive_dest - Specify the location of the archived redo logs that
will be received from the primary database.

■ log_archive_format - Specify the format for the archived redo logs using a
DBID (%d), thread (%t), and sequence number (%s).

■ log_archive_dest_1 - Specify the location where the redo logs are to be
archived.

■ log_parallelism - Not modified. The same value as the primary database.

■ parallel_max_servers - Set to 9.

Creating a Logical Standby Database

Creating a Logical Standby Database 4-17

■ instance_name - If this parameter is defined, specify a different value for the
standby database than the primary database when the primary and standby
databases reside on the same host.

■ lock_name_space - Specify the standby database instance name.

Use this parameter when you create the logical standby database on the same
system as the primary database. You must change the INSTANCE_NAME
parameter to a value other than its primary database value, and set this LOCK_
NAME_SPACE initialization parameter to the same value that you specified for
the standby database INSTANCE_NAME initialization parameter.

4.2.6 Create a Windows Service
If the standby system is on a Windows system, then you must create a Windows
Service. Run the ORADIM utility to create both the Windows Service and a password
file. For example:

WINNT> oradim -NEW -SID payroll3 -STARTMODE auto

4.2.7 Configure the Listener for Both the Primary and Standby Databases
On both the primary and standby sites, use Oracle Net Manager to configure a
listener for the respective databases. If you plan to manage the configuration using
the Data Guard broker, you must configure the listener to use the TCP/IP protocol

Caution: Review the initialization parameter file for additional
parameters that may need to be modified. For example, you may
need to modify the dump destination parameters (background_
dump_dest, core_dump_dest, user_dump_dest) if the
directory location on the standby database is different from those
specified on the primary database. In addition, you may have to
create some directories on the standby system if they do not
already exist.

See Also: Chapter 11 for a complete explanations of all the
initialization parameters that can be used to modify a Data Guard
environment

See Also: Oracle9i Database Administrator’s Guide for Windows for
more information about using the ORADIM utility

Creating a Logical Standby Database

4-18 Oracle Data Guard Concepts and Administration

and statically register service information for each database using the SID for the
database instance.

To restart the listeners (to pick up the new definitions), enter the following
LSNRCTL utility commands on both the primary and standby systems:

% lsnrctl stop
% lsnrctl start

4.2.8 Enable Dead Connection Detection on the Standby System
Enable dead connection detection by setting the SQLNET.EXPIRE_TIME parameter
to 2 in the SQLNET.ORA parameter file on the standby system. For example:

SQLNET.EXPIRE_TIME=2

4.2.9 Create Oracle Net Service Names
On both the primary and standby systems, use Oracle Net Manager to create a
network service name for the primary and standby databases that will be used by
log transport services.

The Oracle Net service name must resolve to a connect descriptor that uses the
same protocol, host address, port, and SID that you specified when you configured
the listeners for the primary and standby databases. The connect descriptor must
also specify that a dedicated server be used.

4.2.10 Start and Mount the Logical Standby Database
Use the STARTUP statement to start and mount the logical standby database. Do not
open the database; it should remain closed to user access until later in the creation
process. For example:

SQL> STARTUP MOUNT PFILE=initpayroll3.ora;

4.2.11 Rename the Datafiles on the Logical Standby Database
On the logical standby database, rename all of the datafiles that were identified in
Section 4.2.1 and copied from the primary database. For example:

SQL> ALTER DATABASE RENAME FILE ’/disk1/oracle/oradata/payroll/system01.dbf’
 2> TO ’/disk1/oracle/oradata/payroll/standby/system01.dbf’;

See Also: Oracle9i Net Services Administrator’s Guide

See Also: Oracle9i Net Services Administrator’s Guide

Creating a Logical Standby Database

Creating a Logical Standby Database 4-19

SQL> ALTER DATABASE RENAME FILE ’/disk1/oracle/oradata/payroll/undotbs01.dbf’
 2> TO ’/disk1/oracle/oradata/payroll/standby/undotbs01.dbf’

SQL> ALTER DATABASE RENAME FILE ’/disk1/oracle/oradata/payroll/cwmlite01.dbf’
 2> TO ’/disk1/oracle/oradata/payroll/standby/cwmlite01.dbf’
.
.
.

These statements specify the datafile names that are in the control file, it does not
rename the actual datafiles.

On the standby database, query the NAME column in the V$DATAFILE view to
verify that all datafile locations are correct. (This is the same query shown in
Section 4.2.1.)

4.2.12 Rename Online Redo Logs on the Logical Standby Database
Although the online redo logs were not copied from the primary database, they
must all be renamed so that the pointer in the control file is updated to point to the
correct location. The location and name of the online redo logs were identified in
Section 4.2.1. For example:

SQL> ALTER DATABASE RENAME FILE ’/disk1/oracle/oradata/payroll/redo01.log’
 2> TO ’/disk1/oracle/oradata/payroll/standby/redo01.log’;

On the standby database, query the NAME column in the V$DATAFILE view to
verify that all log locations are correct. (This is the same query shown in
Section 4.2.1.)

4.2.13 Turn On the Database Guard
To prevent users from updating objects in the logical standby database, turn on the
database guard by issuing the following SQL statements on the standby database:

SQL> ALTER DATABASE GUARD ALL;
SQL> ALTER DATABASE OPEN RESETLOGS;

4.2.14 Reset the Database Name of the Logical Standby Database
Run the Oracle DBNEWID (nid) utility to change the database name of the logical
standby database. Changing the name prevents any interaction between this copy
of the primary database and the original primary database.

Creating a Logical Standby Database

4-20 Oracle Data Guard Concepts and Administration

Before you run the DBNEWID (nid) utility, you must shut down the database, and
then start and mount it. For example:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT PFILE=initpayroll3.ora;

Now, run the Oracle DBNEWID utility on the standby database to change the
database name and shut it down:

nid TARGET=SYS/password@PAYROLL3 DBNAME=PAYROLL3
Connected to database PAYROLL (DBID=1456557175)

Control Files in database:
 /disk1/oracle/oradata/payroll/standby/stdby.ctl
Change database ID and database name PAYROLL to PAYROLL3? (Y/[N]) => y

Proceeding with operation
Changing database ID from 1456557175 to 416458362
Changing database name from PAYROLL to PAYROLL3
 Control File /disk1/oracle/oradata/payroll/standby/payroll3.ctl - modified
 Datafile /disk1/oracle/oradata/payroll/standby/system01.dbf - dbid changed,
wrote new name
 Datafile /disk1/oracle/oradata/payroll/standby/undotbs01.dbf -dbid changed,
wrote new name
 .
 .
 .
 Control File /disk1/oracle/oradata/payroll/standby/payroll3.ctl-dbid
changed, wrote new name

Database name changed to PAYROLL3.
Modify parameter file and generate a new password file before restarting.
Database ID for database PAYROLL3 change to 416458362.
All previous backups and archived redo logs for this database are unusable.
Shut down database and open with RESETLOGS option.
Successfully changed database name and ID.
DBNEWID - Completed successfully.

If you use a password file for authenticatison, you must re-create the password file
after running the Oracle DBNEWID (nid) utility.

4.2.15 Change the Database Name in the Parameter File
The output from the DBNEWID utility states that you must update the initialization
parameter file. The following steps describe how to perform this task.

Creating a Logical Standby Database

Creating a Logical Standby Database 4-21

Step 1 Modify the DB_NAME parameter.
Set the DB_NAME initialization parameter in the text initialization parameter file to
match the new name:

.

.

.
db_name=PAYROLL3
.
.
.

Step 2 Shut down the standby database.
On the standby database, issue the following SQL statement:

SQL> SHUTDOWN IMMEDIATE;

Step 3 Create a server parameter file for the standby database.
Connect to an idle instance of the standby database, and create a server parameter
file for the standby database from the text initialization parameter file that was
edited in Section 4.2.5 and in step 1 of this section. For example:

SQL> CREATE SPFILE FROM PFILE=initpayroll3.ora;

Step 4 Restart the logical standby database.
Start and open the database to user access, as follows:

SQL> STARTUP MOUNT;
SQL> ALTER DATABASE OPEN RESETLOGS;

4.2.16 Create a New Temporary File for the Logical Standby Database
The temporary files, which were included as a part of the closed backup operation
on the primary database, are not viable on the logical standby database. (It is not
necessary to copy temporary files from the primary database to the logical standby
database.)

To identify and drop obsolete temporary files, perform the following steps on the
logical standby database.

Step 1 Identify the current temporary files.
On the logical standby database, issue the following query to identify the current
temporary files for the standby database:

Creating a Logical Standby Database

4-22 Oracle Data Guard Concepts and Administration

SQL> SELECT * FROM V$TEMPFILE;
no rows selected

If this query returns "no rows selected" as shown in the example, skip step 2 and go
to step 3.

Step 2 Drop each current temporary file from the standby database.
Drop each current temporary file from the standby database, as follows:

SQL> ALTER DATABASE TEMPFILE ’tempfilename’ DROP;

Step 3 Add a new temporary file.
On the logical standby database, perform the following tasks to add a new
temporary file to the tablespace:

1. Identify the tablespace that should contain the temporary file, for example:

SQL> SELECT TABLESPACE_NAME FROM DBA_TABLESPACES WHERE
 2> CONTENTS =’TEMPORARY’;

TABLESPACE_NAME

TEMP

2. Add a new temporary file, for example:

SQL> ALTER TABLESPACE TEMP ADD TEMPFILE
 2> ’/disk1/oracle/oradata/payroll/standby/temp01.dbf’
 3> SIZE 40M REUSE;

4.2.17 Register the Archived Redo Log and Start SQL Apply Operations
To register the most recently archived redo log and begin applying data from the
redo logs to the standby database, perform the following steps.

Step 1 Register the most recently archived redo log with log apply services.
Register the archived redo log that was identified in step 8 of Section 4.2.2. The
following example specifies the filename and location of the most recently archived
redo log that you copied to the logical standby site:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/oradata/payroll/standby/arc0004.001';

Creating a Logical Standby Database

Creating a Logical Standby Database 4-23

Step 2 Start applying redo logs to the logical standby database.
Specify the following SQL statement to begin applying redo logs to the logical
standby database. For example:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY INITIAL;

4.2.18 Enable Archiving to the Logical Standby Database
This section describes the minimum amount of work you must do on the primary
database to set up and enable archiving on the logical standby database.

Step 1 Set initialization parameters to define archiving.
To configure archive logging from the primary database to the standby site the
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters must be
defined.

The following example sets the initialization parameters needed to enable archive
logging on the standby site:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_3='SERVICE=payroll3’ SCOPE=BOTH;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_3=ENABLE SCOPE=BOTH;

Step 2 Start remote archiving.
Archiving of redo logs to the remote standby location does not occur until after a
log switch. A log switch occurs, by default, when an online redo log becomes full.
To force the current redo logs to be archived immediately, use the SQL ALTER
SYSTEM statement on the primary database. For example:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

Note: Only include the INITIAL keyword the first time you start
applying data from redo logs to the standby database. For example,
the following statements show how to subsequently stop and start
SQL apply operations:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

See Also: Chapter 5 for information about log transport services
and Chapter 12 for reference information about additional
attributes you can set on the LOG_ARCHIVE_DEST_n initialization
parameter

Verify the Logical Standby Database

4-24 Oracle Data Guard Concepts and Administration

4.3 Verify the Logical Standby Database
Once you create a logical standby database and set up log transport services and log
apply services, you might want to verify that redo logs are being transmitted from
the primary database and applied to the standby database. To check this, perform
the following steps.

Step 1 Verify that the redo logs have been registered.
To verify that the redo logs were registered on the logical standby system, connect
to the logical standby database and query the DBA_LOGSTDBY_LOG view. For
example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME, DICT_BEGIN, DICT_END
 2> FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME DIC DIC
---------- ------------------ ------------------ --- ---
 24 23-JUL-02 18:19:05 23-JUL-02 18:19:48 YES YES
 25 23-JUL-02 18:19:48 23-JUL-02 18:19:51 NO NO
 26 23-JUL-02 18:19:51 23-JUL-02 18:19:54 NO NO
 27 23-JUL-02 18:19:54 23-JUL-02 18:19:59 NO NO
 28 23-JUL-02 18:19:59 23-JUL-02 18:20:03 NO NO
 29 23-JUL-02 18:20:03 23-JUL-02 18:20:13 NO NO
 30 23-JUL-02 18:20:13 23-JUL-02 18:20:18 NO NO
 31 23-JUL-02 18:20:18 23-JUL-02 18:20:21 NO NO

8 rows selected.

Step 2 Archive some redo logs.
Connect to the primary database and archive some redo logs. For example:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;
System altered.

See Also: Chapter 7 if you intend for the logical standby database
to be the target of a switchover operation in the future. This chapter
describes how to define a database link to the primary database
that will be used during switchover operations.

Verify the Logical Standby Database

Creating a Logical Standby Database 4-25

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;
System altered.

Step 3 Query the DBA_LOGSTDBY_LOG view again.
Connect to the logical standby database and query the DBA_LOGSTDBY_LOG view
again:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT SEQUENCE#, FIRST_TIME, NEXT_TIME, DICT_BEGIN, DICT_END
 2 FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME NEXT_TIME DIC DIC
---------- ------------------ ------------------ --- ---
 24 23-JUL-02 18:19:05 23-JUL-02 18:19:48 YES YES
 25 23-JUL-02 18:19:48 23-JUL-02 18:19:51 NO NO
 26 23-JUL-02 18:19:51 23-JUL-02 18:19:54 NO NO
 27 23-JUL-02 18:19:54 23-JUL-02 18:19:59 NO NO
 28 23-JUL-02 18:19:59 23-JUL-02 18:20:03 NO NO
 29 23-JUL-02 18:20:03 23-JUL-02 18:20:13 NO NO
 30 23-JUL-02 18:20:13 23-JUL-02 18:20:18 NO NO
 31 23-JUL-02 18:20:18 23-JUL-02 18:20:21 NO NO
 32 23-JUL-02 18:20:21 23-JUL-02 18:32:11 NO NO
 33 23-JUL-02 18:32:11 23-JUL-02 18:32:19 NO NO

10 rows selected.

By checking the files on the standby database, archiving a few redo logs, and then
checking the standby database again, you can see that the new redo logs were
registered. These logs are now available for log apply services to begin applying
them.

Step 4 Verify that data from the redo logs is being applied correctly.
On the logical standby database, query the DBA_LOGSTDBY_STATS view to verify
that redo data is being applied correctly. For example:

SQL> COLUMN NAME FORMAT A30
SQL> COLUMN VALUE FORMAT A30
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'coordinator state';

NAME VALUE

Verify the Logical Standby Database

4-26 Oracle Data Guard Concepts and Administration

------------------------------ ------------------------------
coordinator state INITIALIZING

In the example, the output from the DBA_LOGSTDBY_STATS view shows the
coordinator process is in the initialization state. When the coordinator process is
initializing, log apply services are preparing to begin SQL apply operations, but
data from the redo logs is not being applied to the logical standby database.

Knowing the state of the coordinator process is of particular importance because it
is the LSP background process that instructs all of the other logical standby
processes.

Step 5 View the V$LOGSTDBY view to see current SQL apply activity.
On the logical standby database, query the V$LOGSTDBY view to see a current
snapshot of SQL apply activity. A text message describing the current activity of
each process involved in reading and applying changes is displayed.

Example 4–2 shows typical output during the initialization phase.

Example 4–2 V$LOGSTDBY Output During the Initialization Phase

SQL> COLUMN STATUS FORMAT A50

SQL> COLUMN TYPE FORMAT A12

SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;
TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16115: loading Log Miner dictionary data
READER ORA-16127: stalled waiting for additional transact
 ions to be applied
BUILDER ORA-16117: processing
PREPARER ORA-16116: no work available

SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;

Note: The first time log apply services start, it can take a
considerable amount of time for log apply services to initialize and
prepare the database. If the logical standby database has many
tables, the initialization and preparation can take hours. However,
after the initial preparation activity, subsequent restarts go much
more quickly.

Verify the Logical Standby Database

Creating a Logical Standby Database 4-27

TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16126: loading table or sequence object number
READER ORA-16116: no work available
BUILDER ORA-16116: no work available
PREPARER ORA-16116: no work available

Once the coordinator process begins applying redo data to the logical standby
database, the V$LOGSTDBY view indicates this by showing the APPLYING state.

Example 4–3 shows typical output during the applying phase. Notice that the
values in the HIGH_SCN column continue to increment. The numbers in this column
will continue to increase as long as changes are being applied. The HIGH_SCN
column serves only as an indicator of progress.

Example 4–3 V$LOGSTDBY Output During the Applying Phase

SQL> COLUMN NAME FORMAT A30
SQL> COLUMN VALUE FORMAT A30
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'coordinator state';
NAME VALUE
------------------------------ ------------------------------
coordinator state APPLYING

SQL> COLUMN STATUS FORMAT A50
SQL> COLUMN TYPE FORMAT A12
SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;
TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16117: processing
READER ORA-16127: stalled waiting for additional transact
 ions to be applied

BUILDER 191896 ORA-16116: no work available
PREPARER 191902 ORA-16117: processing
ANALYZER 191820 ORA-16120: dependencies being computed for transac
 tion at SCN 0x0000.0002ed4e

APPLIER 191209 ORA-16124: transaction 1 16 1598 is waiting on ano
 ther transaction

APPLIER 191205 ORA-16116: no work available
APPLIER 191206 ORA-16124: transaction 1 5 1603 is waiting on anot
 her transaction

Verify the Logical Standby Database

4-28 Oracle Data Guard Concepts and Administration

APPLIER 191213 ORA-16117: processing
APPLIER 191212 ORA-16124: transaction 1 20 1601 is waiting on ano
 ther transaction

APPLIER 191216 ORA-16124: transaction 1 4 1602 is waiting on anot
 her transaction

11 rows selected.

Step 6 Check the overall progress of log apply services.
To check the overall progress of log apply services, query the DBA_LOGSTDBY_
PROGRESS view on the standby database. For example:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 180702 180702

When the numbers in the APPLIED_SCN and NEWEST_SCN columns are equal (as
shown in the query example), it means that all of the available data in the redo log
was applied. These values can be compared to the values in the FIRST_CHANGE#
column in the DBA_LOGSTDBY_LOG view to see how much log information has to
be applied and how much remains.

See Also: Section 5.9, "Monitoring Redo Log Archival
Information" and Section 6.5, "Monitoring Log Apply Services for
Physical Standby Databases" for information about how to verify
that both log transport and log apply services are working correctly

Log Transport Se
5

Log Transport Services

This chapter describes log transport services and how they control the transmission
of redo data to standby databases. It includes the following topics:

■ Introduction to Log Transport Services

■ Data Protection Modes

■ Transporting Redo Data

■ Destination Parameters and Attributes

■ Transmission and Reception of Redo Data

■ Log Transport Services in Sample Configurations

■ Setting the Data Protection Mode of a Data Guard Configuration

■ Log Transport Services Administration

■ Monitoring Redo Log Archival Information

5.1 Introduction to Log Transport Services
Log transport services control the automated transfer of redo data within a Data
Guard configuration.

Log transport services also control the level of data protection for your database.
You can configure log transport services to balance data protection and availability
against performance. In a Data Guard environment, log transport services
coordinate with log apply services and role management services for switchover
and failover operations.
rvices 5-1

Introduction to Log Transport Services
Figure 5–1 shows a simple Data Guard configuration with redo logs being archived
from a primary database to a local destination and to a remote standby database
destination using log transport services.

Figure 5–1 Archiving Redo Logs

The following concepts are important in understanding log transport services:

■ Redo logs

Redo logs contain the data needed to recover a database. They are also used on
a standby system to apply updates to the standby database.

■ Redo log destinations

Redo log destinations specify the location and types of redo logs along with the
policies used to manage them.

■ Transmission and reception of redo logs

Log transport services are responsible for the transmission and reception of
redo data. This involves transmitting redo data throughout a Data Guard
configuration and ensuring that data from the redo logs is committed to disk.

■ Data protection

You can set archive destination attributes and log transport services options to
enforce any of the three distinct modes of data protection.

In summary, log transport services transmit redo logs to various destinations where
redo data is written to archived redo logs.

0001

0002

0003

Primary
Database

Standby
Database

0001

0002

0003
 Log Transport Services

Archived Redo LogsArchived Redo Logs

 Log Apply Services
5-2 Oracle Data Guard Concepts and Administration

Data Protection Modes
5.2 Data Protection Modes
A Data Guard configuration always runs in one of three data protection modes:
maximum protection, maximum availability, or maximum performance. Each of
these protection modes provides a different balance of data protection, data
availability, and primary database performance. To select the protection mode that
best meets your business needs, you should carefully consider your data protection
requirements and the performance expectations of your users.

Maximum protection mode offers the highest level of data protection. A primary
database transaction will not commit until the redo data needed to recover that
transaction is written to at least one physical standby database that meets the
minimum requirements for this mode. If the primary database is unable to write the
redo data to at least one such standby database, the primary database will shut
down to prevent the generation of unprotected data. This protection mode
guarantees no data loss, but it has the highest potential impact on the performance
and availability of the primary database.

Maximum availability mode offers the next highest level of data protection. A
primary database transaction will not commit until the redo data needed to recover
that transaction is written to at least one standby database that meets the minimum
requirements for this mode. Unlike maximum protection mode, the primary
database will not shut down if it is unable to write the redo data to at least one such
standby database. Instead, the protection mode will be temporarily lowered to
maximum performance mode until the fault is corrected and the standby database
catches up with the primary database. This mode guarantees no data loss unless the
primary database fails while it is in maximum performance mode. This protection
mode provides the highest level of data protection that is possible without affecting
the availability of the primary database.

Maximum performance mode is the default protection mode. A primary database
transaction will not wait to commit until the redo data needed to recover that
transaction is written to a standby database. Therefore, some data might be lost if
the primary database fails and the redo data needed to recover committed
transactions is not available at any standby database. This mode provides the
highest level of data protection that is possible without affecting the performance or
availability of the primary database.

Each of these data protection modes requires that at least one standby database in
the configuration use a specific set of log transport services attributes. The
remainder of this chapter describes those attributes in detail. Once you understand
these attributes, you can make the appropriate configuration changes needed to
support the Data Guard protection mode that is right for your business.
Log Transport Services 5-3

Transporting Redo Data
See Section 5.7 for a description of the SQL statement that is used to set the data
protection mode for a Data Guard configuration.

5.3 Transporting Redo Data
Data Guard automatically maintains the standby database by transmitting primary
database redo data to the standby system and then applying the redo logs to the
standby database. This section describes using the following types of redo logs in a
Data Guard configuration:

■ Online Redo Logs

■ Archived Redo Logs

■ Standby Redo Logs

5.3.1 Online Redo Logs
The online redo logs are a set of two or more files that record all changes made to
Oracle datafiles and control files. Whenever a change is made to the database, the
Oracle database server writes the data and generates a redo record in the redo
buffer. The logwriter process flushes the contents of the redo buffer into the online
redo log.

The current online redo log is the one being written to by the logwriter process.
When the logwriter process gets to the end of the file, it performs a log switch and
begins writing to a new log file. If you run the database in ARCHIVELOG mode,
then an archiver process copies the online redo log into an archived redo log.

A redo log group is a set of two or more redo logs that are multiplexed for
redundancy. The logwriter process will write the same redo data to all redo logs in a
group. If a write error occurs on one of the logs, then the redo data will still be
available in the other redo logs in the group.

Both the size of the online redo logs and the frequency with which they switch
affect the generation of archived redo logs at the primary site. In general, the most
important factor in deciding what size to make an online redo log is the amount of
application data that needs to be applied to a standby database during a database
failover operation. The larger the online redo log, the more data needs to be applied
to a standby database to make it consistent with the primary database.

The Oracle database server will attempt a checkpoint at each log switch. Therefore,
if the online redo log size is too small, frequent log switches will lead to frequent
checkpointing and negatively affects system performance on the standby database.
5-4 Oracle Data Guard Concepts and Administration

Transporting Redo Data
5.3.2 Archived Redo Logs
An archived redo log is a copy of one of the filled members of an online redo log
group made when the database is in ARCHIVELOG mode. After the LGWR process
fills each online redo log with redo records, the archiver process copies the log to
one or more archive log destinations.

By archiving filled online redo logs, older redo log data is preserved for operations
such as media recovery, while the preallocated online redo logs continue to be
reused to store the most current database changes. On a standby system, the
archived redo logs are used to apply primary database changes to the standby
database.

5.3.2.1 Setting Permission to Archive Redo Logs
Permission for the archiving of online redo logs to remote destinations is specified
using the REMOTE_ARCHIVE_ENABLE initialization parameter. This parameter
provides TRUE, FALSE, SEND, and RECEIVE options. In most cases, you should set
this parameter to TRUE on both the primary and standby databases in a Data Guard
environment. To independently enable and disable the sending and receiving of
remote archived redo logs, use the SEND and RECEIVE values.

For example, to ensure that the primary database never accidentally receives any
archived redo logs, you can set the REMOTE_ARCHIVE_ENABLE initialization
parameter to SEND on the primary database. Conversely, to ensure that the standby
database never remotely archives the standby redo logs, you can set the REMOTE_
ARCHIVE_ENABLE initialization parameter to RECEIVE on the standby database.

5.3.2.2 Controlling the Reuse of Archived Redo Logs
The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter specifies the
minimum number of days that must pass before a reusable record in the control file
can be reused. Setting this parameter prevents log transport services from
overwriting a reusable record in the control file. (It applies only to records in the
control file that are serially reusable.) This parameter helps to ensure that the
archived redo log information remains available on the standby database. This is
especially important when you have specified an apply delay for the standby

See Also: Oracle9i Database Administrator’s Guide for more details
about configuring online redo logs and online redo log groups

See Also: Chapter 7 for information about setting initialization
parameters for role transition operations
Log Transport Services 5-5

Transporting Redo Data
database. The range of values for this parameter is 0 to 365 days. The default value
is 7 days.

5.3.2.3 Specifying a Time Lag for the Application of Redo Logs
In some cases, you may want to create a time lag between the archiving of a redo
log at the primary site and the applying of the redo log at the standby site. A time
lag can protect against the application of corrupted or erroneous data from the
primary site to the standby site.

Use the DELAY=minutes attribute of the LOG_ARCHIVE_DEST_n initialization
parameter to specify a time lag for applying redo logs at the standby site. The
DELAY interval is relative to when the archived redo log is complete at the
destination. It does not delay the transport of the redo log to the standby database.
The default setting for this attribute is NODELAY. If the DELAY attribute is set with
no value specified, then the value for this attribute is 30 minutes.

5.3.3 Standby Redo Logs

Standby redo logs are similar to online redo logs and are required for physical
standby databases running in maximum protection mode and maximum
availability mode. Redo data transmitted from the primary database is received by

See Also: Oracle9i Database Reference for more details about the
CONTROL_FILE_RECORD_KEEP_TIME initialization parameter

See Also:

■ Section 10.2, "Using a Physical Standby Database with a Time
Lag"

■ Section 13.12 for physical standby databases using the DELAY
control option on the ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE DELAY statement to supersede any
apply delay interval specified on the primary database

■ Oracle9i Supplied PL/SQL Packages and Types Reference for logical
standby databases using the DBMS_LOGSTDBY.APPLY_SET
procedure to supersede any apply delay interval specified on
the primary database

Note: This section applies to physical standby databases only.
5-6 Oracle Data Guard Concepts and Administration

Transporting Redo Data
the remote file server process (RFS) on the standby system where the RFS process
will write the redo data to either standby redo logs or to archived redo logs.

Standby redo logs form a separate pool of log file groups. During a failover
operation, they enable Data Guard to apply more redo data than what is available
in the archived redo logs alone. Because standby redo logs must be archived before
the data can be applied to the standby database, the archiver process must be
started on the standby database. Figure 5–2 shows a Data Guard configuration in
which the RFS process receives redo data from the log writer process and writes it
to standby redo logs. A log switch on the primary database triggers a log switch on
the standby database that results in the archiver process archiving the standby redo
logs to archived redo logs on the standby database.

Figure 5–2 Redo Log Reception Options

Primary
Database

Transactions

LGWR
Synchronous/Asynchronous

ARC0

Online
Redo
Logs

Oracle Net

RFS

ARC0

Standby
Redo
Logs

Archived Redo LogsArchived Redo Logs

Primary Site Standby Site
Log Transport Services 5-7

Transporting Redo Data
5.3.3.1 Size and Number of Standby Redo Logs
The size of a standby redo log must exactly match the primary database online redo
logs. For example, if the primary database uses two online redo log groups whose
log size is 100K and 200K, respectively, then the standby database should have
standby redo log groups with those same sizes.

5.3.3.1.1 Number of Standby Redo Log Groups The minimum configuration should
have one more standby redo log group than the primary database.

It might be necessary to create additional standby log groups on the physical
standby database, so that the archival operation has time to complete before the
standby redo log is reused by the RFS process. If the primary database is operating
in maximum protection mode and a standby redo log cannot be allocated, the
primary database instance might shut down immediately. If the primary database is
operating in maximum protection mode or maximum availability mode, then the
primary database might wait for the standby redo log to become available.
Therefore, be sure to allocate an adequate number of standby redo logs.

During testing, the easiest way to determine if the current standby log configuration
is satisfactory is to examine the contents of the RFS process trace file and the
database alert log. If messages indicate that the RFS process frequently has to wait
for a group because archiving did not complete, add more standby log groups.

When you use Real Application Clusters, the various standby redo logs are shared
among the various primary database instances. Standby redo log groups are not
dedicated to a particular primary database thread.

5.3.3.1.2 Guidelines for Standby Redo Log Groups Consider the database parameters
that can limit the number of standby redo log groups before setting up or altering
the configuration of the standby redo log groups. The following parameters limit
the number of standby redo log groups that you can add to a database:

■ The MAXLOGFILES clause of the CREATE DATABASE statement for the primary
database determines the maximum number of groups of standby redo logs per
physical standby database. The only way to override this limit is to re-create the
primary database or control file.

Caution: Whenever you add an online redo log to the primary
database, you must add a corresponding standby redo log to the
standby database. If you do not add a standby redo log to the
standby database, the primary database might shut down.
5-8 Oracle Data Guard Concepts and Administration

Transporting Redo Data
■ The LOG_FILES parameter can temporarily decrease the maximum number of
groups of standby redo logs for the duration of the current instance.

■ The MAXLOGMEMBERS clause of the CREATE DATABASE statement used for the
primary database determines the maximum number of members per group.
The only way to override this limit is to re-create the primary database or
control file.

5.3.3.2 Creating Standby Redo Logs
Standby redo logs are created using the ADD STANDBY LOGFILE clause of the
ALTER DATABASE statement.

To verify that standby redo logs were created, query the V$STANDBY_LOG view
(displays standby redo log status as ACTIVE or INACTIVE) or the V$LOGFILE
view. The following example queries the V$LOGFILE view:

SQL> SELECT * FROM V$LOGFILE WHERE TYPE = ’STANDBY’;

5.3.3.3 Creating Standby Redo Log Groups

Standby redo logs can be multiplexed to increase the availability of redo logs,
similar to the way that online redo logs are multiplexed. Plan the standby redo log
configuration of a database and create all required groups and members of groups
after you instantiate the standby database. To create new standby redo log groups
and members, you must have the ALTER DATABASE system privilege. A database
can have as many groups as the value of the MAXLOGFILES clause that was
specified on the SQL CREATE DATABASE statement.

To create a new group of standby redo logs, use the ALTER DATABASE statement
with the ADD STANDBY LOGFILE clause.

The following statement adds a new group of standby redo logs to a physical
standby database:

See Also: Oracle9i SQL Reference

Note: Although standby redo logs are only used when the
database is running in the physical standby role, Oracle
Corporation recommends that you create standby redo logs on the
primary database so that the primary database can switch over
quickly to a standby role without the need for DBA intervention.
Log Transport Services 5-9

Transporting Redo Data
SQL> ALTER DATABASE ADD STANDBY LOGFILE
 2> (’/oracle/dbs/log1c.rdo’,’/oracle/dbs/log2c.rdo’) SIZE 500K;

You can also specify a number that identifies the group using the GROUP option:

SQL> ALTER DATABASE ADD STANDBY LOGFILE GROUP 10
 2> (’/oracle/dbs/log1c.rdo’,’/oracle/dbs/log2c.rdo’) SIZE 500K;

Using group numbers can make administering standby redo log groups easier.
However, the group number must be between 1 and the value of the MAXLOGFILES
initialization parameter. Do not skip redo log file group numbers (that is, do not
number groups 10, 20, 30, and so on), or you will use additional space in the
physical standby database control file.

The physical standby database begins using the newly created standby redo logs
the next time there is a log switch on the primary database. To verify that the
standby redo log groups are created and running correctly, invoke a log switch on
the primary database, and then query the V$STANDBY_LOG view on the physical
standby database.

SQL> SELECT GROUP#,THREAD#,SEQUENCE#,ARCHIVED,STATUS FROM V$STANDBY_LOG;

GROUP# THREAD# SEQUENCE# ARC STATUS
---------- ---------- ---------- --- ----------
 3 1 16 NO ACTIVE
 4 0 0 YES UNASSIGNED
 5 0 0 YES UNASSIGNED

5.3.3.4 Adding Standby Redo Log Members to an Existing Group
In some cases, it might not be necessary to create a complete group of standby redo
logs. A group could already exist, but not be complete because one or more
members were dropped (for example, because of disk failure). In this case, you can
add new members to an existing group.

To add new standby redo log group members, use the ALTER DATABASE statement
with the ADD STANDBY LOGFILE MEMBER parameter. The following statement
adds a new member to redo log group number 2:

SQL> ALTER DATABASE ADD STANDBY LOGFILE MEMBER ’/disk1/oracle/dbs/log2b.rdo’
 2> TO GROUP 2;

Use fully-qualified filenames of new log members to indicate where the file should
be created. Otherwise, files will be created in either the default or current directory
of the database server, depending upon your operating system.
5-10 Oracle Data Guard Concepts and Administration

Destination Parameters and Attributes
5.4 Destination Parameters and Attributes
Log transport services transmit redo data to up to 10 redo log destinations. You
configure the primary database to perform archiving using the LOG_ARCHIVE_
DEST_n (where n is an integer from 1 to 10) initialization parameter and
corresponding LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 10)
initialization parameter. You can also use these initialization parameters to set up
cascading standby databases, as described in Appendix D.

There are a several initialization parameters that are used to configure destinations.
Some parameters, such as LOG_ARCHIVE_DEST_n might have several attributes
that further refine the meaning of the parameter.

Archive destination attributes specify all aspects of destinations, not just the
location. Particularly, they specify the following properties:

■ Location of the destination.

■ Redo log transmission and reception characteristics of the destination.

■ Relationships between destinations such as dependencies.

■ Importance of a destination. For example, the destination might be optional.

■ Time delay for applying redo logs to the standby database.

■ Error handling and retransmission of redo logs.

The parameters related to archive destinations follow:

■ LOG_ARCHIVE_DEST_n

Controls most of the behavior and properties of the destination; this parameter
has many attributes. Refer to Chapter 12 for a full description of all of the LOG_
ARCHIVE_DEST_n attributes.

■ LOG_ARCHIVE_DEST_STATE_n

Controls state of the destination. For each LOG_ARCHIVE_DEST_n parameter,
there is a corresponding LOG_ARCHIVE_DEST_STATE_n parameter.

■ STANDBY_ARCHIVE_DEST

Determines the location of archived redo logs on the standby database.

■ LOG_ARCHIVE_FORMAT

Specifies the format for archived redo log filenames. STANDBY_ARCHIVE_DEST
and LOG_ARCHIVE_FORMAT are concatenated to generate fully-qualified
standby database archived redo log filenames.
Log Transport Services 5-11

Destination Parameters and Attributes
■ LOG_ARCHIVE_MIN_SUCCEED_DEST

Defines the minimum number of local destinations that must receive redo logs
successfully before the log writer process on the primary database can reuse the
online redo logs.

■ REMOTE_ARCHIVE_ENABLE

Enables or disables the sending of redo logs to remote destinations and the
receipt of remote redo logs

5.4.1 Specifying Archive Destinations for Redo Logs
In addition to setting up the primary database to run in ARCHIVELOG mode, you
must configure the primary database to archive redo logs by setting destinations
and associated states. You do this using the LOG_ARCHIVE_DEST_n initialization
parameter and corresponding LOG_ARCHIVE_DEST_STATE_n parameter.

The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 10)
initialization parameter specifies the state of the corresponding destination
indicated by the LOG_ARCHIVE_DEST_n initialization parameter (where n is the
same integer). For example, the LOG_ARCHIVE_DEST_STATE_3 parameter
specifies the state of the LOG_ARCHIVE_DEST_3 destination.

Table 5–1 describes the LOG_ARCHIVE_DEST_STATE_n parameter attributes.

To set up log transport services to archive redo logs to the standby database named
payroll2 on a remote node, make the following modifications to the primary
database initialization parameter file. These modifications will take effect after the
next log switch. For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2='SERVICE=payroll2';
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE;

Table 5–1 LOG_ARCHIVE_DEST_STATE_n Initialization Parameter Attributes

Attribute Description

ENABLE Log transport services can archive redo logs at this
destination.

DEFER Log transport services will not archive redo logs to this
destination. This is an unused destination.

ALTERNATE This destination is not enabled, but it will become
enabled if communication to another destination fails.
5-12 Oracle Data Guard Concepts and Administration

Destination Parameters and Attributes
5.4.2 Specifying Storage Locations for Archived Redo Logs and Standby Redo Logs
Use the STANDBY_ARCHIVE_DEST initialization parameter on the standby database
to specify the directory in which to store the archived redo logs. Log transport
services use this value in conjunction with the LOG_ARCHIVE_FORMAT parameter
to generate the archived redo log filenames on the standby site.

Log transport services store the fully-qualified filenames in the standby control file.
Log apply services use this information to perform recovery operations on the
standby database. The following example shows how to set the LOG_ARCHIVE_
FORMAT initialization parameter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_FORMAT=’log%d_%t_%s.arc’;

Issue the following query on the primary database to display the list of archived
redo logs that are on the standby system:

SQL> SELECT NAME FROM V$ARCHIVED_LOG;
NAME
--
/arc_dest/log_1_771.arc
/arc_dest/log_1_772.arc
/arc_dest/log_1_773.arc
/arc_dest/log_1_774.arc
/arc_dest/log_1_775.arc

When standby redo logs are used, the LOG_ARCHIVE_DEST_n initialization
parameter (where n is a value from 1 to 10) on the standby database specifies the
directory in which to archive standby redo logs.

Parameter Indicates Example

STANDBY_ARCHIVE_DEST Directory in
which to place
archived online
redo logs

STANDBY_ARCHIVE_DEST= /arc_dest/

LOG_ARCHIVE_FORMAT Format for
filenames of
archived online
redo logs

LOG_ARCHIVE_FORMAT =
"log%d_%t_%s.arc"

Note: The %d corresponds to the database
ID, and %s corresponds to the sequence
number. The %t, which is required for Real
Application Clusters configurations,
corresponds to the thread.
Log Transport Services 5-13

Destination Parameters and Attributes
5.4.3 Specifying Mandatory and Optional Destinations
You can specify a policy for reuse of online redo logs using the attributes OPTIONAL
or MANDATORY with the LOG_ARCHIVE_DEST_n parameter. Oracle Corporation
recommends that you set remote destinations to OPTIONAL. (This is the default.)
The archival operation of an optional destination can fail, and the online redo logs
are overwritten. If the archival operation of a mandatory destination fails, online
redo logs cannot be overwritten.

By default, one local destination is mandatory even if you designate all destinations
to be optional.

Example 5–1 shows how to set a mandatory local archiving destination and enable
that destination.

Example 5–1 Setting a Mandatory Archiving Destination

LOG_ARCHIVE_DEST_3 = ’LOCATION=/arc_dest MANDATORY’

Parameter Indicates Example

LOG_ARCHIVE_DEST_n The directory for
storage of archived
redo logs on the
standby site

LOG_ARCHIVE_DEST_1=
’LOCATION=/oracle/stby/arc/’

Note: If you do not define this
parameter, the value of the STANDBY_
ARCHIVE_DEST parameter is used.

LOG_ARCHIVE_FORMAT Format for
filenames of
archived online
redo logs

LOG_ARCHIVE_FORMAT =
"log%d_%t_%s.arc"

Note: The %d corresponds to the
database ID, and %s corresponds to
the sequence number. The %t, which
is required for Real Application
Clusters configurations, corresponds
to the thread.

Note: When using standby redo logs, you must enable the
archiver process (ARCn) on the standby database. Oracle
Corporation recommends that you always set the LOG_ARCHIVE_
START initialization parameter to TRUE on the standby database.
5-14 Oracle Data Guard Concepts and Administration

Destination Parameters and Attributes
5.4.4 Sharing a Log File Destination Among Multiple Standby Databases
Archiving redo logs to a remote database can be defined as being dependent upon
the success or failure of an archival operation for another destination. This is known
as a dependent destination.

Use the DEPENDENCY attribute of the LOG_ARCHIVE_DEST_n initialization
parameter to define a dependent destination. This attribute indicates that this
destination depends on the successful completion of archival operations for the
parent destination.

Figure 5–3 shows a Data Guard configuration in which the primary database
transports redo data to one archiving destination that acts as a shared destination
for both a logical standby database and a physical standby database.

Figure 5–3 Data Guard Configuration with Dependent Destinations

Specifying a destination dependency can be useful in the following situations:

■ When you configure a physical standby database and a logical standby
database on the same node.

■ The standby database and the primary database are on the same node.
Therefore, the archived redo logs are implicitly accessible to the standby
database.

■ Operating system-specific network file systems are used, providing remote
standby databases with access to the primary database archived redo logs.

0001

0002

0003

Primary
Database

Physical
Standby
Database

0001

0002

0003
 Log Transport Services

Archived Redo LogsArchived Redo Logs

 Log Apply Services

Logical
Standby
Database
Log Transport Services 5-15

Destination Parameters and Attributes
■ Mirrored disk technology is used to provide transparent networking support
across geographically remote distances.

■ There are multiple standby databases on the same remote node, sharing access
to common archived redo logs for staggered managed recovery operations.

In these situations, although a physical archival operation is not required, the
standby database needs to know the location of the archived redo logs. This allows
the standby database to access the archived redo logs when they become available
for application by log apply services. You must specify an archiving destination as
being dependent on the success or failure of another (parent) destination.

5.4.5 Specifying Archive Failure Policies
Use the REOPEN and MAX_FAILURES attributes of the LOG_ARCHIVE_DEST_n
initialization parameter to specify what actions are to be taken when archiving to a
destination fails. These actions include:

■ Retrying the archiving operation to a failed destination after a specified period
of time, up to a limited number of times

■ Using an alternate or substitute destination

Use the REOPEN attribute of the LOG_ARCHIVE_DEST_n parameter to determine if
and when the archiver process or the log writer process attempts to archive redo
logs again to a failed destination following an error.

Use the REOPEN=seconds attribute to specify the minimum number of seconds
that must elapse following an error before the archiving process will try again to
access a failed destination. The default value is 300 seconds. The value set for the
REOPEN attribute applies to all errors, not just connection failures. You can turn off
the option by specifying NOREOPEN, which will prevent the destination from being
retried after a failure occurs.

You can use the REOPEN attribute, in conjunction with the MAX_FAILURE attribute,
to limit the number of consecutive attempts that will be made to reestablish
communication with a failed destination. Once the specified number of consecutive
attempts is exceeded, the destination is treated as if the NOREOPEN attribute was
specified.

The REOPEN attribute is required when you use the MAX_FAILURE attribute.
Example 5–2 shows how to set a retry time of 5 seconds and limit retries to 3 times.

Example 5–2 Setting a Retry Time and Limit

LOG_ARCHIVE_DEST_1=’LOCATION=/arc_dest REOPEN=60 MAX_FAILURE=3’
5-16 Oracle Data Guard Concepts and Administration

Transmission and Reception of Redo Data
5.4.6 Other Destination Types
There are four types of remote destinations: physical standby databases, logical
standby databases, archive log repositories, and cross-instance archival database
environments. The more common destinations, physical and logical standby
databases, are described in Chapter 1. The following list describes some additional
destinations:

■ Archive log repository

This type of destination allows off-site archiving of redo logs. An archive log
repository is created by using a physical standby control file, starting the
instance, and mounting the database. This database contains no datafiles and
cannot be used for primary database recovery. This alternative is useful as a
way of holding redo logs for a short period of time, perhaps a day, after which
the logs can then be deleted. This avoids most of the storage and processing
expense of another fully-configured standby database.

■ Cross-instance archival database environment

A cross-instance archival database environment is possible on both the primary
and standby databases. Within a Real Application Clusters environment, each
instance directs its archived redo logs to a single instance of the cluster. This
instance, known as the recovery instance, is typically the instance where
managed recovery is performed. The recovery instance typically has a tape
drive available for RMAN backup and restoration support.

5.5 Transmission and Reception of Redo Data
Log transport services automatically transmit and receive all redo logs in a Data
Guard configuration. You can tailor the characteristics of transmission and reception
to balance data protection levels against performance.

Archiving redo logs to a remote destination requires uninterrupted connectivity
through Oracle Net. If the destination is a remote physical standby database, a
physical standby database must be mounted or open in read-only mode to receive
the archived redo logs. A logical standby database must be open.

You can specify the following with respect to log transport services:

■ Process that transmits redo logs

■ Network transmission mode of redo logs

■ How data from the redo logs is written to disk
Log Transport Services 5-17

Transmission and Reception of Redo Data
5.5.1 Specifying the Process that Transmits Redo Data
To minimize data loss in the event of a primary database failure, you want to copy
data from the primary database to the standby database as it is being generated.
You can choose to have either the log writer process or the archiver process transmit
redo logs to a destination.

To specify which process transmits redo data, use either the ARCH or LGWR attribute
of the LOG_ARCHIVE_DEST_n initialization parameter.

The LGWR and ARCH attributes are mutually exclusive. Therefore, you cannot
specify both attributes for the same destination. However, you can specify either the
LGWR or the ARCH attribute for individual destinations. This allows you to choose
the log writer process to transmit redo data for some destinations, while the
archiver process transmits redo data to other destinations.

Choosing the ARCH attribute indicates that an archiver process (ARCn) will archive
the current redo logs to the associated destination when a redo log switch occurs on
the primary database. This is the default setting.

Choosing the LGWR attribute indicates that the log writer process (LGWR) will
transmit redo data to the associated destination as it is generated. As redo is
generated for the primary database, it is also propagated to the standby system
where the RFS process writes the redo to either a standby redo log or to a standby
archived redo log.

5.5.2 Specifying Network Transmission Mode
The only way to ensure you do not have any data loss is to write redo data to the
standby database before it is committed on the primary database. If you specify the
SYNC attribute, all network I/O operations are performed synchronously, in
conjunction with each write operation to the online redo log. The transaction is not
committed on the primary database until the redo data necessary to recover that
transaction is received by the destination.

When you use the log writer process to archive redo logs, you can specify
synchronous (SYNC) or asynchronous (ASYNC) network transmission of redo logs to
archiving destinations using the SYNC or ASYNC attributes. If you do not specify

Attribute Example Default

{ ARCH | LGWR} LOG_ARCHIVE_DEST_3=’SERVICE=stby1 LGWR’ ARCH
5-18 Oracle Data Guard Concepts and Administration

Log Transport Services in Sample Configurations
either the SYNC or ASYNC attribute, the default is the SYNC network transmission
mode. Each of these transmission methods is described in the following list:

■ SYNC network transmission method

The SYNC attribute has the potential to affect primary database performance
adversely, but provides the highest degree of data protection at the destination
site. Synchronous transmission is required for no data loss environments.

■ ASYNC network transmission method

If you specify the ASYNC attribute, all network I/O operations are performed
asynchronously, and control is returned to the executing application or user
immediately. You can specify a block count to determine the size of the SGA
network buffer to be used. Block counts from 0 to 20,480 are allowed. The
attribute allows the optional suffix value K to represent 1,000 (the value 1K
indicates 1,000 512-byte blocks). In general, for slower network connections, use
larger block counts.

5.5.3 Writing Redo Data to Disk
Use the [NO]AFFIRM attribute of the LOG_ARCHIVE_DEST_n initialization
parameter to specify if log archiving disk write I/O operations are to be performed
synchronously or asynchronously.

5.6 Log Transport Services in Sample Configurations
Log transport services transport redo data to the systems in a Data Guard
configuration. The processes used to transport redo data include the following:

■ Log writer (LGWR)

The log writer process collects transaction redo data on the primary database
and updates the online redo logs. Furthermore, LGWR can transmit online redo
data directly to standby systems.

■ Archiver (ARCn)

See Also: Chapter 12, "LOG_ARCHIVE_DEST_n Parameter
Attributes"

Note: The AFFIRM and NOAFFIRM attributes apply only to online
archived log destinations and has no effect on online redo log disk
I/O operations.
Log Transport Services 5-19

Log Transport Services in Sample Configurations
The archiver process copies both online redo logs and standby redo logs to
archive destinations. Archive destinations can be either local or remote. The
archiver process runs on both primary and standby systems.

■ Remote File Server (RFS)

The remote file server runs on the standby system and receives redo data over
the network from both LGWR and ARCn. The RFS process will write the redo
data to either a standby redo log or to a standby archived redo log.

■ Fetch archive log (FAL)

The fetch archive log process helps to resolve gaps in archived redo logs. If a
physical standby database detects that it is missing a redo log, the local FAL
client will fetch the log.

The following figures show how log transport services work in various
configurations.
5-20 Oracle Data Guard Concepts and Administration

Log Transport Services in Sample Configurations
Figure 5–4 shows the simplest configuration with a single local destination. The log
writer process writes redo data to online redo logs. When each online redo log is
filled, a log switch occurs and the archiver process archives the filled online redo log
to an archived redo log. The filled online redo log is now available for reuse.

Figure 5–4 Primary Database Archiving When There Is No Standby Database

Primary
Database

Transactions

LGWR

ARC0

Online
Redo
Logs

Archived Redo Logs
Log Transport Services 5-21

Log Transport Services in Sample Configurations
Figure 5–5 shows a Data Guard configuration with a local destination and a standby
destination. At log switch time, the archiver process archives to both the local
destination and the standby destination. Note that the archiver process uses Oracle
Net to send redo data over the network to the RFS process. The RFS process writes
the redo data to archived redo logs on the standby database. This figure also shows
that themanaged recovery process (MRP) or logical standby process (LSP) is used to
apply the redo logs to the standby database.

Figure 5–5 Basic Data Guard Configuration

See Also: Chapter 6 for MRP and LSP process information

Primary
Database

Transactions

LGWR

ARC0

Online
Redo
Logs

RFS

Standby
Database

Reports

MRP
or LSP

Archived
Redo Logs

Archived
Redo Logs

Oracle Net
5-22 Oracle Data Guard Concepts and Administration

Log Transport Services in Sample Configurations
Figure 5–6 shows a Data Guard configuration with a local destination and a standby
destination. In this configuration, the archiver on the primary system is archiving
only to the local destination. Notice that the logwriter process is sending redo data
to the standby system at the same time it is writing the data to the online redo log.
The RFS process writes the redo data to an online redo log on the standby database.
A log switch on the primary database triggers a log switch on the standby database,
which causes the archiver process on the standby database to archive the redo logs
to archived redo logs on the standby database. This configuration is a prerequisite
for the highest level of data protection. For physical standby databases, Oracle
Corporation recommends that you use standby redo logs. Standby redo logs are not
supported for logical standby databases.

Figure 5–6 Archiving to a Physical Standby Destination Using the Logwriter Process

Primary
Database

Transactions

LGWR
Synchronous/Asynchronous

ARC0

Online
Redo
Logs

Oracle Net

RFS

ARC0

Standby
Redo
Logs

Standby
Database

Reports

MRP
or LSP

Archived
Redo Logs

Archived
Redo Logs
Log Transport Services 5-23

Log Transport Services in Sample Configurations
Figure 5–7 shows a Data Guard configuration with a local destination and a remote
logical standby destination. In this configuration, the archiver on the primary
system is archiving only to the local destination. Notice that the logwriter process is
sending redo data to the standby system at the same time it is writing the data to
the online redo logs. The RFS process receives the redo data and writes it to
archived redo logs on the standby database. A log switch on the primary database
triggers a log switch on the standby database, which causes the archiver process on
the standby database to archive the redo logs on the standby database.

Figure 5–7 Archiving to a Logical Standby Destination Using the Logwriter Process

Primary
Database

Transactions

LGWR
Synchronous/Asynchronous

ARC0

Online
Redo
Logs

Oracle Net

RFS

Standby
Database

 LSP

Archived Redo LogsArchived Redo Logs

Oracle Net
5-24 Oracle Data Guard Concepts and Administration

Setting the Data Protection Mode of a Data Guard Configuration
5.7 Setting the Data Protection Mode of a Data Guard Configuration
Each of the Data Guard data protection modes requires that at least one standby
database in the configuration meet the minimum set of requirements listed in
Table 5–2.

The standby database that is used to satisfy the minimum requirements for a given
mode must be enabled and ready to receive redo data from the primary database
before you can switch to that mode.

Before changing the data protection mode of your configuration, review the
descriptions of the three data protection modes. Carefully consider the level of data
protection that your business requires, and the performance and availability impact
of operating in the mode that provides that level of protection.

Table 5–2 Requirements for Data Protection Modes

Maximum Protection Maximum Availability Maximum Performance

Redo archival process LGWR LGWR LGWR or ARCH

Network transmission
mode

SYNC SYNC ASYNC when using LGWR
process. Not applicable
when using ARCH
process

Disk write option AFFIRM AFFIRM NOAFFIRM

Standby redo logs
required?

Yes Required for physical standby
databases only

Required for physical
standby databases using
the LGWR process

Database type Physical Physical and logical Physical and logical

Note: Oracle Corporation recommends that a Data Guard
configuration that is run in maximum protection mode contains at
least two physical standby databases that meet the requirements
listed in Table 5–2. That way, the primary database can continue
processing if one of the physical standby databases cannot receive
redo data from the primary database.
Log Transport Services 5-25

Log Transport Services Administration
After verifying that your Data Guard configuration meets the minimum
requirements for the protection mode that you want to use, use the ALTER
DATABASE SET STANDBY DATABASE TO MAXIMIZE statement to switch to that
mode. The syntax for this statement is:

ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}

5.8 Log Transport Services Administration
The following sections describe how to control log transport services options using
database initialization parameters.

5.8.1 Database Initialization Parameters
Although most initialization parameters on the primary and standby databases will
be identical, some initialization parameters such as the CONTROL_FILES and DB_
FILE_NAME_CONVERT parameters must differ. Only change parameter values
when it is required for the functionality of the standby database or for filename
conversions.

5.8.1.1 Setting Log Transport Parameters in the Initialization Parameter File
To set up log transport services, modify the database parameter initialization file
before starting the database instance. When using a traditional text initialization
parameter file, all parameters must be specified on one line.

See Also: Chapter 13 and Oracle9i SQL Reference for information
about SQL statements

See Also: Chapter 11 for a complete list of the initialization
parameters that play a key role in the configuration of a standby
database

Note: For the discussions in this section, examples are shown
using a traditional text initialization parameter file so you can see
the different ways you can specify parameters and changes.
5-26 Oracle Data Guard Concepts and Administration

Log Transport Services Administration
Example 5–3 shows how to specify a parameter with a single attribute on one line.

Example 5–3 Specifying a Single Attribute on One Line

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’

Example 5–4 shows how to specify a parameter with multiple attributes on one line.

Example 5–4 Specifying Multiple Attributes on One Line

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll LGWR’

For the majority of the log transport services initialization parameters, specifying a
new value completely replaces any previously specified value.

5.8.1.2 Setting Log Transport Parameters at Runtime Using SQL Statements
At runtime, the LOG_ARCHIVE_DEST_n initialization parameter can be changed
using ALTER SYSTEM SET statements. You can specify the attributes in one or
more strings in one statement. Any changes you make using the ALTER SYSTEM
SET statements with the SCOPE=MEMORY clause are not persistently changed.

Example 5–5 shows how to specify a parameter with a single attribute on one line.

Example 5–5 Specifying a Single Attribute on One Line

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’;

For the majority of the log transport services initialization parameters, specifying a
new value completely replaces any previously specified value.

5.8.2 Preparing Initialization Parameters for Role Transitions
Before performing a switchover or failover operation, you must configure certain
initialization parameters on both the primary and standby databases so that your
Data Guard configuration operates properly after a role transition.

During the creation process, you configured:

■ Initialization parameters on the primary database to transmit redo data to the
standby database

■ Initialization parameters on the standby database to prepare the standby
database to receive redo data

■ A network address on the primary system for the standby database
Log Transport Services 5-27

Log Transport Services Administration
■ A network address on the standby system for the primary database

Now, you must set up the primary database to operate in the standby role and the
standby database to operate in the primary role.

The following sections discuss only those initialization parameters that affect the
log transport services and log apply services. The discussions do not mention any
other parameters that you set during the creation of the primary and standby
databases. Any parameter not mentioned in the following sections either must stay
the same (such as the DATABASE_NAME parameter) or, if possible and necessary,
can be modified to meet your requirements (such as the LOCK_NAME_SPACE or
SHARED_POOL parameters).

5.8.2.1 Primary Database Initialization Parameters
On the primary database, you define initialization parameters that control log
transport services while the database is in the primary role. There are additional
parameters you need to add that control the receipt of the redo data and log apply
services when the primary database is transitioned to the standby role.

Example 5–6 shows the primary role initialization parameters that you maintain on
the primary database.

Example 5–6 Primary Database: Primary Role Initialization Parameters

LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata/payroll/'
LOG_ARCHIVE_DEST_2='SERVICE=sales1'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_FORMAT=%d_%t_%s.arc
REMOTE_ARCHIVE_ENABLE=SEND

These parameters control how log transport services send redo data to the standby
system and the archiving of redo data on the local file system. The last parameter,
REMOTE_ARCHIVE_ENABLE=SEND, allows the primary database to send redo data
to the standby database, but prevents the primary database from receiving redo
data from another system.

Example 5–7 shows the additional standby role initialization parameters on the
primary database. These parameters take effect when the primary database is
transitioned to the standby role.

Example 5–7 Primary Database: Standby Role Initialization Parameters

FAL_SERVER=sales1
5-28 Oracle Data Guard Concepts and Administration

Log Transport Services Administration
FAL_CLIENT=sales
DB_FILE_NAME_CONVERT=('/standby','/primary')
LOG_FILE_NAME_CONVERT=('/standby','/primary')
STANDBY_ARCHIVE_DEST=/disk1/oracle/oradata/payroll/
STANDBY_FILE_MANAGEMENT=AUTO

Specifying the initialization parameters shown in Example 5–7 sets up the primary
database to resolve gaps and convert new data and log file path names from a new
primary database and archives the incoming redo data when this database is in the
standby role.

5.8.2.2 Standby Database Initialization Parameters
On the standby database, you define initialization parameters that control the
receipt of the redo data and log apply services when the database is in the standby
role. There are additional parameters you need to add that control the log transport
services while the database is in the primary role.

Example 5–8 shows the standby role initialization parameters that you would
maintain on the standby database.

Example 5–8 Standby Database: Standby Role Initialization Parameters

FAL_SERVER=sales
FAL_CLIENT=sales1
DB_FILE_NAME_CONVERT=("/primary","/standby")
LOG_FILE_NAME_CONVERT=("/primary","/standby")
STANDBY_ARCHIVE_DEST=/disk1/oracle/oradata/payroll/standby/arc
LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata/payroll/standby/arc/'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_FORMAT=%d_%t_%s.arc
STANDBY_FILE_MANAGEMENT=AUTO
REMOTE_ARCHIVE_ENABLE=RECEIVE

These initialization parameters allow the standby database to:

■ Resolve gaps and convert new data and log file path names from the primary
database

■ Receive and archive the incoming redo data from the primary database, but
only while the database is running in the standby role

The last parameter allows the standby database to receive redo data from a primary
database, but it prevents the standby database from sending redo data.
Log Transport Services 5-29

Log Transport Services Administration
Example 5–9 shows the additional primary role parameters to be added to the
standby database that take effect when the standby database is transitioned to the
primary role.

Example 5–9 Standby Database: Primary Role Initialization Parameters

LOG_ARCHIVE_DEST_2='SERVICE=sales'
LOG_ARCHIVE_DEST_STATE_2=ENABLE

These additional parameters control how log transport services send redo data to a
new standby system.

5.8.2.3 Enabling Initialization Parameters During Role Transition
With the initialization parameters on both the primary and standby databases set as
described in Section 5.8.2.1 and Section 5.8.2.2, the only parameter that needs to
change after a role transition is the REMOTE_ARCHIVE_ENABLE parameter. Change
this parameter on both the original primary database and the standby database that
assumes the primary role.

On the original primary database (the new standby) set this parameter to allow the
receipt of the redo from the new primary database. For example:

SQL> ALTER SYSTEM SET REMOTE_ARCHIVE_ENABLE=RECEIVE SCOPE=MEMORY;

On the new primary database (the former standby) set this initialization parameter
to allow the sending of redo to the standby database.

SQL> ALTER SYSTEM SET REMOTE_ARCHIVE_ENABLE=SEND SCOPE=MEMORY;

Setting the initialization parameter using the SCOPE=MEMORY clause ensures that
the two databases will revert back to their original settings when the role transition
is reversed, and the databases resume their original roles. If you expect that these
databases will be restarted at some point without performing a role transition,
replace the SCOPE=MEMORY with SCOPE=BOTH. In this event, this initialization
parameter will have to be reset manually again after a new role transition.

5.8.2.4 Logical Standby Database Considerations
The parameter values shown in the examples in Section 5.8.2.1 and Section 5.8.2.2
are suitable for both a physical and a logical standby configuration. If you plan to
perform role transitions between a primary database and a logical standby
database, then you must set the archiving destinations differently on the logical
standby database and eventually on the primary database (for when it transitions to
the logical standby database role).
5-30 Oracle Data Guard Concepts and Administration

Monitoring Redo Log Archival Information
When you create the logical standby database, you should specify different
directories for the initialization parameters shown in Example 5–10.

Example 5–10 Logical Standby Database: Standby Role Initialization Parameters

STANDBY_ARCHIVE_DEST=/disk1/oracle/oradata/payroll/standby/incoming
LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata/payroll/standby/arc/'

These parameters will continue to function correctly when the standby database
assumes the primary role.

When the primary database assumes a logical standby role after a role transition,
you must also configure the local archiving parameters to transmit the incoming
redo data to a different location (as you did with the logical standby database).

Example 5–11 Primary Database: Standby Role Initialization Parameters

STANDBY_ARCHIVE_DEST=/disk1/oracle/oradata/payroll/incoming
LOG_ARCHIVE_DEST_1='LOCATION=/disk1/oracle/oradata/payroll/arc/'

The parameter values shown in Example 5–11 ensure that the redo data stream
coming from the primary database will be archived to a different location than
where the archive logs generated by the database are located when it is in the
logical standby role.

5.9 Monitoring Redo Log Archival Information
This section describes manual methods of monitoring redo log archival activity for
the primary database.

Step 1 Determine the current redo log sequence numbers.
Enter the following query on the primary database to determine the current redo
log sequence numbers:

SQL> SELECT THREAD#, SEQUENCE#, ARCHIVED, STATUS FROM V$LOG;

THREAD# SEQUENCE# ARC STATUS
-------- --------- --- ------

See Also: Oracle9i Data Guard Broker and the Data Guard
Manager online help for more information about the Oracle9i Data
Guard Manager graphical user interface that automates many of
the tasks involved in monitoring a Data Guard environment
Log Transport Services 5-31

Monitoring Redo Log Archival Information
 1 947 YES ACTIVE
 1 948 NO CURRENT

Step 2 Determine the most recently archived redo log.
Enter the following query at the primary database to determine the most recently
archived redo log file:

SQL> SELECT MAX(SEQUENCE#) FROM V$ARCHIVED_LOG;

MAX(SEQUENCE#)

 947

Step 3 Determine the most recently archived redo log file at each destination.
Enter the following query at the primary database to determine the most recently
archived redo log file to each of the archive destinations:

SQL> SELECT DESTINATION, STATUS, ARCHIVED_THREAD#, ARCHIVED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS
 3> WHERE STATUS <> ’DEFERRED’ AND STATUS <> ’INACTIVE’;

DESTINATION STATUS ARCHIVED_THREAD# ARCHIVED_SEQ#
------------------ ------ ---------------- -------------
/private1/prmy/lad VALID 1 947
standby1 VALID 1 947

The most recently archived redo log file should be the same for each archive
destination listed. If it is not, a status other than VALID might identify an error
encountered during the archival operation to that destination.

Step 4 Find out if logs have been received at a particular site.
You can issue a query at the primary database to find out if a log was not sent to a
particular site. Each archive destination has an ID number associated with it. You
can query the DEST_ID column of the V$ARCHIVE_DEST fixed view on the
primary database to identify archive destination IDs.

Assume the current local archive destination is 1, and one of the remote standby
archive destination IDs is 2. To identify which logs were not received by this
standby destination, issue the following query:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM
 2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1)
 3> LOCAL WHERE
 4> LOCAL.SEQUENCE# NOT IN
5-32 Oracle Data Guard Concepts and Administration

Monitoring Redo Log Archival Information
 5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND
 6> THREAD# = LOCAL.THREAD#);

 THREAD# SEQUENCE#
--------- ---------
 1 12
 1 13
 1 14

Step 5 Trace the progression of archived redo logs on the standby site.
To see the progression of the archiving of redo logs to the standby site, set the LOG_
ARCHIVE_TRACE parameter in the primary and standby initialization parameter
files.

See Also: Appendix A, "Troubleshooting the Standby Database"
to learn more about monitoring the archiving status of the primary
database

See Also: Section 6.7 for complete details and examples.
Log Transport Services 5-33

Monitoring Redo Log Archival Information
5-34 Oracle Data Guard Concepts and Administration

Log Apply Services 6-1

6
Log Apply Services

This chapter describes how redo logs are applied to a standby database. It includes
the following topics:

■ Introduction to Log Apply Services

■ Applying Redo Data to Physical Standby Databases

■ Applying Redo Data to Logical Standby Databases

■ Managing Archive Gaps

■ Monitoring Log Apply Services for Physical Standby Databases

■ Monitoring Log Apply Services for Logical Standby Databases

■ Setting Archive Tracing

6.1 Introduction to Log Apply Services
Log apply services automatically apply archived redo logs to maintain
synchronization with the primary database and allow transactionally consistent
access to the data. Archived redo data is not available for log apply services until a
log switch occurs on the primary database.

The main difference between physical and logical standby databases is the manner
in which log apply services apply the archived redo logs. For physical standby
databases, log apply services maintain the standby database by performing
managed recovery operations. For logical standby databases, log apply services
maintain the standby database by executing SQL statements. The following list
summarizes these operations:

■ Managed recovery operations (physical standby databases only)

Applying Redo Data to Physical Standby Databases

6-2 Oracle Data Guard Concepts and Administration

In this mode, log transport services transmit redo data to the standby site, and
log apply services automatically apply the redo logs.

.

■ SQL apply operations (logical standby databases only)

Log apply services manage logical standby databases by executing SQL
statements. Logical standby databases can be opened in read/write mode, but
the target tables being maintained by the logical standby database are opened
in read-only mode for reporting purposes. The SQL apply mode allows you to
use the logical standby database for reporting activities even while SQL
statements are being applied.

The sections in this chapter describe the managed recovery and SQL apply
operations, and log apply services in more detail.

6.2 Applying Redo Data to Physical Standby Databases
The physical standby database uses several processes to automate archiving redo
data and recovering redo logs on the standby database. On the standby database,
log apply services use the following processes:

■ Remote file server (RFS)

The remote file server (RFS) process receives redo data from the primary
database either in the form of archived redo logs or standby redo logs.

■ Archiver (ARCn)

If standby redo logs are being used, the ARCn process archives the standby
redo logs that are to be applied by the managed recovery process (MRP).

■ Managed recovery process (MRP)

The managed recovery process (MRP) applies information from the archived
redo logs to the standby database. When performing managed recovery

Caution: You can also open a physical standby database for
read-only operations to allow users to query the standby database
for reporting purposes. However, while a standby database that is
open for read-only access, it is not kept transactionally current with
the primary database, resulting in prolonging a failover or
switchover operation if one is required for disaster recovery. See
Section 8.2, "Using a Standby Database That Is Open for Read-Only
Access" for more information.

Applying Redo Data to Physical Standby Databases

Log Apply Services 6-3

operations, log apply services automatically apply archived redo logs to
maintain transactional synchronization with the primary database.

Log apply services can apply logs to a physical standby database when the database
is performing recovery, but not when it is open for read-only operations). A
physical standby database can be performing one of the following:

■ Managed recovery operations

■ Read-only operations

Table 6–1 summarizes the basic tasks for configuring and monitoring log apply
services.

6.2.1 Starting the Physical Standby Instance
After all necessary parameter and network files are configured, you can start the
standby instance. If the standby instance is not started and mounted, the standby
database cannot receive redo data from the primary database.

To start the physical standby database instance, perform the following steps:

1. Start the physical standby instance without mounting the database:

SQL> STARTUP NOMOUNT;

2. Mount the physical standby database. For example:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

Table 6–1 Task List: Configuring Log Apply Services for Physical Standby Databases

Step Task See ...

1 Start the standby instance and mount
the standby database.

Section 6.2.1

2 Enable managed recovery or read-only
operations.

Section 6.2.2.1 or Section 8.2, respectively

3 If performing managed recovery
operations, set initialization
parameters to automatically resolve
archive gaps.

Section 6.4 and the Oracle9i Net Services
Administrator’s Guide

4 Monitor log apply services. Section 6.5

Applying Redo Data to Physical Standby Databases

6-4 Oracle Data Guard Concepts and Administration

6.2.2 Starting Managed Recovery Operations
Log apply services keep the standby database synchronized with the primary
database by automatically applying archived redo logs to the standby database, as
shown in Figure 6–1.

Figure 6–1 Automatic Updating of a Physical Standby Database

6.2.2.1 Starting Log Apply Services
You can specify that log apply services run as a foreground session or as a
background process.

■ To start a foreground session, issue the SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

If you started a foreground session, by default, control is not returned to the
command prompt.

■ To start a background process, you must use the DISCONNECT keyword on the
SQL statement. For example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT;

Primary
Database

Physical
Standby
Database

Read / Write
Transactions Redo

Stream

Redo
Apply

Redo
Transport

Applying Redo Data to Physical Standby Databases

Log Apply Services 6-5

This statement starts a detached server process and immediately returns control
to the user. While the managed recovery process is performing recovery in the
background, the foreground process that issued the RECOVER statement can
continue performing other tasks. This does not disconnect the current SQL
session.

■ If you did not start log apply services as a detached server process, you can stop
log apply services by the issuing the following SQL statement in another
window:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

6.2.2.2 Monitor the Recovery Process
You can query views to monitor log apply services as follows:

1. To verify that you have correctly initiated log apply services, query the
V$MANAGED_STANDBY fixed view on the standby database. This view monitors
the progress of a standby database in managed recovery mode. For example:

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
------- ------------ ---------- ---------- ---------- ----------
MRP0 APPLYING_LOG 1 946 10 1001

If you did not start a detached server process, you need to execute this query
from another SQL session.

2. To monitor activity on the standby database, query the V$ARCHIVE_DEST_
STATUS fixed view.

6.2.3 Controlling Redo Apply Operations
Although this SQL ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
statement does not require any additional clauses, it provides many keywords to
help you control the redo apply process.

See Also: Section 6.2.3 and Chapter 13

See Also: Section 6.5

Applying Redo Data to Physical Standby Databases

6-6 Oracle Data Guard Concepts and Administration

6.2.4 Datafile Management
To enable the automatic creation of new datafiles on a physical standby database
when datafiles are created on the primary database, you must define the STANDBY_
FILE_MANAGEMENT initialization parameter.

If the directory structures on the primary and standby databases are different, you
must also set the DB_FILE_NAME_CONVERT initialization parameter to convert the
filenames of one or more sets of datafiles on the primary database to filenames on
the standby database.

6.2.4.1 Setting the STANDBY_FILE_MANAGEMENT Initialization Parameter
When you set the STANDBY_FILE_MANAGEMENT initialization parameter to AUTO,
it automatically creates on the standby database any datafiles that were newly
created on the primary database, using the same name that you specified on the
primary database.

The STANDBY_FILE_MANAGEMENT initialization parameter works with the DB_
FILE_NAME_CONVERT parameter to convert the datafile locations from the primary
site to standby site.

6.2.4.2 Setting the DB_FILE_NAME_CONVERT Initialization Parameter
When a new datafile is added on the primary database, the same datafile is created
on the standby database. The DB_FILE_NAME_CONVERT parameter is used to
convert the datafile name on the primary database to a datafile name on the
standby database. This parameter works the same if the STANDBY_FILE_
MANAGEMENT initialization parameter is set to AUTO or MANUAL.

The DB_FILE_NAME_CONVERT initialization parameter must specify paired strings.
The first string is a sequence of characters to be looked for in a primary database
filename. If that sequence of characters is matched, it is replaced by the second
string to construct the standby database filename. You can specify multiple pairs of
filenames. For example:

DB_FILE_NAME_CONVERT= "/disk1/oracle/oradata/payroll/df1", \
"/disk1/oracle/oradata/payroll/standby/df1", \
"/disk1/oracle/oradata/payroll", "/disk1/oracle/oradata/payroll/standby/"
STANDBY_FILE_MANAGEMENT=AUTO

See Also: Section 13.12 and Oracle9i SQL Reference for complete
information about the SQL statement syntax

Applying Redo Data to Logical Standby Databases

Log Apply Services 6-7

6.2.4.3 Restrictions on ALTER DATABASE Operations
You cannot rename the datafile on the standby site when the STANDBY_FILE_
MANAGEMENT initialization parameter is set to AUTO. When you set the STANDBY_
FILE_MANAGEMENT initialization parameter to AUTO, use of the following SQL
statements is not allowed:

■ ALTER DATABASE RENAME

■ ALTER DATABASE ADD/DROP LOGFILE

■ ALTER DATABASE ADD/DROP STANDBY LOGFILE MEMBER

■ ALTER DATABASE CREATE DATAFILE AS

If you attempt to use any of these statements on the standby database, an error is
returned. For example:

SQL> ALTER DATABASE RENAME FILE '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy';
alter database rename file '/disk1/oracle/oradata/payroll/t_db2.log' to 'dummy'
*
ERROR at line 1:
ORA-01511: error in renaming log/data files
ORA-01270: RENAME operation is not allowed if STANDBY_FILE_MANAGEMENT is auto

6.3 Applying Redo Data to Logical Standby Databases
Log apply services convert the data from the redo logs into SQL statements and
then executes these SQL statements on the logical standby database. Because the
logical standby database remains open, tables that are maintained can be used
simultaneously for other tasks such as reporting, summations, and queries.
Figure 6–2 shows log apply services applying redo data to a logical standby
database.

Note: When you specify pairs of files, be sure to specify the most
restrictive path names before the least restrictive, as shown in the
example.

See Also: Section 8.4.1 to learn how to add datafiles to a database

Applying Redo Data to Logical Standby Databases

6-8 Oracle Data Guard Concepts and Administration

Figure 6–2 Automatic Updating of a Logical Standby Database

The logical standby database uses the following processes:

■ Remote file server (RFS)

The remote file server process receives redo data from the primary database.
The RFS process communicates with the logical standby process (LSP) to
coordinate and record which files arrived.

■ Logical standby process (LSP)

The logical standby process is the coordinator process for a set of processes that
concurrently read, prepare, build, analyze, and apply completed SQL
transactions from the archived redo logs. The LSP also maintains metadata in
the database.

Table 6–2 summarizes the basic tasks for configuring log apply services.

Table 6–2 Task List: Configuring Log Apply Services for Logical Standby Databases

Step Task See ...

1 Start log apply services. Section 6.3.1

2 Ensure that redo logs are being applied. Section 6.3.2

Primary
Database

Logical
Standby
Database

Read / Write
Transactions Redo

Stream

SQL
Apply

Redo
Transport

Transform
Redo Data

into SQL
Statements

Reports

Applying Redo Data to Logical Standby Databases

Log Apply Services 6-9

In addition to providing detailed information about the tasks presented in
Table 6–2, the following sections also describe how to delay the application of
archived redo logs.

6.3.1 Starting and Stopping Log Apply Services
To start log apply services, start the logical standby database, and then use the
following statement. (Starting a logical standby database is done in the same
manner as starting a primary database.)

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

To stop log apply services, use the following statement:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;

6.3.2 Ensuring That Redo Logs Are Being Applied
Redo logs are read and applied to a logical standby database when a log switch
occurs, not as they arrive on the standby site. You can verify the status of archived
redo log apply operations by querying the following views:

■ V$LOGSTDBY

Use this view to verify that the archived redo logs are being applied to the
standby database. This view provides information about the processes that are
reading redo data and applying archived redo logs to logical standby databases.
For example, the following query shows typical output during the initialization
phase:

SQL> COLUMN STATUS FORMAT A50
SQL> COLUMN TYPE FORMAT A12
SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;
TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16115: loading Log Miner dictionary data
READER ORA-16127: stalled waiting for additional transact
 ions to be applied
BUILDER ORA-16117: processing

3 Manage SQL apply operations. Section 9.1

Table 6–2 Task List: Configuring Log Apply Services for Logical Standby Databases

Step Task See ...

Managing Archive Gaps

6-10 Oracle Data Guard Concepts and Administration

PREPARER ORA-16116: no work available

SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;
TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16126: loading table or sequence object number
READER ORA-16116: no work available
BUILDER ORA-16116: no work available
PREPARER ORA-16116: no work available

■ DBA_LOGSTDBY_PROGRESS

Use this view for information about the progress of the log apply services. This
view shows the state of the LSP and information about the SQL transactions
that were executed on the logical standby database. For example:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 180702 180702

When the numbers in the APPLIED_SCN and NEWEST_SCN columns are equal
(as shown in the query example), it means that all of the available data in the
redo log was applied. These values can be compared to the values in the
FIRST_CHANGE# column in the DBA_LOGSTDBY_LOG view to see how much
log information has to be applied and how much remains.

6.4 Managing Archive Gaps
Data Guard offers automatic archive redo log gap detection and resolution to
handle network connectivity problems that might temporarily disconnect one or
more standby databases from the primary database. Once properly configured,
Data Guard requires no manual intervention by the DBA to detect and resolve such
gaps.

The following sections describe gap detection and resolution.

See Also: Chapter 9 for information about managing a logical
standby database and Chapter 14 for more information about views
that are used in a Data Guard environment

Managing Archive Gaps

Log Apply Services 6-11

6.4.1 What Is an Archive Gap?
An archive gap is a range of archived redo logs created whenever the standby
system is unable to receive the next archived redo log generated by the primary
database. For example, an archive gap occurs when the network becomes
unavailable and automatic archiving from the primary database to the standby
database stops. When the network is available again, automatic transmission of the
redo data from the primary database to the failed standby database resumes.

The missing archived redo logs are the gap. The gap is automatically detected and
resolved.

6.4.2 When Is an Archive Gap Discovered?
An archive gap can occur whenever the primary database archives a log, but the log
is not archived to the standby site. Every minute, the primary database polls its
standby databases to see if there is a gap in the sequence of archived redo logs. The
polling between the primary and standby databases is sometimes referred to as a
heartbeat. The primary database polls the standby databases serially.

6.4.3 Determining If an Archive Gap Exists on a Physical Standby Database
The following sections describe how to query the appropriate views to determine
which logs are missing on the standby database.

On a physical standby database
To determine if there is an archive gap on your physical standby database, query
the V$ARCHIVE_GAP view as shown in the following example:

SQL> SELECT * FROM V$ARCHIVE_GAP;

 THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
----------- ------------- --------------
 1 7 10

The output from the previous example indicates your physical standby database is
currently missing logs from sequence 7 to sequence 10 for thread 1. After you
identify the gap, issue the following SQL statement on the primary database to
locate the archived redo logs on your primary database (assuming the local archive
destination on the primary database is LOG_ARCHIVE_DEST_1):

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1 AND
 2> SEQUENCE# BETWEEN 7 AND 10;

Managing Archive Gaps

6-12 Oracle Data Guard Concepts and Administration

NAME
--
/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc
/primary/thread1_dest/arcr_1_9.arc

Copy these logs to your physical standby database and register them using the
ALTER DATABASE REGISTER LOGFILE statement on your physical standby
database. For example:

SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_7.arc';
SQL> ALTER DATABASE REGISTER LOGFILE
'/physical_standby1/thread1_dest/arcr_1_8.arc';
 :
 :
After you register these logs on the physical standby database, you can restart
managed recovery operations.

On a logical standby database:
To determine if there is an archive gap, query the DBA_LOGSTDBY_LOG view on the
logical standby database. For example, the following query indicates there is a gap
in the sequence of archived redo logs because it displays two files for THREAD 1 on
the logical standby database. (If there are no gaps, the query will show only one file
for each thread.) The output shows that the highest registered file is sequence
number 10, but there is a gap at the file shown as sequence number 6:

SQL> COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L
 2> WHERE NEXT_CHANGE# NOT IN
 3> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#)
 4> ORDER BY THREAD#,SEQUENCE#;

 THREAD# SEQUENCE# FILE_NAME

Note: The V$ARCHIVE_GAP fixed view on a physical standby
database only returns the next gap that is currently blocking man-
aged recovery from continuing. After resolving the identified gap
and starting managed recovery, query the V$ARCHIVE_GAP fixed
view again on the physical standby database to determine the next
gap sequence, if there is one. Repeat this process until there are no
more gaps.

Managing Archive Gaps

Log Apply Services 6-13

---------- ---------- ---
 1 6 /disk1/oracle/dbs/log-1292880008_6.arc
 1 10 /disk1/oracle/dbs/log-1292880008_10.arc

Copy the missing logs to the logical standby system and register them using the
ALTER DATABASE REGISTER LOGICAL LOGFILE statement on your logical
standby database. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE /disk1/oracle/dbs/log-1292880008_10.arc;

After you register these logs on the logical standby database, you can restart log
apply services.

6.4.4 How Is a Gap Resolved?
For both physical and logical standby databases, Data Guard performs gap
detection and resolution automatically. No extra configuration settings are required.
However, for physical standby databases, you can set initialization parameters so
that log apply services also automatically resolve archive gaps as they occur on a
physical standby database.

The following sections describe how to set initialization parameters to facilitate gap
recovery for a physical standby database, and how gap recovery is handled on a
logical standby database.

On a physical standby database
You can set initialization parameters so that log apply services automatically
identify and resolve archive gaps as they occur on a physical standby database.

Define the FAL_CLIENT and FAL_SERVER initialization parameters only for
physical standby databases in the initialization parameter file:

Note: The DBA_LOGSTDBY_LOG view on a logical standby
database only returns the next gap that is currently blocking SQL
apply operations from continuing. After resolving the identified
gap and starting log apply services, query the DBA_LOGSTDBY_
LOG view again on the logical standby database to determine the
next gap sequence, if there is one. Repeat this process until there are
no more gaps.

Managing Archive Gaps

6-14 Oracle Data Guard Concepts and Administration

The FAL server is a background Oracle process that services the incoming requests
from the FAL client. In most cases, the FAL server is located on a primary database.
However, it can be located on another standby database.

For log apply services to automatically identify and resolve archive gaps, you must:

1. On the standby system, use Oracle Net Manager to configure the listener. Use
the TCP/IP protocol and statically register the standby database service with
the listener using the service name. This service name will serve as the FAL
client.

2. Use Oracle Net Manager to create a network service name that the standby
database can use to connect to the FAL server. The network service name
should resolve to a connect descriptor that uses the same protocol, host address,
port, and service name that you specified when you configured the listener on
the FAL server system, which is typically the primary system. If you are unsure
what values to use for these parameters, use Oracle Net Manager to display the
listener configuration on the FAL server system.

3. In the initialization parameter file of the standby database, assign the network
service name that you created in step 1 to the FAL_CLIENT initialization
parameter, and assign the network service name that you created in step 2 to
the FAL_SERVER initialization parameter.

4. On the FAL server system, use Oracle Net Manager to create a network service
name that the FAL server can use to connect to the standby database. The
network service name should resolve to a connect descriptor that uses the same
protocol, host address, port, and SID as the one in step 1.

Parameter Function Syntax

FAL_CLIENT This parameter specifies
the network service name
that the FAL server should
use to connect to the
standby database.

Syntax

FAL_CLIENT=net_service_name

Example

FAL_CLIENT=standby1_db

FAL_SERVER This parameter specifies
the network service name
that the standby database
should use to connect to
the FAL server.

Syntax

FAL_SERVER=net_service_name

Example

FAL_SERVER=my_primary_db, my_
standby_db

Monitoring Log Apply Services for Physical Standby Databases

Log Apply Services 6-15

Log apply services automatically detect, and the FAL server process running on the
primary database attempts to resolve, any gaps that may exist when you enable
managed recovery with the ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE statement.

On a logical standby database
Gap recovery on a logical standby database is handled through the heartbeat
mechanism. The important consideration here is that automatic gap recovery is
contingent on the availability of the primary database. If the primary database is
not available, as would be the case in a failover scenario, automatic gap recovery
will not take place.

6.5 Monitoring Log Apply Services for Physical Standby Databases
To monitor the status of archived redo logs and obtain information on log apply
services on a physical standby database, query the fixed views described in this
section. You can also monitor the standby database using Data Guard Manager.

This section contains the following topics:

■ Accessing the V$MANAGED_STANDBY Fixed View

■ Accessing the V$ARCHIVE_DEST_STATUS Fixed View

■ Accessing the V$ARCHIVED_LOG Fixed View

■ Accessing the V$LOG_HISTORY Fixed View

■ Accessing the V$DATAGUARD_STATUS Fixed View

6.5.1 Accessing the V$MANAGED_STANDBY Fixed View
Query the physical standby database to monitor log apply and log transport
services activity at the standby site.

See Also: Section B.3 for a description of the manual steps and
Oracle9i Net Services Administrator’s Guide for information about
Oracle Net

See Also: Appendix A, "Troubleshooting the Standby Database"

See Also: Chapter 14 for complete reference information on the
views named in the preceding list

Monitoring Log Apply Services for Physical Standby Databases

6-16 Oracle Data Guard Concepts and Administration

SQL> SELECT PROCESS, STATUS, THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY;

PROCESS STATUS THREAD# SEQUENCE# BLOCK# BLOCKS
------- ------------ ---------- ---------- ---------- ----------
RFS ATTACHED 1 947 72 72
MRP0 APPLYING_LOG 1 946 10 72

The previous query output shows that an RFS process has completed the archiving
of redo log file sequence number 947. The output also shows a managed recovery
operation that is actively applying archived redo log sequence number 946. The
recovery operation is currently recovering block number 10 of the 72-block archived
redo log.

6.5.2 Accessing the V$ARCHIVE_DEST_STATUS Fixed View
To quickly determine the level of synchronization for the standby database, issue
the following query on the physical standby database:

SQL> SELECT ARCHIVED_THREAD#, ARCHIVED_SEQ#, APPLIED_THREAD#, APPLIED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS;

ARCHIVED_THREAD# ARCHIVED_SEQ# APPLIED_THREAD# APPLIED_SEQ#
---------------- ------------- --------------- ------------
1 947 1 945

The previous query output shows that the standby database is two archived logs
behind in applying the redo logs received from the primary database. This might
indicate that a single recovery process is unable to keep up with the volume of
archived redo logs being received. Using the PARALLEL option might be a solution.

6.5.3 Accessing the V$ARCHIVED_LOG Fixed View
The V$ARCHIVED_LOG fixed view on the physical standby database shows all the
archived redo logs received from the primary database. This view is only useful
after the standby site starts receiving logs, because before that time the view is
populated by old archived log records generated from the primary control file. For
example, you can execute the following SQL*Plus statement:

SQL> SELECT REGISTRAR, CREATOR, THREAD#, SEQUENCE#, FIRST_CHANGE#,
 2> NEXT_CHANGE# FROM V$ARCHIVED_LOG;

REGISTRAR CREATOR THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
--------- ------- ---------- ---------- ------------- ------------

Monitoring Log Apply Services for Physical Standby Databases

Log Apply Services 6-17

RFS ARCH 1 945 74651 74739
RFS ARCH 1 946 74739 74772
RFS ARCH 1 947 74772 74774

The previous query output shows three archived redo logs received from the
primary database.

6.5.4 Accessing the V$LOG_HISTORY Fixed View
Query the V$LOG_HISTORY fixed view on the physical standby database to show
all the archived redo logs that were applied:

SQL> SELECT THREAD#, SEQUENCE#, FIRST_CHANGE#, NEXT_CHANGE#
 2> FROM V$LOG_HISTORY;

THREAD# SEQUENCE# FIRST_CHANGE# NEXT_CHANGE#
---------- ---------- ------------- ------------
1 945 74651 74739

The previous query output shows that the most recently applied archived redo log
was sequence number 945.

6.5.5 Accessing the V$DATAGUARD_STATUS Fixed View
The V$DATAGUARD_STATUS fixed view displays events that would typically be
triggered by any message to the alert log or server process trace files.

The following example shows output from the V$DATAGUARD_STATUS view on a
primary database:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

MESSAGE
--

ARC0: Archival started
ARC1: Archival started
Archivelog destination LOG_ARCHIVE_DEST_2 validated for no-data-loss
recovery
Creating archive destination LOG_ARCHIVE_DEST_2: 'dest2'
ARCH: Transmitting activation ID 0
LGWR: Completed archiving log 3 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_2: 'dest2'

See Also: V$ARCHIVED_LOG in Chapter 14

Monitoring Log Apply Services for Physical Standby Databases

6-18 Oracle Data Guard Concepts and Administration

LGWR: Transmitting activation ID 6877c1fe
LGWR: Beginning to archive log 4 thread 1 sequence 12
ARC0: Evaluating archive log 3 thread 1 sequence 11
ARC0: Archive destination LOG_ARCHIVE_DEST_2: Previously completed
ARC0: Beginning to archive log 3 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_1:
'/oracle/arch/arch_1_11.arc'

ARC0: Completed archiving log 3 thread 1 sequence 11
ARC1: Transmitting activation ID 6877c1fe

15 rows selected.

The following example shows the contents of the V$DATAGUARD_STATUS view on
a physical standby database:

SQL> SELECT MESSAGE FROM V$DATAGUARD_STATUS;

MESSAGE
--

ARC0: Archival started
ARC1: Archival started
RFS: Successfully opened standby logfile 6: '/oracle/dbs/sorl2.log'

ARC1: Evaluating archive log 6 thread 1 sequence 11
ARC1: Beginning to archive log 6 thread 1 sequence 11
Creating archive destination LOG_ARCHIVE_DEST_1:
'/oracle/arch/arch_1_11.arc'

ARC1: Completed archiving log 6 thread 1 sequence 11
RFS: Successfully opened standby logfile 5: '/oracle/dbs/sorl1.log'

Attempt to start background Managed Standby Recovery process
Media Recovery Log /oracle/arch/arch_1_9.arc

10 rows selected.

See Also: V$DATAGUARD_STATUS in Chapter 14

Monitoring Log Apply Services for Logical Standby Databases

Log Apply Services 6-19

6.6 Monitoring Log Apply Services for Logical Standby Databases
To monitor the status of archived redo logs and obtain information on log apply
services on a logical standby database, query the fixed views described in this
section. You can also monitor the standby database using Data Guard Manager.

This section contains the following topics:

■ Accessing the DBA_LOGSTDBY_EVENTS View

■ Accessing the DBA_LOGSTDBY_LOG View

■ Accessing the DBA_LOGSTDBY_PROGRESS View

■ Accessing the V$LOGSTDBY Fixed View

■ Accessing the V$LOGSTDBY_STATS Fixed View

6.6.1 Accessing the DBA_LOGSTDBY_EVENTS View
If log apply services should stop unexpectedly, the reason for the problem is shown
in this view.

The view also contains other information, such as which DDL statements were
applied and which were skipped. For example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> COLUMN STATUS FORMAT A60
SQL> SELECT EVENT_TIME, STATUS, EVENT FROM DBA_LOGSTDBY_EVENTS
 2 ORDER BY EVENT_TIME, COMMIT_SCN;

See Also: Appendix A, "Troubleshooting the Standby Database"

Note: Errors that cause SQL apply operations to stop are always
recorded in the events table (unless there is insufficient space in
the system tablespace). These events are always put into the
ALERT.LOG file as well, with the phrase 'LOGSTDBY event'
included in the text. When querying the view, select the columns
in order by EVENT_TIME, COMMIT_SCN, and CURRENT_SCN. This
ordering ensures that a shutdown failure appears last in the
view.

Monitoring Log Apply Services for Logical Standby Databases

6-20 Oracle Data Guard Concepts and Administration

EVENT_TIME STATUS
--
EVENT

23-JUL-02 18:20:12 ORA-16111: log mining and apply setting up
23-JUL-02 18:20:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:20:12 ORA-16112: log mining and apply stopping
23-JUL-02 18:20:23 ORA-16111: log mining and apply setting up
23-JUL-02 18:55:12 ORA-16128: User initiated shut down successfully completed
23-JUL-02 18:57:09 ORA-16111: log mining and apply setting up
23-JUL-02 20:21:47 ORA-16204: DDL successfully applied
create table mytable (one number, two varchar(30))
23-JUL-02 20:22:55 ORA-16205: DDL skipped due to skip setting create database
link mydblink

8 rows selected.

This query shows that log apply services were started and stopped a few times. It
also shows what DDL was applied and skipped. If log apply services had stopped,
the last record in the query would have shown the cause of the problem.

6.6.2 Accessing the DBA_LOGSTDBY_LOG View
The DBA_LOGSTDBY_LOG view provides dynamic information about what is
happening to log apply services. This view is helpful when you are diagnosing
performance problems with log apply services applying archived redo logs to the
logical standby database, and it can be helpful for other problems.

For example:

SQL> SELECT FILE_NAME, SEQUENCE#, FIRST_CHANGE#, NEXT_CHANGE#,
 2> TIMESTAMP, DICT_BEGIN, DICT_END, THREAD# FROM DBA_LOGSTDBY_LOG
 3> ORDER BY SEQUENCE#;

FILE_NAME SEQ# FIRST_CHANGE# NEXT_CHANGE# TIMESTAM BEG END THR#
------------------------- ---- ------------- ------------ -------- --- --- ----
/oracle/dbs/hq_nyc_2.log 2 101579 101588 11:02:58 NO NO 1
/oracle/dbs/hq_nyc_3.log 3 101588 142065 11:02:02 NO NO 1
/oracle/dbs/hq_nyc_4.log 4 142065 142307 11:02:10 NO NO 1
/oracle/dbs/hq_nyc_5.log 5 142307 142739 11:02:48 YES YES 1
/oracle/dbs/hq_nyc_6.log 6 142739 143973 12:02:10 NO NO 1
/oracle/dbs/hq_nyc_7.log 7 143973 144042 01:02:11 NO NO 1
/oracle/dbs/hq_nyc_8.log 8 144042 144051 01:02:01 NO NO 1
/oracle/dbs/hq_nyc_9.log 9 144051 144054 01:02:16 NO NO 1

Monitoring Log Apply Services for Logical Standby Databases

Log Apply Services 6-21

/oracle/dbs/hq_nyc_10.log 10 144054 144057 01:02:21 NO NO 1
/oracle/dbs/hq_nyc_11.log 11 144057 144060 01:02:26 NO NO 1
/oracle/dbs/hq_nyc_12.log 12 144060 144089 01:02:30 NO NO 1
/oracle/dbs/hq_nyc_13.log 13 144089 144147 01:02:41 NO NO 1

The output from this query shows that a LogMiner dictionary build starts at log file
sequence number 5. The most recent archive log file is sequence number 13 and it
was received at the logical standby database at 01:02:41.

6.6.3 Accessing the DBA_LOGSTDBY_PROGRESS View
To quickly determine if all log file information was applied, issue the following
query on the logical standby database:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM D BA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 211301 211357

If the APPLIED_SCN matches the NEWEST_SCN, then all available log information
was applied. To determine how much progress was made through the available
logs, join the DBA_LOGSTDBY_PROGRESS view with the DBA_LOGSTDBY_LOG
view, as shown in the following example:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT L.SEQUENCE#, L.FIRST_TIME,
 2 (CASE WHEN L.NEXT_CHANGE# < P.READ_SCN THEN 'YES'
 3 WHEN L.FIRST_CHANGE# < P.APPLIED_SCN THEN 'CURRENT'
 4 ELSE 'NO' END) APPLIED
 5 FROM DBA_LOGSTDBY_LOG L, DBA_LOGSTDBY_PROGRESS P
 6 ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME APPLIED
---------- ------------------ -------
 24 23-JUL-02 18:19:05 YES
 25 23-JUL-02 18:19:48 YES
 26 23-JUL-02 18:19:51 YES
 27 23-JUL-02 18:19:54 YES
 28 23-JUL-02 18:19:59 YES
 29 23-JUL-02 18:20:03 YES
 30 23-JUL-02 18:20:13 YES
 31 23-JUL-02 18:20:18 YES

Monitoring Log Apply Services for Logical Standby Databases

6-22 Oracle Data Guard Concepts and Administration

 32 23-JUL-02 18:20:21 YES
 33 23-JUL-02 18:32:11 YES
 34 23-JUL-02 18:32:19 CURRENT
 35 23-JUL-02 19:13:20 CURRENT
 36 23-JUL-02 19:13:43 CURRENT
 37 23-JUL-02 19:13:46 CURRENT
 38 23-JUL-02 19:13:50 CURRENT
 39 23-JUL-02 19:13:54 CURRENT
 40 23-JUL-02 19:14:01 CURRENT
 41 23-JUL-02 19:15:11 NO
 42 23-JUL-02 19:15:54 NO

19 rows selected.

In the previous query, the computed APPLIED column displays YES, CURRENT, NO.
The logs with YES were completely applied and those files are no longer needed by
the logical standby database. The logs with CURRENT contain information that is
currently being worked on. Because logical standby applies transactions, and
because transactions span logs, it is common for log apply services to be applying
changes from multiple logs. For logs with NO, information from those files is not
being applied. Although it is possible that the files might have been open and read.

6.6.4 Accessing the V$LOGSTDBY Fixed View
To inspect the process activity for SQL apply operations, query the V$LOGSTDBY
fixed view on the logical standby database. For example:

SQL> COLUMN STATUS FORMAT A50
SQL> COLUMN TYPE FORMAT A12
SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;

TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16117: processing
READER ORA-16127: stalled waiting for additional transact
 ions to be applied

BUILDER 191896 ORA-16116: no work available
PREPARER 191902 ORA-16117: processing
ANALYZER 191820 ORA-16120: dependencies being computed for transac
 tion at SCN 0x0000.0002ed4e

APPLIER 191209 ORA-16124: transaction 1 16 1598 is waiting on ano
 ther transaction

Monitoring Log Apply Services for Logical Standby Databases

Log Apply Services 6-23

APPLIER 191205 ORA-16116: no work available
APPLIER 191206 ORA-16124: transaction 1 5 1603 is waiting on anot
 her transaction

APPLIER 191213 ORA-16117: processing
APPLIER 191212 ORA-16124: transaction 1 20 1601 is waiting on ano
 ther transaction

APPLIER 191216 ORA-16124: transaction 1 4 1602 is waiting on anot
 her transaction

11 rows selected.

The previous query displays one row for each process involved in reading and
applying redo logs. The different processes perform different functions as described
by the TYPE column. The HIGH_SCN column is a progress indicator. As long as it
keeps changing, from query to query, you know progress is being made. The
STATUS column gives a text description of activity.

6.6.5 Accessing the V$LOGSTDBY_STATS Fixed View
The V$LOGSTDBY_STATS fixed view provides a collection of state and statistical
information for log apply services. Most options have default values, and this view
displays what values are currently in use. It also provides statistical information
that helps indicate progress. Issue the following query to view database state
information:

SQL> COLUMN NAME FORMAT A35
SQL> COLUMN VALUE FORMAT A35
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 2> WHERE NAME LIKE 'coordinator%' or NAME LIKE 'transactions%';

NAME VALUE
----------------------------------- -----------------------------------
coordinator state APPLYING
transactions ready 7821
transactions applied 7802
coordinator uptime 73

This query shows how long SQL apply operations have been running and how
many transactions have been applied in that time. It also shows how many
transactions are available to be applied, indicating that more work is necessary.

Setting Archive Tracing

6-24 Oracle Data Guard Concepts and Administration

6.7 Setting Archive Tracing
To see the progression of the archiving of redo logs to the standby site, set the LOG_
ARCHIVE_TRACE parameter in the primary and standby initialization parameter
files. When you set the LOG_ARCHIVE_TRACE parameter, it causes the Oracle
database server to write an audit trail to a trace file as follows:

■ On the primary database

This causes the Oracle database server to write an audit trail of archiving
process activity (ARCn and foreground processes) on the primary database in a
trace file whose filename is specified in the USER_DUMP_DEST initialization
parameter.

■ On the standby database

This causes the Oracle database server to write an audit trail of the RFS process
and the ARCn process activity relating to archived redo logs on the standby
database in a trace file whose filename is specified in the USER_DUMP_DEST
initialization parameter.

6.7.1 Determining the Location of the Trace Files
The trace files for a database are located in the directory specified by the USER_
DUMP_DEST parameter in the initialization parameter file. Connect to the primary
and standby instances using SQL*Plus, and issue a SHOW statement to determine the
location, for example:

SQL> SHOW PARAMETER user_dump_dest
NAME TYPE VALUE
------------------------------------ ------- ------------------------------
user_dump_dest string ?/rdbms/log

6.7.2 Setting the Log Trace Parameter
The format for the archiving trace parameter is as follows, where trace_level is
an integer:

LOG_ARCHIVE_TRACE=trace_level

To enable, disable, or modify the LOG_ARCHIVE_TRACE parameter in a primary
database, do one of the following:

■ Shut down the primary database, modify the initialization parameter file, and
restart the database.

Setting Archive Tracing

Log Apply Services 6-25

■ Issue an ALTER SYSTEM SET LOG_ARCHIVE_TRACE=trace_level
statement while the database is open or mounted.

To enable, disable, or modify the LOG_ARCHIVE_TRACE parameter for a physical
standby database that is performing read-only or managed recovery operations,
issue a SQL statement similar to the following:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=15;

In the previous example, setting the LOG_ARCHIVE_TRACE parameter to a value of
15 sets trace levels 1, 2, 4, and 8 as described in Section 6.7.3.

Issue the ALTER SYSTEM statement from a different standby session so that it
affects trace output generated by the remote file service (RFS) and ARCn processes
when the next archived log is received from the primary database. For example,
enter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_TRACE=32;

6.7.3 Choosing an Integer Value
The integer values for the LOG_ARCHIVE_TRACE parameter represent levels of
tracing data. In general, the higher the level, the more detailed the information. The
following integer levels are available:

Level Meaning

0 Disables archived redo log tracing (default setting)

1 Tracks archiving of redo log file

2 Tracks archival status per archived redo log destination

4 Tracks archival operational phase

8 Tracks archived redo log destination activity

16 Tracks detailed archived redo log destination activity

32 Tracks archived redo log destination parameter modifications

64 Tracks ARCn process state activity

128 Tracks FAL server process activity

256 Supported in a future release

512 Tracks asynchronous LGWR activity

1024 Tracks the RFS physical client

Setting Archive Tracing

6-26 Oracle Data Guard Concepts and Administration

You can combine tracing levels by setting the value of the LOG_ARCHIVE_TRACE
parameter to the sum of the individual levels. For example, setting the parameter to
6 generates level 2 and level 4 trace output.

The following are examples of the ARC0 trace data generated on the primary site by
the archiving of redo log 387 to two different destinations: the service standby1
and the local directory /oracle/dbs.

Level Corresponding entry content (sample)
----- --------------------------------
(1) ARC0: Begin archiving log# 1 seq# 387 thrd# 1
(4) ARC0: VALIDATE
(4) ARC0: PREPARE
(4) ARC0: INITIALIZE
(4) ARC0: SPOOL
(8) ARC0: Creating archive destination 2 : ’standby1’
(16) ARC0: Issuing standby Create archive destination at ’standby1’
(8) ARC0: Creating archive destination 1 : ’/oracle/dbs/d1arc1_387.log’
(16) ARC0: Archiving block 1 count 1 to : ’standby1’
(16) ARC0: Issuing standby Archive of block 1 count 1 to ’standby1’
(16) ARC0: Archiving block 1 count 1 to : ’/oracle/dbs/d1arc1_387.log’
(8) ARC0: Closing archive destination 2 : standby1
(16) ARC0: Issuing standby Close archive destination at ’standby1’
(8) ARC0: Closing archive destination 1 : /oracle/dbs/d1arc1_387.log
(4) ARC0: FINISH
(2) ARC0: Archival success destination 2 : ’standby1’
(2) ARC0: Archival success destination 1 : ’/oracle/dbs/d1arc1_387.log’
(4) ARC0: COMPLETE, all destinations archived
(16) ARC0: ArchivedLog entry added: /oracle/dbs/d1arc1_387.log
(16) ARC0: ArchivedLog entry added: standby1
(4) ARC0: ARCHIVED
(1) ARC0: Completed archiving log# 1 seq# 387 thrd# 1

(32) Propagating archive 0 destination version 0 to version 2
 Propagating archive 0 state version 0 to version 2

2048 Tracks the ARCn or RFS heartbeat

Note: The level numbers do not appear in the actual trace output;
they are shown here for clarification only.

Level Meaning

Setting Archive Tracing

Log Apply Services 6-27

 Propagating archive 1 destination version 0 to version 2
 Propagating archive 1 state version 0 to version 2
 Propagating archive 2 destination version 0 to version 1
 Propagating archive 2 state version 0 to version 1
 Propagating archive 3 destination version 0 to version 1
 Propagating archive 3 state version 0 to version 1
 Propagating archive 4 destination version 0 to version 1
 Propagating archive 4 state version 0 to version 1

(64) ARCH: changing ARC0 KCRRNOARCH->KCRRSCHED
 ARCH: STARTING ARCH PROCESSES
 ARCH: changing ARC0 KCRRSCHED->KCRRSTART
 ARCH: invoking ARC0
 ARC0: changing ARC0 KCRRSTART->KCRRACTIVE
 ARCH: Initializing ARC0
 ARCH: ARC0 invoked
 ARCH: STARTING ARCH PROCESSES COMPLETE
 ARC0 started with pid=8
 ARC0: Archival started

The following is the trace data generated by the RFS process on the standby site as
it receives archived log 387 in directory /stby and applies it to the standby
database:

level trace output (sample)
---- ------------------
(4) RFS: Startup received from ARCH pid 9272
(4) RFS: Notifier
(4) RFS: Attaching to standby instance
(1) RFS: Begin archive log# 2 seq# 387 thrd# 1
(32) Propagating archive 5 destination version 0 to version 2
(32) Propagating archive 5 state version 0 to version 1
(8) RFS: Creating archive destination file: /stby/parc1_387.log
(16) RFS: Archiving block 1 count 11
(1) RFS: Completed archive log# 2 seq# 387 thrd# 1
(8) RFS: Closing archive destination file: /stby/parc1_387.log
(16) RFS: ArchivedLog entry added: /stby/parc1_387.log
(1) RFS: Archivelog seq# 387 thrd# 1 available 04/02/99 09:40:53
(4) RFS: Detaching from standby instance
(4) RFS: Shutdown received from ARCH pid 9272

Setting Archive Tracing

6-28 Oracle Data Guard Concepts and Administration

Role Management 7-1

7
Role Management

A Data Guard configuration consists of one database that functions in a primary
role and one or more databases that function in a standby role. Typically, the role of
each database does not change. However, if the primary database becomes
unavailable or if hardware or software maintenance operations must be performed,
you might need to change the role of one or more databases in the configuration.

The number, location, and type (physical or logical) of standby databases in the
Data Guard configuration and the way in which changes to the primary database
are propagated to each standby database determine, in advance, the role
management options available to you in response to a planned or unplanned
primary database outage.

This chapter describes the Data Guard role management services and operations
that allow you to change and manage the roles of the databases in a Data Guard
configuration. It contains the following topics:

■ Introduction to Role Transitions

■ Role Transitions Involving Physical Standby Databases

■ Role Transitions Involving Logical Standby Databases

7.1 Introduction to Role Transitions
A database operates in one of the following mutually exclusive roles: primary or
standby. Data Guard allows you to change these roles dynamically by issuing the
SQL commands described in this chapter, or by using Data Guard Manager, or by
using the Oracle Data Guard broker command-line interface as described in the
Oracle9i Data Guard Broker guide.

Oracle Data Guard supports two role transition operations. The first operation, a
switchover, is a reversible role transition between the primary database and one of

Introduction to Role Transitions

7-2 Oracle9i Data Guard Concepts and Administration

its standby databases. The second operation, a failover, transitions a standby
database to the primary role in response to a failure of the primary database.

Each of these operations are described in more detail in Section 7.1.2 and
Section 7.1.3. Section 7.1.1 helps you choose the role transition operation that best
minimizes downtime and risk of data loss.

7.1.1 Which Role Transition to Use
During any role transition, the amount of downtime required to complete the
operation, the potential for data loss, and the effects on other standby databases in
the configuration are determined by:

■ The state of the primary database just before the transition

■ The state of the standby database selected for the role transition at the time of
the transition

■ If the selected standby database was configured as a physical standby database
or a logical standby database

■ If the role transition is a switchover or a failover

The goal is to perform the role transition as quickly as possible with little or no data
loss. The decision tree presented in Figure 7–1 can help you choose the role
transition operation that best minimizes downtime and risk of data loss.

Note: Oracle Data Guard switchover and failover operations are
not invoked automatically. You must initiate switchover or failover
operations manually using a SQL statement or a Data Guard broker
interface.

Introduction to Role Transitions

Role Management 7-3

Figure 7–1 Role Transition Decision Tree

In general, consider if it would be faster to repair the primary database than to
perform a role transition. If you can repair the primary database, you also do not
have to reconfigure client applications to connect to a new database. However, if the
repair operation results in any data loss, you might need to re-create all other
standby databases in the configuration from a backup copy of the repaired primary
database.

If a role transition must be performed and the configuration contains physical
standby databases, Oracle recommends that you perform the role transition using
the best available physical standby database. Role transitions involving a logical
standby database:

■ Might result in data loss if the logical standby database was configured to
maintain only a subset of the data present in the primary database

■ Require that any existing physical standby databases be re-created from a copy
of the new primary database to continue to participate in the Data Guard
configuration after the role transition

Once you determine the type of role transition you want to perform, proceed to one
of the following sections:

■ For switchover operations, refer to Section 7.1.2

■ For failover operations, refer to Section 7.1.3

See Also: Section 10.1 for information about how to choose the
best available physical or logical standby database.

Do you need to perform hardware
or software maintenance on the
system that currently hosts
the primary database?

Switch over to best available
standby database.

Resolve the problem and
bring the database online.

Can you bring the primary
database back online
in a timely manner?

YES

NO

Fail over to best available
standby database.

YES

NO

Introduction to Role Transitions

7-4 Oracle9i Data Guard Concepts and Administration

7.1.2 Switchover Operations
During a switchover operation, there is no data loss, and the old primary database
remains in the configuration as a standby database. A switchover is typically used
to reduce primary database downtime during planned outages, such as operating
system or hardware upgrades. A switchover operation takes place in two phases. In
the first phase, the existing primary database is transitioned to a standby role. In the
second phase, a standby database is transitioned to the primary role.

Figure 7–2 shows a two-site Data Guard configuration before the roles of the
databases are switched. The primary database is in San Francisco, and the standby
database is in Boston.

Figure 7–2 Data Guard Configuration Before a Switchover Operation

San Francisco

Boston

Application Application0003

0001

0002

Online
Redo Logs

Archived
Redo Logs

0001

0002

Local
Archiving

Primary Database

Read/Write
Transactions

Read-Only
Access

Oracle Net

Standby Database Archived
Redo Logs

0001

0002

0003

Introduction to Role Transitions

Role Management 7-5

Figure 7–3 shows the Data Guard environment after the original primary database
was switched over to a standby database, but before the original standby database
has become the new primary database. At this stage, the Data Guard configuration
temporarily has two standby databases.

Figure 7–3 Standby Databases Before Switchover to the New Primary Database

San Francisco

Boston

Application

Standby2 Database
Archived

Redo Logs

0001

0002

0003

Standby1 Database
Archived

Redo Logs

0001

0002

0003

Introduction to Role Transitions

7-6 Oracle9i Data Guard Concepts and Administration

Figure 7–4 shows the Data Guard environment after a switchover took place. The
original standby database became the new primary database. The primary database
is now in Boston, and the standby database is now in San Francisco.

Figure 7–4 Data Guard Environment After Switchover

7.1.2.1 Preparing for a Switchover
Although switchover operations can be performed between the primary database
and either a logical or a physical standby database in the Data Guard configuration,
a physical standby database is preferred (as described in Section 7.1.1). To minimize
downtime, carefully plan each switchover operation so that the primary and
standby databases involved have as small a transactional lag as possible.

Before starting a switchover operation:

■ Identify the initialization parameters that you must change to complete the role
transition.

San Francisco

Boston

Application Application

0001

0002

Primary Database Online
Redo Logs

Archived
Redo Logs

0001

0002

0003

Local
Archiving

Standby Database
Archived

Redo Logs

0001

0002

0003

Oracle Net

Read/Write
Transactions

Read-Only
Access

Introduction to Role Transitions

Role Management 7-7

Be sure you refer to Section 5.8.2, which describes how to configure
initialization parameters on both the primary and standby databases so that
your Data Guard configuration operates properly after a role transition.

■ Verify that there is network connectivity between the primary and standby
locations.

Each location in the Data Guard configuration should have connectivity
through Oracle Net to the primary database and to all associated standby
databases.

■ Verify that there are no active users connected to the databases.

■ Verify that all but one primary instance and one standby instance in a Real
Application Clusters configuration are shut down.

For a Real Application Clusters database, only one primary instance and one
standby instance can perform the switchover operation. Shut down all other
instances before the switchover operation.

■ For switchover operations involving a physical standby database, the primary
database instance is open and the standby database instance is mounted.

The standby database that you plan to transition to the primary role must be
mounted before you begin the switchover operation. Ideally, the physical
standby database will also be actively recovering archived redo logs when the
database roles are switched. If the physical standby database is open for
read-only access, the switchover operation still will take place, but will require
additional time.

Note: If you do not use the Data Guard broker, you must define
the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n
parameters on all standby sites so that when a switchover or
failover operation occurs, all of the standby sites continue to receive
logs from the new primary database. Configurations that you set up
with the Data Guard broker command-line interface or Data Guard
Manager handle the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_
DEST_STATE_n definitions automatically, including defining the
LOG_ARCHIVE_DEST_n parameters to point back to the primary
database and all the other standby databases.

See Also: Section 6.2.2 for more information on managed
recovery mode

Introduction to Role Transitions

7-8 Oracle9i Data Guard Concepts and Administration

■ For switchover operations involving a logical standby database, both the
primary and standby database instances are open.

■ Place the standby database that will become the new primary database in
ARCHIVELOG mode.

■ Remove any redo data application delay in effect on the standby database.

For switchover operations involving a physical standby database, refer to
Section 7.2.1. For switchover operations involving a logical standby database, refer
to Section 7.3.1. If you configured your environment using the Oracle Data Guard
Broker distributed management framework, refer instead to the Oracle9i Data Guard
Broker guide for information about how to use the Oracle Data Guard Manager
Switchover Wizard to automate the switchover process.

7.1.3 Failover Operations
During a failover operation, a standby database transitions to the primary role and
the old primary database is rendered unable to participate in the configuration.
Depending on the protection mode under which the old primary database was
operating before the failover, there might be little or no data loss during a failover.
A failover is typically used only when a primary database becomes unavailable and
there is no possibility of restoring it to service within a reasonable amount of time.
The specific actions performed during a failover vary based on if a logical or a
physical standby database is involved in the failover operation, the state of the
configuration at the time of the failover, and on the specific SQL commands used to
initiate the failover.

Figure 7–5 shows the result of a failover operation from a primary database in San
Francisco to a physical standby database in Boston.

Note: Because the primary and standby database releases must be
the same at all times, do not use a switchover operation to perform
a rolling upgrade of Oracle database software. However, it might
be possible to use a switchover operation to perform a rolling
upgrade of system hardware.

Introduction to Role Transitions

Role Management 7-9

Figure 7–5 Failover to a Standby Database

Note: After performing a failover operation, you can optionally
restore the original state of the Data Guard configuration by
performing the following steps:

1. Re-create the failed primary database as a new standby
database using a copy of the new primary database.

2. Add the database to the configuration as a new standby
database.

3. Perform a switchover to transition the database to the primary
role and restore the configuration to its original pre-failure
state.

San Francisco

Boston

Application

0001

0002

Standby database
becomes

primary database Online
Redo Logs

Archived
Redo Logs

0001

0002

0003

Local
Archiving

Read/Write
Transactions

0001

0002

Primary Database Online
Redo Logs

Archived
Redo Logs

0001

0002

0003

Local
Archiving

Introduction to Role Transitions

7-10 Oracle9i Data Guard Concepts and Administration

7.1.3.1 Preparing for a Failover
In general, before performing a failover operation, you should transfer as much of
the available and unapplied primary database redo data as possible to the standby
database by following the steps described in this section.

Before starting a failover operation:

■ Identify the parameters that must be changed to complete the role transition.

■ Verify that there is network connectivity between the primary and standby
locations.

Each location in the Data Guard configuration should have connectivity
through Oracle Net to the primary database and to all associated standby
databases.

■ Verify that all but one standby instance in a Real Application Clusters
configuration are shut down.

For a Real Application Clusters database, only one standby instance can be
active during the failover operation. Shut down all other instances before the
failover operation.

■ If a physical standby database currently running in maximum protection mode
will be involved in the failover operation, first place it in maximum
performance mode by issuing the following statement on the physical standby
database:

SQL> ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE PERFORMANCE;

Note: If you do not use the Data Guard broker, you must define
the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n
parameters on all standby sites so that when a switchover or
failover operation occurs, all of the standby sites continue to receive
logs from the new primary database. Configurations that you set up
with the Data Guard command-line interface or Data Guard
Manager handle the LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_
DEST_STATE_n definitions automatically, including defining the
LOG_ARCHIVE_DEST_n parameters to point back to the primary
database and all the other standby databases.

See Also: Section 5.8.2 provides sample primary and standby
initialization parameter files.

Role Transitions Involving Physical Standby Databases

Role Management 7-11

This is required because you cannot fail over to a physical standby database
that is in maximum protection mode. In addition, if a primary database in
maximum protection mode is still actively communicating with the standby
database, issuing the ALTER DATABASE statement to change the standby
database from maximum protection mode to maximum performance mode will
not succeed. Because a failover operation irreversibly removes the original
primary database from the Data Guard configuration, these features serve to
protect a primary database operating in maximum protection mode from the
effects of an unintended failover operation.

If you are performing a failover operation involving a physical standby database,
refer to Section 7.2.2. If you are performing a failover operation involving a logical
standby database, refer to Section 7.3.2.

7.2 Role Transitions Involving Physical Standby Databases
This section describes how to perform switchovers and failovers involving a
physical standby database and recovering from an unsuccessful switchover.

7.2.1 Switchover Operations Involving a Physical Standby Database
This section describes how to perform a switchover operation that changes roles
between a primary database and a physical standby database. Always initiate the
switchover operation on the primary database and complete it on the physical
standby database. The following steps describe how to perform the switchover
operation.

On the current primary database

Step 1 Verify that it is possible to perform a switchover operation.
On the current primary database, query the SWITCHOVER_STATUS column of the
V$DATABASE fixed view on the primary database to verify that it is possible to
perform a switchover operation. For example:

Note: Do not fail over a primary database to a physical standby
database to test whether or not the standby database is being
updated correctly. Instead, open the standby database in read-only
mode and query the database to ensure that updates made to the
primary database were propagated to the standby database.

Role Transitions Involving Physical Standby Databases

7-12 Oracle9i Data Guard Concepts and Administration

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

 TO STANDBY
 1 row selected

The TO STANDBY value in the SWITCHOVER_STATUS column indicates that it is
possible to switch the primary database to the standby role. If the TO STANDBY
value is not displayed, then verify that the Data Guard configuration is functioning
correctly (for example, verify that all LOG_ARCHIVE_DEST_n parameter values are
specified correctly).

Step 2 Initiate the switchover operation on the primary database.
To transition the current primary database to a physical standby database role, use
the following SQL statement on the primary database:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;

After this statement completes, the primary database is converted into a standby
database. The current control file is backed up to the current SQL session trace file
before the switchover operation. This makes it possible to reconstruct a current
control file, if necessary.

Step 3 Shut down and restart the former primary instance.
Shut down the former primary instance and restart it without mounting the
database:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP NOMOUNT;

Mount the database as a physical standby database:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

At this point in the switchover process, both databases are configured as standby
databases (see Figure 7–3).

See Also: Chapter 14 for information about other valid values for
the SWITCHOVER_STATUS column of the V$DATABASE view

Role Transitions Involving Physical Standby Databases

Role Management 7-13

On the target physical standby database

Step 4 Verify the switchover status in the V$DATABASE view.
After you transition the primary database to the physical standby role and the
switchover notification is received by the standby databases in the configuration,
you should verify if the switchover notification was processed by the target standby
database by querying the SWITCHOVER_STATUS column of the V$DATABASE fixed
view on the target standby database.

For example:

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

SWITCHOVER PENDING
1 row selected

The SWITCHOVER PENDING value of the SWITCHOVER_STATUS column indicates
the standby database is about to switch from the standby role to the primary role. If
the SWITCHOVER PENDING value is not displayed, then verify that the Data Guard
configuration is functioning correctly (for example, verify that all LOG_ARCHIVE_
DEST_n parameter values are specified correctly).

Step 5 Switch the physical standby database role to the primary role.
You can switch a physical standby database from the standby role to the primary
role when the standby database instance is either mounted in managed recovery
mode or open for read-only access. It must be mounted in one of these modes so
that the primary database switchover operation request can be coordinated.

The SQL ALTER DATABASE statement used to perform the switchover
automatically creates online redo logs if they do not already exist. This might
significantly increase the time required to complete the COMMIT operation.
Therefore, Oracle Corporation recommends that you always manually add online
redo logs to the target standby database when you create it. Use one of the
following methods to manually add the online redo logs if they do not already exist:

■ Copy the existing online redo logs from the initial primary database site to the
target standby database site and define the LOG_FILE_NAME_CONVERT
initialization parameter to correctly associate the standby site path names to the
new online redo logs (see Section 3.2.6).

See Also: Chapter 14 for information about other valid values for
the SWITCHOVER_STATUS column of the V$DATABASE view

Role Transitions Involving Physical Standby Databases

7-14 Oracle9i Data Guard Concepts and Administration

■ Drop any existing online redo logs at the target standby site and create new
ones using the ALTER DATABASE ADD STANDBY LOGFILE statement.

After you manually add the online redo logs, use the following SQL statement on
the physical standby database that you want to transition to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

Step 6 Shut down and restart the new primary database.
Shut down the target standby instance and restart it using the appropriate
initialization parameters for the primary role:

SQL> SHUTDOWN;
SQL> STARTUP;

The target physical standby database is now transitioned to the primary database
role.

On the new physical standby database

Step 7 Start managed recovery operations and log apply services.
Issue the following statement to begin managed recovery operations on the new
physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM SESSION;

On the new primary database

Step 8 Begin sending redo data to the standby databases.
Issue the following statement on the new primary database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

7.2.2 Failover Operations Involving a Physical Standby Database
This section describes how to perform failover operations involving a physical
standby database.

Note: There is no need to shut down and restart other standby
databases (not involved in the switchover) that are online at the
time of the switchover operation. These standby databases will
continue to function normally after the switchover completes.

Role Transitions Involving Physical Standby Databases

Role Management 7-15

During failover operations involving a physical standby database:

■ In all cases, the original primary database is removed from the Data Guard
configuration.

■ In most cases, other logical or physical standby databases not directly
participating in the failover operation remain in the configuration and do not
have to be shut down or restarted.

■ In some cases, it might be necessary to re-create all standby databases after
configuring the new primary database.

Before starting the failover operation, perform as many of the steps documented in
Section 7.1.3.1 as possible to prepare the selected standby database for the failover
operation, then proceed to Section 7.2.2.1 for the failover steps.

7.2.2.1 Failover Steps
The following steps describe how to perform a failover to a physical standby
database. Depending on the data protection mode in use, it might be possible to
automatically recover all committed transactions.

The steps described in this section transition the selected physical standby database
to the primary role so that any other physical or logical standby databases in the
configuration will remain in the configuration and will not need to be shut down or
restarted.

Step 1 Identify and resolve any archived redo log gaps.
To determine if there are gaps at the target standby database in the archived redo
logs received from the primary database, query the V$ARCHIVE_GAP view. This
view contains the sequence numbers of the archived logs that are known to be
missing for each thread. The data returned reflects the highest gap only. (Step 3 will
provide instructions on how to resolve any additional gaps.)

For example:

SQL> SELECT THREAD#, LOW_SEQUENCE#, HIGH_SEQUENCE# FROM V$ARCHIVE_GAP;
THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 90 92

In this example the gap comprises archive logs 90, 91, and 92 for thread 1. If
possible, copy all of the identified missing archived redo logs to the target standby
database from the primary database or from another standby database and register
them. This must be done for each thread.

Role Transitions Involving Physical Standby Databases

7-16 Oracle9i Data Guard Concepts and Administration

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE ’filespec1’;

Step 2 Copy any other missing archived redo logs.
To determine if there are any other missing archived redo logs, query the
V$ARCHIVED_LOG view on all available databases in the configuration to obtain the
highest sequence number for each thread.

For example:

SQL> SELECT UNIQUE THREAD# AS THREAD, MAX(SEQUENCE#)
 2> OVER (PARTITION BY thread#) AS LAST from V$ARCHIVED_LOG;

 THREAD LAST
---------- ----------
 1 100

Copy any archived redo logs from the other available databases that contain
sequence numbers higher than the highest sequence number available on the target
standby database to the target standby database and register them. This must be
done for each for each thread.

For example:

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE ’filespec1’;

Note: The preceding procedure might result in a partial archived
redo log being registered. A partial archived redo log contains all of
the primary database redo data received by the standby database
when the primary database fails, but the archived redo log is not
automatically registered in the standby database.

When you register a partial archive log, it prevents the recovery of
standby redo logs. Therefore, whether or not you have registered a
partial archive log determines which failover command needs to be
used. When you manually register a partial archived redo log, the
following message is displayed in the alert log:

Register archivelog ‘filespec1’ was created due to
a network disconnect; archivelog contents are
valid but missing subsequent data

Role Transitions Involving Physical Standby Databases

Role Management 7-17

Step 3 Repeat steps 1 and 2.
The query executed in step 1 displays information for the highest gap only. After
resolving that gap, you must repeat steps 1 and 2 until the query in step 1 returns
no rows.

Step 4 Initiate the failover operation on the target physical standby database.
If your target standby database was configured with standby redo logs and you
have not manually registered any partial archived redo logs, issue the following
statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH;

Otherwise, you must issue the following statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH
 2> SKIP STANDBY LOGFILE;

Step 5 Convert the physical standby database to the primary role.
Once the SQL ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE...FINISH statement completes successfully, transition the physical
standby database to the primary database role by issuing the following SQL
statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

After issuing this SQL statement, you can no longer use this database as a standby
database and subsequent redo logs from the original primary database cannot be
applied. The standby redo logs were archived and should be copied to, registered,
and recovered on all other standby databases derived from the original primary
database. This will happen automatically if the standby destinations are correctly
defined on the new primary database.

There is no need to shut down and restart other standby databases in the
configuration that were not participants in the failover operation. During a failover,
the original primary database is eliminated from participating in the configuration.
To reuse the old primary database in the new configuration, you must re-create it as
a standby database, using a backup copy of the new primary database.

Role Transitions Involving Physical Standby Databases

7-18 Oracle9i Data Guard Concepts and Administration

On the primary database and all remaining standby databases

Step 6 Prepare to receive redo logs from the new primary database.
Once the archived standby redo logs have been received and recovered on all
standby destinations, the other standby databases in the configuration are ready to
receive redo logs from the new primary database. If the new primary database does
not define archived log destinations for the other standby databases, you must
define and enable them. In addition, you may need to manually copy and register
the resulting failover archived redo logs on each of the remaining standby databases
in the configuration.

To manually register any copied archived redo logs that were not automatically
applied, issue the following statement on each standby database for each copied log
file:

SQL> ALTER DATABASE REGISTER LOGFILE 'filespec';

On the new primary database

Step 7 Shut down and restart the new primary database.
To complete the failover operation, you need to shutdown the new primary
database and restart it in read/write mode using the proper traditional initialization
parameter file (or server parameter file) for the primary role:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP;

Step 8 Optionally, back up the new primary database.
Optionally, before issuing the STARTUP statement, you might want to back up the
new primary database. This task, while not required, is a recommended safety
measure, because you cannot recover changes made after the failover without a
backup copy.

As a result of the failover operation, the original primary database can no longer
participate in the Data Guard configuration, and all other standby databases are
now receiving and applying redo data from the new primary database.

See Also: Section 5.8.2 for complete information about how to
configure initialization parameters on both the primary and
standby databases so that your Data Guard configuration operates
properly after a role transition

Role Transitions Involving Logical Standby Databases

Role Management 7-19

7.3 Role Transitions Involving Logical Standby Databases
This section describes how to perform switchover and failover operations involving
a logical standby database.

7.3.1 Switchover Operations Involving a Logical Standby Database
When you perform a switchover operation that changes roles between a primary
database and a logical standby database, always initiate the switchover operation
on the primary database and complete it on the logical standby database. The
following steps describe how to perform the switchover operation.

On the original primary database

Step 1 Switch the primary database to the logical standby database role.
To transition the primary database to a logical standby database role, issue the
following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY;

This statement waits for all current update operations on the primary database to
end and prevents any new users from starting update operations. It also puts a
marker in the redo log file to provide a synchronization point for logical standby
database operations. Executing this statement also will prevent users from making
any changes to the data being maintained in the logical standby database. To ensure
faster execution, ensure that the primary database is in a quiet state with no update
activity before issuing the switchover statement (for example, have all users
temporarily log off the primary database).

The primary database is transitioned to run in the standby database role.

When you transition a primary database to a logical standby database role, you do
not have to shut down and restart the database.

Step 2 Defer archiving redo logs.
Defer archiving redo logs for all remote database destinations:

Note: Currently, the SWITCHOVER_STATUS column of the
V$DATABASE view is supported only for use with physical standby
databases and therefore is not queried during switchover
operations involving logical standby databases.

Role Transitions Involving Logical Standby Databases

7-20 Oracle9i Data Guard Concepts and Administration

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=DEFER SCOPE=BOTH;

To ensure that this change will persist if the database is later restarted, update the
appropriate initialization parameter file or server parameter file. In general, when
the database operates in the primary role, you must enable archiving redo logs to
remote destinations, and when the database operates in the standby role, you must
disable archiving redo logs to remote destinations.

On the original logical standby database

Step 3 Switch the logical standby database to the primary database role.
On the logical standby database that you want to run in the primary role, use the
following SQL statement to switch the logical standby database to the primary role:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;

There is no need to shut down and restart any logical standby databases that are in
the Data Guard configuration. Other existing logical standby databases will
continue to function normally after a switchover operation completes. All existing
physical standby databases, however, are rendered unable to participate in the Data
Guard configuration after the switchover.

Step 4 Enable archiving redo logs.
Identify the initialization parameters that correspond to the new logical standby
database and to all other remote logical standby destinations, and enable archiving
redo logs for each of these destinations.

For example, to enable archiving redo logs for the remote destination defined by the
LOG_ARCHIVE_DEST_2 parameter, issue the following statement:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

To ensure that this change will persist if the new primary database is later restarted,
update the appropriate traditional initialization parameter file or server parameter
file. In general, when the database operates in the primary role, you must enable

See Also: Section 7.1.2.1 which describes how to specify the LOG_
ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n
initialization parameters for each database to ensure that all
standby locations can continue to receive redo data after a role
transition

Role Transitions Involving Logical Standby Databases

Role Management 7-21

archiving redo logs to remote destinations, and when the database operates in the
standby role, you must disable archiving redo logs to remote destinations.

On all logical standby databases

Step 5 Create a database link to the new primary database.
On each logical standby database (including the former primary database and all
other pre-existing logical standby databases), follow these steps to define a database
link to the new primary database:

1. On each logical standby database, create a database link that points to the new
primary database. (The example in this step uses the database link
location1.)

Use the DBMS_LOGSTDBY.GUARD_BYPASS_ON procedure to bypass the
database guard and allow modifications to the tables in the logical standby
database. For example:

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;
SQL> CREATE DATABASE LINK location1
 2> CONNECT TO user-name IDENTIFIED BY password USING ’location1’;
SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

The database user account specified in the CREATE DATABASE LINK
statement must have the SELECT_CATALOG_ROLE role granted to it on the new
primary database.

2. Verify the database link.

On each logical standby database, verify that the database link was configured
correctly by executing the following query using the database link:

SQL> SELECT * FROM DBA_LOGSTDBY_PARAMETERS@location1;

If the query succeeds, then you have verified that the database link created in
step 1 can be used to complete the switchover.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the DBMS_LOGSTDBY package and the
Oracle9i Database Administrator’s Guide for more information about
creating database links

Role Transitions Involving Logical Standby Databases

7-22 Oracle9i Data Guard Concepts and Administration

Step 6 Begin SQL apply operations.
On the new logical standby database (formerly the primary database) and on any
other existing logical standby destinations, begin SQL apply operations:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY location1;

In the example, location1 is the database link to the new primary database.

On the new primary database

Step 7 Ensure all standby databases begin receiving redo logs.
On the new primary database, enable archive logging and switch logs to ensure that
all the standby databases begin receiving redo logs by executing the following SQL
statements:

SQL> ALTER SYSTEM ARCHIVE LOG START;
SQL> ALTER SYSTEM SWITCH LOGFILE;

7.3.2 Failover Operations Involving a Logical Standby Database
This section describes how to perform failover operations involving a logical
standby database.

During failover operations involving a logical standby database:

■ In all cases, the original primary database and all physical standby databases
are removed from the Data Guard configuration.

■ In most cases, other logical standby databases not directly participating in the
failover operation remain in the configuration and do not have to be shut down
or restarted.

■ In some cases, it might be necessary to re-create all standby databases after
configuring the new primary database.

Before starting the failover operation, perform as many of the steps documented in
Section 7.1.3.1 as possible to prepare the selected standby database for the failover
operation. Depending on the protection mode for the configuration and the
attributes you chose for log transport services, it might be possible to automatically
recover all or some of the primary database modifications.

To start the failover operation, perform the following steps.

Role Transitions Involving Logical Standby Databases

Role Management 7-23

On the logical standby database being transitioned to the primary role

Step 1 Copy and register any missing archived redo logs.
Depending on the nature of the emergency, you might have access to the archived
redo logs on the primary database or another standby database. If so, do the
following:

1. Determine if any archived redo logs are missing on the logical standby
database.

2. Copy the missing logs from the primary database or another standby database
to the logical standby database.

3. Register the copied logs.

On the logical standby database, query the DBA_LOGSTDBY_LOG view to determine
which logs are missing and then register them. For example, the following query
indicates there is a gap in the sequence of archived redo logs because it displays two
files for THREAD 1 on the logical standby database. (If there are no gaps, the query
will show only one file for each thread.) The output shows that the highest
registered file is sequence number 10, but there is a gap at the file shown as
sequence number 6:

SQL> COLUMN FILE_NAME FORMAT a55;
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L
 2> WHERE NEXT_CHANGE# NOT IN
 3> (SELECT FIRST_CHANGE# FROM DBA_LOGSTDBY_LOG WHERE L.THREAD# = THREAD#)
 4> ORDER BY THREAD#,SEQUENCE#;

 THREAD# SEQUENCE# FILE_NAME
---------- ---------- ---
 1 6 /disk1/oracle/dbs/log-1292880008_6.arc
 1 10 /disk1/oracle/dbs/log-1292880008_10.arc

To resolve the gap in archived redo logs, copy the archived redo logs with sequence
numbers 7 and 11 (you copy the files that are one greater than each row shown in
the query). Then, register these archived redo logs on the logical standby database.
For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/log-1292880008_7.arc';
Database altered.

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/log-1292880008_11.arc';

Role Transitions Involving Logical Standby Databases

7-24 Oracle9i Data Guard Concepts and Administration

Database altered.

After you copy and register the missing archived redo logs to the logical standby
system, query the DBA_LOGSTDBY_LOG view again to ensure there are no more
gaps and that the next thread and sequence number needed by the logical standby
database do not exist.

Step 2 Copy and register the online redo logs from the primary database.
Depending on the nature of the emergency, online redo logs might be available on
the primary database. If so, you should copy and register the missing online redo
logs from the primary database and then apply them to the logical standby
database.

If you register any online redo logs that have already been archived and registered
on the logical standby database, the ORA-01289 message is returned. You can safely
ignore this error message. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/online_log1.log';
ALTER DATABASE REGISTER LOGICAL LOGFILE '/disk1/oracle/dbs/online_log1.log'
*
ERROR at line 1:
ORA-01289: cannot add duplicate logfile

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/online_log2.log';
Database altered.

Step 3 Register partially filled archived redo logs, if any exist.
Depending on the nature of the emergency, you might not have access to any files
on the primary database. To look for a partially filled archived redo log, query the
DBA_LOGSTDBY_LOG view on the logical standby database in the same directory
where the other archived redo logs are located. If a partially filled archived redo log
exists, its sequence number will be one greater than the last registered archived redo
log. For example:

SQL> COLUMN FILE_NAME FORMAT a55
SQL> SELECT THREAD#, SEQUENCE#, FILE_NAME FROM DBA_LOGSTDBY_LOG L
 2> ORDER BY THREAD#,SEQUENCE#;

 THREAD# SEQUENCE# FILE_NAME
---------- ---------- ---
 1 3 /disk1/oracle/dbs/db1loga-1292880008_3.arc
 1 4 /disk1/oracle/dbs/archlogb-1292880008_4.arc

Role Transitions Involving Logical Standby Databases

Role Management 7-25

 1 5 /disk1/oracle/dbs/archlogb-1292880008_5.arc
 1 6 /disk1/oracle/dbs/archlogb-1292880008_6.arc
 1 7 /disk1/oracle/dbs/archlogb-1292880008_7.arc
 1 8 /disk1/oracle/dbs/archlogb-1292880008_8.arc
 1 9 /disk1/oracle/dbs/archlogb-1292880008_9.arc
 1 10 /disk1/oracle/dbs/archlogb-1292880008_10.arc

8 rows selected.

If a partially filled archived log exists, register it. For example:

SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE
 2> '/disk1/oracle/dbs/log-1292880008_11.arc';

Database altered.

Step 4 Turn off the apply delay interval.
To turn off the apply delay interval, stop log apply services, and execute the DBMS_
LOGSTDBY.APPLY_UNSET procedure. Then, restart log apply services.

Although the apply delay interval might have been set originally on the primary
database, you must issue the following statements on the logical standby database
to disable the apply delay interval because the primary database is no longer
available:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('APPLY_DELAY');
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
Database altered.

Step 5 Ensure that all redo logs were applied.
On the logical standby database that you are transitioning to the primary role,
verify that the remaining archived redo logs were applied by querying the DBA_
LOGSTDBY_PROGRESS view. For example:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 190725 190725

Role Transitions Involving Logical Standby Databases

7-26 Oracle9i Data Guard Concepts and Administration

When the APPLIED_SCN and NEWEST_SCN values are equal, all attainable data is
applied and the logical standby database now contains as much data as possible
from the primary database.

Step 6 Activate the new primary database.
Issue the following statements on the logical standby database (that you are
transitioning to the new primary role) to stop SQL apply operations and activate the
database in the primary database role:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE ACTIVATE LOGICAL STANDBY DATABASE;

On all other logical standby databases

Step 1 Recover the other standby databases.
Depending on how much redo data you were able to apply to the new primary
database, you might or might not be able to add existing logical standby databases
back into the Data Guard configuration to serve as standby databases for the new
primary database.

Step 2 Create a database link to the new primary database from the other
standby databases.
Follow these steps to define a database link to the new primary database that will
be used during future switchover operations:

1. Create a database link on each logical standby database.

Use the DBMS_LOGSTDBY.GUARD_BYPASS_ON procedure to bypass the
database guard and allow modifications to the tables in the logical standby
database. For example:

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;
SQL> CREATE DATABASE LINK location1
 2> CONNECT TO <user-name> IDENTIFIED BY <password> USING ’location1’;
SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

The database user account specified in the CREATE DATABASE LINK
statement must have the SELECT_CATALOG_ROLE role granted to it on the
primary database.

See Also: Chapter 9 and Chapter 10 for information about the
DBA_LOGSTDBY_PROGRESS view

Role Transitions Involving Logical Standby Databases

Role Management 7-27

2. Verify the database link.

On the logical standby database, verify that the database link was configured
correctly by executing the following query using the database link:

SQL> SELECT * FROM DBA_LOGSTDBY_PARAMETERS@location1;

If the query succeeds, then you have verified that the database link created in
step 1 can be used to perform a switchover.

On the new primary database
Enable archiving redo logs to all remote logical standby destinations. For example:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2=ENABLE SCOPE=BOTH;

To ensure that this change will persist if the new primary database is later restarted,
update the appropriate initialization parameter file or server parameter file. In
general, when the database operates in the primary role, you must enable archiving
redo logs to remote destinations, and when the database operates in the standby
role, you must disable archiving redo logs to remote destinations.

On all logical standby databases
Begin log apply services by issuing this SQL statement on all logical standby
databases:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY location1;

When this statement completes, all remaining archived redo logs will have been
applied. Depending on the work to be done, this operation can take some time to
complete.

If the ORA-16109 error is returned, you must re-create the logical standby database
from a backup copy of the new primary database, and then add it to the Data Guard
configuration.

The following example shows a failed attempt to start log apply services on a
logical standby database in the new configuration where location1 points to the
new primary database:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the DBMS_LOGSTDBY package and Oracle9i
Database Administrator’s Guide for more information about creating
database links.

Role Transitions Involving Logical Standby Databases

7-28 Oracle9i Data Guard Concepts and Administration

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY location1;
ALTER DATABASE START LOGICAL STANDBY APPLY NEW PRIMARY location1
 *
ERROR at line 1:
ORA-16109: failed to apply log data from previous primary

Managing a Physical Standby Database 8-1

8
Managing a Physical Standby Database

This chapter describes how to manage a physical standby database. Data Guard
provides the means to easily manage, manipulate, and change a physical standby
database in many ways.

This chapter contains the following topics:

■ Starting Up and Shutting Down a Physical Standby Database

■ Using a Standby Database That Is Open for Read-Only Access

■ Creating Primary Database Back Up Files Using a Physical Standby Database

■ Managing Primary Database Events That Affect the Standby Database

■ Monitoring the Primary and Standby Databases

8.1 Starting Up and Shutting Down a Physical Standby Database
This section describes the procedures for starting up and shutting down a physical
standby database.

8.1.1 Starting Up a Physical Standby Database
To start up a physical standby database, use SQL*Plus to connect to the database
with administrator privileges, and then use the SQL*Plus STARTUP command with
the NOMOUNT option. (You must use the NOMOUNT option with a standby database.)

If both the primary and standby databases are offline, then always (if possible) start
the standby database before starting the primary database.

After the database is started, mount the database as a standby database. Once it is
mounted, the database can receive archived redo data from the primary database.

Starting Up and Shutting Down a Physical Standby Database

8-2 Oracle Data Guard Concepts and Administration

You then have the option of either starting a managed recovery operation or
opening the database for read-only access. Typically, you start a managed recovery
operation. The following example shows how to start a standby database:

1. Start the database:

SQL> STARTUP NOMOUNT;

2. Mount the standby database:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

3. Start the managed recovery operation:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

Once the database is performing managed recovery, log apply services apply the
archived redo logs to the standby database.

8.1.2 Shutting Down a Physical Standby Database
To shut down a physical standby database, use the SQL*Plus SHUTDOWN command.
If the database is performing managed recovery, you must cancel managed recovery
operations before issuing the SHUTDOWN command. Control is not returned to the
session that initiates a database shutdown until shutdown is complete.

If the primary database is up and running, defer the archive log destination on the
primary database and perform a log switch operation (to make the defer operation
take effect) before shutting down the standby database. Otherwise, log transport
services will not be able to transmit redo data to this standby site.

The following steps show you how to shut down a standby database:

1. Find out if the standby database is performing managed recovery. If the MRP0
or MRP process exists, then the standby database is performing managed
recovery.

SQL> SELECT PROCESS, STATUS FROM V$MANAGED_STANDBY;

2. Cancel managed recovery operations.

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

See Also: Section 6.2.2 for information about managed recovery
and Section 8.2 for information on opening a standby database for
read-only access

Using a Standby Database That Is Open for Read-Only Access

Managing a Physical Standby Database 8-3

3. Shut down the standby database.

SQL> SHUTDOWN IMMEDIATE;

8.2 Using a Standby Database That Is Open for Read-Only Access
When a standby database is open for read-only access, users can query the standby
database without the potential for online data modifications. This reduces the load
on the primary database by using the standby database for reporting purposes. You
can periodically open the standby database for read-only access and perform ad hoc
queries to ensure that log apply services are updating the standby database
correctly.

Figure 8–1 shows a standby database open for read-only access.

Figure 8–1 Standby Database Open for Read-Only Access

Primary
Database

0001

0002

Online Redo
Logs

San Francisco

Boston

Standby
Database

in Read-Only
Mode

Archived
Redo Logs

Application

Archived Redo
Logs

0001

0002

0003

Read / Write
Transactions

Local
Archiving

Log
Transport
Services

Log
Apply

Services

Queries

Using a Standby Database That Is Open for Read-Only Access

8-4 Oracle Data Guard Concepts and Administration

This section contains the following topics:

■ Assessing Whether to Open a Standby Database for Read-Only Access

■ Opening a Standby Database for Read-Only Access

8.2.1 Assessing Whether to Open a Standby Database for Read-Only Access
As you decide whether or not to open a physical standby database for read-only
access, consider the following:

■ Having a physical standby database open for read-only access makes it
unavailable for managed recovery operations. The archived redo data is
received by the standby database, but the redo logs are not applied. Therefore, a
standby database that is open for read-only access is not transactionally current
with the primary database. At some point, you need to resume managed
recovery on the standby database, and apply the archived redo logs to
resynchronize the standby database with the primary database. Having a
standby database open for read-only access might prolong a failover or
switchover operation if one is required for disaster recovery.

■ If you need a standby database for protection against disaster and for reporting,
then you can maintain multiple standby databases: some open for read-only
access and some performing managed recovery (which will automatically apply
the archived redo logs to the standby database). However, you will need to
perform managed recovery on all the standby databases periodically to ensure
that the latest changes from the primary database are applied to the standby
database. A physical standby database performing managed recovery gives you
immediate protection against disaster.

8.2.2 Opening a Standby Database for Read-Only Access
You can alternate between having a standby database open for read-only access and
having a standby database perform managed recovery using the following
procedures.

Note: Consider using a logical standby database if your business
requires that the standby database be used for queries and
reporting purposes concurrent with fulfilling disaster recovery
requirements.

Using a Standby Database That Is Open for Read-Only Access

Managing a Physical Standby Database 8-5

To open a standby database for read-only access when it is currently
shut down:
1. Start the Oracle instance for the standby database without mounting it:

SQL> STARTUP NOMOUNT;

2. Mount the standby database:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

3. Open the database for read-only access:

SQL> ALTER DATABASE OPEN READ ONLY;

To open a standby database for read-only access when it is currently
performing managed recovery:
1. Cancel log apply services:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

2. Open the database for read-only access:

SQL> ALTER DATABASE OPEN READ ONLY;

To change the standby database from being open for read-only access
to performing managed recovery:
1. Terminate all active user sessions on the standby database.

2. Restart log apply services:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;
 2> DISCONNECT FROM SESSION;

8.2.3 Sorting Considerations For Standby Databases Open for Read-Only Access
Before you open your standby database for read-only access, consider the following
topics regarding sorting operations:

■ Sorting Operations While the Database Is Open for Read-Only Access

■ Sorting Operations Without Temporary Tablespaces

8.2.3.1 Sorting Operations While the Database Is Open for Read-Only Access
To perform queries that sort a large amount of data on a standby database that is
open for read-only access, the Oracle database server must be able to perform

Using a Standby Database That Is Open for Read-Only Access

8-6 Oracle Data Guard Concepts and Administration

on-disk sorting operations. You cannot allocate space for sorting operations in
tablespaces that cause Oracle software to write to the data dictionary.

Temporary tablespaces allow you to add tempfile entries when the database is
open for read-only access for the purpose of making queries without affecting
dictionary files or generating redo entries. Therefore, you can use temporary
tablespaces as long as you follow these requirements for creating them:

■ The tablespaces must be temporary, locally managed, and contain only
temporary files.

■ User-level allocations and permissions to use the locally managed temporary
tablespaces must be in place on the primary database. You cannot change these
settings on the standby database.

■ You must create and associate a temporary file for the temporary tablespace on
the standby database.

To create a temporary tablespace for use on a read-only physical
standby database
If you did not have a temporary tablespace on the primary database when you
created the physical standby database, perform the following steps on the primary
database:

1. Enter the following SQL statement:

SQL> CREATE TEMPORARY TABLESPACE temp1
 TEMPFILE '/disk1/oracle/dbs/temp1.dbf'
 SIZE 20M REUSE
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

2. Switch the log to send the redo data to the standby database:

SQL> ALTER SYSTEM SWITCH LOGFILE;

To create and associate a temporary file with a temporary tablespace on
a read-only physical standby database
The redo data that is generated on the primary database automatically creates the
temporary tablespace in the standby control file after the archived redo log is
applied to the physical standby database. However, even if the temporary
tablespace existed on the primary database before you created the physical standby
database, you must use the ADD TEMPFILE clause to actually create the disk file on
the standby database.

On the physical standby database, perform the following steps:

Using a Standby Database That Is Open for Read-Only Access

Managing a Physical Standby Database 8-7

1. Start managed recovery, if necessary, and apply the archived redo logs by
entering the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

2. Cancel managed recovery and open the physical standby database for
read-only access using the following SQL statements:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE OPEN READ ONLY;

Opening the physical standby database for read-only access allows you to add a
temporary file. Because adding a temporary file does not generate redo data, it
is allowed for a database that is open for read-only access.

3. Create a temporary file for the temporary tablespace. The size and names for
the files can differ from the primary database. For example:

SQL> ALTER TABLESPACE temp1
 ADD TEMPFILE '/disk1/oracle/dbs/s_temp1.dbf'
 SIZE 10M REUSE;

8.2.3.2 Sorting Operations Without Temporary Tablespaces
If a temporary file does not exist on the standby database, or if the standby database
is not open and you attempt to sort a large amount of data, an error is returned, as
shown in the following example.

SQL> SELECT * FROM V$PARAMETER;

select * from v$parameter

 *

ERROR at line 1:

ORA-01220: file based sort illegal before database is open

Note that you can, however, sort small amounts of data if the SORT_AREA_SIZE
parameter is set to a sufficient value in your server parameter file. (The SORT_
AREA_SIZE parameter is a static parameter.)

See Also: Oracle9i SQL Reference for information about the
CREATE TEMPORARY TABLESPACE syntax

Creating Primary Database Back Up Files Using a Physical Standby Database

8-8 Oracle Data Guard Concepts and Administration

8.3 Creating Primary Database Back Up Files Using a Physical Standby
Database

You can use the physical standby database to off-load the database backup
operation from the primary database because a physical standby database is a copy
of the primary database. Using RMAN at the standby site, you can back up the
datafiles and the archived redo logs while the standby database is performing
managed recovery. Later, you can restore these backups to the primary database
using RMAN.

8.4 Managing Primary Database Events That Affect the Standby
Database

To prevent possible problems, you should be aware of events in the primary
database that affect a standby database and learn how to respond to them. This
section describes these events and the recommended responses to these events.

In some cases, the events or changes that occur on a primary database are
automatically propagated through archived redo logs to the standby database and
thus require no extra action on the standby database. In other cases, you might need
to perform maintenance tasks on the standby database.

Table 8–1 indicates whether or not a change made on the primary database requires
additional intervention by the database administrator (DBA) to be propagated to
the standby database. It also briefly describes how to respond to these events.
Detailed descriptions of the responses are described in the section references
provided.

Note: You cannot use a logical standby database to back up the
primary database.

See Also: Oracle9i Recovery Manager User’s Guide for more details
about RMAN backup and recovery of a primary database using a
standby database

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-9

The following events are automatically administered by log transport services and
log apply services, and therefore require no intervention by the database
administrator:

■ A SQL ALTER DATABASE statement is issued with the ENABLE THREAD or
DISABLE THREAD clause.

■ The status of a tablespace changes (changes to read/write or read-only, placed
online or taken offline).

■ A datafile is added or tablespace is created when the STANDBY_FILE_
MANAGEMENT initialization parameter is set to AUTO.

Caution: If you clear logs at the primary database by issuing the
ALTER DATABASE CLEAR UNARCHIVED LOGFILE statement, or
open the primary database using the RESETLOGS option, you
invalidate the standby database. Because both of these operations
reset the primary log sequence number to 1, you must re-create the
standby database to be able to apply archived redo logs generated
by the primary database.

Table 8–1 Actions Required on a Standby Database After Changes to a Primary Database

Reference Change Made on Primary Database Action Required on Standby Database

Section 8.4.1 Add a datafile or create a tablespace If you did not set the STANDBY_FILE_MANAGEMENT
initialization parameter to AUTO, you must copy the
new datafile to the standby database.

Section 8.4.2 Drop or delete a tablespace or datafile Delete the corresponding datafile after the archived
redo log was applied.

Section 8.4.3 Rename a datafile Rename the datafile on the standby database.

Section 8.4.4 Add or drop online redo logs Synchronize changes on the standby database.

Section 8.4.5 Alter the primary database control
file (using the SQL ALTER DATABASE
CREATE CONTROLFILE statement)

Re-create the standby control file or re-create the
standby database, depending on the alteration made.

Section 8.4.6 Perform a DML or DDL operation
using the NOLOGGING or
UNRECOVERABLE clause

Send the datafile containing the unlogged changes to
the standby database.

Chapter 11 Change initialization parameter Dynamically change the standby parameter or shut
down the standby database and update the
initialization parameter file.

Managing Primary Database Events That Affect the Standby Database

8-10 Oracle Data Guard Concepts and Administration

8.4.1 Adding a Datafile or Creating a Tablespace
The initialization parameter, STANDBY_FILE_MANAGEMENT, allows you to control
whether or not adding a datafile to the primary database is automatically
propagated to the standby database, as follows:

■ If you set the STANDBY_FILE_MANAGEMENT initialization parameter in the
standby database server parameter file to AUTO, any new datafiles created on
the primary database are automatically created on the standby database as well.

■ If you do not specify the STANDBY_FILE_MANAGEMENT initialization
parameter or if you set it to MANUAL, then you must manually copy the new
datafile to the standby database when you add a datafile to the primary
database.

Note that if you copy an existing datafile from another database to the primary
database, then you must also copy the new datafile to the standby database and
re-create the standby control file, regardless of the setting of STANDBY_FILE_
MANAGEMENT initialization parameter.

The following sections provide examples of adding a datafile to the primary and
standby databases when the STANDBY_FILE_MANAGEMENT initialization parameter
is set to AUTO and MANUAL, respectively.

8.4.1.1 Adding a Tablespace and a Datafile When STANDBY_FILE_
MANAGEMENT Is Set to AUTO
The following example shows the steps required to add a new datafile to the
primary and standby databases when the STANDBY_FILE_MANAGEMENT
initialization parameter is set to AUTO.

1. Add a new tablespace to the primary database:

SQL> CREATE TABLESPACE new_ts DATAFILE 't_db2.dbf'
 2> SIZE 1m AUTOEXTEND ON MAXSIZE UNLIMITED;

2. Archive the current redo log so it will get copied to the standby database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

3. Verify that the new datafile was added to the primary database:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/dbs/t_db1.dbf
/disk1/oracle/dbs/t_db2.dbf

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-11

4. Verify that the new datafile was added to the standby database:

SQL> SELECT NAME FROM V$DATAFILE;
NAME
--
/disk1/oracle/dbs/s2t_db1.dbf
/disk1/oracle/dbs/s2t_db2.dbf

8.4.1.2 Adding a Tablespace and a Datafile When STANDBY_FILE_
MANAGEMENT Is Set to MANUAL
The following example shows the steps required to add a new datafile to the
primary and standby database when the STANDBY_FILE_MANAGEMENT
initialization parameter is set to MANUAL. You must set the STANDBY_FILE_
MANAGEMENT initialization parameter to MANUAL when the standby datafiles reside
on raw devices.

1. Add a new tablespace to the primary database:

SQL> CREATE TABLESPACE new_ts DATAFILE 't_db2.dbf'
 2> SIZE 1m AUTOEXTEND ON MAXSIZE UNLIMITED;

2. Verify that the new datafile was added to the primary database:

SQL> SELECT NAME FROM V$DATAFILE;
NAME

--
/disk1/oracle/dbs/t_db1.dbf
/disk1/oracle/dbs/t_db2.dbf

3. Perform the following steps to copy the tablespace to a remote standby location:

a. Place the new tablespace offline:

SQL> ALTER TABLESPACE new_ts OFFLINE;

b. Copy the new tablespace to a local temporary location using an operating
system utility copy command. Copying the files to a temporary location
will reduce the amount of time that the tablespace must remain offline. The
following example copies the tablespace using the UNIX cp command:

% cp t_db2.dbf s2t_db2.dbf

c. Place the new tablespace back online:

Managing Primary Database Events That Affect the Standby Database

8-12 Oracle Data Guard Concepts and Administration

SQL> ALTER TABLESPACE new_ts ONLINE;

d. Copy the local copy of the tablespace to a remote standby location using an
operating system utility command. The following example uses the UNIX
rcp command:

%rcp s2t_db2.dbf standby_location

4. Archive the current redo log on the primary database so it will get copied to the
standby database:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

5. Use the following query to make sure that managed recovery is running. If the
MRP or MRP0 process is returned, managed recovery is being performed.

SQL> SELECT PROCESS, STATUS FROM V$MANAGED_STANDBY;

6. Verify that the datafile was added to the standby database after the redo log
was applied to the standby database.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

--
/disk1/oracle/dbs/s2t_db1.dbf
/disk1/oracle/dbs/s2t_db2.dbf

8.4.2 Dropping a Tablespace in the Primary Database
When you delete one or more datafiles or drop one or more tablespaces in the
primary database, you also need to delete the corresponding datafiles in the
standby database, as follows:

1. Drop the tablespace at the primary site:

SQL> DROP TABLESPACE tbs_4;
SQL> ALTER SYSTEM SWITCH LOGFILE;
% rm tbs_4.dbf

2. Make sure that managed recovery is on (so that the change is applied to the
standby database). If the following query returns the MRP or MRP0 process,
managed recovery is on.

SQL> SELECT PROCESS, STATUS FROM V$MANAGED_STANDBY;

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-13

3. Delete the corresponding datafile on the standby site after the archived redo log
was applied to the standby database. For example:

% rm tbs_4.dbf

4. On the primary database, after ensuring that the standby database has applied
the redo information for the dropped tablespace, you can remove the datafile
for the tablespace. For example:

% rm tbs_4.dbf

8.4.3 Renaming a Datafile in the Primary Database
When you rename one or more datafiles in the primary database, the change is not
propagated to the standby database. Therefore, if you want to rename the same
datafiles on the standby database, you must manually make the equivalent
modifications on the standby database because the modifications are not performed
automatically, even if the STANDBY_FILE_MANAGEMENT initialization parameter is
set to AUTO.

The following steps describe how to rename a datafile in the primary database and
manually propagate the changes to the standby database. If you do not want the
standby database to have the same physical structure as the primary database, then
these steps are not required.

1. To rename the datafile in the primary database, take the tablespace offline:

SQL> ALTER TABLESPACE tbs_4 OFFLINE;

2. Exit from the SQL prompt and issue an operating system command, such as the
following UNIX mv command, to rename the datafile on the primary system:

% mv tbs_4.dbf tbs_x.dbf

3. Rename the datafile in the primary database and bring the tablespace back
online:

SQL> ALTER TABLESPACE tbs_4 RENAME DATAFILE 'tbs_4.dbf'
 2> TO 'tbs_x.dbf';
SQL> ALTER TABLESPACE tbs_4 ONLINE;

4. Connect to the standby database and make sure that all the logs are applied;
then stop managed recovery operations:

SQL> SELECT NAME, SEQUENCE#, ARCHIVED, APPLIED
 2> FROM V$ARCHIVED_LOG;

Managing Primary Database Events That Affect the Standby Database

8-14 Oracle Data Guard Concepts and Administration

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

5. Shut down the standby database:

SQL> SHUTDOWN;

6. Rename the datafile at the standby site using an operating system command,
such as the UNIX mv command:

% mv tbs_4.dbf tbs_x.dbf

7. Start and mount the standby database with the new control file:

SQL> STARTUP NOMOUNT;
SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

8. Rename the datafile in the standby controlfile. Note that the STANDBY_FILE_
MANAGEMENT initialization parameter must be set to MANUAL.

SQL> ALTER DATABASE RENAME FILE 'tbs_4.dbf'
 2> TO 'tbs_x.dbf';

9. On the standby database, restart managed recovery operations:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

If you do not rename the corresponding datafile at the standby site, and then try to
refresh the standby database control file, the standby database will attempt to use
the renamed datafile, but it will not find it. Consequently, you will see error
messages similar to the following in the alert log:

ORA-00283: recovery session canceled due to errors
ORA-01157: cannot identify/lock data file 4 - see DBWR trace file
ORA-01110: data file 4: '/disk1/oracle/dbs/tbs_x.dbf'

8.4.4 Adding or Dropping Online Redo Logs
Changing the size and number of the online redo logs is sometimes done to tune the
database. You can add redo log file groups or members to the primary database
without affecting the standby database. Similarly, you can drop log file groups or
members from the primary database without affecting your standby database.
However, these changes do affect the performance of the standby database after
switchover.

Managing Primary Database Events That Affect the Standby Database

Managing a Physical Standby Database 8-15

For example, if the primary database has 10 redo logs and the standby database has
2, and then you switch over to the standby database so that it functions as the new
primary database, the new primary database is forced to archive more frequently
than the original primary database.

Consequently, when you add or drop an online redo log at the primary site, it is
important that you synchronize the changes in the standby database by following
these steps:

1. If managed recovery is on, you must cancel it before you can change the logs.

2. If the STANDBY_FILE_MANAGEMENT initialization parameter is set to AUTO,
change the value to MANUAL.

3. Add or drop an online redo log:

■ To add an online redo log, use a SQL statement such as this:

SQL> ALTER DATABASE ADD STANDBY LOGFILE 'prmy3.log' SIZE 100K;

■ To drop an online redo log, use a SQL statement such as this:

SQL> ALTER DATABASE DROP STANDBY LOGFILE 'prmy3.log’;

4. Repeat the statement you used in step 3 on each standby database.

5. Restore the STANDBY_FILE_MANAGEMENT initialization parameter and the
managed recovery options to their original states.

8.4.5 Altering the Primary Database Control File
Using the SQL CREATE CONTROLFILE statement with the RESETLOGS option on
your primary database will force the primary database to reset the online logs the
next time the primary database is opened, thereby invalidating the standby
database.

If you invalidated the control file for the standby database, re-create the file using
the procedure provided in Section 3.2.3.

If you invalidated the standby database, you must re-create the standby database
using the procedures in Chapter 3.

8.4.6 NOLOGGING or Unrecoverable Operations
When you perform a DML or DDL operation using the NOLOGGING or
UNRECOVERABLE clause, the standby database is invalidated and might require

Monitoring the Primary and Standby Databases

8-16 Oracle Data Guard Concepts and Administration

substantial DBA administrative activities to repair. You can specify the SQL ALTER
DATABASE or SQL ALTER TABLESPACE statement with the FORCELOGGING clause
to override the NOLOGGING setting. However, this statement will not repair an
invalidated database.

If you perform an unrecoverable operation (such as a direct path load), you will see
a performance improvement on the primary database; but there is no corresponding
recovery process performance improvement on the standby database, and you will
have to move the data manually to the standby database.

8.5 Monitoring the Primary and Standby Databases
This section gives you a general overview on where to find information for
monitoring the primary and standby databases in a Data Guard environment.

This section contains the following topics:

■ Alert Log

■ Dynamic Performance Views (Fixed Views)

■ Monitoring Recovery Progress

Table 8–2 summarizes common events that occur on the primary database and
pointers to the files and views where you can monitor these events on the primary
and standby sites.

See Also: Section 10.5 for information about recovering after the
NOLOGGING clause is used

Table 8–2 Location Where Common Actions on the Primary Database Can Be Monitored

Primary Database Event Primary Site Information Standby Site Information

A SQL ALTER DATABASE
statement is issued with the ENABLE
THREAD or DISABLE THREAD
clause specified

■ Alert log

■ V$THREAD view

Alert log

Redo log changed ■ Alert log

■ V$LOG view

■ STATUS column of
V$LOGFILE view

Alert log

CREATE CONTROLFILE statement
issued

Alert log Alert log1

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-17

8.5.1 Alert Log
The database alert log is a chronological record of messages and errors. Besides
providing information about the Oracle database, it also includes information about
operations specific to Data Guard, including the following:

Managed recovery performed Alert log Alert log

Tablespace status changes made
(made read/write or read-only,
placed online or offline)

■ DBA_TABLESPACES view

■ Alert log

V$RECOVER_FILE view

Datafile added or tablespace created ■ DBA_DATA_FILES view

■ Alert log

V$DATAFILE view

Alert log

Tablespace dropped ■ DBA_DATA_FILES view

■ Alert log

V$DATAFILE view

Alert log

Tablespace or datafile taken offline,
or datafile is deleted offline

■ V$RECOVER_FILE view

■ Alert log

V$RECOVER_FILE view

Rename datafile ■ V$DATAFILE

■ Alert log

V$DATAFILE

Alert log

Unlogged or unrecoverable
operations

■ V$DATAFILE view

■ V$DATABASE view

Alert log

Recovery progress ■ V$ARCHIVE_DEST_STATUS
view

■ Alert log

V$ARCHIVED_LOG view

V$LOG_HISTORY view

V$MANAGED_STANDBY view

Alert log

Autoextend a datafile Alert log Alert log

Issue OPEN RESETLOGS or CLEAR
UNARCHIVED LOGFILES
statements

Alert log Alert log

Change initialization parameter Alert log Alert log
1 When you issue a CREATE CONTROLFILE statement on the primary database, the standby database functions normally

until it encounters redo data that depends on initialization parameters.

Table 8–2 Location Where Common Actions on the Primary Database Can Be Monitored

Primary Database Event Primary Site Information Standby Site Information

Monitoring the Primary and Standby Databases

8-18 Oracle Data Guard Concepts and Administration

■ Messages related to administrative operations such as the following SQL
statements: ALTER DATABASE RECOVER MANAGED STANDBY, STARTUP,
SHUTDOWN, ARCHIVE LOG, and RECOVER

■ Errors related to administrative operations that are reported by background
processes, such as ARC0, MRP0, RFS, LGWR

■ The completion time stamp for administrative operations

The alert log also provides pointers to the trace or dump files generated by a
specific process.

8.5.2 Dynamic Performance Views (Fixed Views)
The Oracle database server contains a set of underlying views that are maintained
by the server. These views are often called dynamic performance views because
they are continuously updated while a database is open and in use, and their
contents relate primarily to performance. These views are also called fixed views
because they cannot be altered or removed by the database administrator.

These view names are prefixed with either V$ or GV$, for example, V$ARCHIVE_
DEST or GV$ARCHIVE_DEST.

Standard dynamic performance views (V$ fixed views) store information on the
local instance. In contrast, global dynamic performance views (GV$ fixed views),
store information on all open instances. Each V$ fixed view has a corresponding
GV$ fixed view.

8.5.3 Monitoring Recovery Progress
This section shows some samples of the types of views discussed in Section 8.5.2 for
monitoring recovery progress in a Data Guard environment. It contains the
following examples:

■ Monitoring the Process Activities

■ Determining the Progress of Managed Recovery Operations

■ Determining the Location and Creator of Archived Redo Logs

■ Viewing the Archive Log History

■ Determining Which Logs Were Applied to the Standby Database

See Also: Chapter 14, "Views" and the Oracle9i Database Reference
for additional information on view columns

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-19

■ Determining Which Logs Were Not Received by the Standby Site

8.5.3.1 Monitoring the Process Activities
You can obtain information about managed recovery operations on a standby
database by monitoring the activities performed by the following processes:

■ ARC0

■ MRP/MRP0

■ RFS

The V$MANAGED_STANDBY view on the standby database site shows you the
activities performed by both log transport and log apply processes in a Data Guard
environment. The CLIENT_P column in the output of the following query identifies
the corresponding primary database process.

SQL> SELECT PROCESS, CLIENT_PROCESS, SEQUENCE#, STATUS FROM V$MANAGED_STANDBY;

PROCESS CLIENT_P SEQUENCE# STATUS
------- -------- ---------- ------------
ARCH ARCH 0 CONNECTED
ARCH ARCH 0 CONNECTED
MRP0 N/A 204 WAIT_FOR_LOG
RFS LGWR 204 WRITING
RFS N/A 0 RECEIVING

8.5.3.2 Determining the Progress of Managed Recovery Operations
The V$ARCHIVE_DEST_STATUS view on either a primary or standby database site
provides you information such as the redo logs that are archived, the archived redo
logs that are applied, and the log sequence numbers of each. The following query
output shows the standby database is two archived logs behind in applying the
redo logs received from the primary database.

SQL> SELECT ARCHIVED_THREAD#, ARCHIVED_SEQ#, APPLIED_THREAD#, APPLIED_SEQ#
 2> FROM V$ARCHIVE_DEST_STATUS;

ARCHIVED_THREAD# ARCHIVED_SEQ# APPLIED_THREAD# APPLIED_SEQ#
---------------- ------------- --------------- ------------
1 947 1 945

8.5.3.3 Determining the Location and Creator of Archived Redo Logs
You can also query the V$ARCHIVED_LOG view on the standby database to find
additional information about archived redo logs. Some information you can get

Monitoring the Primary and Standby Databases

8-20 Oracle Data Guard Concepts and Administration

includes the location of the archived redo log, which process created the archived
redo log, redo log sequence number of each archived redo log, when the log was
archived, and whether or not the archived redo log was applied. For example:

SQL> SELECT NAME, CREATOR, SEQUENCE#, APPLIED, COMPLETION_TIME
 2> FROM V$ARCHIVED_LOG;

NAME CREATOR SEQUENCE# APP COMPLETIO
-- ------- --------- --- ---------
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00198.001 FGRD 198 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00199.001 FGRD 199 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00200.001 FGRD 200 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00201.001 LGWR 201 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00202.001 FGRD 202 YES 30-MAY-02
H:\ORACLE\ORADATA\PAYROLL\STANDBY\ARC00203.001 LGWR 203 YES 30-MAY-02

6 rows selected.

8.5.3.4 Viewing the Archive Log History
The V$LOG_HISTORY on the physical standby site shows you a complete history of
the archived log, including information such as the time of the first entry, the lowest
SCN in the log, the highest SCN in the log, and the sequence number of the
archived log.

SQL> SELECT FIRST_TIME, FIRST_CHANGE#, NEXT_CHANGE#, SEQUENCE# FROM V$LOG_
HISTORY;

FIRST_TIM FIRST_CHANGE# NEXT_CHANGE# SEQUENCE#
--------- ------------- ------------ ----------
13-MAY-02 190578 214480 1
13-MAY-02 214480 234595 2
13-MAY-02 234595 254713 3
.
.
.
30-MAY-02 3418615 3418874 201
30-MAY-02 3418874 3419280 202
30-MAY-02 3419280 3421165 203

203 rows selected.

Monitoring the Primary and Standby Databases

Managing a Physical Standby Database 8-21

8.5.3.5 Determining Which Logs Were Applied to the Standby Database
Query the V$LOG_HISTORY view on the standby database, which records the latest
log sequence number that was applied. For example, issue the following query:

SQL> SELECT THREAD#, MAX(SEQUENCE#) AS "LAST_APPLIED_LOG"
 2> FROM V$LOG_HISTORY
 3> GROUP BY THREAD#;

THREAD# LAST_APPLIED_LOG
------- ----------------
 1 967

In this example, the archived redo log with log sequence number 967 is the most
recently applied log.

You can also use the APPLIED column in the V$ARCHIVED_LOG fixed view on the
standby database to find out which log is applied on the standby database. The
column displays YES for the log that was applied. For example:

SQL> SELECT THREAD#, SEQUENCE#, APPLIED FROM V$ARCHIVED_LOG;

 THREAD# SEQUENCE# APP
---------- ---------- ---
 1 2 YES
 1 3 YES
 1 4 YES
 1 5 YES
 1 6 YES
 1 7 YES
 1 8 YES
 1 9 YES
 1 10 YES
 1 11 NO

10 rows selected.

8.5.3.6 Determining Which Logs Were Not Received by the Standby Site
Each archive destination has a destination ID assigned to it. You can query the
DEST_ID column in the V$ARCHIVE_DEST fixed view to find out your destination
ID. You can then use this destination ID in a query on the primary database to
discover logs that were not sent to a particular standby site.

For example, assume the current local archive destination ID on your primary
database is 1, and the destination ID of one of your remote standby databases is 2.

Monitoring the Primary and Standby Databases

8-22 Oracle Data Guard Concepts and Administration

To find out which logs were not received by this standby destination, issue the
following query on the primary database:

SQL> SELECT LOCAL.THREAD#, LOCAL.SEQUENCE# FROM
 2> (SELECT THREAD#, SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=1) LOCAL
 3> WHERE
 4> LOCAL.SEQUENCE# NOT IN
 5> (SELECT SEQUENCE# FROM V$ARCHIVED_LOG WHERE DEST_ID=2 AND
 6> THREAD# = LOCAL.THREAD#);

 THREAD# SEQUENCE#
---------- ----------
 1 12
 1 13
 1 14

The preceding example shows the logs that were not received by standby
destination 2.

Managing a Logical Standby Database 9-1

9
Managing a Logical Standby Database

This chapter describes how to manage logical standby databases. This chapter
contains the following topics:

■ Configuring and Managing Logical Standby Databases

■ Tuning Logical Standby Databases

The topics in this chapter describe how to use SQL statements, initialization
parameters, views, and the DBMS_LOGSTDBY PL/SQL package to manage logical
standby databases.

9.1 Configuring and Managing Logical Standby Databases
The DBMS_LOGSTDBY PL/SQL package provides procedures to help you configure
and manage logical standby databases. You can use the DBMS_LOGSTDBY PL/SQL
package to perform management tasks such as the following on logical standby
databases:

■ Managing SQL Apply Operations

■ Controlling User Access to Tables in a Logical Standby Database

■ Modifying a Logical Standby Database

■ Handling Triggers and Constraints on a Logical Standby Database

■ Skipping SQL Apply Operations on a Logical Standby Database

■ Adding or Re-Creating Tables on a Logical Standby Database

■ Viewing and Controlling Logical Standby Events

See Also: Oracle9i Data Guard Broker to use the Data Guard broker
to automate the management tasks described in this chapter

Configuring and Managing Logical Standby Databases

9-2 Oracle Data Guard Concepts and Administration

■ Viewing SQL Apply Operations Activity

■ Delaying the Application of Archived Redo Logs

■ Determining How Much Redo Log Data Was Applied

■ Recovering from Errors

■ Refreshing Materialized Views

9.1.1 Managing SQL Apply Operations
The DBMS_LOGSTDBY PL/SQL package includes procedures to help you manage
SQL apply operations on logical standby databases. Using it you can do the
following:

■ Provide a way to skip applying archived redo logs to selected tables or entire
schemas in the standby database

■ Manage initialization parameters used by log apply services

■ Ensure supplemental logging is enabled properly

■ Describe a set of operations that should not be applied to the logical standby
database

■ Avoid applying DML or DDL changes for temporary tables

■ Avoid applying any CREATE, ALTER, or DROP INDEX operations

■ Log the error and continue applying archived redo logs to the logical standby
database when an error occurs when applying a DDL statement

■ Stop log apply services and wait for the DBA to specify what action should be
taken when an error occurs on a DDL statement

Table 9–1 summarizes the procedures of the DBMS_LOGSTDBY PL/SQL package.

Note: Users requiring access to the DBMS_LOGSTDBY package
must be granted the LOGSTDBY_ADMINISTRATOR role.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
complete information about the DBMS_LOGSTDBY package and
Chapter 9 for a summary of the procedures provided by the DBMS_
LOGSTDBY PL/SQL package

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-3

9.1.2 Controlling User Access to Tables in a Logical Standby Database
The SQL ALTER DATABASE GUARD statement controls user access to tables in
logical standby databases. Until you start log apply services on the logical standby

Table 9–1 Procedures of the DBMS_LOGSTDBY PL/SQL Package

Subprograms Description

APPLY_SET Allows you to set the values of specific initialization
parameters to configure and maintain SQL apply operations.

APPLY_UNSET Resets the value of specific initialization parameters to the
system default values.

BUILD Ensures supplemental logging is enabled correctly and
builds the LogMiner dictionary.

GUARD_BYPASS_OFF Reenables the database guard that you bypassed previously
with the GUARD_BYPASS_ON procedure.

GUARD_BYPASS_ON Allows the current session to bypass the database guard so
that tables in a logical standby database can be modified.

INSTANTIATE_TABLE Creates and populates a table in the standby database from a
corresponding table in the primary database.

SKIP Allows you to specify which database operations done on
the primary database will not be applied to the logical
standby database.

SKIP_ERROR Specifies criteria to follow if an error is encountered. You can
stop SQL apply operations or ignore the error.

SKIP_TRANSACTION Specifies transaction identification information to skip
(ignore) while applying specific transactions to the logical
standby database. This subprogram also allows alternate
statements to be executed.

UNSKIP Modifies the options set in the SKIP procedure.

UNSKIP_ERROR Modifies the options set in the SKIP_ERROR procedure.

UNSKIP_TRANSACTION Modifies the options set in the SKIP_TRANSACTION
procedure.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for complete information about the DBMS_LOGSTDBY package

Configuring and Managing Logical Standby Databases

9-4 Oracle Data Guard Concepts and Administration

database, users can modify the logical standby database. However, once you start
log apply services, the database guard is set to ALL by default.

The ALTER DATABASE GUARD statement allows the following keywords:

■ ALL

Specify ALL to prevent all users other than SYS from making changes to any
data in the logical standby database.

■ STANDBY

Specify STANDBY to prevent all users other than SYS from making DML and
DDL changes to any table or sequence being maintained through SQL apply
operations.

■ NONE

Specify NONE if you want typical security for all data in the database.

For example, use the following statement to enable the database guard and prevent
user access to tables in the logical standby database:

SQL> ALTER DATABASE GUARD ALL;

9.1.3 Modifying a Logical Standby Database
You can temporarily override the database guard to allow changes to the logical
standby database by executing the DBMS_LOGSTDBY.GUARD_BYPASS_ON
procedure. The following sections describe two examples that show when it might
be useful to bypass the database guard temporarily to make changes to the logical
standby database:

■ Performing DDL on a Logical Standby Database

■ Modifying Tables That Are Not Maintained by SQL Apply

The discussions in these sections assume that the database guard is set to ALL or
STANDBY.

9.1.3.1 Performing DDL on a Logical Standby Database
This section describes how to add an index to a table maintained through SQL
apply operations.

By default, only accounts with SYS privileges can modify the database while the
database guard is set to ALL or STANDBY. If you are logged in as SYSTEM or another

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-5

privileged account, you will not be able to issue DDL statements on the logical
standby database without first bypassing the database guard for the session.

The following example shows how to stop log apply services, bypass the database
guard, execute SQL statements on the logical standby database, and then reenable
the guard:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;
PL/SQL procedure successfully completed.

SQL> ALTER TABLE SCOTT.EMP ADD CONSTRAINT EMPID UNIQUE (EMPNO);
Table altered.

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
Database altered.

This sample procedure could be used to execute other DDL statements. Oracle
Corporation recommends that you do not perform DML operations while the
database guard bypass is enabled. This will introduce deviations between the
primary and standby databases that will make it impossible for the logical standby
database to be maintained. It is unlikely that you will be able to modify rows in a
table in such a way that the logical standby database can incrementally maintain the
rows.

9.1.3.2 Modifying Tables That Are Not Maintained by SQL Apply
Sometimes, a reporting application must collect summary results and store them
temporarily or track the number of times a report was run. Although the main
purpose of an application is to perform reporting activities, the application might
need to issue DML (insert, update, and delete) operations on a logical standby
database. It might even need to create or drop tables.

You can set up the database guard to allow reporting operations to modify data as
long as the data is not being maintained through SQL apply operations. To do this,
you must:

■ Specify the set of tables on the logical standby database to which an application
can write data by executing the DBMS_LOGSTDBY.SKIP procedure. Skipped
tables are not maintained through SQL apply operations.

Configuring and Managing Logical Standby Databases

9-6 Oracle Data Guard Concepts and Administration

■ Set the database guard to protect only standby tables. This setting describes the
list of tables that the logical standby database is maintaining. The list cannot
include the tables to which your application will be writing.

In the following example, it is assumed that the tables to which the report is writing
are also on the primary database.

The example stops SQL apply operations, skips the tables, and then restarts SQL
apply operations so that changes can be applied to the logical standby database.
The reporting application will be able to write to MYTABLES% in MYSCHEMA. They
will no longer be maintained through SQL apply operations.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
Database altered.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('SCHEMA_DDL','MYSCHEMA','MYTABLES%');
PL/SQL procedure successfully completed.

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','MYSCHEMA','MYTABLES%');
PL/SQL procedure successfully completed.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
Database altered.

The example then queries the DBA_LOGSTDBY_PARAMETERS view to verify the
logical standby database is updated. Verification can take a while so you might
need to repeat the query until no rows are returned, as shown in the following
example:

SQL> SELECT NAME FROM DBA_LOGSTDBY_PARAMETERS WHERE NAME = 'EVALUATE_SKIP';
no rows selected

Finally, the example sets the database guard to allow updates to the tables.

SQL> ALTER DATABASE GUARD STANDBY;
Database altered.

9.1.4 Handling Triggers and Constraints on a Logical Standby Database
Triggers and constraints are enabled on the standby database but they are not
executed. For triggers and constraints on tables maintained through SQL apply
operations, constraints are evaluated on the primary database and do not need to be
re-evaluated on the logical standby database. The effects of the triggers executed on
the primary database are logged and applied on the standby database. Triggers will

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-7

be fired and constraints will be evaluated on tables not maintained through SQL
apply operations.

9.1.5 Skipping SQL Apply Operations on a Logical Standby Database
If only a subset of activity on a primary database is of interest on the standby
database, use the DBMS_LOGSTDBY.SKIP procedure to define filters that prevent
log apply services from issuing the SQL statements on the logical standby database.
(See Section 4.1.4 for information about SQL statements that are skipped
automatically.)

Tables continue applying SQL statements after filtering out unsupported datatypes
or statements automatically. However, you must use the DBMS_LOGSTDBY.SKIP
procedure to skip tables that you do not want to apply to the logical standby
database. The following list shows typical examples of the types of SQL statements
that can be filtered or skipped so that they are not applied on the logical standby
database:

■ DML or DDL changes for tables

■ CREATE, ALTER, or DROP INDEX DDL statements

■ CREATE, ALTER, DROP, or TRUNCATE TABLE statements

■ CREATE, ALTER, or DROP TABLESPACE statements

■ CREATE or DROP VIEW statements

Example 9–1 demonstrates how to skip all SQL apply operations that reference the
EMP table in a logical standby database.

Example 9–1 Skipping a Table in a Logical Standby Database

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> EXECUTE DBMS_LOGSTDBY.SKIP('SCHEMA_DDL', 'SCOTT', 'EMP', NULL);
SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML', 'SCOTT', 'EMP', NULL);
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

In addition to skipping DML and DDL statements for schema and non-schema
operations, you can also skip specific DML and DDL operations as well.
Example 9–2 shows how to skip ALTER TABLESPACE and CREATE TABLESPACE
for non-schema DDL operations.

Example 9–2 Skipping ALTER or CREATE TABLESPACE Statements

SQL> EXEC DBMS_LOGSTDBY.SKIP(‘CREATE TABLESPACE’, NULL, NULL, NULL);

Configuring and Managing Logical Standby Databases

9-8 Oracle Data Guard Concepts and Administration

SQL> EXEC DBMS_LOGSTDBY.SKIP(‘ALTER TABLESPACE’, NULL, NULL, NULL);

SQL> COLUMN ERROR FORMAT a5;
SQL> COLUMN STATEMENT_OPT FORMAT a20;
SQL> COLUMN OWNER FORMAT a10
SQL> COLUMN NAME FORMAT a15;
SQL> COLUMN PROC FORMAT a20;
SQL> SELECT * FROM DA_LOGSTDBY_SKIP;

ERROR STATEMENT_OPT OWNER NAME PROC
----- ----------------- ---------- --------------- --------------------
N CREATE TABLESPACE
N ALTER TABLESPACE

Use the SKIP procedure with caution, particularly when skipping DDL statements.
If a CREATE TABLE statement is skipped, for example, you must also skip any
other DDL statements that refer to that table. Otherwise, these statements will fail
and cause an exception. When this happens, the SQL apply services stop running
and will need to be manually restarted.

9.1.6 Adding or Re-Creating Tables on a Logical Standby Database
Typically, you use table instantiation to re-create a table after an unrecoverable
operation. You can also use the procedure to enable SQL apply operations on a table
that was formerly skipped.

Before you can create a table, it must meet the requirements described in
Section 4.1.4 and Section 4.1.5 that explain:

■ How to determine if the primary database contains datatypes or tables that are
not supported by a logical standby database

■ How to ensure that table rows in the primary database can be uniquely
identified

The following list and Example 9–3 show how to re-create a table and resume SQL
apply operations on that table:

1. Stop log apply services to stop applying SQL statements to the database.

Note: The DBMS_LOGSTDBY PL/SQL package does not support
the BLOB datatype, even though BLOB datatypes are supported by
logical standby databases.

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-9

2. Ensure no operations are being skipped by querying the DBA_LOGSTDBY_SKIP
view.

If any operations are being skipped, resume application of each operation that
is currently being skipped by using the DBMS_LOGSTDBY.UNSKIP procedure.
If multiple filters were created on the table, you will need to execute the
procedure multiple times.

3. Re-create the table in the logical standby database using the DBMS_
LOGSTDBY.INSTANTIATE_TABLE procedure. In addition to creating a table,
this procedure also imports the data from the primary table using a database
link. The link supplied to this procedure must have LOGSTDBY_
ADMINISTRATOR role granted on the primary database.

4. Resume log apply services.

Before accessing data in the newly added table, you should archive the current redo
log on the primary database, and ensure that it is applied to the logical standby
database.

Example 9–3 demonstrates how to add the EMP table to a logical standby database.

Example 9–3 Adding a Table to a Logical Standby Database

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> SELECT * FROM DBA_LOGSTDBY_SKIP;

ERROR STATEMENT_OPT OWNER NAME PROC

N SCHEMA_DDL SCOTT EMP
N DML SCOTT EMP

SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(’SCHEMA_DDL’,’SCOTT’,’EMP’);
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE(’SCOTT’,’EMP’,’DBLINK’);
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
SQL> EXECUTE DBMS_LOGSTDBY.UNSKIP(’DML’,’SCOTT’,’EMP’);

Log on to the primary database and issue the following statements:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;
SQL> SELECT FIRST_CHANGE# FROM V$LOG WHERE STATUS = 'CURRENT';
SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

When the value returned by the DBA_LOGSTDBY_PROGRESS.APPLIED_SCN
procedure is greater than the value selected from the query of the V$LOG view, the
database is consistent and you can safely run reports again.

Configuring and Managing Logical Standby Databases

9-10 Oracle Data Guard Concepts and Administration

9.1.7 Viewing and Controlling Logical Standby Events
When you query the DBA_LOGSTDBY_EVENTS view, it displays a table of events
that contains activity from SQL apply operations. In particular, DDL execution or
anything that generates an error is recorded in the events table. You can control
what and how much activity is recorded in the events table. By default, 100 records
are stored in this table, but you can increase it. For example:

SQL> DBMS_LOGSTDBY.APPLY_SET('MAX_EVENTS_RECORDED', ’200’);

Additionally, you can indicate what type of events you want recorded. By default,
everything is recorded in the table. However, you can set the RECORD_SKIP_DDL,
RECORD_SKIP_ERRORS, and RECORD_APPLIED_DDL parameters to FALSE to
avoid recording these events.

Errors that cause SQL apply operations to stop are always recorded in the events
table (unless there is insufficient space in the system tablespace). These events are
always put into the ALERT.LOG file as well, with the phrase 'LOGSTDBY event'
included in the text. When querying the view, select the columns in order by
EVENT_TIME, COMMIT_SCN, and CURRENT_SCN. This ordering ensures that a
shutdown failure appears last in the view.

9.1.8 Viewing SQL Apply Operations Activity
SQL apply operations for logical standby databases use a collection of parallel
execution servers and background processes to perform a number of different tasks.
The V$LOGSTDBY view shows what each process is currently doing; the TYPE
column describes the task being performed:

■ The COORDINATOR process (LSP) is the background process that starts the other
processes and schedules transactions.

■ The READER process reads redo records from the archived redo logs.

■ The PREPARER processes do the heavy computing required to convert the block
changes into table changes.

■ The BUILDER process assembles completed transactions.

■ The ANALYZER process examines the records, possibly eliminating transactions
and performing some dependency computation.

■ The APPLIER processes generate and execute the completed SQL transactions.

When querying the V$LOGSTDBY view, pay special attention to the HIGH_SCN
column. This is an activity indicator. As long as it is changing each time you query

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-11

the V$LOGSTDBY view, progress is being made. The STATUS column gives a text
description of the current activity. For example:

SQL> COLUMN NAME FORMAT A30
SQL> COLUMN VALUE FORMAT A30
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS WHERE NAME = 'coordinator state';
NAME VALUE
------------------------------ ------------------------------
coordinator state APPLYING

SQL> COLUMN STATUS FORMAT A50
SQL> COLUMN TYPE FORMAT A12
SQL> SELECT TYPE, HIGH_SCN, STATUS FROM V$LOGSTDBY;
TYPE HIGH_SCN STATUS
------------ ---------- --
COORDINATOR ORA-16117: processing
READER ORA-16127: stalled waiting for additional transact
 ions to be applied

BUILDER 191896 ORA-16116: no work available
PREPARER 191902 ORA-16117: processing
ANALYZER 191820 ORA-16120: dependencies being computed for transac
 tion at SCN 0x0000.0002ed4e

APPLIER 191209 ORA-16124: transaction 1 16 1598 is waiting on ano
 ther transaction
 .
 .
 .

Another place to get information about current activity is the V$LOGSTDBY_STATS
view, which provides state and status information. All of the options for the DBMS_
LOGSTDBY.APPLY_SET procedure have default values, and those values (default
or set) can be seen in the V$LOGSTDBY_STATS view. In addition, a count of the
number of transactions applied or transactions ready will tell you if transactions are
being applied as fast as they are being read. Other statistics include information on
all parts of the system. For example:

SQL> COLUMN NAME FORMAT A35
SQL> COLUMN VALUE FORMAT A35
SQL> SELECT NAME, VALUE FROM V$LOGSTDBY_STATS
 2> WHERE NAME LIKE 'coordinator%' or NAME LIKE 'transactions%';

NAME VALUE
----------------------------------- -----------------------------------

Configuring and Managing Logical Standby Databases

9-12 Oracle Data Guard Concepts and Administration

coordinator state APPLYING
transactions ready 7821
transactions applied 7802
coordinator uptime 73

This query shows how long SQL apply operations have been running and how
many transactions have been applied in that time. It also shows how many
transactions are available to be applied, indicating that more work is necessary.

9.1.9 Delaying the Application of Archived Redo Logs
Specifying an apply delay interval (in minutes) on the primary database is the same
for both logical and physical standby databases (as described in Section 5.3.2.3,
"Specifying a Time Lag for the Application of Redo Logs"). However, on a logical
standby database, if the primary database is no longer available, you can cancel the
apply delay interval by specifying the following PL/SQL command:

SQL> EXECUTE DBMS_LOGSTDBY.APPLY_UNSET('APPLY_DELAY');

9.1.10 Determining How Much Redo Log Data Was Applied
Transaction data in the redo stream can span multiple redo logs. For this reason,
logical standby databases use an SCN range of redo data, rather than individual
archived redo logs to report the progress of SQL apply operations.

The DBA_LOGSTDBY_PROGRESS view displays APPLIED_SCN, NEWEST_SCN, and
READ_SCN information. The APPLIED_SCN indicates that committed transactions
at or below that SCN were applied. The NEWEST_SCN is the maximum SCN to
which data could be applied if no more logs were received. This is usually the
MAX(NEXT_CHANGE#)-1 from DBA_LOGSTDBY_LOG when there are no gaps in
the list.

Logs with a NEXT_CHANGE# below READ_SCN are no longer needed. The
information in those logs was applied or persistently stored in the database. The
time values associated with these SCN values are only estimates based on log times.
They are not meant to be accurate times of when those SCN values were written on
the primary database.

You can see which logs were applied or were not applied by using the following
query:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MON-YY HH24:MI:SS';
Session altered.

SQL> SELECT L.SEQUENCE#, L.FIRST_TIME,

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-13

 2 (CASE WHEN L.NEXT_CHANGE# < P.READ_SCN THEN 'YES'
 3 WHEN L.FIRST_CHANGE# < P.APPLIED_SCN THEN 'CURRENT'
 4 ELSE 'NO' END) APPLIED
 5 FROM DBA_LOGSTDBY_LOG L, DBA_LOGSTDBY_PROGRESS P
 6 ORDER BY SEQUENCE#;

 SEQUENCE# FIRST_TIME APPLIED
---------- ------------------ -------
 24 23-JUL-02 18:19:05 YES
 25 23-JUL-02 18:19:48 YES
 26 23-JUL-02 18:19:51 YES
 27 23-JUL-02 18:19:54 YES
 28 23-JUL-02 18:19:59 YES
 29 23-JUL-02 18:20:03 YES
 30 23-JUL-02 18:20:13 YES
 31 23-JUL-02 18:20:18 YES
 32 23-JUL-02 18:20:21 YES
 33 23-JUL-02 18:32:11 YES
 34 23-JUL-02 18:32:19 CURRENT
 35 23-JUL-02 19:13:20 CURRENT
 36 23-JUL-02 19:13:43 CURRENT
 37 23-JUL-02 19:13:46 CURRENT
 38 23-JUL-02 19:13:50 CURRENT
 39 23-JUL-02 19:13:54 CURRENT
 40 23-JUL-02 19:14:01 CURRENT
 41 23-JUL-02 19:15:11 NO
 42 23-JUL-02 19:15:54 NO

19 rows selected.

9.1.11 Recovering from Errors
Logical standby databases maintain user tables, sequences, and jobs. To maintain
other objects, you must reissue the DDL statements seen in the redo data stream.
Tables in the SYS schema are never maintained, because only Oracle metadata is
maintained in the SYS schema.

If a SQL apply operation fails, an error is recorded in the DBA_LOGSTDBY_EVENTS
table. The following sections demonstrate how to recover from two such errors.

9.1.11.1 DDL Transactions Containing File Specifications
DDL statements are executed the same way on both the primary database and
logical standby databases. If the underlying file structure is the same on both

Configuring and Managing Logical Standby Databases

9-14 Oracle Data Guard Concepts and Administration

databases, the DDL will execute on the standby database as expected. However, if
the structure of the file system on the standby system differs from the file system on
the primary system, it is likely that an error might result because the DB_FILE_
NAME_CONVERT will not convert the filenames of one or more sets of datafiles on
the primary database to filenames on the standby database for a logical standby
database.

If an error was caused by a DDL transaction that contained a file specification that
does not match in the logical standby database environment, perform the following
steps to fix the problem:

1. Use the DBMS_LOGSTDBY.GUARD_BYPASS_ON procedure to bypass the
database guard so you can make modifications to the logical standby database:

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;

2. Execute the DDL statement, using the correct file specification, and then
reenable the database guard. For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE 'dbs/t_db.f' SIZE 100M REUSE;
SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

3. Query the DBA_LOGSTDBY_EVENTS view to find the XIDUSN, XIDSLT, and
XIDSQN values for the failed DDL, and provide the values to the DBMS_
LOGSTDBY.SKIP_TRANSACTION procedure. The failed DDL statement will
always be the last transaction. For example:

SQL> SELECT XIDUSN, XIDSLT, XIDSQN FROM DBA_LOGSTDBY_EVENTS
 2> WHERE EVENT_TIME = (SELECT MAX(EVENT_TIME) FROM DBA_LOGSTDBY_EVENTS);
SQL> EXECUTE DBMS_LOGSTDBY.SKIP_TRANSACTION(/*xidusn*/, /*xidslt*/,
/*xidsqn*/);

4. Start log apply services on the logical standby database.

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

When log apply services restart, they will attempt to re-execute the transaction that
failed. If you do not want to re-execute it, provide the values to the DBMS_
LOGSTDBY.SKIP_TRANSACTION procedure (see step 3 for an example) to skip the
transaction.

In some situations, the problem that caused the transaction to fail can be corrected
and log apply services restarted without skipping the transaction. An example of
this might be when available space is exhausted. The example shows log apply
services stopping, how to correct the error, and then restart log apply services. For
example:

Configuring and Managing Logical Standby Databases

Managing a Logical Standby Database 9-15

SQL> SELECT * FROM DBA_LOGSTDBY_EVENTS;
EVENT_TIM CURRENT_SCN COMMIT_SCN XIDUSN XIDSLT XIDSQN
--------- ----------- ---------- ---------- ---------- ----------
EVENT

--
STATUS_CODE

STATUS

--
30-JUL-02

 16111
ORA-16111: log mining and apply setting up

30-JUL-02 200240 200243 1 2 2213
create table bar (x number, y number) tablespace foo
 16204
ORA-16204: DDL successfully applied

30-JUL-02 200695 200735 1 11 2215
SCOTT.BAR (Oper=INSERT)
 1653
ORA-01653: unable to extend table SCOTT.BAR by %d in tablespace

30-JUL-02 200812 200864 1 11 2215
SCOTT.BAR (Oper=INSERT)
 1653
ORA-01653: unable to extend table SCOTT.BAR by %d in tablespace

In the example, the ORA-01653 message indicates that the tablespace was full and
unable to extend itself. To correct the problem, add a new datafile to the tablespace.
For example:

SQL> ALTER TABLESPACE t_table ADD DATAFILE 'dbs/t_db.f' SIZE 60M;
Tablespace altered.

Then, restart log apply services:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;
Database altered.

When log apply services restart, the transaction that failed will be re-executed and
applied to the logical standby database.

Configuring and Managing Logical Standby Databases

9-16 Oracle Data Guard Concepts and Administration

9.1.11.2 Recovering from DML Failures
Although the SKIP_TRANSACTION procedure can be very helpful, you should be
cautious when using it to filter DML failures. Not only is the DML that is seen in the
events table skipped, but so is all the DML associated with the transaction. Thus,
multiple tables might be damaged by such an action.

DML failures usually indicate a problem with a specific table. For example, assume
the failure is an out-of-storage error that you cannot resolve immediately. The
following steps demonstrate one way to respond to this problem.

1. Bypass the table, but not the transaction, by adding the table to the skip list:

SQL> EXECUTE DBMS_LOGSTDBY.SKIP('DML','SCOTT','EMP');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

From this point on, DML activity for the SCOTT.EMP table will not be applied.
After you correct the storage problem, you can fix the table, provided that you
set up a database link to the primary database that has administrator privileges
to run procedures in the DBMS_LOGSTDBY package.

2. Using the database link to the primary database, drop the local SCOTT.EMP
table and then re-create it, and pull the data over to the standby database. The
link supplied to this procedure must have LOGSTDBY_ADMINISTRATOR role
granted on the primary database.

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> EXECUTE DBMS_LOGSTDBY.INSTANTIATE_TABLE('SCOTT','EMP','PRIMARYDB');
SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

3. Because table SCOTT.EMP will contain records as of when the INSTANTIATE_
TABLE procedure was performed (in step 2), it is possible for the SCOTT.EMP
table to contain records for a department not in the SCOTT.DEPT table.

9.1.12 Refreshing Materialized Views
Materialized views refreshed on the primary database are not automatically
refreshed separately on a logical standby database. To refresh materialized views on
the logical standby database, use the GUARD_BYPASS_ON and GUARD_BYPASS_OFF
procedures of the DBMS_LOGSTDBY package. For example:

EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;
EXECUTE DBMS_MVIEW.REFRESH (’BMVIEW’, ’F’, ’’,TRUE,FALSE,0,0,0,FALSE);
EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

Tuning Logical Standby Databases

Managing a Logical Standby Database 9-17

If you are using the DBMS_LOGSTDBY.APPLY_SET procedure but you are not using
the default value of FULL for the TRANSACTION_CONSISTENCY parameter, you
should stop SQL apply operations before refreshing materialized views on the
logical standby database.

9.2 Tuning Logical Standby Databases
Take the following actions to increase system performance:

■ On the primary database, if a table does not have a primary key or a unique
index, then create a primary key RELY constraint. On the logical standby
database, create an index on the columns that make up the primary key. The
following query generates a list of tables with no index information that can be
used by a logical standby database to apply to uniquely identify rows. By
creating an index on the following tables, performance can be improved
significantly.

SQL> SELECT OWNER, TABLE_NAME FROM DBA_TABLES
 2> WHERE OWNER NOT IN('SYS','SYSTEM','OUTLN','DBSNMP')
 3> MINUS
 3> SELECT DISTINCT TABLE_OWNER, TABLE_NAME FROM DBA_INDEXES
 4> WHERE INDEX_TYPE NOT LIKE ('FUNCTION-BASED%')
 5> MINUS
 6> SELECT OWNER, TABLE_NAME FROM DBA_LOGSTDBY_UNSUPPORTED;

The following example shows the creation of an index for the table EMP. This
should be done for all the tables returned by the previous query:

SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_ON;
SQL> CREATE INDEX EMPI ON EMP (EMPNO);
SQL> EXECUTE DBMS_LOGSTDBY.GUARD_BYPASS_OFF;

■ Gather statistics for the cost-based optimizer (CBO) periodically on the logical
standby database for objects, where the statistics become stale over time
because of changing data volumes or changes in column values. New statistics
should be gathered after the data or structure of a schema object is modified in

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about the DBMS_LOGSTDBY package

See Also: Section 4.1.2 and Oracle9i SQL Reference for more
information about RELY constraints

Tuning Logical Standby Databases

9-18 Oracle Data Guard Concepts and Administration

ways that make the previous statistics inaccurate. For example, after inserting
or deleting a significant number of rows into a table, collect new statistics on the
number of rows.

Statistics should be gathered on the standby database because DML/DDL
operations on the primary are executed as a function of the workload. While the
standby database is logically equivalent to the primary, SQL apply operations
might execute the workload in a different way. This is why using the DBMS_
STATS package on the logical standby database and the V$SYSSTAT view can
be useful in determining which tables are consuming the most resources and
table scan operations.

.

■ Adjust the transaction consistency.

Use the TRANSACTION_CONSISTENCY parameter of the DBMS_
LOGSTDBY.APPLY_SET procedure to control how transactions are applied to
the logical standby database. The default setting is FULL, which applies
transactions to the logical standby database in the same order in which they
were committed on the primary database.

Specify one of the following values:

– FULL

Transactions are applied to the logical standby database in the exact order
in which they were committed on the primary database. This option results
in the lowest performance. This is the default parameter setting.

– READ_ONLY

Transactions are applied out of order from how they were committed on the
primary database. The READ_ONLY option provides better performance
than the FULL value, and SQL SELECT statements return read-consistent
results. This is particularly beneficial when you are using the logical
standby database to generate reports.

– NONE

Transactions are applied out of order from how they were committed on the
primary database, and no attempt is made to provide read-consistent
results. This results in the best performance of the three values. If
applications that are reading the logical standby database make no
assumptions about transaction order, this option works well.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference

Tuning Logical Standby Databases

Managing a Logical Standby Database 9-19

■ Adjust the maximum number of parallel execution processes.

Use the PARALLEL_MAX_SERVERS initialization parameter to adjust the
maximum number of parallel execution processes and parallel recovery
processes for an instance. The default value for this parameter is derived from
the values of the CPU_COUNT, PARALLEL_AUTOMATIC_TUNING, and
PARALLEL_ADAPTIVE_MULTI_USER initialization parameters. This parameter
must not be set to a value less than 5 on a logical standby database.

You can use the MAX_SERVERS parameter of the DBMS_LOGSTDBY.APPLY_SET
procedure to limit the number of parallel servers used by log apply services.
The default value of this parameter is set equal to the value of the PARALLEL_
MAX_SERVERS initialization parameter. If you set this parameter explicitly, do
not set it to a value less than 5 or greater than the value of the PARALLEL_MAX_
SERVERS initialization parameter.

Increasing the number of parallel execution processes and parallel recovery
processes for an instance can speed up execution and recovery operations, but
this improvement must be balanced against the consumption of additional
system resources by the processes.

■ Control memory usage on the logical standby database.

You can use the MAX_SGA parameter of the DBMS_LOGSTDBY.APPLY_SET
procedure to set the maximum amount of shared pool space used by log apply
services for redo cache. By default, log apply services will use up to one quarter
of the shared pool. Generally speaking, increasing the size of the shared pool or
the amount of shared pool space used by log apply services will improve the
performance of a logical standby database.

Note: The READ_ONLY and NONE options should only be used
when ALTER DATABASE GUARD ALL is set.

Tuning Logical Standby Databases

9-20 Oracle Data Guard Concepts and Administration

Data Guard Scenarios 10-1

10
Data Guard Scenarios

This chapter provides a collection of typical scenarios you might encounter while
administering your Data Guard configuration. Each scenario is presented as a
detailed step-by-step example that can be adapted to your specific environment.
Table 10–1 lists each of the scenarios presented in this chapter.

10.1 Choosing the Best Available Standby Database for a Role
Transition

Every standby database is associated with one and only one primary database. A
single primary database can, however, support multiple physical or logical standby
databases. This scenario illustrates how to determine the information you need to
choose the best available standby database for a failover or switchover operation.

For most role transitions (failovers or switchovers), if the configuration contains
physical standby databases, Oracle recommends that you perform the role
transition using the best available physical standby database. This is recommended
because:

Table 10–1 Data Guard Scenarios

Reference Scenario

Section 10.1 Choosing the Best Available Standby Database for a Role Transition

Section 10.2 Using a Physical Standby Database with a Time Lag

Section 10.3 Switching Over to a Physical Standby Database That Has a Time Lag

Section 10.4 Recovering from a Network Failure

Section 10.5 Recovering After the NOLOGGING Clause Is Specified

Choosing the Best Available Standby Database for a Role Transition

10-2 Oracle Data Guard Concepts and Administration

■ A logical standby database might contain only a subset of the data present in
the primary database.

■ A role transition involving a logical standby database requires that any existing
physical standby databases be re-created from a copy of the new primary
database (after the role transition is complete) to continue to participate in the
Data Guard configuration.

Because of these limitations, a logical standby database should be considered as the
target for a role transition only in the the following special situations:

■ The configuration contains only logical standby databases

■ It is critical to fail over a standby database to the primary role as quickly as
possible and the most current logical standby database in the configuration is
significantly more current than the most current physical standby database in
the configuration

Once you determine whether to use a physical or a logical standby database, the
specific standby database you select as the target for the role transition is
determined by how much of the recent primary database modifications are
available at the standby location and by how much of these modifications were
applied to the standby database. Because the primary database remains accessible
during switchover operations, there will be no loss of data, and the choice of the
standby database used during a switchover will only affect the time required to
complete the switchover. For failovers, however, the choice of standby database
might involve tradeoffs between additional risk of data loss and the time required
to transition a standby database to the primary role.

10.1.1 Example: Best Physical Standby Database for a Failover Operation
In a disaster, the most critical task for the DBA is to determine if it is quicker and
safer to repair the primary database or fail over to a standby database. When
deciding that a failover operation is necessary and multiple physical standby
databases are configured, you must choose which physical standby database is the
best target for the failover operation. While there are many environmental factors
that can affect which standby database represents the best choice, this scenario
assumes these things to be equal for the purpose of emphasizing data loss
assessment.

This scenario begins with a Data Guard configuration consisting of the HQ primary
database and two physical standby databases, SAT and NYC. The HQ database is
operating in maximum availability protection mode, and the standby databases are
each configured with three standby redo logs.

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-3

Table 10–2 provides information about the databases used in this scenario.

See Also: Section 5.2 for more information about the maximum
availability protection mode for physical standby databases

Table 10–2 Identifiers for the Physical Standby Database Example

Identifier HQ Database SAT Database NYC Database

Location San Francisco Seattle New York City

Database name HQ HQ HQ

Instance name HQ SAT NYC

Initialization parameter file hq_init.ora sat_init.ora nyc_init.ora

Control file hq_cf1.f sat_cf1.f nyc_cf1

Datafile hq_db1.f sat_db1.f sat_db1.f

Online redo log file 1 hq_log1.f sat_log1.f nyc_log1.f

Online redo log file 2 hq_log2.f sat_log2.f nyc_log2.f

Standby redo log file 1 hq_srl1.f sat_srl1.f nyc_srl1.f

Standby redo log file 2 hq_srl2.f sat_srl2.f nyc_srl2.f

Standby redo log file 3 hq_srl3.f sat_srl3.f nyc_srl3.f

Primary protection mode Maximum
availability

Not applicable Not applicable

Standby protection mode Not applicable Maximum
availability
(synchronous)

Maximum
performance
(asynchronous)

Network service name (client
defined)

hq_net sat_net nyc_net

Listener hq_listener sat_listener nyc_listener

Choosing the Best Available Standby Database for a Role Transition

10-4 Oracle Data Guard Concepts and Administration

Assume that an event occurs in San Francisco where the primary site is located, and
the primary site is damaged in such a way that it cannot be repaired in a timely
manner. You must fail over to one of the standby databases. You cannot assume that
the DBA who set up the multiple standby database configuration is available to
decide to which standby database to fail over. Therefore, it is imperative to have a
disaster recovery plan at each standby site, as well as at the primary site. Each
member of the disaster recovery team needs to know about the disaster recovery
plan and be aware of the procedures to follow. This scenario identifies the
information you need when deciding which standby database should be the target
of the failover operation.

One method of conveying information to the disaster recovery team is to include a
ReadMe file at each standby site. This ReadMe file is created and maintained by the
DBA and should describe how to:

■ Log on to the local database server as a DBA

■ Log on to each system where the standby databases are located

■ Get instructions for going through firewalls, because there might be firewalls
between systems

■ Log on to other database servers as a DBA

■ Identify the most up-to-date standby database

■ Perform the standby database failover operation

■ Configure network settings to ensure that client applications access the new
primary database, instead of the original primary database

Note: The New York city database is operating in maximum
performance mode because sending redo data synchronously from
HQ to NYC might impact the primary database performance
during peak workload periods. However, the New York City
standby database is still considered a viable candidate for failover
operations because it uses standby redo logs.

See Also: Appendix E for a sample ReadMe file

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-5

When choosing a standby database, there are two critical considerations: which
standby database received the most recent redo data and which standby database
has applied the most redo logs.

Follow these steps to determine which standby database is the best candidate for
failover when only physical standby databases are in the configuration. Always
start with the standby database providing the highest protection level. In this
scenario, the Seattle standby database provides the highest protection level because
it is operating in maximum availability protection level.

Step 1 Connect to the SAT physical standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 2 Determine how much current redo data is available in the redo log.
Query the columns in the V$MANAGED_STANDBY view, as shown:

SQL> SELECT THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY WHERE STATUS=’RECEIVING’;
 THREAD# SEQUENCE# BLOCK# BLOCKS
---------- ---------- ---------- ----------
 1 14 234 16

This standby database received 249 blocks of redo data from the primary database.
To compute the number of blocks received, add the BLOCKS column value to the
BLOCK# column value, and subtract 1 (because block number 234 is included in the
16 blocks received).

Step 3 Obtain a list of the archived redo logs that were applied or are currently
pending application to the SAT database.
Query the V$ARCHIVED_LOG view:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

Note: Depending on how long the primary database has been
unavailable, the previous query might not return any selected rows
because the RFS process might detect the network disconnection
and terminate itself. If this occurs, it is always best to select a
standby database that is configured to receive the redo data in a
synchronous manner.

Choosing the Best Available Standby Database for a Role Transition

10-6 Oracle Data Guard Concepts and Administration

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_sat_2.log 2 YES
/oracle/dbs/hq_sat_3.log 3 YES
/oracle/dbs/hq_sat_4.log 4 YES
/oracle/dbs/hq_sat_5.log 5 YES
/oracle/dbs/hq_sat_6.log 6 YES
/oracle/dbs/hq_sat_7.log 7 YES
/oracle/dbs/hq_sat_8.log 8 YES
/oracle/dbs/hq_sat_9.log 9 YES
/oracle/dbs/hq_sat_10.log 10 YES
/oracle/dbs/hq_sat_11.log 11 YES
/oracle/dbs/hq_sat_13.log 13 NO

This output indicates that archived redo log 11 was completely applied to the
standby database. (The line for log 11 in the example output is in bold typeface to
assist you in reading the output. The actual output will not display bolding.)

Also, notice the gap in the sequence numbers in the SEQUENCE# column. In the
example, the gap indicates that the SAT standby database is missing archived redo
log number 12.

Step 4 Connect to the NYC database to determine if it is more recent than the
SAT standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 5 Determine how much current redo data is available in the redo log.
Query the columns in the V$MANAGED_STANDBY view as shown:

SQL> SELECT THREAD#, SEQUENCE#, BLOCK#, BLOCKS
 2> FROM V$MANAGED_STANDBY WHERE STATUS=’RECEIVING’;
 THREAD# SEQUENCE# BLOCK# BLOCKS
---------- ---------- ---------- ----------
 1 14 157 93

This standby database has also received 249 blocks of redo information from the
primary database. To compute the number of blocks received, add the BLOCKS
column value to the BLOCK# column value, and subtract 1 (because block number
157 is included in the 93 blocks received).

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-7

Step 6 Obtain a list of the archived redo logs that were applied or are currently
pending application to the NYC database.
Query the V$ARCHIVED_LOG view:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;
FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES
/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 NO
/oracle/dbs/hq_nyc_9.log 9 NO
/oracle/dbs/hq_nyc_10.log 10 NO
/oracle/dbs/hq_nyc_11.log 11 NO
/oracle/dbs/hq_nyc_12.log 12 NO
/oracle/dbs/hq_nyc_13.log 13 NO

This output indicates that archived redo log 7 was completely applied to the
standby database. (The line for log 7 in the example output is in bold typeface to
assist you in reading the output. The actual output will not display bolding.)

More redo data was received at this location, but less was applied to the standby
database.

Step 7 Choose the best target standby database.
In most cases, the physical standby database you choose as a failover target should
provide a balance between risk of data loss and time required to perform the role
transition. As you analyze this information to make a decision about the best
failover candidate in this scenario, consider the following:

■ For minimal risk of data loss during a failover operation, you should choose the
NYC database as the best target standby database because steps 5 and 6
revealed that the NYC site has the most recoverable redo logs.

■ For minimal primary database downtime during the failover operation, you
should choose the SAT database as the best target standby database. This
database is a more appropriate candidate because the queries in steps 2 through
6 reveal that the SAT database applied 5 archived redo logs more than the NYC
database. However, if it is not possible to obtain and apply a copy of the
missing archived log (archived redo log 12 in the example), then you will not be

Choosing the Best Available Standby Database for a Role Transition

10-8 Oracle Data Guard Concepts and Administration

able to make the SAT database as current as you can the NYC database.
Therefore, you will lose the unapplied data (logs 12, 13, and part of log 14 in the
example).

Based on your business requirements, choose the best target standby database.

Step 8 Bring the selected standby database to its most current state.

If you chose the SAT database as the best target based on your business
requirements, perform the following steps:
1. Manually retrieve any missing archived redo logs using an operating system

utility. (This example uses the UNIX cp command). In this case, the SAT
database is missing archived redo log 12. Because the NYC database received
this archived redo log, you can copy it from the NYC database to the SAT
database, as follows:

% cp /net/nyc/oracle/dbs/hq_nyc_12.log /net/sat/oracle/dbs/hq_sat_12.log

2. Determine if a partial archived redo log exists for the next sequence number. In
this example, the next sequence number should be 14. The following UNIX
command searches the directory on the SAT database for the presence of an
archived redo log named hq_sat_14.log:

% ls -l /net/sat/oracle/dbs/hq_sat_14.log
/net/sat/oracle/dbs/hq_sat_14.log: No such file or directory

Because the SAT standby database is using standby redo logs, there should not
be any partial archived redo logs.

3. Register the retrieved archived redo log. (There is no need to stop the log apply
services).

SQL> ALTER DATABASE REGISTER PHYSICAL LOGFILE ’/oracle/dbs/hq_sat_12.log’;

4. Query the V$ARCHIVED_LOG view again to make sure the archived redo logs
were successfully applied:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_sat_2.log 2 YES
/oracle/dbs/hq_sat_3.log 3 YES
/oracle/dbs/hq_sat_4.log 4 YES

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-9

/oracle/dbs/hq_sat_5.log 5 YES
/oracle/dbs/hq_sat_6.log 6 YES
/oracle/dbs/hq_sat_7.log 7 YES
/oracle/dbs/hq_sat_8.log 8 YES
/oracle/dbs/hq_sat_9.log 9 YES
/oracle/dbs/hq_sat_10.log 10 YES
/oracle/dbs/hq_sat_11.log 11 YES
/oracle/dbs/hq_sat_12.log 12 YES
/oracle/dbs/hq_sat_13.log 13 YES

If you chose the NYC database as the best target based on your
business requirements, perform the following steps:
1. Determine if a partial archived redo log exists for the next sequence number.

The following UNIX command searches the directory on the NYC database for
the presence of an archived redo log named with the next sequence named (hq_
nyc_14):

% ls -l /net/nyc/oracle/dbs/hq_nyc_14.log
/net/nyc/oracle/dbs/hq_nyc_14.log: No such file or directory

Because the NYC standby database is using standby redo logs, there should not
be any partial archived redo logs.

2. Start log apply services to apply the most current log:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;

3. Query the V$ARCHIVED_LOG view again to make sure the archived redo logs
were successfully applied:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;
FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES
/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 YES
/oracle/dbs/hq_nyc_9.log 9 YES
/oracle/dbs/hq_nyc_10.log 10 YES

Choosing the Best Available Standby Database for a Role Transition

10-10 Oracle Data Guard Concepts and Administration

/oracle/dbs/hq_nyc_11.log 11 YES
/oracle/dbs/hq_nyc_12.log 12 NO
/oracle/dbs/hq_nyc_13.log 13 NO

Applying the archived redo logs might take some time to complete. Therefore,
you must wait until all archived redo logs are designated as applied, as shown:

SQL> SELECT SUBSTR(NAME,1,25) FILE_NAME, SEQUENCE#, APPLIED
 2> FROM V$ARCVHIVED_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQUENCE# APP
------------------------- ---------- ---
/oracle/dbs/hq_nyc_2.log 2 YES
/oracle/dbs/hq_nyc_3.log 3 YES
/oracle/dbs/hq_nyc_4.log 4 YES
/oracle/dbs/hq_nyc_5.log 5 YES
/oracle/dbs/hq_nyc_6.log 6 YES
/oracle/dbs/hq_nyc_7.log 7 YES
/oracle/dbs/hq_nyc_8.log 8 YES
/oracle/dbs/hq_nyc_9.log 9 YES
/oracle/dbs/hq_nyc_10.log 10 YES
/oracle/dbs/hq_nyc_11.log 11 YES
/oracle/dbs/hq_nyc_12.log 12 YES
/oracle/dbs/hq_nyc_13.log 13 YES

Step 9 Perform the failover operation.
You are now ready to stop log apply services and fail over the selected physical
standby database to the primary role.

10.1.2 Example: Best Logical Standby Database for a Failover Operation
In a disaster when only logical standby databases are available, the critical task is to
determine which logical standby database is the best target for the failover
operation. While there are many environmental factors that can affect which is the
best target standby database, this scenario assumes these things to be equal for the
purpose of emphasizing data loss assessment.

See Also: Section 7.2.2 for additional information about how to
perform a failover operation to a physical standby database

See Also: Section 5.2 for more information about the maximum
availability protection mode for logical standby databases

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-11

This scenario starts out with a Data Guard configuration consisting of the HQ
primary database and two logical standby databases, SAT and NYC. Table 10–3
provides information about each of these databases.

Follow these steps to determine which standby database is the best candidate for
failover when only logical standby databases are in the configuration:

Step 1 Connect to the SAT logical standby database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 2 Determine the highest applied SCN and highest (newest) applicable
SCN on the SAT database.
 Query the following columns in the DBA_LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 144059 144059

Table 10–3 Identifiers for Logical Standby Database Example

Identifier HQ Database SAT Database NYC Database

Location San Francisco Seattle New York City

Database name HQ SAT NYC

Instance name HQ SAT NYC

Initialization parameter file hq_init.ora sat_init.ora nyc_init.ora

Control file hq_cf1.f sat_cf1.f nyc_cf1.f

 Datafile hq_db1.f sat_db1.f nyc_db1.f

 Online redo log file 1 hq_log1.f sat_log1.f nyc_log1.f

 Online redo log file 2 hq_log2.f sat_log2.f nyc_log2.f

 Database link (client-defined) hq_link sat_link nyc_link

 Network service name
(client-defined)

hq_net sat_net nyc_net

 Listener hq_listener sat_listener nyc_listener

Choosing the Best Available Standby Database for a Role Transition

10-12 Oracle Data Guard Concepts and Administration

Step 3 Obtain a list of the archived redo logs that were applied or are currently
pending application to the SAT database.
Query the DBA_LOGSTDBY_LOG view:

SQL> SELECT SUBSTR(FILE_NAME,1,25) FILE_NAME, SUBSTR(SEQUENCE#,1,4) "SEQ#",
 2> FIRST_CHANGE#, NEXT_CHANGE#, TO_CHAR(TIMESTAMP, 'HH:MI:SS') TIMESTAMP,
 3> DICT_BEGIN BEG, DICT_END END, SUBSTR(THREAD#,1,4) "THR#"
 4> FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQ# FIRST_CHANGE# NEXT_CHANGE# TIMESTAM BEG END THR#
------------------------- ---- ------------- ------------ -------- --- --- ----
/oracle/dbs/hq_sat_2.log 2 101579 101588 11:02:57 NO NO 1
/oracle/dbs/hq_sat_3.log 3 101588 142065 11:02:01 NO NO 1
/oracle/dbs/hq_sat_4.log 4 142065 142307 11:02:09 NO NO 1
/oracle/dbs/hq_sat_5.log 5 142307 142739 11:02:47 YES YES 1
/oracle/dbs/hq_sat_6.log 6 142739 143973 12:02:09 NO NO 1
/oracle/dbs/hq_sat_7.log 7 143973 144042 01:02:00 NO NO 1
/oracle/dbs/hq_sat_8.log 8 144042 144051 01:02:00 NO NO 1
/oracle/dbs/hq_sat_9.log 9 144051 144054 01:02:15 NO NO 1
/oracle/dbs/hq_sat_10.log 10 144054 144057 01:02:20 NO NO 1
/oracle/dbs/hq_sat_11.log 11 144057 144060 01:02:25 NO NO 1
/oracle/dbs/hq_sat_13.log 13 144089 144147 01:02:40 NO NO 1

Notice that for log 11, the SCN of 144059 (recorded in step 2) is between the FIRST_
CHANGE# column value of 144057 and the NEXT_CHANGE# column value of 144060.
This indicates that log 11 is currently being applied. (The line for log 11 in the
example output is in bold typeface to assist you in reading the output. The actual
output will not display bolding.) Also notice the gap in the sequence numbers in the
SEQ# column; in the example, the gap indicates that SAT database is missing
archived redo log 12.

Step 4 Connect to the NYC database.
Issue a SQL statement such as the following:

SQL> CONNECT SYS/CHANGE_ON_INSTALL AS SYSDBA;

Step 5 Determine the highest applied SCN and highest applicable SCN on the
NYC database.
Query the following columns in the DBA_LOGSTDBY_PROGRESS view:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;
APPLIED_SCN NEWEST_SCN
----------- ----------
 143970 144146

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-13

Step 6 Obtain a list of the logs that were processed or are currently pending
processing on the NYC database.
Issue a SQL statement such as the following:

SQL> SELECT SUBSTR(FILE_NAME,1,25) FILE_NAME, SUBSTR(SEQUENCE#,1,4) "SEQ#",
 2> FIRST_CHANGE#, NEXT_CHANGE#, TO_CHAR(TIMESTAMP, 'HH:MI:SS') TIMESTAMP,
 3> DICT_BEGIN BEG, DICT_END END, SUBSTR(THREAD#,1,4) "THR#"
 4> FROM DBA_LOGSTDBY_LOG ORDER BY SEQUENCE#;

FILE_NAME SEQ# FIRST_CHANGE# NEXT_CHANGE# TIMESTAM BEG END THR#
------------------------- ---- ------------- ------------ -------- --- --- ----
/oracle/dbs/hq_nyc_2.log 2 101579 101588 11:02:58 NO NO 1
/oracle/dbs/hq_nyc_3.log 3 101588 142065 11:02:02 NO NO 1
/oracle/dbs/hq_nyc_4.log 4 142065 142307 11:02:10 NO NO 1
/oracle/dbs/hq_nyc_5.log 5 142307 142739 11:02:48 YES YES 1
/oracle/dbs/hq_nyc_6.log 6 142739 143973 12:02:10 NO NO 1
/oracle/dbs/hq_nyc_7.log 7 143973 144042 01:02:11 NO NO 1
/oracle/dbs/hq_nyc_8.log 8 144042 144051 01:02:01 NO NO 1
/oracle/dbs/hq_nyc_9.log 9 144051 144054 01:02:16 NO NO 1
/oracle/dbs/hq_nyc_10.log 10 144054 144057 01:02:21 NO NO 1
/oracle/dbs/hq_nyc_11.log 11 144057 144060 01:02:26 NO NO 1
/oracle/dbs/hq_nyc_12.log 12 144060 144089 01:02:30 NO NO 1
/oracle/dbs/hq_nyc_13.log 13 144089 144147 01:02:41 NO NO 1

Notice that for log 6, the SCN of 143970 (recorded in step 5) is between the FIRST_
CHANGE# column value of 142739 and the NEXT_CHANGE# column value of 143973.
This indicates that log 6 is currently being applied. (The line for log 6 in the example
output is in bold typeface to assist you in reading the output. The actual output will
not display bolding.) Also, notice that there are no gaps in the sequence of logs that
remain to be processed.

Step 7 Choose the best target standby database.
In most cases, the logical standby database you choose as a failover target should
provide a balance between risk of data loss and time required to perform the role
transition. As you analyze this information to make a decision about the best
failover candidate in this scenario, consider the following:

■ For minimal risk of data loss during a failover operation, you should choose the
NYC database as the best target standby database because steps 5 and 6
revealed that the NYC site has the most recoverable redo logs.

■ For minimal primary database downtime during the failover operation, you
should choose the SAT database as the best target standby database. This
database is a more appropriate candidate because the queries in steps 2 through

Choosing the Best Available Standby Database for a Role Transition

10-14 Oracle Data Guard Concepts and Administration

6 reveal that the SAT database applied 5 archived redo logs more than the NYC
database (even though there was only a 1-second delay (lag) in the receipt of
archived redo logs by the NYC database). However, if it is not possible to obtain
and apply a copy of the missing archived log (log 12 in the example), then you
will not be able to make the SAT database as current as you can the NYC
database. Therefore, you will lose the unrecovered data (logs 12, 13, and part of
log 14 in the example).

Based on your business requirements, choose the best target standby database.

Step 8 Bring the selected standby database to its most current state.

If you chose the SAT database as the best target based on your
business requirements, perform the following steps:
1. Manually retrieve any missing archived redo logs using an operating system

utility. In this case, the SAT database is missing archived redo log 12. Because
the NYC database received this archived redo log, you can copy it from the
NYC database to the SAT database, as follows:

%cp /net/nyc/oracle/dbs/hq_nyc_12.log
/net/sat/oracle/dbs/hq_sat_12.log

2. Determine if a partial archived redo log exists for the next sequence number. In
this example, the next sequence number should be 14. The following UNIX
command shows the directory on the SAT database, looking for the presence of
an archived redo log named hq_sat_14.log:

%ls -l /net/sat/oracle/dbs/hq_sat_14.log
-rw-rw---- 1 oracle dbs 333280 Feb 12 1:03 hq_sat_14.log

3. Stop log apply services and register both the retrieved archived redo log and
the partial archived redo log:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_sat_12.log';
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_sat_14.log';

4. Start log apply services to apply the most current log:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

5. Determine the highest applied SCN on the SAT database by querying the DBA_
LOGSTDBY_PROGRESS view to see if the value of the APPLIED_SCN column is
equal to the value of the NEWEST_SCN column:

Choosing the Best Available Standby Database for a Role Transition

Data Guard Scenarios 10-15

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 144205 144205

Because the SCN values match, you can be assured that there is no longer a
delay (lag) between the current log on the primary database and the last log
applied to the SAT database.

If you chose the NYC database as the best target based on your
business requirements, perform the following steps:
1. Determine if a partial archived redo log exists for the next sequence number. In

this example, the next sequence number should be 14. The following UNIX
command shows the directory on the NYC database, looking for the presence of
an archived redo log named hq_nyc_14:

%ls -l /net/nyc/oracle/dbs/hq_nyc_14.log
-rw-rw---- 1 oracle dbs 333330 Feb 12 1:03 hq_nyc_14.log

2. Register the partial archive redo log on the NYC database:

SQL> ALTER DATABASE STOP LOGICAL STANDBY APPLY;
SQL> ALTER DATABASE REGISTER LOGICAL LOGFILE '/oracle/dbs/hq_nyc_14.log';

3. Start log apply services to apply the most current log:

SQL> ALTER DATABASE START LOGICAL STANDBY APPLY;

4. Determine the highest applied SCN on the NYC database by querying the DBA_
LOGSTDBY_PROGRESS view to see if the value of the APPLIED_SCN column is
equal to the value of the NEWEST_SCN column:

SQL> SELECT APPLIED_SCN, NEWEST_SCN FROM DBA_LOGSTDBY_PROGRESS;

APPLIED_SCN NEWEST_SCN
----------- ----------
 144205 144205

Because the SCN values match, you can sure there is no longer a delay (lag)
between the current log on the primary database and the last log received and
applied by the NYC database.

Using a Physical Standby Database with a Time Lag

10-16 Oracle Data Guard Concepts and Administration

Step 9 Perform the failover.
You are now ready to stop log apply services and fail over the selected logical
standby database to the primary role.

10.2 Using a Physical Standby Database with a Time Lag
By default, when the standby database is performing managed recovery, it
automatically applies redo logs when they arrive from the primary database. But in
some cases, you might not want the logs to be applied immediately, because you
want to create a time lag between the archiving of a redo log at the primary site and
the application of the log at the standby site. A time lag can protect against the
transfer of corrupted or erroneous data from the primary site to the standby site.

For example, suppose you run a batch job every night on the primary database.
Unfortunately, you accidently ran the batch job twice and you did not realize the
mistake until the batch job completed for the second time. Ideally, you need to roll
back the database to the point in time before the batch job began. A primary
database that has a standby database with a time lag could help you to recover. You
could fail over the standby database with the time lag and use it as the new primary
database.

To create a standby database with a time lag, use the DELAY attribute of the LOG_
ARCHIVE_DEST_n initialization parameter in the primary database initialization
parameter file. The archived redo logs are still automatically copied from the
primary site to the standby site, but the logs are not immediately applied to the
standby database. The logs are applied when the specified time interval expires.

This scenario uses a 4-hour time lag and covers the following topics:

■ Establishing a Time Lag on a Physical Standby Database

■ Failing Over to a Physical Standby Database with a Time Lag

■ Switching Over to a Physical Standby Database That Has a Time Lag

Readers of this scenario are assumed to be familiar with the procedures for creating
a typical standby database. The details were omitted from the steps outlined in this
scenario.

See Also: Section 7.3.2 for additional information on how to
perform the failover operation

See Also: Chapter 3 for details about a creating physical
databases

Using a Physical Standby Database with a Time Lag

Data Guard Scenarios 10-17

10.2.1 Establishing a Time Lag on a Physical Standby Database
To create a physical standby database with a time lag, modify the LOG_ARCHIVE_
DEST_n initialization parameter on the primary database to set a delay for the
standby database. The following is an example of how to add a 4-hour delay to the
LOG_ARCHIVE_DEST_n initialization parameter:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2=’SERVICE=stdby DELAY=240’;

The DELAY attribute indicates that the archived redo logs at the standby site are not
available for recovery until the 4-hour time interval has expired. The time interval
(expressed in minutes) starts when the archived redo logs are successfully
transmitted to the standby site. The redo information is still sent to the standby
database and written to the disk as normal.

10.2.2 Failing Over to a Physical Standby Database with a Time Lag
A standby database configured to delay application of redo logs can be used to
recover from user errors or data corruptions on the primary database. In most cases,
you can query the time-delayed standby database to retrieve the data needed to
repair the primary database (for example, to recover the contents of a mistakenly
dropped table). In cases where the damage to the primary database is unknown or
when the time required to repair the primary database is prohibitive, you can also
consider failing over to a time-delayed standby database.

Assume that a backup file was inadvertently applied twice to the primary database
and that the time required to repair the primary database is prohibitive. You choose
to fail over to a physical standby database for which redo log application is delayed.
By doing so, you transition the standby database to the primary role at a point
before the problem occurred, but you will likely incur some data loss. The following
steps illustrate the process:

1. Initiate the failover operation by issuing the appropriate SQL statements on the
time-delayed physical standby database:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
SQL> ALTER DATABASE ACTIVATE PHYSICAL STANDBY DATABASE SKIP STANDBY LOGFILE;
SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
for a description of using the DBMS_LOGSTDBY package to establish
a time lag on a logical standby database.

Switching Over to a Physical Standby Database That Has a Time Lag

10-18 Oracle Data Guard Concepts and Administration

The ACTIVATE statement immediately transitions the standby database to the
primary role and makes no attempt to apply any additional redo data that
might exist at the standby location. When using this command, you must
carefully balance the cost of data loss at the standby location against the
potentially extended period of downtime required to fully repair the primary
database.

2. Re-create all other standby databases in the configuration from a copy of this
new primary database.

10.3 Switching Over to a Physical Standby Database That Has a Time
Lag

All the redo logs are shipped to the standby site as they become available.
Therefore, even when a time delay is specified for a standby database, you can
make the standby database current by overriding the delay using the SQL ALTER
DATABASE RECOVER MANAGED STANDBY statement.

The following steps demonstrate how to perform a switchover to a time-delayed
physical standby database that bypasses a time lag. For the purposes of this
example, assume that the primary database is located in New York, and the standby
database is located in Boston.

Step 1 Apply all of the archived redo logs to the original (time delayed)
standby database bypassing the lag.
Switchover will not begin until the standby database applies all of the redo logs. By
lifting the delay, you allow the standby database to proceed without waiting for the
apply operation to finish.

Issue the following SQL statement to lift the delay:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY
 2> DISCONNECT FROM SESSION THROUGH LAST SWITCHOVER;

Step 2 Stop read or update activity on the primary and standby databases.
You must have exclusive database access before beginning a switchover operation.
Ask users to log off the primary and standby databases or query the V$SESSION

Note: To recover from a logical error, you must perform a failover
operation instead of a switchover operation.

Switching Over to a Physical Standby Database That Has a Time Lag

Data Guard Scenarios 10-19

view to identify users that are connected to the databases and close all open
sessions except the SQL*Plus session from which you are going to execute the
switchover statement.

Step 3 Switch the primary database over to the physical standby role.
On the primary database (in New York), execute the following statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY
 2> WITH SESSION SHUTDOWN;

This statement does the following:

■ Closes the primary database, terminating any active sessions

■ Archives any unarchived logs and applies them to the standby database (in
Boston)

■ Adds an end-of-redo marker to the header of the last log being archived

■ Creates a backup of the current control file

■ Converts the current control file into a standby control file

Step 4 Shut down and start up the former primary instance without mounting
the database.
Execute the following statement on the former primary database (in New York):

SQL> SHUTDOWN NORMAL;
SQL> STARTUP NOMOUNT;

Step 5 Mount the former primary database in the physical standby database
role.
Execute the following statement to mount the former primary database (in New
York) as a physical standby database:

SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

Step 6 Switch the original standby database to the primary role.
Issue the following SQL statement:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY DATABASE;

See Also: Oracle9i Database Administrator’s Guide for more
information on managing users

Recovering from a Network Failure

10-20 Oracle Data Guard Concepts and Administration

Step 7 Shut down and restart the new primary database instance.
Issue the following SQL statements:

SQL> SHUTDOWN;
SQL> STARTUP PFILE=Failover.ora;

10.4 Recovering from a Network Failure
The following steps describe how to recover after a network failure.

Step 1 Identify the network failure.
The V$ARCHIVE_DEST view contains the network error and identifies which
standby database cannot be reached. On the primary database, execute the
following SQL statement for the archived log destination that experienced the
network failure. For example:

SQL> SELECT DEST_ID, STATUS, ERROR FROM V$ARCHIVE_DEST WHERE DEST_ID = 2;

DEST_ID STATUS ERROR
---------- --------- --
 2 ERROR ORA-12224: TNS:no listener

The query results show there are errors archiving to the standby database, and the
cause of the error is TNS:no listener. You should check whether or not the
listener on the standby site is started. If the listener is stopped, then start it.

Step 2 Prevent the primary database from stalling.
If you cannot solve the network problem quickly, and if the standby database is
specified as a mandatory destination, try to prevent the database from stalling by
doing one of the following:

■ Defer archiving to the mandatory destination:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = DEFER;

When the network problem is resolved, you can enable the archive destination
again:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = ENABLE;

■ Change the archive destination from mandatory to optional:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = ’SERVICE=standby1
 2> OPTIONAL REOPEN=60’;

Recovering After the NOLOGGING Clause Is Specified

Data Guard Scenarios 10-21

When the network problem is resolved, you can change the archive destination
from optional back to mandatory:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = ’SERVICE=standby1
 2> MANDATORY REOPEN=60’;

Step 3 Archive the current redo log.
On the primary database, archive the current redo log:

SQL> ALTER SYSTEM ARCHIVE LOG CURRENT;

When the network is back up again, log apply services can detect and resolve the
archive gaps automatically when the physical standby database resumes managed
recovery operations.

10.5 Recovering After the NOLOGGING Clause Is Specified
In some SQL statements, the user has the option of specifying the NOLOGGING
clause, which indicates that the database operation is not logged in the redo log.
Even though the user specifies the clause, a redo log record is still written to the
redo log. However, there is no data associated with this record. This can result in
log application or data access errors at the standby site and manual recovery might
be required to resume log apply operations.

10.5.1 Recovery Steps for Logical Standby Databases
For logical standby databases, when SQL apply operations encounter a redo log
record for an operation performed with the NOLOGGING clause, it skips over the
record and continues applying changes from later records. Later, if an attempt is
made to access one of the records that were updated with NOLOGGING in effect, the
following error is returned: ORA-01403 no data found

To recover after the NOLOGGING clause is specified, re-create one or more tables
from the primary database, as described in Section 9.1.6.

Note: To avoid these problems, Oracle Corporation recommends
that you always specify the FORCE LOGGING clause in the CREATE
DATABASE or ALTER DATABASE statements. See the Oracle9i
Database Administrator’s Guide.

Recovering After the NOLOGGING Clause Is Specified

10-22 Oracle Data Guard Concepts and Administration

10.5.2 Recovery Steps for Physical Standby Databases
When the redo log is copied to the standby site and applied to the physical standby
database, a portion of the datafile is unusable and is marked as being
unrecoverable. When you either fail over to the physical standby database, or open
the standby database for read-only access, and attempt to read the range of blocks
that are marked as UNRECOVERABLE, you will see error messages similar to the
following:

ORA-01578: ORACLE data block corrupted (file # 1, block # 2521)
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'
ORA-26040: Data block was loaded using the NOLOGGING option

To recover after the NOLOGGING clause is specified, you need to copy the datafile
that contains the unjournaled data from the primary site to the physical standby
site. Perform the following steps:

Step 1 Determine which datafiles should be copied.
Follow these steps:

1. Query the primary database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE
--- -------------
/oracle/dbs/tbs_1.dbf 5216
/oracle/dbs/tbs_2.dbf 0
/oracle/dbs/tbs_3.dbf 0
/oracle/dbs/tbs_4.dbf 0
4 rows selected.

2. Query the standby database:

SQL> SELECT NAME, UNRECOVERABLE_CHANGE# FROM V$DATAFILE;
NAME UNRECOVERABLE
--- -------------

Note: In general, use of the NOLOGGING clause is not
recommended. Optionally, if you know in advance that operations
using the NOLOGGING clause will be performed on certain tables in
the primary database, you might want to prevent the application of
SQL statements associated with these tables to the logical standby
database by using the DBMS_LOGSTDBY.SKIP procedure.

Recovering After the NOLOGGING Clause Is Specified

Data Guard Scenarios 10-23

/oracle/dbs/stdby/tbs_1.dbf 5186
/oracle/dbs/stdby/tbs_2.dbf 0
/oracle/dbs/stdby/tbs_3.dbf 0
/oracle/dbs/stdby/tbs_4.dbf 0
4 rows selected.

3. Compare the query results of the primary and standby databases.

Compare the value of the UNRECOVERABLE_CHANGE# column in both query
results. If the value of the UNRECOVERABLE_CHANGE# column in the primary
database is greater than the same column in the standby database, then the
datafile needs to be copied from the primary site to the standby site.

In this example, the value of the UNRECOVERABLE_CHANGE# in the primary
database for the tbs_1.dbf datafile is greater, so you need to copy the tbs_
1.dbf datafile to the standby site.

Step 2 On the primary site, back up the datafile that you need to copy to the
standby site as follows.
Issue the following SQL statements:

SQL> ALTER TABLESPACE system BEGIN BACKUP;
SQL> EXIT;
% cp tbs_1.dbf /backup
SQL> ALTER TABLESPACE system END BACKUP;

Step 3 On the standby database, restart managed recovery.
Issue the following SQL statement:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT FROM
 2>SESSION;

You might get the following error messages (possibly in the alert log) when you try
to restart managed recovery:

ORA-00308: cannot open archived log 'standby1'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/oracle/dbs/stdby/tbs_1.dbf'

If you get the ORA-00308 error, cancel recovery by issuing the following statement
from another terminal window:

Recovering After the NOLOGGING Clause Is Specified

10-24 Oracle Data Guard Concepts and Administration

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;

These error messages are returned when one or more logs in the archive gap have
not been successfully applied. If you receive these errors, manually resolve the gaps
and repeat step 3.

10.5.3 Determining If a Backup Is Required After Unrecoverable Operations
If you performed unrecoverable operations on your primary database, determine if
a new backup operation is required by following these steps:

1. Query the V$DATAFILE view on the primary database to determine the system
change number (SCN) or the time at which the Oracle database server
generated the most recent invalided redo data.

2. Issue the following SQL statement on the primary database to determine if you
need to perform another backup:

SELECT UNRECOVERABLE_CHANGE#,
 TO_CHAR(UNRECOVERABLE_TIME, 'mm-dd-yyyy hh:mi:ss')
FROM V$DATAFILE;

3. If the query in the previous step reports an unrecoverable time for a datafile
that is more recent than the time when the datafile was last backed up, then
make another backup of the datafile in question.

See Also: Section B.3 for information on manually resolving an
archive gap

See Also: V$DATAFILE in Chapter 14 and the Oracle9i Database
Reference for more information about the V$DATAFILE view

Part II
 Reference

This part provides reference material to be used in conjunction with the Oracle Data
Guard standby database features. For more complete reference material, refer to the
Oracle9i documentation set.

This part contains the following chapters:

■ Chapter 11, "Initialization Parameters"

■ Chapter 12, "LOG_ARCHIVE_DEST_n Parameter Attributes"

■ Chapter 13, "SQL Statements"

■ Chapter 14, "Views"

Initialization Parameters 11-1

11
Initialization Parameters

This chapter describes how to view the current database initialization parameters,
how to modify a server parameter file (SPFILE), and provides reference information
for the initialization parameters that affect instances in a Data Guard configuration.

All database initialization parameters are contained in either an initialization
parameter file (PFILE) or a server parameter file (SPFILE). As an alternative to
specifying parameters in an initialization parameter file or server parameter file,
you can modify dynamic parameters at runtime using the ALTER SYSTEM SET or
ALTER SESSION SET statements.

Note: You must use a server parameter file if you use the Data
Guard broker. Also, any runtime parameter modifications that are
not recorded in either the initialization parameter file or the server
parameter file are not persistent, and will be lost the next time the
database is restarted.

Viewing Initialization Parameters

11-2 Oracle Data Guard Concepts and Administration

11.1 Viewing Initialization Parameters
The following table describes the methods you can use to view the current
initialization parameter settings:

The following example queries the V$PARAMETER view for the CONTROL_FILES
parameter setting:

SQL> SELECT NAME, VALUE FROM V$PARAMETER WHERE NAME = ’CONTROL_FILES’;

11.2 Modifying a Server Parameter File
The server parameter file is a binary file and therefore cannot be edited manually.
To change values in the server parameter file, you must export it to an editable
format, make changes, and then import it back into a server parameter file, or use
the ALTER SYSTEM SET statement to change the server parameter values. These
methods are described in the following sections.

11.2.1 Exporting a Server Parameter File to an Editable File for Modifications
To modify a server parameter file do the following:

1. Use the SQL CREATE PFILE statement to export the server parameter file to a
text initialization parameter file, as shown in Example 1 and Example 2 (that
follow this list).

An initialization parameter file is a text file and can therefore be edited
manually. You must have the SYSDBA or the SYSOPER system privilege to
execute this statement. The exported file is created on the database server

Method Description

SHOW PARAMETERS
SQL*Plus command

Issue this command to display the parameter values that are
currently in effect.

V$PARAMETER view Query this view to display the parameter values that are
currently in effect.

V$PARAMETER2 view Query this view to display the parameter values that are
currently in effect. The output from this view is the same, but
more readable, than the output from the V$PARAMETER view.

V$SPPARAMETER view Query this view to display the current contents of the server
parameter file. The view returns null values if a server
parameter file is not being used by the instance.

Modifying a Server Parameter File

 Initialization Parameters 11-3

system. It contains any comments associated with the parameter in the same
line as the parameter setting.

2. Edit the initialization parameter file.

3. Use the SQL CREATE SPFILE statement to create a new server parameter file
from the edited initialization parameter file, as shown in Example 3 and
Example 4 (that follow this list).

You must have the SYSDBA or the SYSOPER system privilege to execute this
statement.

Example 1
This example creates a text initialization parameter file from the server parameter
file without specifying filenames:

CREATE PFILE FROM SPFILE;

Because no names are specified for the files, an operating system-specific name is
used for the initialization parameter file, and it is created from the operating
system-specific default server parameter file.

Example 2
This example creates a text initialization parameter file from a server parameter file
where the names of the files are specified:

SQL> CREATE PFILE='/u01/oracle/dbs/test_init.ora'
 2> FROM SPFILE='/u01/oracle/dbs/test_spfile.ora';

Example 3
This example creates a server parameter file from the initialization parameter file
/u01/oracle/dbs/test_init.ora. An SPFILE name is not specified, so the file
is created using an operating system-specific default server parameter filename and
location:

SQL> CREATE SPFILE FROM PFILE='/u01/oracle/dbs/test_init.ora';

Example 4
This example creates a server parameter file and supplies a name for both the server
parameter file and the initialization parameter file:

SQL> CREATE SPFILE='/u01/oracle/dbs/test_spfile.ora'
 2> FROM PFILE='/u01/oracle/dbs/test_init.ora';

Initialization Parameters for Instances in a Data Guard Configuration

11-4 Oracle Data Guard Concepts and Administration

11.2.2 Using SQL ALTER SYSTEM SET to Modify a Server Parameter File
As an alternative to exporting, editing, and importing the server parameter file, as
described in the previous section, you can use the SQL ALTER SYSTEM SET
statement to change initialization parameter values. Make sure that you use the
SCOPE clause to apply the change in the server parameter file.

By default, the scope is set to BOTH if a server parameter file was used to start up
the instance, and the scope is set to MEMORY if an initialization parameter file was
used to start up the instance. The following example adds a new local archive log
destination to the server parameter file:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_4=
 2> 'LOCATION=/disk1/oracle/oradata/payroll/',
 3> ’MANDATORY’, 'REOPEN=2' SCOPE=SPFILE;

11.3 Initialization Parameters for Instances in a Data Guard
Configuration

The following list shows the initialization parameters that affect instances in a Data
Guard environment:

■ ARCHIVE_LAG_TARGET

■ COMPATIBLE

■ CONTROL_FILE_RECORD_KEEP_TIME

■ CONTROL_FILES

■ DB_FILE_NAME_CONVERT

■ DB_FILES

■ DB_NAME

■ FAL_CLIENT

■ FAL_SERVER

■ LOCK_NAME_SPACE

■ LOG_ARCHIVE_DEST_n

■ LOG_ARCHIVE_DEST_STATE_n

■ LOG_ARCHIVE_FORMAT

■ LOG_ARCHIVE_MAX_PROCESSES

Initialization Parameters for Instances in a Data Guard Configuration

 Initialization Parameters 11-5

■ LOG_ARCHIVE_MIN_SUCCEED_DEST

■ LOG_ARCHIVE_START

■ LOG_ARCHIVE_TRACE

■ LOG_FILE_NAME_CONVERT

■ LOG_PARALLELISM

■ PARALLEL_MAX_SERVERS

■ REMOTE_ARCHIVE_ENABLE

■ SHARED_POOL_SIZE

■ SORT_AREA_SIZE

■ STANDBY_ARCHIVE_DEST

■ STANDBY_FILE_MANAGEMENT

■ USER_DUMP_DEST

The following sections provide a description for each parameter that indicates if the
parameter applies to the primary database role, the standby database role, or both.
For parameters that apply to the standby database role, most of the parameters
pertain to both physical and logical standby databases. Any differences are noted.

See Also: Oracle9i Database Reference for information about these
parameters that is not specific to Data Guard and for the type,
default values, and syntax for these initialization parameters. Also
refer to your Oracle operating system-specific documentation for
more information about setting initialization parameters.

ARCHIVE_LAG_TARGET

11-6 Oracle Data Guard Concepts and Administration

ARCHIVE_LAG_TARGET

Description
Limits the amount of data that can be lost and effectively increases the availability
of the standby database by forcing a log switch after the amount of time you specify
(in seconds) elapses. The standby database will not miss redo logs generated from a
time range longer than a value of the ARCHIVE_LAG_TARGET parameter.

Role
Applies to the primary database role

Examples
The following example sets the log switch interval to 30 minutes (a typical value):

ARCHIVE_LAG_TARGET = 1800

COMPATIBLE

 Initialization Parameters 11-7

COMPATIBLE

Description
Controls the compatibility of your database. Set to 9.0.0.0.0 or higher to use the Data
Guard broker, logical standby databases, and the enhanced features of physical
standby databases. Always set this parameter to the same value on the primary
database and standby databases. If the values differ, you might not be able to
archive the redo logs from the primary database to the standby database.

Role
Applies to the primary and standby database roles

Examples
The following example sets the database compatible level to ’9.2.0.0.0’:

COMPATIBLE = '9.2.0.0.0'

CONTROL_FILE_RECORD_KEEP_TIME

11-8 Oracle Data Guard Concepts and Administration

CONTROL_FILE_RECORD_KEEP_TIME

Description
Specifies the minimum number of days before a reusable record in the control file
can be reused. Use this parameter to avoid overwriting a reusable record in the
control file (that contains needed information such as an archive log) for a specified
period of time. The range of values for this parameter is 0 to 356 days. If this
parameter is set to 0, then the reusable records are reused as needed.

Role
Applies to the primary and standby database roles

Examples
The following example sets the minimum number of days before a reusable record
in the control file can be reused to 20 days:

CONTROL_FILE_RECORD_KEEP_TIME = 20

CONTROL_FILES

 Initialization Parameters 11-9

CONTROL_FILES

Description
Specifies the names of one or more control files, separated by commas. Always set
this parameter on the standby database to a different value than the CONTROL_
FILES parameter for the primary database, if these databases are on the same
system. The filenames you specify with the CONTROL_FILES parameter for the
standby database must exist at the standby location.

Role
Applies to the primary and standby database roles

Examples
The following example specifies two control files for the database instance:

CONTROL_FILE = ("/disk1/oracle/oradata/payroll/control01.ctl",
"/disk1/oracle/oradata/payroll/control02.ctl")

DB_FILE_NAME_CONVERT

11-10 Oracle Data Guard Concepts and Administration

DB_FILE_NAME_CONVERT

Description
Converts the filename of a datafile on the primary database to a filename on the
standby database. Because the standby database control file is a copy of the
primary database control file, you must use this parameter to convert the standby
database filenames when they are different from the primary database filenames. If
the standby database is on the same system as the primary database, you must use
different path names.

Role
Applies to the physical standby database role

Examples
The following example shows the conversion of paths from /dbs/t1/ (primary
database) to /dbs/t1/stdby (standby database) and dbs/t2/ (primary database)
to dbs/t2/stdby (standby database):

DB_FILE_NAME_CONVERT = ('/dbs/t1/','/dbs/t1/stdby','dbs/t2/ ','dbs/t2/stdby')

DB_FILES

 Initialization Parameters 11-11

DB_FILES

Description
Specifies the maximum number of database files that can be open for this database.
The primary and standby databases should have the same value for this parameter.

Role
Applies to the primary and standby database roles

Examples
The following example specifies that a maximum of 300 database files can be open
for this database instance:

DB_FILES = 300

DB_NAME

11-12 Oracle Data Guard Concepts and Administration

DB_NAME

Description
Specifies a database identifier of up to eight characters. For a physical standby
database, set the DB_NAME parameter to the same value as it is set in the primary
database initialization file. For a logical standby database, set the DB_NAME
parameter to a different value from that in the primary database initialization files.
Use the DBNEWID (nid) utility to set the database name for a logical standby
database, as described in Section 4.2.14.

Role
Applies to the primary and standby database roles

Examples
The following example shows that the database name is Sales:

DB_NAME = Sales

The following example shows how to use the DBNEWID utility to set a logical
standby database name. You must mount the database before issuing this
command.

nid TARGET=SYS/CHANGE_ON_INSTALL@LogicalSDB DBNAME=SalesLSDB SETNAME=YES

FAL_CLIENT

 Initialization Parameters 11-13

FAL_CLIENT

Description
Assigns the fetch archive log (FAL) client name used by the FAL server to refer to
the FAL client. This is the Oracle Net service name that the FAL server should use to
refer to the standby database. This Oracle Net service name must be configured
properly on the FAL server (primary database) to point to the FAL client. Given the
dependency of the FAL_CLIENT parameter on the FAL_SERVER parameter, the two
parameters should be configured or changed at the same time. This parameter is set
on the standby site.

Role
Applies to the physical standby database role in managed recovery mode

Examples
The following example assigns the FAL client to the Oracle Net service name
StandbyDB:

FAL_CLIENT = StandbyDB

FAL_SERVER

11-14 Oracle Data Guard Concepts and Administration

FAL_SERVER

Description
Assigns the Oracle Net service name that the standby database should use to
connect to the fetch archive log (FAL) server. This parameter is set on the standby
system.

Role
Applies to the physical standby database role in managed recovery mode

Examples
The following example shows that the FAL server is assigned to the Oracle Net
service name PrimaryDB:

FAL_SERVER = PrimaryDB

LOCK_NAME_SPACE

 Initialization Parameters 11-15

LOCK_NAME_SPACE

Description
Specifies the name space that the distributed lock manager (DLM) uses to generate
lock names. Set this parameter to a unique value in each initialization parameter file
if the standby database has the same name as the primary database and is on the
same system or cluster.

Role
Applies to the primary and standby database roles

Examples
The following example shows that the LOCK_NAME_SPACE is set to payroll2 in
the standby initialization parameter file:

LOCK_NAME_SPACE = payroll2

Note: If you do not set the LOCK_NAME_SPACE parameter
differently when the standby and primary databases are located on
the same system, you will receive an ORA-1102 error.

LOG_ARCHIVE_DEST_n

11-16 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_DEST_n

Description
Defines an archive log destination and attributes for log transport services. This
parameter is discussed in Chapter 5 and in Chapter 12.

Role
Applies to the primary and standby database roles

Examples
The following example shows a remote archive log destination to a standby
database:

LOG_ARCHIVE_DEST_2 = 'SERVICE=payroll2 OPTIONAL REOPEN=180'

LOG_ARCHIVE_DEST_STATE_n

 Initialization Parameters 11-17

LOG_ARCHIVE_DEST_STATE_n

Description
Specifies the state of the destination specified by the LOG_ARCHIVE_DEST_n
parameter. The possible values are as follows:

■ ENABLE specifies that a valid log archive destination can be used for a
subsequent archiving operation (automatic or manual). This is the default.

■ DEFER specifies that valid destination information and attributes are preserved,
but the destination is excluded from archiving operations until you reenable
archiving with the ENABLE option.

■ ALTERNATE specifies that the destination is not enabled, but will become
enabled if communication to another destination fails.

Role
Applies to the primary and standby database roles

Examples
The following example shows the LOG_ARCHIVE_DEST_STATE_2 state is set to
ENABLE:

LOG_ARCHIVE_DEST_STATE_2 = ENABLE

LOG_ARCHIVE_FORMAT

11-18 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_FORMAT

Description
Specifies the format for archived redo log filenames. STANDBY_ARCHIVE_DEST
and LOG_ARCHIVE_FORMAT initialization parameters are concatenated to generate
fully-qualified standby database archived redo log filenames.

Role
Applies to the primary and standby database roles

Examples
The following example specifies the format for the archive redo log filename using a
database ID (%d), thread (%t), and sequence number (%s):

LOG_ARCHIVE_FORMAT = ’log%d_%t_%s.arc’

LOG_ARCHIVE_MAX_PROCESSES

 Initialization Parameters 11-19

LOG_ARCHIVE_MAX_PROCESSES

Description
Specifies the number of archiver background processes to be invoked by the
database server. This value is evaluated at instance startup if the LOG_ARCHIVE_
START parameter has the value TRUE; otherwise, this parameter is evaluated when
the archiver process is invoked.

Role
Applies to the primary and standby database roles

Examples
The following example sets the number of log archiver processes to 2:

LOG_ARCHIVE_MAX_PROCESSES = 2

LOG_ARCHIVE_MIN_SUCCEED_DEST

11-20 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_MIN_SUCCEED_DEST

Description
Defines the minimum number of destinations that must receive redo logs
successfully before the log writer process on the primary database can reuse the
online redo logs.

Role
Applies to the primary and standby database roles

Examples
The following example sets the minimum number of destinations that must succeed
to 2:

LOG_ARCHIVE_MIN_SUCCEED_DEST = 2

LOG_ARCHIVE_START

 Initialization Parameters 11-21

LOG_ARCHIVE_START

Description
Indicates if archiving should be automatic or manual when the instance starts up.
To enable automatic archiving of filled log groups, set LOG_ARCHIVE_START in the
initialization parameter file to TRUE. To disable the automatic archiving of filled
online redo log groups, set LOG_ARCHIVE_START to FALSE. You cannot specify
this parameter in a server parameter file.

Role
Applies to the primary and standby database roles

Examples
The following example sets LOG_ARCHIVE_START to TRUE:

LOG_ARCHIVE_START = TRUE

LOG_ARCHIVE_TRACE

11-22 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_TRACE

Description
Controls trace output generated by the ARCn and LGWR processes and foreground
processes on the primary database, and the RFS and FAL server processes on the
standby database. It allows you to see the progression of the archivedd redo logs to
the standby site. The Oracle database server writes an audit trail of the redo logs
received from the primary database into a trace file. You specify the location of the
trace file using the USER_DUMP_DEST parameter. Possible values include:

Role
Applies to the primary and standby database roles

Example
The following example sets the LOG_ARCHIVE_TRACE to 1:

LOG_ARCHIVE_TRACE = 1

Level Meaning

0 Disables archived redo log tracing (default setting)

1 Tracks archiving of redo log file

2 Tracks archival status per archived redo log destination

4 Tracks archival operational phase

8 Tracks archived redo log destination activity

16 Tracks detailed archived redo log destination activity

32 Tracks archived redo log destination parameter modifications

64 Tracks ARCn process state activity

128 Tracks FAL server process activity

256 Supported in a future release

512 Tracks asynchronous LGWR activity

1024 Tracks the RFS physical client

2048 Tracks the ARCn or RFS heartbeat

LOG_FILE_NAME_CONVERT

 Initialization Parameters 11-23

LOG_FILE_NAME_CONVERT

Description
Converts the filename of a log on the primary database to the filename of a log on
the standby database. Adding a log to the primary database necessitates adding a
corresponding log to the standby database. When the standby database is updated,
this parameter is used to convert the log filename from the primary database to the
log filename on the standby database. This parameter is necessary when the
standby database uses different path names from the primary database. If the
standby database is on the same system as the primary database, you must use
different path names.

Role
Applies to the physical standby database roles

Examples
The following example shows the conversion of two paths. It converts /dbs/t1/
(primary database) to /dbs/t1/stdby (standby database) and dbs/t2/ (primary
database) to dbs/t2/stdby (standby database):

LOG_FILE_NAME_CONVERT = ('/dbs/t1/','/dbs/t1/stdby','dbs/t2/ ','dbs/t2/stdby')

LOG_PARALLELISM

11-24 Oracle Data Guard Concepts and Administration

LOG_PARALLELISM

Description
Specifies the level of concurrency for redo data allocation to allow parallel
generation of redo data. Set this value to 1 for the primary database and for all
logical standby databases, The default value is 1.

Role
Applies to the logical standby database role only

Examples
The following example sets the LOG_PARALLELISM parameter to 1:

LOG_PARALLELISM = 1

PARALLEL_MAX_SERVERS

 Initialization Parameters 11-25

PARALLEL_MAX_SERVERS

Description
This parameter specifies the maximum number of parallel servers that can work on
log apply services on the logical standby database. This parameter is not used with
physical standby databases.

Log apply services use parallel query processes to perform processing, and use
parallel apply algorithms to maintain a high level of database apply performance. A
minimum of 5 parallel query processes is required for a logical standby database.
Thus, the value of the PARALLEL_MAX_SERVERS parameter must be set to a value
of 5 or greater.

Role
Applies to the primary and logical standby database roles

Examples
The following example sets the PARALLEL_MAX_SERVERS initialization parameter
to 10:

PARALLEL_MAX_SERVERS = 10

REMOTE_ARCHIVE_ENABLE

11-26 Oracle Data Guard Concepts and Administration

REMOTE_ARCHIVE_ENABLE

Description
Enables or disables the sending of redo logs to remote destinations and the receipt
of remote redo logs.

Possible values are:

■ TRUE

Enables the sending of redo logs to a remote destination or receipt of remote
redo logs. Set this parameter to TRUE on the primary database and standby
databases in the Data Guard environment to allow the primary database to
send redo logs to the standby database and to allow the standby database to
receive redo logs for archiving from the primary database.

■ FALSE

Disables both the sending and receiving of redo logs.

■ SEND

Enables the primary database to send redo logs to the standby database.

■ RECEIVE

Enables the standby database to receive redo logs from the primary database.

To independently enable and disable the sending and receiving of remote redo logs,
use the send and receive values. The SEND and RECEIVE values together are the
same as specifying true. Every instance of an Oracle Real Application Clusters
database must contain the same REMOTE_ARCHIVE_ENABLE value.

Role
Applies to the primary and standby database roles

Examples
The following example enables the remote log sending or receiving:

REMOTE_ARCHIVE_ENABLE = true

SHARED_POOL_SIZE

 Initialization Parameters 11-27

SHARED_POOL_SIZE

Description
Specifies (in bytes) the size of the shared pool. Log apply services of logical standby
databases use a shared pool system global area (SGA) to stage the information read
from the redo logs. The more SGA that is available, the more information that can
be staged. By default, one quarter of the value set for the SHARED_POOL_SIZE
parameter will be used by log apply services. You can change this default using the
DBMS_LOGSTDBY.APPLY_SET PL/SQL procedure.

Role
Applies to the primary and standby database roles

Examples
The following example sets the shared pool size to 33 MB:

SHARED_POOL_SIZE = 33554432

SORT_AREA_SIZE

11-28 Oracle Data Guard Concepts and Administration

SORT_AREA_SIZE

Description
Specifies in bytes the maximum amount of memory the Oracle database server will
use for a sort operation. Set this parameter to a value that allows you to execute the
SELECT * FROM V$PARAMETER statement when the database is not open. This
prevents errors if you attempt to sort without temporary tablespaces when the
database is not open.

Role
Applies to the primary and standby database roles

Examples
The following example sets the sort area size to 65536 bytes:

SORT_AREA_SIZE = 65536

STANDBY_ARCHIVE_DEST

 Initialization Parameters 11-29

STANDBY_ARCHIVE_DEST

Description
Used by a standby database to determine the archive location of online redo logs
received from the primary database. The RFS process uses this value in conjunction
with the LOG_ARCHIVE_FORMAT value to generate the fully-qualified standby
database redo log filenames. Note that the generated filename is overridden by the
TEMPLATE attribute of the LOG_ARCHIVE_DEST_n parameter.

You can see the value of this parameter by querying the V$ARCHIVE_DEST data
dictionary view.

Role
Applies to the standby database role

Examples
The following example specifies that ’/u01/oracle/oradata/archive’ is the
redo log file path on the standby database:

STANDBY_ARCHIVE_DEST = ’/u01/oracle/oradata/archive’

STANDBY_FILE_MANAGEMENT

11-30 Oracle Data Guard Concepts and Administration

STANDBY_FILE_MANAGEMENT

Description
Enables or disables automatic standby file management.

The possible values for this parameter are:

■ MANUAL

Disables automatic standby file management

■ AUTO

Enables automatic standby file management

When set to AUTO, this parameter automates the creation and deletion of datafile
filenames on the standby site using the same filenames as the primary site. When
set to MANUAL, datafile creation and deletion are not automated and might cause
managed recovery operations to terminate.

Use this parameter with the DB_FILE_NAME_CONVERT initialization parameter to
ensure that the correct files are created on the standby site when the standby
database has a different file path from the primary database. Note that this
parameter does not support datafile filenames on RAW devices.

Role
Applies to the primary and standby database roles

Examples
The following example enables automatic standby file management:

STANDBY_FILE_MANAGEMENT = TRUE

USER_DUMP_DEST

 Initialization Parameters 11-31

USER_DUMP_DEST

Description
Specifies the directory path name where the database server will write debugging
trace files on behalf of a user process. Use the LOG_ARCHIVE_TRACE parameter to
control the trace information.

Role
Applies to the primary and standby database roles

Examples
The following example specifies the location for the database trace files to be
’/u01/oracle/oradata/utrc’:

USER_DUMP_DEST = ’/u01/oracle/oradata/utrc’

USER_DUMP_DEST

11-32 Oracle Data Guard Concepts and Administration

LOG_ARCHIVE_DEST_n Parameter Attributes 12-1

12
 LOG_ARCHIVE_DEST_n Parameter

Attributes

This chapter provides syntax, values, and information on validity for the archival
attributes of the LOG_ARCHIVE_DEST_n initialization parameter. These attributes
include:

AFFIRM and NOAFFIRM
ALTERNATE and NOALTERNATE
ARCH and LGWR
DELAY and NODELAY
DEPENDENCY and NODEPENDENCY
LOCATION and SERVICE
MANDATORY and OPTIONAL
MAX_FAILURE and NOMAX_FAILURE
NET_TIMEOUT and NONET_TIMEOUT
QUOTA_SIZE and NOQUOTA_SIZE
QUOTA_USED and NOQUOTA_USED
REGISTER and NOREGISTER
REGISTER=location_format
REOPEN and NOREOPEN
SYNC and ASYNC
TEMPLATE and NOTEMPLATE

In addition, this chapter includes the following topics:

■ About LOG_ARCHIVE_DEST_n Parameter Attributes

■ Attribute Compatibility for Archive Destinations

About LOG_ARCHIVE_DEST_n Parameter Attributes

12-2 Oracle Data Guard Concepts and Administration

12.1 About LOG_ARCHIVE_DEST_n Parameter Attributes
You should specify at least two LOG_ARCHIVE_DEST_n (where n is an integer from
1 to 10) parameters: one for the required local destination and another for a local or
remote destination.

The following sections describe the attributes of the LOG_ARCHIVE_DEST_n
initialization parameter. See Chapter 5 for additional information.

All LOG_ARCHIVE_DEST_n parameters must contain, at a minimum, either a
LOCATION or SERVICE attribute. In addition, you must have a LOG_ARCHIVE_
DEST_STATE_n parameter for each defined destination.

The LOG_ARCHIVE_DEST_STATE_n (where n is an integer from 1 to 10)
initialization parameter specifies the state of the corresponding destination
indicated by the LOG_ARCHIVE_DEST_n initialization parameter. For example, the
LOG_ARCHIVE_DEST_STATE_3 parameter specifies the state of the LOG_
ARCHIVE_DEST_3 destination.

12.2 Changing Destination Attributes Using SQL Statements
Table 12–1 lists the attributes that can be set for the LOG_ARCHIVE_DEST_n
initialization parameter and indicates if the attribute can be changed using an
ALTER SYSTEM or ALTER SESSION statement.

Note: Each destination must identify either a local disk directory
or a remotely accessed database. See Chapter 5 for additional
information about log transport services and using these
initialization parameters. See Appendix D for information about
using these initialization parameters to set up cascaded redo logs.

Table 12–1 Changing Destination Attributes Using SQL

Attribute ALTER SYSTEM ALTER SESSION

[NO]AFFIRM Yes Yes

[NO]ALTERNATE=destination Yes Yes

ARCH Yes Yes

ASYNC[=blocks] Yes No

[NO]DELAY Yes Yes

Incrementally Changing LOG_ARCHIVE_DEST_n Parameter Settings

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-3

12.3 Incrementally Changing LOG_ARCHIVE_DEST_n Parameter
Settings

The log transport services LOG_ARCHIVE_DEST_n destination initialization
parameters are unique in that they contain multiple values known as attributes.
Except for the LOCATION and SERVICE attributes, all attributes are optional and
have a default value.

[NO]DEPENDENCY=destination Yes No

LGWR Yes No

LOCATION=local_disk_directory Yes Yes

MANDATORY Yes Yes

[NO]MAX_FAILURE=count Yes No

OPTIONAL Yes Yes

[NO]NET_TIMEOUT[=seconds] Yes No

[NO]QUOTA_SIZE=blocks Yes No

[NO]QUOTA_USED=blocks Yes No

[NO]REGISTER Yes Yes

REGISTER=location_format Yes Yes

[NO]REOPEN[=seconds] Yes Yes

SERVICE=net_service_name Yes Yes

SYNC[=PARALLEL|NOPARALLEL] Yes Yes

[NO]TEMPLATE=filename_template Yes Yes

Note: When using a traditional text initialization parameter file,
the LOG_ARCHIVE_DEST_n parameters can also be specified
incrementally at runtime so that you can replace one or more
specific attributes without having to re-specify the entire parameter
value. See Section 5.8.1 for examples that show incremental changes
to a traditional text initialization parameter file.

Table 12–1 Changing Destination Attributes Using SQL

Attribute ALTER SYSTEM ALTER SESSION

Incrementally Changing LOG_ARCHIVE_DEST_n Parameter Settings

12-4 Oracle Data Guard Concepts and Administration

To specify network service names that use embedded characters, such as equal
signs (=) and spaces, enclose the service name in quotation marks (").

Example 12–1 shows how to replace the initial specification of the LOG_ARCHIVE_
DEST_1 parameter.

Example 12–1 Replacing a Destination Specification

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’
LOG_ARCHIVE_DEST_2=’SERVICE=stdby REOPEN=60’
LOG_ARCHIVE_DEST_1=’LOCATION=/disk3/oracle/oradata/payroll MANDATORY’

When using a traditional text initialization parameter file, the LOG_ARCHIVE_
DEST_n initialization parameters can be changed incrementally at run-time using
the ALTER SYSTEM SET statement. This means that you are able to change one or
more specific attributes without having to re-specify the entire parameter value.
Specifying any attribute except the LOCATION or SERVICE attributes is valid for an
incremental change.

Example 12–2 shows how to set multiple attributes incrementally on separate lines.
Specify the SERVICE or LOCATION attribute on the first line.

Example 12–2 Specifying Multiple Attributes Incrementally

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’OPTIONAL’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’REOPEN=5’;

Example 12–3 shows how to specify attributes for multiple destinations.
Incremental parameters such as the LOG_ARCHIVE_DEST_n initialization
parameter do not have to immediately follow each other.

Example 12–3 Specifying Multiple Attributes for Multiple Destinations

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_2=’SERVICE=stdby REOPEN=60’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1= OPTIONAL’;

Note: You cannot make incremental changes to parameters in a
server parameter file (SPFILE). You must convert the SPFILE to a
traditional text initialization parameter file (PFILE) and edit the ini-
tialization parameters, then convert the PFILE back to a SPFILE.

Incrementally Changing LOG_ARCHIVE_DEST_n Parameter Settings

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-5

Specifying the LOCATION or SERVICE attribute causes the destination initialization
parameter to be reset to its default values. Example 12–4 shows an entry for LOG_
ARCHIVE_DEST_1 that is not considered an incremental change:

Example 12–4 Replaced Destination Specification

ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll
REOPEN=60’;
ALTER SYSTEM SET LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’;

A string containing a null value for parameter attributes clears a previously entered
destination specification. Example 12–5 shows how to clear the definition of LOG_
ARCHIVE_DEST_1.

Example 12–5 Clearing a Destination Specification

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1/oracle/oradata/payroll’
LOG_ARCHIVE_DEST_2=’SERVICE=stdby REOPEN=60’
LOG_ARCHIVE_DEST_1=’’

12.3.1 Viewing Current Settings of Destination Initialization Parameters
You can use SQL to query fixed views such as V$ARCHIVE_DEST to see current
LOG_ARCHIVE_DEST_n initialization parameter settings. For example, to view
current destination settings on the primary database, enter the following statement:

SQL> SELECT DESTINATION FROM V$ARCHIVE_DEST;

Note: Do not use the V$PARAMETER view to determine the value
of the LOG_ARCHIVE_DEST_n initialization parameters. The
V$PARAMETER view shows only the last specified value for each
parameter, which in the case of an incremental modification is not
representative of the actual LOG_ARCHIVE_DEST_n parameter
value.

AFFIRM and NOAFFIRM

12-6 Oracle Data Guard Concepts and Administration

AFFIRM and NOAFFIRM

Purpose
Use the AFFIRM and the NOAFFIRM attributes to ensure that archived redo log
contents were successfully written to disk. This applies to both local and remote
destinations.

Defaults
If the AFFIRM or the NOAFFIRM attribute is not specified with the
LOG_ARCHIVE_DEST_n parameter, the default is NOAFFIRM.

Attributes

AFFIRM
The AFFIRM attribute indicates that all archived redo log I/O operations are to be
performed synchronously, even on a remote standby database. This attribute has
the potential to affect primary database performance. When you use the LGWR and
AFFIRM attributes to indicate that the log writer process synchronously writes the
locally archived redo log contents to disk, control is not returned to the users and
does not continue until the disk I/O operation has completed. When you use the

Category AFFIRM NOAFFIRM

Datatype of the attribute Keyword Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... NOAFFIRM AFFIRM

Attribute class ALTER SESSION and
ALTER SYSTEM

ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

AFFIRM AFFIRM

Related V$ARCHIVE_DEST
column

ASYNC_BLOCKS ASYNC_BLOCKS

AFFIRM and NOAFFIRM

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-7

ARCH and AFFIRM attributes to indicate that the ARCn process will synchronously
write the archived redo logs to disk, the archival operation might take longer, and
online redo logs might not be reusable until archiving is complete.

Using the AFFIRM attribute does not affect performance when you use the ASYNC
attribute.

Query the AFFIRM column of the V$ARCHIVE_DEST fixed view to see whether or
not the AFFIRM attribute is being used for the associated destination.

The following table identifies the various combinations of these attributes and their
potential for affecting primary database performance and data availability. For
example, the AFFIRM attribute used in conjunction with the SYNC and ASYNC
attributes provides the highest degree of data protection but results in negative
performance on the primary database.

The highest degree of data availability also has the potential for the lowest primary
database performance.

NOAFFIRM
The NOAFFIRM attribute indicates that all archived redo log disk I/O operations are
to be performed asynchronously; the log writer process does not wait until the disk
I/O has completed before continuing.

Network I/O
Attribute

Archived Redo Log
Disk I/O Attribute

Potential Primary
Database
Performance

Standby Database
Data Protection

SYNC AFFIRM Lowest Highest

SYNC NOAFFIRM Low High

ASYNC AFFIRM High Low

ASYNC NOAFFIRM Highest Lowest

Note: When the primary database is in the MAXIMIZE
PROTECTION or MAXIMIZE AVAILABILITY mode, redo log
archiving destinations using the log writer process are also
automatically placed in AFFIRM mode.

See Also: SYNC and ASYNC on page 12-48

AFFIRM and NOAFFIRM

12-8 Oracle Data Guard Concepts and Administration

Examples
The following example shows the AFFIRM attribute with the
LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DEST_3=’SERVICE=stby1 LGWR SYNC AFFIRM’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

ALTERNATE and NOALTERNATE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-9

ALTERNATE and NOALTERNATE

Purpose
The ALTERNATE and the NOALTERNATE attributes of the LOG_ARCHIVE_DEST_n
parameter define an alternate archiving destination or prevent archiving to an
alternate destination when the original archiving destination fails.

Defaults
If the ALTERNATE or the NOALTERNATE attribute is not specified with the LOG_
ARCHIVE_DEST_n parameter, the default is NOALTERNATE.

Attributes

ALTERNATE=destination
Use the ALTERNATE attribute of the LOG_ARCHIVE_DEST_n parameter to define an
alternate archiving destination to be used if archiving to the original archiving
destination fails.

Category ALTERNATE=destination NOALTERNATE

Datatype of the attribute String value Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value None1

1 If the NOALTERNATE attribute is specified, or if no alternate destination is specified, the destination
does not automatically change to another destination upon failure.

Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... NOALTERNATE ALTERNATE

Attribute class ALTER SYSTEM ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

ALTERNATE ALTERNATE

Related V$ARCHIVE_DEST
column

STATUS STATUS

ALTERNATE and NOALTERNATE

12-10 Oracle Data Guard Concepts and Administration

An archiving destination can have a maximum of one alternate destination
specified. An alternate destination is used when the transmission of an online redo
log from the primary site to the standby site fails. If archiving fails and the REOPEN
attribute is specified with a value of zero (0), or NOREOPEN is specified, the Oracle
database server attempts to archive online redo logs to the alternate destination on
the next archival operation.

An alternate destination can reference a local or remote archiving destination. An
alternate destination cannot be self-referencing.

A destination can also be in the ALTERNATE state; this state is specified using the
LOG_ARCHIVE_DEST_STATE_n initialization parameter. The ALTERNATE state
defers processing of the destination until such time as another destination failure
automatically enables this destination, if the alternate destination attributes are
valid. See Section 5.4 for more details about the LOG_ARCHIVE_DEST_STATE_n
parameter.

The ALTERNATE attribute cannot be modified at the session level.

In the following example, if the LOG_ARCHIVE_DEST_1 destination fails, the
archiving process automatically switches to the LOG_ARCHIVE_DEST_2
destination.

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1 MANDATORY ALTERNATE=LOG_ARCHIVE_DEST_2’
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2=’LOCATION=/disk2 MANDATORY’
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

Figure 12–1 shows a scenario where online redo logs are archived to a local disk
device. If the original destination device becomes full or unavailable, the archival
operation is automatically redirected to the alternate destination device.

ALTERNATE and NOALTERNATE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-11

Figure 12–1 Archiving Operation to an Alternate Destination Device

The REOPEN attribute takes precedence over the ALTERNATE attribute. The alternate
destination is used only if one of the following is true:

■ The NOREOPEN attribute is specified.

■ A value of zero (0) is specified for the REOPEN attribute.

■ A nonzero REOPEN attribute and a nonzero MAX_FAILURE count were
exceeded.

The ALTERNATE attribute takes precedence over the MANDATORY attribute. This
means that a destination fails over to a valid alternate destination even if the current
destination is mandatory.

The following is the archived redo log destination attribute precedence table:

Precedence1

1 1 indicates highest; 4 indicates lowest.

Attribute

1 MAX_FAILURE

2 REOPEN

3 ALTERNATE

4 MANDATORY

Instance
A

Original
Destination
Device

Alternate
Destination
Device

Instance
A

Original
Destination
Device

Alternate
Destination
Device

ALTERNATE and NOALTERNATE

12-12 Oracle Data Guard Concepts and Administration

The use of a standby database as the target of an alternate destination should be
carefully handled. Ideally, a standby alternate destination should only be used to
specify a different network route to the same standby database system.

If no enabled destination references the alternate destination, the alternate
destination is implied to be deferred, because there is no automatic method of
enabling the alternate destination.

An alternate destination can be manually enabled at runtime. Conversely, an
alternate destination can be manually deferred at runtime. See Section 5.8.1.2 for
more information about changing initialization parameter settings using SQL at
runtime.

There is no general pool of alternate archived redo log destinations. Ideally, for any
enabled destination, the database administrator should choose an alternate
destination that closely mirrors that of the referencing destination, although that is
not required.

Each enabled destination can have its own alternate destination. Conversely, several
enabled destinations can share the same alternate destination. This is known as an
overlapping set of destinations. Enabling the alternate destination determines the
set to which the destination belongs.

Increasing the number of enabled destinations decreases the number of available
alternate redo log archiving destinations.

Any destination can be designated as an alternate given the following restrictions:

■ At least one local mandatory destination is enabled.

■ The number of enabled destinations must meet the defined LOG_ARCHIVE_
MIN_SUCCEED_DEST parameter value.

■ A destination cannot be its own alternate; however, this does not generate an
error.

Note: An alternate destination is enabled for the next archival
operation. There is no support for enabling the alternate destination
in the middle of the archival operation because that would require
rereading already processed blocks, and so forth. This is identical to
the REOPEN attribute behavior.

ALTERNATE and NOALTERNATE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-13

Destinations defined using the SQL ALTER SESSION statement do not activate an
alternate destination defined at the system level. Conversely, system-defined
destinations do not activate an alternate destination defined at the session level.

If the REOPEN attribute is specified with a nonzero value, the ALTERNATE attribute
is ignored. If the MAX_FAILURE attribute is also specified with a nonzero value, and
the failure count exceeds the specified failure threshold, the ALTERNATE destination
is enabled. Therefore, the ALTERNATE attribute does not conflict with a nonzero
REOPEN attribute value.

NOALTERNATE
Use the NOALTERNATE attribute of the LOG_ARCHIVE_DEST_n parameter to
prevent the original destination from automatically changing to an alternate
destination when the original destination fails.

Examples
In the sample initialization parameter file in Example 12–6, LOG_ARCHIVE_DEST_1
automatically fails over to LOG_ARCHIVE_DEST_2 on the next archival operation if
an error occurs or the device becomes full.

Example 12–6 Automatically Failing Over to an Alternate Destination

LOG_ARCHIVE_DEST_1=
’LOCATION=/disk1 MANDATORY NOREOPEN ALTERNATE=LOG_ARCHIVE_DEST_2’
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2=’LOCATION=/disk2 MANDATORY’
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

The sample initialization parameter file in Example 12–7 shows how to define an
alternate Oracle Net service name to the same standby database.

Example 12–7 Defining an Alternate Oracle Net Service Name to the Same Standby
Database

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1 MANDATORY’
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2=’SERVICE=stby1_path1 NOREOPEN OPTIONAL ALTERNATE=LOG_ARCHIVE_DEST_3’
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_3=’SERVICE=stby1_path2 NOREOPEN OPTIONAL’
LOG_ARCHIVE_DEST_STATE_3=ALTERNATE

ARCH and LGWR

12-14 Oracle Data Guard Concepts and Administration

ARCH and LGWR

Purpose
The optional ARCH and LGWR attributes are used to specify that either the archiver
or log writer process is responsible for transmitting online redo logs to local and
remote archival destinations.

When you change the archiving process from the ARCn process to the LGWR
process using the ARCH and LGWR attributes for an archive destination, the LGWR
process does not start archiving until the next log switch operation. Conversely,
when you change the archiving process from the LGWR process to the ARCn
process, the LGWR process continues to archive until the next log switch operation.

Defaults
If the ARCH or the LGWR attribute is not specified with the LOG_ARCHIVE_DEST_n
parameter, the default is ARCH.

Category ARCH LGWR

Datatype of the attribute Keyword Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... LGWR, ASYNC,
NET_TIMEOUT

ARCH

Attribute class ALTER SESSION and
ALTER SYSTEM

ALTER SYSTEM only

Corresponding
V$ARCHIVE_DEST column

ARCHIVER ARCHIVER

Related V$ARCHIVE_DEST
columns

PROCESS, SCHEDULE PROCESS, SCHEDULE

ARCH and LGWR

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-15

Attributes

ARCH
The ARCH attribute indicates that redo logs are transmitted to the destination during
an archival operation. The background archiver processes (ARCn) or a foreground
archival operation serves as the redo log transport service.

LGWR
The LGWR attribute indicates that redo logs are transmitted to the destination
concurrently as the online redo log is populated. The background log writer process
(LGWR) serves as the redo log transport service. When transmitting redo logs to
remote destinations, the LGWR process establishes a network connection to the
destination instance. Because the redo logs are transmitted concurrently, they are
not retransmitted to the corresponding destination during the archival operation. If
a LGWR destination fails, the destination automatically reverts to using the archiver
(ARCn) process until the error is corrected.

Examples
The following example shows the LGWR attribute with the LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_3=’SERVICE=stby1 LGWR’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

DELAY and NODELAY

12-16 Oracle Data Guard Concepts and Administration

DELAY and NODELAY

Purpose
When the standby database is in managed recovery mode, redo logs are
automatically applied when they arrive from the primary database. However, to
protect against the transfer of corrupted or erroneous data from the primary site to
the standby site, you might want to create a time lag between archiving a redo log
at the primary site and applying that archived redo log at the standby site.

Defaults
In managed recovery mode, if the DELAY or the NODELAY attribute is not specified
with the LOG_ARCHIVE_DEST_n parameter, the default is NODELAY.

If the DELAY attribute is specified without a time interval, the default time interval
is 30 minutes.

Category DELAY[=minutes] NODELAY

Datatype of the attribute Numeric Keyword

Minimum value 0 minutes Not applicable

Maximum value Unlimited Not applicable

Default value 30 minutes Not applicable

Requires attributes ... SERVICE Not applicable

Conflicts with attributes ... LOCATION, NODELAY DELAY

Attribute class ALTER SESSION and
ALTER SYSTEM

ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

DELAY_MINS DELAY_MINS

Related V$ARCHIVE_DEST
column

DESTINATION DESTINATION

DELAY and NODELAY

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-17

Attributes

DELAY[=minutes]
Use the DELAY attribute of the LOG_ARCHIVE_DEST_n initialization parameter to
specify a time lag for the application of redo logs at the standby site. The DELAY
attribute does not affect the transmittal of redo logs to the standby site.

The DELAY attribute indicates that the archived redo logs at the standby site are not
available for recovery until the specified time interval has expired. The time interval
is expressed in minutes, and it starts when the redo log is successfully transmitted
and archived at the standby site.

You can use the DELAY attribute to set up a configuration where multiple standby
databases are maintained in varying degrees of synchronization with the primary
database. For example, assume primary database A supports standby databases B,
C, and D. Standby database B is set up as the disaster recovery database and
therefore has no time lag. Standby database C is set up to protect against logical or
physical corruption, and is maintained with a 2-hour delay. Standby database D is
maintained with a 4-hour delay and protects against further corruption.

You can override the specified delay interval at the standby site. To immediately
apply an archived redo log to the standby database before the time interval expires,
use the NODELAY keyword of the RECOVER MANAGED STANDBY DATABASE
clause; for example:

SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE NODELAY;

NODELAY
When you specify the NODELAY attribute and the standby database is in managed
recovery mode, redo logs are automatically applied when they arrive from the
primary database.

Note: Changes to the DELAY attribute take effect on the next
archival operation. In-progress archival operations are not affected.

See Also: Chapter 13, "SQL Statements"

DELAY and NODELAY

12-18 Oracle Data Guard Concepts and Administration

Examples
The following example shows the DELAY attribute with the LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_3=’SERVICE=stby1 DELAY=240’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

DEPENDENCY and NODEPENDENCY

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-19

DEPENDENCY and NODEPENDENCY

Purpose
Archiving redo logs to a remote database can be defined as being dependent upon
the success or failure of an archival operation to another destination. The dependent
destination is known as the child destination. The destination on which the child
depends is known as the parent destination. Specify the DEPENDENCY attribute with
the LOG_ARCHIVE_DEST_n parameter to define a local destination, physical
standby database, or logical standby database.

Defaults
If the DEPENDENCY or the NODEPENDENCY attribute is not specified with the
LOG_ARCHIVE_DEST_n parameter, the default is NODEPENDENCY.

Attributes

DEPENDENCY=destination
Specifying a destination dependency can be useful in the following configurations:

Category DEPENDENCY=destination NODEPENDENCY

Datatype of the attribute String value Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... SERVICE, REGISTER Not applicable

Conflicts with attributes ... NODEPENDENCY, LOCATION,
NOREGISTER, QUOTA_SIZE,
QUOTA_USED

DEPENDENCY

Attribute class ALTER SYSTEM only ALTER SYSTEM only

Corresponding
V$ARCHIVE_DEST column

DEPENDENCY DEPENDENCY

Related V$ARCHIVE_DEST
columns

Not applicable Not applicable

DEPENDENCY and NODEPENDENCY

12-20 Oracle Data Guard Concepts and Administration

■ The standby database and the primary database are on the same node.
Therefore, the archived redo logs are implicitly accessible to the standby
database.

■ Clustered file systems provide remote standby databases with access to the
primary database archived redo logs.

■ Operating system-specific network file systems provide remote standby
databases with access to the primary database archived redo logs.

■ Mirrored disk technology provides transparent networking support across
geographically remote distances.

■ Multiple standby databases are on the same remote site, sharing access to
common archived redo logs.

In these situations, although a physical archival operation does not occur for the
dependent destination, the standby database needs to know the location of the
archived redo logs. This allows the standby database to access the archived redo
logs when they become available for managed recovery. The DBA must specify a
destination as being dependent on the success or failure of a parent destination.

Consider the case of a two-node cluster where a primary node shares access to the
destination with the standby node through a mirrored disk device. This
configuration, where you maintain a local standby database, is useful for
off-loading ad hoc queries and reporting functions.

The primary database archives a redo log locally and, upon successful completion,
the archived redo log is immediately available to the standby database for managed
recovery. This does not require a physical remote archival operation for the standby
destination. In this case, two destinations are used: one for local archiving and
another for archiving at the standby site. The standby destination is not valid unless
the primary destination succeeds. Therefore, the standby destination has a
dependency upon the success or failure of the local destination.

The DEPENDENCY attribute has the following restrictions:

■ Only standby destinations can have a dependency.

■ The parent destination can be either a local or standby destination.

■ The DEPENDENCY attribute cannot be modified at the session level.

■ The REGISTER attribute is required.

■ The SERVICE attribute is required.

■ The alternate destination cannot be self-referencing.

DEPENDENCY and NODEPENDENCY

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-21

When one or more destinations are dependent upon the same parent destination, all
attributes of the dependent destinations still apply to that destination. It appears as
if the archival operation was performed for each destination, when only one
archival operation actually occurred.

Consider, for example, that two standby databases are dependent upon the archived
redo log of a parent destination. You can specify different DELAY attributes for each
destination, which allows you to maintain a staggered time lag between the
primary database and each standby database.

Similarly, a dependent destination can specify an alternate destination, which itself
might or might not be dependent on the same parent destination.

NODEPENDENCY
Specifies that there is no dependency on the success or failure of an archival
operation to another destination.

Examples
One reason to use the DEPENDENCY attribute is if the standby database is on the
same site as the primary database. Using this configuration, you only need to
archive the redo logs once and, because the standby database resides on the local
system, it can access the same redo logs. The following is an example of the LOG_
ARCHIVE_DEST_n parameters in this scenario:

Set up the mandatory local destination:
#
LOG_ARCHIVE_DEST_1=’LOCATION=/oracle/dbs/ MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
#
Set up the dependent standby database that resides on the local system:
#
LOG_ARCHIVE_DEST_2=’SERVICE=dest2 DEPENDENCY=LOG_ARCHIVE_DEST_1 OPTIONAL’
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Another reason to use the DEPENDENCY attribute is if two standby databases reside
on the same system. The parent and child standby databases can be any mix of
physical and logical standby databases. The following is an example of this
scenario:

Note: Dependent destinations do not participate in a standby
no-data-loss environment.

DEPENDENCY and NODEPENDENCY

12-22 Oracle Data Guard Concepts and Administration

Set up the mandatory local destination:
#
LOG_ARCHIVE_DEST_1=’LOCATION=/oracle/dbs/ MANDATORY'
LOG_ARCHIVE_DEST_STATE_1=ENABLE
#
Set up the remote standby database that will receive the logs:
#
LOG_ARCHIVE_DEST_2=’SERVICE=dest2 OPTIONAL'
LOG_ARCHIVE_DEST_STATE_2=ENABLE
#
Set up the remote standby database that resides on the same system as, and is
dependent on, the first standby database:
#
LOG_ARCHIVE_DEST_3=’SERVICE=dest3 DEPENDENCY=LOG_ARCHIVE_DEST_2 OPTIONAL'
LOG_ARCHIVE_DEST_STATE_3=ENABLE

LOCATION and SERVICE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-23

LOCATION and SERVICE

Purpose
Each destination must either identify a local disk directory or a remotely accessed
database.

Use either the LOCATION or the SERVICE attribute to specify a destination where
log transport services archive redo logs. For each Data Guard configuration, you
must identify at least one local disk directory (LOCATION=local_disk_
directory) where redo logs are archived. You can specify up to nine additional
local or remote destinations. You identify remote destinations by specifying a valid
Oracle Net service name (SERVICE=net_service_name).

Category LOCATION=local_disk_directory SERVICE=net_service_name

Datatype of the
attribute

String value String value

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires
attributes...

Not applicable Not applicable

Conflicts with
attributes ...

SERVICE, DELAY, DEPENDENCY,
REGISTER=location_format,
NOREGISTER, ASYNC,
TEMPLATE, NET_TIMEOUT

LOCATION, QUOTA_USED,
QUOTA_SIZE

Attribute class ALTER SESSION and ALTER
SYSTEM

ALTER SESSION and ALTER
SYSTEM

Corresponding
V$ARCHIVE_DEST
column

DESTINATION DESTINATION

Related
V$ARCHIVE_DEST
column

TARGET TARGET

LOCATION and SERVICE

12-24 Oracle Data Guard Concepts and Administration

Use remote archived redo logs to maintain a transactionally consistent copy of the
primary database. Do not use locally archived redo logs to maintain a
transactionally consistent standby database. However, when you configure log
transport services, you must specify at least one local destination. This ensures that
the locally archived redo logs are accessible should manual recovery of the primary
database be necessary.

To verify the current settings, query the V$ARCHIVE_DEST fixed view:

■ The TARGET column of the V$ARCHIVE_DEST fixed view identifies if the
destination is local or remote to the primary database.

■ The DESTINATION column of the V$ARCHIVE_DEST fixed view identifies the
values that were specified for a destination. For example, the destination
parameter value specifies the Oracle Net service name identifying the remote
Oracle instance where the archived logs are located.

Defaults
One of these attributes must be specified. There is no default.

Attributes

LOCATION=local_disk_directory
If you use the LOCATION attribute, specify a valid path name for a disk directory on
the system that hosts the primary database. Each destination that specifies the
LOCATION attribute must identify a unique directory path name. This is the local
destination for archiving redo logs.

Note: If you are specifying multiple attributes, specify either the
LOCATION or SERVICE attribute on the first line of the
initialization parameter file.

Note: When changing incremental parameters, there are no
default attribute values assumed. For example, LOG_ARCHIVE_
DEST_1=’SERVICE=stby1 LGWR’ assumes the SYNC=PARALLEL
option. LOG_ARCHIVE_DEST_1=’ARCH’ fails because
SYNC=PARALLEL conflicts with ARCH even though the default for
ARCH is SYNC=NOPARALLEL.

LOCATION and SERVICE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-25

Local destinations indicate that the archived redo logs are to reside within the file
system that is accessible to the primary database. Locally archived redo logs remain
physically within the primary database namespace. The destination parameter
value specifies the local file system directory path to where the archived redo logs
are copied.

SERVICE=network_service_name
If you specify the SERVICE attribute, specify a valid Oracle Net service name.

Archiving redo logs to a remote destination requires a network connection and an
Oracle database instance associated with the remote destination to receive the
incoming archived redo logs.

The destination parameter value specifies the Oracle Net service name identifying
the remote Oracle instance to which the archived redo logs are copied.

The Oracle Net service name that you specify with the SERVICE attribute is
translated into a connection descriptor that contains the information necessary for
connecting to the remote database.

Examples
The following example shows the LOCATION attribute with the LOG_ARCHIVE_
DEST_n parameter:

LOG_ARCHIVE_DEST_2=’LOCATION=/arc_dest’
LOG_ARCHIVE_DEST_STATE_2=ENABLE

The following example shows the SERVICE attribute with the LOG_ARCHIVE_
DEST_n parameter:

LOG_ARCHIVE_DEST_3=’SERVICE=stby1’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

See Also: Oracle9i Net Services Administrator’s Guide for details
about setting up Oracle Net service names

MANDATORY and OPTIONAL

12-26 Oracle Data Guard Concepts and Administration

MANDATORY and OPTIONAL

Purpose
You can specify a policy for reuse of online redo logs using the attributes OPTIONAL
or MANDATORY with the LOG_ARCHIVE_DEST_n parameter. The archival operation
of an optional destination can fail, and the online redo logs are overwritten. If the
archival operation of a mandatory destination fails, online redo logs are not
overwritten.

The LOG_ARCHIVE_MIN_SUCCEED_DEST=n parameter (where n is an integer
from 1 to 10) specifies the number of destinations that must archive successfully
before the log writer process can overwrite the online redo logs. All mandatory
destinations and non-standby optional destinations contribute to satisfying the
LOG_ARCHIVE_MIN_SUCCEED_DEST=n count. For example, you can set the
parameter as follows:

Database must archive to at least two locations before
overwriting the online redo logs.
LOG_ARCHIVE_MIN_SUCCEED_DEST = 2

When determining how to set your parameters, note that:

Category MANDATORY OPTIONAL

Datatype of the attribute Keyword Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... OPTIONAL MANDATORY

Attribute class ALTER SESSION and
ALTER SYSTEM

ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

BINDING BINDING

Related V$ARCHIVE_DEST
columns

Not applicable Not applicable

MANDATORY and OPTIONAL

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-27

■ This attribute does not affect the destination protection mode.

■ You must have at least one local destination, which you can declare OPTIONAL
or MANDATORY.

At least one local destination is operationally treated as mandatory, because the
minimum value for the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter is 1.

■ The failure of any mandatory destination, including a mandatory standby
destination, makes the LOG_ARCHIVE_MIN_SUCCEED_DEST parameter
irrelevant.

■ The LOG_ARCHIVE_MIN_SUCCEED_DEST value cannot be greater than the
number of destinations, nor greater than the number of mandatory destinations
plus the number of optional local destinations.

■ If you defer a mandatory destination, and the online log is overwritten without
transferring the redo log to the standby site, then you must transfer the redo log
to the standby site manually.

The BINDING column of the V$ARCHIVE_DEST fixed view specifies how failure
affects the archival operation.

Defaults
If the MANDATORY or the OPTIONAL attribute is not specified with the
LOG_ARCHIVE_DEST_n parameter, the default is OPTIONAL.

At least, one destination must succeed even if all destinations are designated to be
optional.

Attributes

MANDATORY
Specifies that archiving to the destination must succeed before the redo log can be
made available for reuse.

OPTIONAL
Specifies that successful archiving to the destination is not required before the redo
log can be made available for reuse. If the "must succeed count" set with the LOG_
ARCHIVE_MIN_SUCCEED_DEST parameter is met, the redo log is marked for reuse.

MANDATORY and OPTIONAL

12-28 Oracle Data Guard Concepts and Administration

Examples
The following example shows the MANDATORY attribute with the LOG_ARCHIVE_
DEST_n parameter.

LOG_ARCHIVE_DEST_1=’LOCATION=/arc/dest MANDATORY’
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_3=’SERVICE=stby1 MANDATORY’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

MAX_FAILURE and NOMAX_FAILURE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-29

MAX_FAILURE and NOMAX_FAILURE

Purpose
The MAX_FAILURE and the NOMAX_FAILURE attributes allow you to control the
number of times log transport services attempts to reestablish communication and
resume archival operations with a failed destination.

Defaults
If you do not specify either the MAX_FAILURE or the NOMAX_FAILURE attribute, the
default is NOMAX_FAILURE, which allows an unlimited number of consecutive
attempts to transport archived redo logs to the failed destination.

Attributes

MAX_FAILURE=count
The MAX_FAILURE attribute specifies the maximum number of consecutive times
that log transport services attempts archival operations to a failed destination.
Using this attribute, you can provide failure resolution for archiving destinations to
which you want to retry archival operations after a failure, but not retry indefinitely.
When you specify the MAX_FAILURE attribute, you must also set the REOPEN

Category MAX_FAILURE=count NOMAX_FAILURE

Datatype of the attribute Numeric Keyword

Minimum value 0 Not applicable

Maximum value None Not applicable

Default value None Not applicable

Requires attributes ... REOPEN Not applicable

Conflicts with attributes ... NOMAX_FAILURE MAX_FAILURE

Dynamically changed by
SQL statement . . .

ALTER SYSTEM ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

MAX_FAILURE Not applicable

Related V$ARCHIVE_DEST
columns

FAILURE_COUNT, REOPEN_
SECS

Not applicable

MAX_FAILURE and NOMAX_FAILURE

12-30 Oracle Data Guard Concepts and Administration

attribute to specify how often archival operations are retried to the particular
destination.

To Limit the Number of Archival Attempts If you set both the MAX_FAILURE and
REOPEN attributes to nonzero values, log transport services limits the number of
archival attempts to the number of times specified by the MAX_FAILURE attribute.
Each destination contains an internal failure counter that tracks the number of
consecutive archival failures that have occurred. You can view the failure count in
the FAILURE_COUNT column of the V$ARCHIVE_DEST fixed view. The related
column REOPEN_SECS identifies the REOPEN attribute value.

If an archival operation fails for any reason, the failure count is incremented until:

■ The failure no longer occurs and archival operations resume

■ The failure count is greater than or equal to the value set for the MAX_FAILURE
attribute

■ You issue the ALTER SYSTEM SET statement to dynamically change the MAX_
FAILURE attribute (or any other destination attribute). The failure count is reset
to zero (0) whenever the destination is modified by an ALTER SYSTEM SET
statement. This avoids the problem of setting the MAX_FAILURE attribute to a
value less than the current failure count value.

Once the failure count is greater than or equal to the value set for the MAX_FAILURE
attribute, the REOPEN attribute value is implicitly set to the value zero (0), which
causes log transport services to transport archived redo logs to an alternate
destination (defined with the ALTERNATE attribute) on the next archival operation.

To Attempt Archival Operations Indefinitely Log transport services attempt to
archive to the failed destination indefinitely if you do not specify the MAX_FAILURE
attribute (or if you specify MAX_FAILURE=0 or the NOMAX_FAILURE attribute), and

Note: Once the failure count for the destination reaches the
specified MAX_FAILURE attribute value, the only way to reuse the
destination is to modify the MAX_FAILURE attribute value or some
other attribute.

Note: Runtime modifications made to the destination, such as
changing the QUOTA_USED attribute, do not affect the failure count.

MAX_FAILURE and NOMAX_FAILURE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-31

you specify a nonzero value for the REOPEN attribute. If the destination has the
MANDATORY attribute, the online redo log is not reclaimable in the event of a
repeated failure.

NOMAX_FAILURE
Specify the NOMAX_FAILURE attribute to allow an unlimited number of archival
attempts to the failed destination.

The NOMAX_FAILURE attribute is equivalent to specifying MAX_FAILURE=0.

Examples
The following example allows log transport services up to three consecutive
archival attempts, tried every 5 seconds, to the arc_dest destination. If the
archival operation fails after the third attempt, the destination is treated as if the
NOREOPEN attribute was specified.

LOG_ARCHIVE_DEST_1=’LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3’
LOG_ARCHIVE_DEST_STATE_1=ENABLE

NET_TIMEOUT and NONET_TIMEOUT

12-32 Oracle Data Guard Concepts and Administration

NET_TIMEOUT and NONET_TIMEOUT

Purpose
The NET_TIMEOUT attribute of the LOG_ARCHIVE_DEST_n parameter specifies the
number of seconds the log writer process on the primary system waits for status
from the network server process before terminating the network connection. The
NONET_TIMEOUT attribute reverses or undoes the timeout value that you
previously specified with the NET_TIMEOUT attribute.

If you do not specify the NET_TIMEOUT attribute (or if you specify the NONET_
TIMEOUT attribute, the primary database can potentially stall. To avoid this
situation, specify a small, nonzero value for the NET_TIMEOUT attribute so the
primary database can continue operation after the user-specified timeout interval
expires when waiting for status from the network server.

Category NET_TIMEOUT=seconds NONET_TIMEOUT

Datatype of the attribute Numeric Not applicable

Minimum value 15 Not applicable

Maximum value 1200 Not applicable

Default value Not applicable Not applicable

Requires attributes ... LGWR with SYNC=PARALLEL
or
LGWR with ASYNC > 0

Not applicable

Conflicts with attributes ... ARCH,
LOCATION,
NONET_TIMEOUT,
LGWR with SYNC=NOPARALLEL,
LGWR with ASYNC=0

NET_TIMEOUT

Attribute class ALTER SYSTEM ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

NET_TIMEOUT NET_TIMEOUT

Related V$ARCHIVE_DEST
column

Not applicable Not applicable

NET_TIMEOUT and NONET_TIMEOUT

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-33

Defaults
If the NET_TIMEOUT or the NONET_TIMEOUT attribute is not specified with the
LOG_ARCHIVE_DEST_n parameter, the default is NONET_TIMEOUT.

Attributes

NET_TIMEOUT=seconds
The NET_TIMEOUT attribute is used only when the log writer process archives logs
using a network server process and when either the ASYNC or the SYNC=PARALLEL
attribute is specified. The log writer process waits for the specified amount of time
to receive status from the network I/O operation. If the log writer process does not
receive acknowledgment within the specified interval, the primary database
network connection will be terminated.

In a Data Guard configuration, there are timers that need to be set similarly for each
primary-to-standby network connection:

■ Set the NET_TIMEOUT attribute on the primary database in the Data Guard
configuration.

■ Set the Oracle Net EXPIRE_TIME and the TCP/IP keepalive parameters on
each standby database in the Data Guard configuration.

Even though the network connection might be terminated on the primary database,
the network connection remains active on the standby database until the
corresponding TCP/IP network timers expire. For this reason, you need to set the
timers comparably on both sides of the network. If the network timers are not set
up properly, subsequent attempts by the logwriter process on the primary database
to attach to the standby database will fail because the standby database has not yet
timed out and the broken network connection still appears to be valid.

NET_TIMEOUT and NONET_TIMEOUT

12-34 Oracle Data Guard Concepts and Administration

If the log writer process detects a network disconnection, even one that was
terminated due to a network timeout, the log writer process automatically tries to
reconnect to the standby database. The log writer process does this to resolve
network brownouts and false network terminations. In most cases, except when the
network is physically broken, the log writer process is able to automatically
reconnect to the network.

The log writer process continually attempts to reconnect to the standby database for
a period of time that depends on the data protection mode currently set for the
primary database. Use the following time estimates as a guideline for how long the
log writer process will try to reconnect to the standby database:

■ In maximum protection mode, the log writer process tries to reconnect for
approximately 5 minutes.

■ In maximum availability mode, the log writer process tries to reconnect for
approximately 2 minutes.

■ In maximum performance mode, the log writer process tries to reconnect for
approximately 30 seconds.

Note: In general, you should set network timer parameters on the
standby system to expire before the timeout period specified by the
NET_TIMEOUT attribute on the primary system. For example:

■ Set TCP/IP network timers on the standby system, such as the
keepalive parameter, lower than the corresponding value set
for the NET_TIMEOUT attribute.

■ Set the Oracle Net EXPIRE_TIME parameter on the standby
system lower than the corresponding value that you set for the
NET_TIMEOUT attribute. The EXPIRE_TIME parameter is
expressed in minutes.

Without careful coordination of the timeout parameter values on
the primary and standby systems, it is possible that the primary
system might detect a network problem and disconnect, while the
standby database might not recognize the network disconnection if
its default network timeout values are too high.

See Also: Oracle9i Net Services Administrator’s Guide

NET_TIMEOUT and NONET_TIMEOUT

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-35

The actual time the log writer process tries to reconnect depends on the following
factors:

■ The value of the NET_TIMEOUT attribute, which determines how long it takes
to time out the connection.

■ The value of the EXPIRE_TIME parameter or keep alive intervals on the
standby database, which determine the minimum amount of time that the
reconnection will take on the primary database

■ The protection mode of the primary database, which determines the maximum
amount of time that the reconnection will take.

For example, a primary database operating in the maximum availability protection
mode with a NET_TIMEOUT attribute value set to 60 seconds and an EXPIRE_TIME
of 1 minute could actually take a minimum of 1 minute to connect or up to 3
minutes to terminate the connection to the standby database.

NONET_TIMEOUT
The NONET_TIMEOUT attribute implies that the log writer process waits for the
default network timeout interval established for the system. The default network
timeout interval differs from system to system. On some systems, the default
TCP/IP network timeout can be between 10 and 15 minutes.

Examples
The following example shows how to specify a 40-second network timeout value on
the primary database with the NET_TIMEOUT attribute.

LOG_ARCHIVE_DEST_2=’SERVICE=stby1 LGWR NET_TIMEOUT=40 SYNC=PARALLEL’
LOG_ARCHIVE_DEST_STATE_2=ENABLE

Caution: Be careful to specify a reasonable value when running in
maximum protection mode. A false network failure detection might
cause the primary instance to shut down.

QUOTA_SIZE and NOQUOTA_SIZE

12-36 Oracle Data Guard Concepts and Administration

QUOTA_SIZE and NOQUOTA_SIZE

Purpose
The QUOTA_SIZE and the NOQUOTA_SIZE attributes of the LOG_ARCHIVE_DEST_
n parameter indicate the maximum number of 512-byte blocks of physical storage
on a disk device that can be used by a local destination.

Defaults
If the QUOTA_SIZE or the NOQUOTA_SIZE attribute is not specified with the LOG_
ARCHIVE_DEST_n parameter, the default is NOQUOTA_SIZE.

Attributes

QUOTA_SIZE=blocks
The QUOTA_SIZE attribute indicates the maximum number of 512-byte blocks of
physical storage on a disk device that might be used by a local destination. The
value is specified in 512-byte blocks even if the physical device uses a different
block size. The optional suffix values K, M, and G represent thousand, million, and
billion, respectively (the value 1K means 1,000 512-byte blocks).

Category QUOTA_SIZE=blocks NOQUOTA_SIZE

Datatype of the attribute Numeric Keyword

Minimum value 0 blocks Not applicable

Maximum value Unlimited blocks Not applicable

Default value Not applicable Not applicable

Requires attributes ... LOCATION Not applicable

Conflicts with attributes ... NOQUOTA_SIZE,
DEPENDENCY, SERVICE

QUOTA_SIZE

Attribute class ALTER SYSTEM only ALTER SYSTEM only

Corresponding
V$ARCHIVE_DEST column

QUOTA_SIZE QUOTA_SIZE

Related V$ARCHIVE_DEST
column

QUOTA_USED QUOTA_USED

QUOTA_SIZE and NOQUOTA_SIZE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-37

A local archiving destination can be designated as being able to occupy all or some
portion of the physical disk. For example, in a Real Application Clusters
environment, a physical archived redo log disk device might be shared by two or
more separate nodes (through a clustered file system, such as is available with Sun
Clusters). As there is no cross-instance initialization parameter knowledge, none of
the Real Application Clusters nodes is aware that the archived redo log physical
disk device is shared with other instances. This can lead to significant problems
when the destination disk device becomes full; the error is not detected until every
instance tries to archive to the already full device. This seriously affects database
availability.

For example, consider an 8-gigabyte (GB) disk device /dev/arc_dest that is
further subdivided into node-specific directories node_a, node_b, and node_c.
The DBA could designate that each of these instances is allowed to use a maximum
of 2 GB, which would allow an additional 2 GB for other purposes. This scenario is
shown in Figure 12–2.

Figure 12–2 Specifying Disk Quota for a Destination

No instance uses more than its allotted quota.

The quota is common to all users of the destination, including foreground archival
operations, the archiver process, and even the log writer process.

Instance
B

Instance
A

Instance
C

Overflow Space

QUOTA_SIZE and NOQUOTA_SIZE

12-38 Oracle Data Guard Concepts and Administration

Oracle Corporation highly recommends that the ALTERNATE attribute be used in
conjunction with the QUOTA_SIZE attribute. However, this is not required.

NOQUOTA_SIZE
Use of the NOQUOTA_SIZE attribute, or the QUOTA_SIZE attribute with a value of
zero (0), indicates that there is unlimited use of the disk device by this destination;
this is the default behavior.

Examples
The following example shows the QUOTA_SIZE attribute with the LOG_ARCHIVE_
DEST_n parameter.

LOG_ARCHIVE_DEST_4=’QUOTA_SIZE=100K’

See Also: ALTERNATE and NOALTERNATE on page 12-9

QUOTA_USED and NOQUOTA_USED

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-39

QUOTA_USED and NOQUOTA_USED

Purpose
The QUOTA_USED and the NOQUOTA_USED attributes of the LOG_ARCHIVE_DEST_
n parameter identify the number of 512-byte blocks of data that were archived on a
specified destination.

Defaults
If the QUOTA_USED or the NOQUOTA_USED attribute is not specified with the LOG_
ARCHIVE_DEST_n parameter, the default is NOQUOTA_USED.

The QUOTA_USED attribute has a default value of zero (0) for remote archiving
destinations.

Attributes

QUOTA_USED=blocks
The QUOTA_USED attribute identifies the number of 512-byte blocks of data that
were archived on the specified local destination. The value is specified in 512-byte
blocks even if the physical device uses a different block size. The optional suffix

Category QUOTA_USED=blocks NOQUOTA_USED

Datatype of the attribute Numeric Keyword

Minimum value 0 blocks Not applicable

Maximum value Unlimited blocks Not applicable

Default value Not applicable Not applicable

Requires attributes ... LOCATION Not applicable

Conflicts with attributes ... NOQUOTA_USED,
DEPENDENCY, SERVICE

QUOTA_USED

Attribute class ALTER SYSTEM only ALTER SYSTEM only

Corresponding
V$ARCHIVE_DEST column

QUOTA_USED QUOTA_USED

Related V$ARCHIVE_DEST
column

QUOTA_SIZE QUOTA_SIZE

QUOTA_USED and NOQUOTA_USED

12-40 Oracle Data Guard Concepts and Administration

values K, M, and G represent thousand, million, and billion, respectively (the value
1K means 1,000 512-byte blocks).

This attribute cannot be modified at the session level.

If you specify a QUOTA_SIZE attribute value greater than zero (0) for a destination,
but do not specify a QUOTA_USED attribute value in the database initialization
parameter file, the QUOTA_USED attribute value is automatically determined when
the database is initially mounted. The QUOTA_USED attribute value defaults to the
actual number of blocks residing on the local archiving destination device. If the
calculated QUOTA_USED attribute value exceeds the QUOTA_SIZE attribute value,
the QUOTA_SIZE attribute value is automatically adjusted to reflect the actual
storage used.

This automatic calculation of the QUOTA_USED value applies only to local archiving
destinations.

If, at runtime, you dynamically modify the QUOTA_SIZE attribute value, but not the
QUOTA_USED attribute value, the QUOTA_USED attribute value is not automatically
recalculated.

For local destinations, the QUOTA_USED attribute value is incremented at the start of
an archival operation. If the resulting value is greater than the QUOTA_SIZE
attribute value, the destination status is changed to FULL, and the destination is
rejected before the archival operation begins.

The QUOTA_SIZE and QUOTA_USED attributes are very important because they can
be used together to detect a lack of disk space before the archival operation begins.

Consider the case where the QUOTA_SIZE attribute value is 100K and the QUOTA_
USED attribute value is 100K also. The destination status is VALID at this point.
However, an attempt to archive 1 block results in the QUOTA_USED attribute value
being changed to 101K, which exceeds the QUOTA_SIZE attribute value. Therefore,
the destination status is changed to FULL, and the destination is rejected before the
archival operation begins.

Note: The runtime value of the QUOTA_USED attribute changes
automatically as online redo log archival operations are started. The
QUOTA_USED attribute value is automatically pre-allocated against
the destination quota size. You do not need to change the value of
this attribute.

QUOTA_USED and NOQUOTA_USED

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-41

NOQUOTA_USED
Specifies that an unlimited number of blocks of data can be archived on a specified
destination.

Examples
Data Guard automatically sets this value. You do not need to change the value of
the QUOTA_USED and the NOQUOTA_USED attributes.

REGISTER and NOREGISTER

12-42 Oracle Data Guard Concepts and Administration

REGISTER and NOREGISTER

Purpose
The REGISTER and the NOREGISTER attributes of the LOG_ARCHIVE_DEST_n
parameter indicate if the location of the archived redo log is to be recorded at the
destination site.

Defaults
If the REGISTER or the NOREGISTER attribute is not specified with the LOG_
ARCHIVE_DEST_n parameter, the default is REGISTER.

Attributes

REGISTER
The REGISTER attribute indicates that the location of the archived redo log is to be
recorded at the corresponding destination.

For a physical standby destination, the archived redo log filename is recorded in the
destination database control file, which is then used by the managed recovery
operation.

Category REGISTER NOREGISTER

Datatype of the attribute Keyword Keyword

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... Not applicable SERVICE

Conflicts with attributes ... NOREGISTER, NOALTERNATE REGISTER, LOCATION

Attribute class ALTER SESSION and ALTER
SYSTEM

ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

DESTINATION DESTINATION

Related $ARCHIVE_DEST
column

TARGET TARGET

REGISTER and NOREGISTER

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-43

For a logical standby database, the archived redo log filename is recorded in the
tablespace maintained by the logical standby database control file which is then
used by SQL apply operations.

The REGISTER attribute implies that the destination is a Data Guard standby
database.

By default, the location of the archived redo log, at a remote destination site, is
derived from the destination instance initialization parameters STANDBY_
ARCHIVE_DEST and LOG_ARCHIVE_FORMAT.

NOREGISTER
The optional NOREGISTER attribute indicates that the location of the archived redo
log is not to be recorded at the corresponding destination. This setting pertains to
remote destinations only. The location of each archived redo log is always recorded
in the primary database control file.

The NOREGISTER attribute is required if the destination is a standby database that
is not part of a Data Guard configuration.

Examples
The following example shows the REGISTER attribute with the LOG_ARCHIVE_
DEST_n parameter.

LOG_ARCHIVE_DEST_5=’REGISTER’

Note: You can also set the REGISTER attribute by executing the
SQL ALTER DATABASE REGISTER LOGFILE filespec
statement on each standby database. See Section 7.2.2.1 for an
example of this SQL statement.

REGISTER=location_format

12-44 Oracle Data Guard Concepts and Administration

REGISTER=location_format

Purpose
The optional REGISTER=location_format attribute is used to specify a filename
format template for archived redo logs that is different from the default filename
format template defined in the primary and standby database initialization
parameter files.

This attribute is for use on physical standby databases only.

Defaults
There is no default for this attribute.

Attributes

REGISTER=location_format
The optional REGISTER=location_format attribute is used to specify a
fully-qualified filename format template for archived redo logs that is different from
the default filename format template defined in the primary and standby database
initialization parameter files. The default filename format template is a combination

Category REGISTER=location_format

Datatype of the attribute String value

Minimum value Not applicable

Maximum value Not applicable

Default value Not applicable

Requires attributes ... DEPENDENCY

Conflicts with attributes ... NOREGISTER, LOCATION, TEMPLATE

Attribute class ALTER SESSION and ALTER SYSTEM

Corresponding V$ARCHIVE_
DEST column

DESTINATION

Related V$ARCHIVE_DEST
column

TARGET

REGISTER=location_format

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-45

of the database initialization parameters STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT.

The REGISTER=location_format attribute is valid with remote destinations
only.

Examples
The following example shows the REGISTER=location_format attribute with
the LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DEST_4=’REGISTER=/disk1/oracle/oradata/payroll/arc%d_%t_%s.arc’

See Also: REGISTER and NOREGISTER on page 12-42

REOPEN and NOREOPEN

12-46 Oracle Data Guard Concepts and Administration

REOPEN and NOREOPEN

Purpose
The REOPEN and the NOREOPEN attributes of the LOG_ARCHIVE_DEST_n
parameter specify the minimum number of seconds before the archiver process
(ARCn, foreground, or log writer process) should try again to access a previously
failed destination. You can turn off the attribute by specifying NOREOPEN.

Defaults
If the REOPEN or the NOREOPEN attribute is not specified with the
LOG_ARCHIVE_DEST_n parameter, the default is REOPEN. If the REOPEN attribute
is specified without an integer value, the default is 300 seconds.

Attributes

REOPEN[=seconds]
REOPEN applies to all errors, not just connection failures. These errors include, but
are not limited to, network failures, disk errors, and quota exceptions.

Category REOPEN [=seconds] NOREOPEN

Datatype of the attribute Numeric Keyword

Minimum value 0 seconds Not applicable

Maximum value Unlimited seconds Not applicable

Default value 300 seconds Not applicable

Requires attributes ... Not applicable Not applicable

Conflicts with attributes ... NOREOPEN REOPEN

Attribute class ALTER SESSION and
ALTER SYSTEM

ALTER SESSION and
ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

REOPEN_SECS REOPEN_SECS

Related V$ARCHIVE_DEST
column

MAX_FAILURE MAX_FAILURE

REOPEN and NOREOPEN

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-47

If you specify REOPEN for an OPTIONAL destination, it is still possible for the Oracle
database server to overwrite online redo logs even if there is an error. If you specify
REOPEN for a MANDATORY destination, log transport services stall the primary
database when they cannot successfully archive redo logs. When this situation
occurs, consider the following options:

■ Change the destination by deferring the destination, specifying the destination
as optional, or changing the service.

■ Specify an alternate destination.

■ Disable the destination.

When you use the REOPEN attribute, note that:

■ The archiver or log writer process reopens a destination only when starting an
archive operation from the beginning of the log and never during a current
operation. Archiving always starts the log copy from the beginning.

■ If a value was specified, or the default value was used, for the REOPEN attribute,
the archiving process checks if the time of the recorded error plus the REOPEN
interval is less than the current time. If it is, the archival operation to that
destination is retried.

■ You can control the number of times a destination will be retried after a log
archiving failure by specifying a value for the MAX_FAILURE=count attribute of
the LOG_ARCHIVE_DEST_n initialization parameter.

NOREOPEN
If you specify NOREOPEN, the failed destination remains disabled until:

■ You manually reenable the destination.

■ You issue an ALTER SYSTEM SET or an ALTER SESSION SET statement with
the REOPEN attribute.

■ The instance is restarted.

Examples
The following example shows the REOPEN attribute with the
LOG_ARCHIVE_DEST_n parameter.

LOG_ARCHIVE_DEST_3=’SERVICE=stby1 MANDATORY REOPEN=60’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

SYNC and ASYNC

12-48 Oracle Data Guard Concepts and Administration

SYNC and ASYNC

Purpose
The SYNC and the ASYNC attributes of the LOG_ARCHIVE_DEST_n parameter
specify that network I/O operations are to be done synchronously or
asynchronously when using the log writer process (LGWR).

Defaults
If the SYNC or ASYNC attribute is not specified, the default is SYNC. If the
destination defaults to SYNC, or the SYNC attribute is specified without specifying
the PARALLEL qualifier, the default for the PARALLEL qualifier depends on which
transmitter process is chosen for the destination. When you specify the LGWR
attribute, the default parallel qualifier is PARALLEL. Because the PARALLEL
qualifier is not allowed with the ARCH attribute, when you specify the ARCH
attribute, the default parallel qualifier is NOPARALLEL.

Category SYNC[=parallel_option] ASYNC[=blocks]

Datatype of the attribute Keyword Numeric

Minimum value Not applicable 0 blocks

Maximum value Not applicable 20,480 blocks

Default value Not applicable 2,048

Requires attributes ... Not applicable LGWR

Conflicts with attributes ... ASYNC SYNC, LOCATION, ARCH

Attribute class ALTER SESSION and ALTER
SYSTEM

ALTER SYSTEM only

Corresponding
V$ARCHIVE_DEST column

TRANSMIT_MODE TRANSMIT_MODE

Related V$ARCHIVE_DEST
column

Not applicable ASYNC_BLOCKS

Note: When the primary database is in one of the three protection
modes, standby redo log archiving destinations using the log writer
process are automatically placed in SYNC mode.

SYNC and ASYNC

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-49

If the ASYNC attribute is specified without an integer value, the default is 2048
blocks.

Attributes

SYNC=PARALLEL
SYNC=NOPARALLEL
The SYNC attribute specifies that network I/O is to be performed synchronously for
the destination, which means that once the I/O is initiated, the archiving process
waits for the I/O to complete before continuing. The SYNC attribute is one
requirement for setting up a no-data-loss environment, because it ensures that the
redo records were successfully transmitted to the standby site before continuing.

If the log writer process is defined to be the transmitter to multiple standby
destinations that use the SYNC attribute, the user has the option of specifying
SYNC=PARALLEL or SYNC=NOPARALLEL for each of those destinations.

■ If SYNC=NOPARALLEL is used, the log writer process performs the network I/O
to each destination in series. In other words, the log writer process initiates an
I/O to the first destination and waits until it completes before initiating the I/O
to the next destination. Specifying the SYNC=NOPARALLEL attribute is the same
as specifying the ASYNC=0 attribute.

■ If SYNC=PARALLEL is used, the network I/O is initiated asynchronously, so
that I/O to multiple destinations can be initiated in parallel. However, once the
I/O is initiated, the log writer process waits for each I/O operation to complete
before continuing. This is, in effect, the same as performing multiple,
synchronous I/O operations simultaneously. The use of SYNC=PARALLEL is
likely to perform better than SYNC=NOPARALLEL.

Because the PARALLEL and NOPARALLEL qualifiers only make a difference if
multiple destinations are involved, Oracle Corporation recommends that all
destinations use the same value.

ASYNC[=blocks]
The ASYNC attribute specifies that network I/O is to be performed asynchronously
for the destination. Once the I/O is initiated, the log writer continues processing the
next request without waiting for the I/O to complete and without checking the
completion status of the I/O. Use of the ASYNC attribute allows standby
environments to be maintained with little or no performance effect on the primary
database. The optional block count determines the size of the SGA network buffer
to be used. In general, the slower the network connection, the larger the block count

SYNC and ASYNC

12-50 Oracle Data Guard Concepts and Administration

should be. Also, specifying the ASYNC=0 attribute is the same as specifying the
SYNC=NOPARALLEL attribute.

When you use the ASYNC attribute, there are several events that cause the network
I/O to be initiated:

■ If the LGWR request exceeds the currently available buffer space, the existing
buffer is transmitted to the standby database. The LGWR process stalls until
sufficient buffer space can be reclaimed.

■ A primary database log switch forces any buffered redo logs to be transmitted
to the standby database before the log switch operation completes.

■ The primary database is shut down normally. An immediate shutdown of the
primary database results in the buffered redo logs being discarded. A standby
database shutdown also causes the buffered redo logs to be discarded.

■ The primary database has no redo activity for a period of time. The duration of
database inactivity is determined by the system and you cannot modified it.

■ If the rate of redo generation exceeds the runtime network latency and
sufficient space is available, then the LGWR request will be buffered.
Otherwise, the existing buffer is transmitted to the standby database. The
LGWR process stalls until sufficient buffer space can be reclaimed.

Examples
The following example shows the SYNC attribute with the LOG_ARCHIVE_DEST_n
parameter.

LOG_ARCHIVE_DEST_3=’SERVICE=stby1 LGWR SYNC’
LOG_ARCHIVE_DEST_STATE_3=ENABLE

TEMPLATE and NOTEMPLATE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-51

TEMPLATE and NOTEMPLATE

Purpose
The TEMPLATE and the NOTEMPLATE attributes of the LOG_ARCHIVE_DEST_n
parameter define a directory specification and format template for archived redo
logs at the standby destination. You can specify this attribute in either the primary
or standby initialization parameter file, but the attribute applies only to the
database role that is archiving.

The TEMPLATE attribute overrides the STANDBY_ARCHIVE_DEST and LOG_
ARCHIVE_FORMAT initialization parameter settings at the remote archive
destination.

The TEMPLATE and NOTEMPLATE attributes are valid only with remote
destinations.

Category TEMPLATE=filename_template NOTEMPLATE

Datatype of the attribute String value Not applicable

Minimum value Not applicable Not applicable

Maximum value Not applicable Not applicable

Default value Not applicable Not applicable

Requires attributes ... SERVICE Not applicable

Conflicts with attributes ... NOTEMPLATE, LOCATION,
REGISTER=location_format

TEMPLATE

Attribute class ALTER SESSION and ALTER
SYSTEM

ALTER SESSION
and ALTER SYSTEM

Corresponding
V$ARCHIVE_DEST column

REMOTE_TEMPLATE REMOTE_TEMPLATE

Related V$ARCHIVE_DEST
column

REGISTER REGISTER

Note: If used on a LGWR destination, rearchival by the ARCn
process does not use the TEMPLATE specification. This is important
for protected destinations.

TEMPLATE and NOTEMPLATE

12-52 Oracle Data Guard Concepts and Administration

Defaults
There is no default for this attribute.

Attributes

TEMPLATE=filename_template
Use the optional TEMPLATE attribute to define a directory specification and format
for archived redo logs at the standby destination. The definition is used to generate
a filename that is different from the default filename format defined by the
STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization parameters at
the standby destination.

The filename_template value of the TEMPLATE attribute must contain a thread
or sequence number directive. The following table provides a definition for each
directive.

The filename_template value is transmitted to the standby destination, where it
is translated and validated before creating the filename.

If you do not specify the TEMPLATE attribute, the setting is the same as REGISTER.

NOTEMPLATE
Use the optional NOTEMPLATE attribute to allow the filename format template
defined by the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT
initialization parameters to take effect.

Thread or Sequence
Number Directive Description

%a Substitute the database activation ID.

%A Substitute the database activation ID zero-filled.

%d Substitute the database ID.

%D Substitute the database ID zero-filled.

%t Substitute the instance thread number.

%T Substitute the instance thread number zero-filled.

%s Substitute the log file sequence number.

%S Substitute the log file sequence number zero-filled.

TEMPLATE and NOTEMPLATE

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-53

Examples
The following example shows the TEMPLATE attribute with the LOG_ARCHIVE_
DEST_n parameter.

LOG_ARCHIVE_DEST_1=’SERVICE=stby1 MANDATORY REOPEN=5
 TEMPLATE=/usr/oracle/prmy1/p1_%t_%s.dbf’
LOG_ARCHIVE_DEST_STATE_1=ENABLE

prmy1 archives redo logs at the remote destination. stby1 is located in the
directory /usr/oracle/prmy1 with the filename format of p1_<thread#>_
<sequence#>.dbf.

Attribute Compatibility for Archive Destinations

12-54 Oracle Data Guard Concepts and Administration

12.4 Attribute Compatibility for Archive Destinations
The LOG_ARCHIVE_DEST_n initialization parameter has many attributes. Some of
these attributes conflict with each other. Some of the attributes require that other
attributes are also defined. Table 12–2 lists the supported attributes and the
requirements associated with each one.

Table 12–2 LOG_ARCHIVE_DEST_n Attribute Compatibility

Attribute Requires... Conflicts with...

AFFIRM Not applicable NOAFFIRM

NOAFFIRM Not applicable AFFIRM

ALTERNATE=
destination

Not applicable NOALTERNATE

NOALTERNATE Not applicable ALTERNATE

ARCH Not applicable LGWR
ASYNC
NET_TIMEOUT

ASYNC[=blocks] LGWR SYNC
LOCATION
ARCH

DELAY SERVICE LOCATION
NODELAY

NODELAY Not applicable DELAY

DEPENDENCY SERVICE
REGISTER

LOCATION
NODEPENDENCY
NOREGISTER
QUOTA_SIZE
QUOTA_USED

NODEPENDENCY Not applicable DEPENDENCY

LGWR Not applicable ARCH

LOCATION Not applicable SERVICE
DEPENDENCY
REGISTER=location_format
NOREGISTER
DELAY
ASYNC
NET_TIMEOUT
TEMPLATE

Attribute Compatibility for Archive Destinations

 LOG_ARCHIVE_DEST_n Parameter Attributes 12-55

MANDATORY Not applicable OPTIONAL

MAX_FAILURE REOPEN NOMAX_FAILURE

NOMAX_FAILURE Not applicable MAX_FAILURE

NET_TIMEOUT LGWR with SYNC=PARALLEL
or
LGWR with ASYNC > 0

ARCH
LOCATION
NONET_TIMEOUT
LGWR with SYNC=NOPARALLEL
LGWR with ASYNC=0

NONET_TIMEOUT Not applicable NET_TIMEOUT

OPTIONAL Not applicable MANDATORY

QUOTA_SIZE LOCATION DEPENDENCY
SERVICE
NOQUOTA_SIZE

NOQUOTA_SIZE Not applicable QUOTA_SIZE

QUOTA_USED LOCATION DEPENDENCY
SERVICE
NOQUOTA_USED

NOQUOTA_USED Not applicable QUOTA_USED

REGISTER Not applicable NOALTERNATE
NOREGISTER

NOREGISTER SERVICE LOCATION
REGISTER

REGISTER=
location_format

DEPENDENCY LOCATION
NOREGISTER
TEMPLATE

REOPEN Not applicable NOREOPEN

NOREOPEN Not applicable REOPEN

SERVICE Not applicable LOCATION
QUOTA_USED
QUOTA_SIZE

SYNC[=
parallel_option]

Not applicable ASYNC

Table 12–2 LOG_ARCHIVE_DEST_n Attribute Compatibility

Attribute Requires... Conflicts with...

Attribute Compatibility for Archive Destinations

12-56 Oracle Data Guard Concepts and Administration

TEMPLATE SERVICE NOTEMPLATE
LOCATION
REGISTER=location_format

NOTEMPLATE Not applicable TEMPLATE

Table 12–2 LOG_ARCHIVE_DEST_n Attribute Compatibility

Attribute Requires... Conflicts with...

SQL Statements 13-1

13
SQL Statements

This chapter summarizes the SQL statements that are useful for performing
operations on standby databases in a Data Guard environment. These include:

ALTER DATABASE ACTIVATE STANDBY DATABASE
ALTER DATABASE ADD [STANDBY] LOGFILE
ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
ALTER DATABASE COMMIT TO SWITCHOVER
ALTER DATABASE CREATE STANDBY CONTROLFILE AS
ALTER DATABASE DROP [STANDBY] LOGFILE
ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER
ALTER DATABASE [NO]FORCE LOGGING
ALTER DATABASE MOUNT STANDBY DATABASE
ALTER DATABASE OPEN READ ONLY
ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
ALTER DATABASE REGISTER LOGFILE
ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}
ALTER DATABASE START LOGICAL STANDBY APPLY
ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY

13.1 ALTER DATABASE ACTIVATE STANDBY DATABASE
This statement performs a forced failover operation, in which the primary database
is removed from the Data Guard environment and a standby database assumes the
primary database role. The standby database must be mounted before it can be
activated with this statement. The SQL statement syntax is:

ALTER DATABASE ACTIVATE [PHYSICAL | LOGICAL] STANDBY DATABASE [SKIP [STANDBY LOGFILE]];

Table 13–1 describes the keywords for this statement.

See Also: Oracle9i SQL Reference for additional information about
these and other SQL statements

ALTER DATABASE ADD [STANDBY] LOGFILE

13-2 Oracle Data Guard Concepts and Administration

13.2 ALTER DATABASE ADD [STANDBY] LOGFILE
This statement adds one or more redo log groups to the specified thread, making
the logs available to the instance assigned the thread. The SQL statement syntax is:

ALTER DATABASE ADD [STANDBY] LOGFILE [THREAD integer] [GROUP integer] [REUSE] SIZE
filespec;

Table 13–2 describes the keywords for this statement.

Table 13–1 Keywords for the ACTIVATE STANDBY DATABASE Clause

Keyword Description

PHYSICAL Activates a physical standby database. This is the default.

LOGICAL Activates a logical standby database. If you have more than
one logical standby database, you should first ensure that the
same log data is available on all the logical standby sites.

SKIP [STANDBY LOGFILE]

(Physical standby databases
only)

Forces the failover operation to proceed even if standby redo
logs contain data that could be recovered using the RECOVER
MANAGED STANDBY DATABASE FINISH clause. Using the
SKIP [STANDBY LOGFILE] clause indicates that it is
acceptable to discard the contents of the standby redo log.

Note: Oracle Corporation recommends that you perform a
failover operation using the ALTER DATABASE RECOVER
MANAGED STANDBY DATABASE statement with the FINISH or
FINISH SKIP keywords rather than a forced failover operation
whenever possible. A forced failover operation renders other
standby databases that are not participating in the failover
operation unusable as standby databases to the newly activated
primary database.

Table 13–2 Keywords for the ADD STANDBY LOGFILE Clause

Keyword Description

STANDBY Indicates that the redo log created is for use by standby databases only.

THREAD integer Applicable only if you are using the Real Application Clusters option
in parallel mode. The integer variable is the thread number.

ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER

SQL Statements 13-3

See Section 5.3.3.3 for more information about this SQL statement.

13.3 ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER
This statement adds new members to existing redo log groups. The SQL statement
syntax is:

ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER ’filename’ [REUSE] TO logfile-descriptor;

Table 13–3 describes the keywords for this statement.

GROUP integer Uniquely identifies the redo log group among all groups in all threads
and can range from 1 to the MAXLOGFILES value. You cannot add
multiple redo log groups having the same GROUP value.

filespec Specifies a redo log group containing one or more members.

REUSE If the log already exists, you can specify REUSE to allow Data Guard to
overwrite the header information in the log.

SIZE Specify the size of the log in bytes. Use K or M to specify the size in
kilobytes or megabytes.

Table 13–3 Keywords for the ADD STANDBY LOGFILE MEMBER Clause

Keyword Description

STANDBY Indicates that the log member is for use only by a standby
database. The STANDBY keyword is not required, but you
can use it for symmetry in scripts, if necessary.

LOGFILE MEMBER
’filename’

Adds new members to existing redo log groups. Each new
member is specified by ’filename’.

REUSE If the file specified by ’filename’ already exists, the log
must be the same size as the other group members, and you
must specify REUSE to allow the Oracle server to overwrite
the existing log. If the log does not already exist, the Oracle
server creates a log of the correct size.

Table 13–2 Keywords for the ADD STANDBY LOGFILE Clause

Keyword Description

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA

13-4 Oracle Data Guard Concepts and Administration

See Section 5.3.3.4 for more information about this SQL statement.

13.4 ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
This statement is for logical standby databases only.

You must enable full supplemental logging before you create the logical standby
database. This is because supplemental logging is the source of change to a logical
standby database. To implement full supplemental logging, you must specify either
the PRIMARY KEY COLUMNS or UNIQUE INDEX COLUMNS keyword. The SQL
statement syntax is:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA {PRIMARY KEY | UNIQUE INDEX} COLUMNS;

Table 13–4 describes the keywords for this statement.

See Section 4.1.6 for more information about this SQL statement.

logfile_descriptor Specify an existing log group using either of these ways:

■ Specify the GROUP integer parameter, where
integer is the number of the existing log group. If this
log group was added for standby database use, all
members of the log group will be used only for standby
databases.

■ List the full filename specification for each member of
the redo log group. Specify the filename according to
the conventions for your operating system.

Table 13–4 Keywords for the ADD SUPPLEMENTAL LOG DATA Clause

Keyword Description

PRIMARY KEY Ensures, for all tables with a primary key, that all columns of the primary
key are placed into the redo log whenever an update operation is
performed. If no primary key is defined, Oracle software places into the
redo log a set of columns that uniquely identifies the row.

UNIQUE
INDEX

Ensures, for all tables with a unique index, that if any unique index
columns are modified, all other columns belonging to the unique index are
also placed into the redo log.

Table 13–3 Keywords for the ADD STANDBY LOGFILE MEMBER Clause

Keyword Description

ALTER DATABASE COMMIT TO SWITCHOVER

SQL Statements 13-5

13.5 ALTER DATABASE COMMIT TO SWITCHOVER
Use this statement to perform a switchover operation to change the current primary
database to the standby database role and to change one standby database to the
primary database role. The SQL statement clauses you specify differ depending on
if you issue the statement on the primary database, a physical standby database, or
a logical standby database:

■ On the primary database that you want to change to run in a physical standby
database role, use the following SQL statement syntax:

ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY [[WITH | WITHOUT]
SESSION SHUTDOWN] [WAIT | NOWAIT];

■ On the primary database that you want to change to run in a logical standby
database role, use the following SQL statement syntax:

ALTER DATABASE COMMIT TO SWITCHOVER TO LOGICAL STANDBY [WAIT | NOWAIT];

■ On a physical standby database that you want to change to run in the primary
database role, use the following SQL statement syntax:

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY [[WITH | WITHOUT] SESSION
SHUTDOWN] [WAIT | NOWAIT];

■ On a logical standby database that you want to change to run in the primary
database role, use the following SQL statement syntax:

ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY [WAIT | NOWAIT];

Table 13–5 describes the keywords for this statement.

Table 13–5 Keywords for the COMMIT TO SWITCHOVER Clause

Keyword Description

COMMIT TO SWITCHOVER TO
PHYSICAL STANDBY

Transitions the primary database to run in the role of a
physical standby database.The physical standby database
must be mounted and can be open in READ ONLY mode.

COMMIT TO SWITCHOVER TO
LOGICAL STANDBY

Transitions the primary database to run in the role of a
logical standby database. This option must be followed
by an ALTER DATABASE START LOGICAL STANDBY
APPLY statement.

ALTER DATABASE CREATE STANDBY CONTROLFILE AS

13-6 Oracle Data Guard Concepts and Administration

See Section 7.2 and Section 7.3 for additional information about this SQL statement.

13.6 ALTER DATABASE CREATE STANDBY CONTROLFILE AS
This statement is for physical standby databases only.

This statement creates a standby control file. Issue this statement on the primary
database. The SQL statement syntax is:

ALTER DATABASE CREATE STANDBY CONTROLFILE AS ’filename’ [REUSE];

Table 13–6 describes the keywords for this statement.

COMMIT TO SWITCHOVER TO
[PHYSICAL | LOGICAL]
PRIMARY

Transitions the standby database to run in the primary
database role. For physical standby databases only, the
standby database must be mounted and can be open in
READ ONLY mode. You can specify the PHYSICAL or
LOGICAL parameters for symmetry (in scripts, for
example), but these keywords are not required.

WITH SESSION SHUTDOWN

(Physical standby databases
only)

Shuts down any open application sessions and rolls back
uncommitted transactions as part of the execution of this
statement.

Logical standby databases do not support the WITH
SESSION SHUTDOWN option.

WITHOUT SESSION
SHUTDOWN

(Physical standby databases
only)

Causes the switchover operation to fail if any application
sessions are open. This is the default.

Logical standby databases do not support the WITHOUT
SESSION SHUTDOWN option.

WAIT Waits for the completion of the switchover operation
before returning control to the user. This is the default.

NOWAIT Returns control to the user before the switchover
operation is complete.

Table 13–6 Keywords for the CREATE STANDBY CONTROLFILE AS Clause

Keyword Description

CONTROLFILE AS
’filename’

Specifies the name of the control file to be created and used to
maintain a standby database.

Table 13–5 Keywords for the COMMIT TO SWITCHOVER Clause

Keyword Description

ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER

SQL Statements 13-7

See Section 3.2.3 for more information about this SQL statement.

13.7 ALTER DATABASE DROP [STANDBY] LOGFILE
This clause drops all members of a redo log group. The SQL statement syntax is:

ALTER DATABASE DROP [STANDBY] LOGFILE logfile_descriptor;

Table 13–7 describes the keywords for this statement.

See Section 8.4.4 for an example using this SQL statement.

13.8 ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER
This statement drops one or more redo log members. The SQL statement syntax is:

ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER 'filename’;

Table 13–8 describes the keywords for this statement.

REUSE If the control file specified by the ’filename’ parameter
already exists, you must specify REUSE to allow the Oracle
server to overwrite the existing file.

Table 13–7 Keywords for the DROP [STANDBY] LOGFILE Clause

Keyword Description

STANDBY Drops all members of a redo log group. You can specify
STANDBY for symmetry, but this keyword is not required.

logfile_descriptor Specify an existing redo log group using either of these ways:

■ Specify the GROUP integer parameter, where integer is
the number of the existing log group.

■ List the full filename specification for the redo log group.
Specify the filename according to the conventions for your
operating system.

Table 13–6 Keywords for the CREATE STANDBY CONTROLFILE AS Clause

Keyword Description

ALTER DATABASE [NO]FORCE LOGGING

13-8 Oracle Data Guard Concepts and Administration

13.9 ALTER DATABASE [NO]FORCE LOGGING
Controls whether or not the Oracle database server logs all changes in the database
except for changes to temporary tablespaces and temporary segments. The
[NO]FORCE LOGGING clause is:

■ Required for physical standby databases to prevent inconsistent standby
databases

■ Recommended for logical standby databases to ensure data availability at the
standby database

The primary database must be mounted but not open when you issue this
statement. The SQL statement syntax is:

ALTER DATABASE [NO]FORCE LOGGING;

Table 13–9 describes the keywords for this statement.

Table 13–8 Keywords for the DROP LOGFILE MEMBER Clause

Keyword Description

STANDBY Drops one or more standby redo log members. You can specify
STANDBY for symmetry, but this keyword is not required.

’filename’ Specifies filenames, separated by commas, for one or more log
members. Each filename must specify the fully-qualified file
specification according to the conventions for your operating
system.

Note: Oracle Corporation recommends setting the FORCE
LOGGING clause before performing the backup operation to create
the standby database and remaining in force logging mode for as
long as the standby database is active. Also, to prevent performance
degradation when in force logging mode, the database should be
running in ARCHIVELOG mode.

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

SQL Statements 13-9

13.10 ALTER DATABASE MOUNT STANDBY DATABASE
Mounts a physical standby database, allowing the standby instance to receive
archived redo logs from the primary instance. The SQL statement syntax is:

ALTER DATABASE MOUNT STANDBY DATABASE;

13.11 ALTER DATABASE OPEN READ ONLY
This statement is required for physical standby databases. It can be used for logical
standby databases.

Opens a physical standby database in read-only mode. This SQL statement restricts
users to read-only transactions, preventing them from generating redo logs. You can
use this clause to make a physical standby database available for queries, even
while archive logs are being copied from the primary database site.

You must mount the physical standby database before you can open it. The SQL
statement syntax is:

ALTER DATABASE OPEN READ ONLY;

See Section 8.2.2 for more information about this SQL statement.

13.12 ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
This statement is for physical standby databases only.

Use this statement to start, control, and cancel managed recovery operations and
log apply services for physical standby databases. You can use the RECOVER
MANAGED STANDBY DATABASE clause on a database that is mounted, open, or

Table 13–9 Keywords for the [NO]FORCE LOGGING Clause

Keyword Description

FORCE LOGGING Logs all changes in the database except for changes in temporary
tablespaces and temporary segments. This setting takes
precedence over and is independent of any NOLOGGING or
FORCE LOGGING settings you specify for individual tablespaces
and any NOLOGGING setting you specify for individual database
objects. All ongoing, unlogged operations must finish before
forced logging can begin.

NOFORCE LOGGING Cancels the force logging mode. NOFORCE LOGGING is the
default.

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

13-10 Oracle Data Guard Concepts and Administration

closed. Although this SQL statement does not require any additional clauses, it
provides many options to help you control the managed recovery process. The SQL
statement syntax is:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE [startup_clause | modify_clause | cancel_
clause];

startup_clause
When you start managed recovery operations, you can start log apply services in a
foreground or a background session:

■ To start a foreground session, the SQL statement syntax is:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE [TIMEOUT | NO TIMEOUT];

■ To start a background session, the SQL statement syntax is:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE DISCONNECT [FROM SESSION] [NO TIMEOUT];

modify_clause
The RECOVER MANAGED STANDBY DATABASE clause provides a wealth of options
for controlling the managed recovery process, switchover operations, and failover
operations. These keywords work the same whether managed recovery operations
were started in a foreground or a background session, with the exception of some
particular failover and switchover operations.

Keywords can be placed in any order in the SQL statement except when you start a
failover operation using the FINISH keyword. This keyword must be specified last
in the SQL statement.

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE [
[NO TIMEOUT | TIMEOUT [integer]]
[NODELAY | DELAY [integer]]
[DEFAULT DELAY]
[NO EXPIRE | EXPIRE [integer]]
[NEXT [integer]]
[NOPARALLEL | PARALLEL [integer]]
[THROUGH { ALL | NEXT | LAST } SWITCHOVER]
[THROUGH ALL ARCHIVELOG [THREAD n] SEQUENCE n]
[FINISH [SKIP [STANDBY LOGFILE] [NOWAIT | WAIT]]]
]

cancel_clause
To stop a managed recovery session, the SQL statement syntax is:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL [IMMEDIATE] [NOWAIT];

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

SQL Statements 13-11

Table 13–10 describes all of the keywords.

Table 13–10 Keywords for the RECOVER MANAGED STANDBY DATABASE Clause

Keyword Description Incompatible with

CANCEL
[IMMEDIATE]
[NOWAIT]

Terminates managed recovery. By default, log apply services will
finish applying the current archived redo log before terminating.

Specify IMMEDIATE to terminate managed recovery either before
reading another block from the archived redo log or before
opening the next archived redo log, whichever occurs first.

Specify NOWAIT to return control to the process that issued the
CANCEL statement without waiting for the managed recovery
process to terminate.

All other keywords

DELAY integer Specifies an absolute delay interval (in minutes) that log apply
services will wait before applying the individual archived redo
logs. The apply delay interval begins once the archived redo logs
are selected for recovery.

CANCEL, FINISH,
NODELAY

DEFAULT DELAY Reverts the delay interval to the number of minutes that was
specified in the LOG_ARCHIVE_DEST_n initialization parameter
on the primary database, if any.

CANCEL, DELAY,
FINISH, NODELAY

DISCONNECT [FROM
SESSION]

Starts the managed recovery process (MRP) and log apply services
in a background server process.

CANCEL, TIMEOUT

NEXT integer Specifies the number of delayed archived redo logs that log apply
services should apply as soon as possible after log transport
services archive them.

CANCEL, FINISH

EXPIRE integer Specifies the number of minutes, relative to the current time, after
which the managed recovery operation will automatically
terminate. Log apply services will finish applying the current
archived redo log before stopping.

CANCEL,FINISH,
NO EXPIRE

FINISH

[SKIP [STANDBY
LOGFILE]]
[NOWAIT | WAIT]

Invokes a failover operation that first applies all available archived
redo logs and then recovers available standby redo logs.

Specify SKIP [STANDBY LOGFILE] to indicate that it is
acceptable to skip applying the contents of the standby redo logs.

Specify NOWAIT to return control to the foreground process before
the recovery completes.

Specify WAIT to return control after recovery completes.

CANCEL, DELAY,
EXPIRE, NEXT,
THROUGH...,
TIMEOUT

NODELAY Disables a previously specified DELAY option so that log apply
services will apply the archived redo logs to the standby database
without delay.

CANCEL, DELAY

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

13-12 Oracle Data Guard Concepts and Administration

NO EXPIRE Disables a previously specified EXPIRE option. CANCEL, EXPIRE

NO TIMEOUT Disables a previously specified TIMEOUT option. CANCEL

NOPARALLEL Disables a previously specified PARALLEL option so that log apply
services use a single process to apply all of the archived redo logs
sequentially. This is the default.

CANCEL

PARALLEL
[integer]

Starts additional parallel recovery processes to spread the
workload of applying the archived redo logs simultaneously to the
standby datafiles. By default, Oracle software selects a number of
parallel processes that equal the number of CPUs available on all
active instances times the value of the PARALLEL_THREADS_PER_
CPU initialization parameter. However, you can specify integer
to indicate the number of parallel processes to use in the parallel
operation. Each parallel thread can use one or two parallel
execution servers.

CANCEL

THROUGH
[THREAD n]
SEQUENCE n

Specifies the thread number and sequence number of the archived
redo log through which you want to recover. Once the specified
archived redo log is applied, managed recovery terminates. The
THREAD n keyword is optional. If you do not specify THREAD n, it
defaults to thread 1.

CANCEL, FINISH

Table 13–10 Keywords for the RECOVER MANAGED STANDBY DATABASE Clause

Keyword Description Incompatible with

ALTER DATABASE REGISTER LOGFILE

SQL Statements 13-13

.

13.13 ALTER DATABASE REGISTER LOGFILE
This clause allows the registration of manually archived redo logs. The SQL
statement syntax is:

ALTER DATABASE REGISTER [OR REPLACE] [PHYSICAL | LOGICAL] LOGFILE filespec;

Table 13–11 describes the keywords for this statement.

THROUGH ALL
ARCHIVELOG

Specifies the default behavior for managed recovery mode, which
is to continue managed recovery until it is explicitly stopped. This
clause is useful to alter a managed recovery that is currently
running with a THROUGH THREAD n SEQUENCE n keyword so that
it does not stop after applying the specified archived redo log.

CANCEL, FINISH

THROUGH
{ALL|NEXT|LAST}
SWITCHOVER

Keeps log apply services actively applying archived redo logs
received from the new primary database after a switchover
operation. (By default, log apply services stop after encountering a
switchover (end-of-redo) marker within an archived redo log.)

ALL - Continues managed recovery until you explicitly cancel it.
Managed recovery continues through (ignoring) all switchover
(end-of-redo) indicators. The ALL option is useful when there are
other standby databases that are not participating in the
switchover operation, and you do not want to stop and restart the
recovery process on each one.

NEXT - Stops managed recovery at the first switchover
(end-of-redo) indicator encountered. This is the default behavior.

LAST - Continues managed recovery through all switchover
(end-of-redo) indicators, stopping only when an end-of-redo
marker is encountered in the last archived redo log received.

CANCEL, FINISH

TIMEOUT integer Specifies the number of minutes that the managed recovery
process waits for the next archived redo log to arrive from the
primary database. If another log does not arrive within the
specified time, log apply services automatically stop.

Specify TIMEOUT only when starting a managed recovery in a
foreground session.

CANCEL,
DISCONNECT,
FINISH

See Also: Section 6.2.2 for complete information about
controlling log apply services and the managed recovery process.

Table 13–10 Keywords for the RECOVER MANAGED STANDBY DATABASE Clause

Keyword Description Incompatible with

ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}

13-14 Oracle Data Guard Concepts and Administration

See Section 7.2.2.1 for an example using this SQL statement.

13.14 ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE
{PROTECTION | AVAILABILITY | PERFORMANCE}

Use this statement to specify the level of protection for the data in your database
environment. Using one of these protection levels, you can protect the primary
database against data loss and data divergence. The SQL statement syntax is:

ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE};

You execute this statement on the primary database, which must be stopped and in
the mount state. Table 13–12 describes the keywords for this statement.

Table 13–11 Keywords for the REGISTER LOGFILE Clause

Keyword Description

OR REPLACE Allows updates to an existing archived redo log entry for the standby
database (for example, when the location or file specification for the
archived redo log changes). The SCNs of the entries must match exactly, and
the original entry must have been created by log transport services.

PHYSICAL Indicates that the archived redo log will be registered in the control file for
the physical standby database.

LOGICAL Indicates that the archived redo log will be registered in the dictionary for
the logical standby database.

LOGFILE
filespec

Specifies a redo log group containing one or more members. Each new
member is specified by filespec.

Table 13–12 Keywords for the SET STANDBY TO MAXIMIZE Clause

Keyword Description

PROTECTION

(Physical standby
databases only)

Offers the highest level of data protection. A transaction does not
commit until all data needed to recover that transaction is written to at
least one physical standby database that is configured to use the SYNC
log transport mode. If the primary database is unable to write the redo
records to at least one such standby database, the primary database is
shut down. This mode guarantees no data loss, but it has the highest
potential impact on the performance and availability of the primary
database.

ALTER DATABASE START LOGICAL STANDBY APPLY

SQL Statements 13-15

See Section 5.2 for additional information about the data protection modes.

13.15 ALTER DATABASE START LOGICAL STANDBY APPLY
This statement is for logical standby databases only.

This statement starts log apply services on the logical standby database. The SQL
statement syntax is:

ALTER DATABASE START LOGICAL STANDBY APPLY [INITIAL [scn-value]] [NEW PRIMARY dblink];

Table 13–13 describes the keywords for this statement.

AVAILABILITY Offers the next highest level of data protection. This mode guarantees
there will be no data loss between the primary site and at least one
standby site in the configuration unless a primary database failure
occurs before recovery from a network outage. Then, no data is lost up
to the last transaction that was shipped to the site. (Transactions that
continued on the primary site after the network went down could be
lost.) Unlike maximum protection mode, the primary database will not
shut down if it is unable to write the redo records to at least one such
standby database. Instead, the protection will be lowered to maximum
performance mode until the situation is corrected and the standby
database catches up with the primary database. This mode guarantees
no data loss unless the primary database fails while in maximum
performance mode. Maximum availability mode provides the highest
level of data protection that is possible without affecting the availability
of the primary database.

PERFORMANCE This is the default protection mode. A primary database transaction
commits before the data needed to recover the transaction is written to a
standby database. Therefore, some data might be lost if the primary
database fails, and you are unable to recover the redo records from the
primary database. This mode provides the highest level of data
protection that is possible without affecting the performance of the
primary database.

Table 13–12 Keywords for the SET STANDBY TO MAXIMIZE Clause

Keyword Description

ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY

13-16 Oracle Data Guard Concepts and Administration

See Section 4.2.17 for additional information about this SQL statement.

13.16 ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY
This statement is for logical standby databases only.

This clause stops log apply services on a logical standby database. The SQL
statement syntax is:

ALTER DATABASE { STOP | ABORT } LOGICAL STANDBY APPLY;

Table 13–14 describes the keywords for this statement.

Table 13–13 Keywords for the START LOGICAL STANDBY APPLY Clause

Keyword Description

INITIAL [scn-value] Specify this keyword the first time you apply the logs
to the logical standby database. It recovers the database
to a transaction-consistent state immediately before the
system change number (SCN) specified by an integer.

NEW PRIMARY dblink Starts log apply services after a database switchover
takes place. This statement ensures that all transactions
in the archived redo logs are properly applied to the
logical standby database. Specify this keyword after the
ALTER DATABASE COMMIT TO SWITCHOVER TO
LOGICAL STANDBY statement or when a logical
standby database has completed processing logs from
one primary database and a new database becomes the
primary database. It uses the database link (dblink)
provided in the command line to access tables on the
primary database. The link must reference a privileged
account that can read and lock the table on the primary
database.

Table 13–14 Keywords for the {STOP | ABORT} LOGICAL STANDBY APPLY Clause

Keyword Description

STOP Stops log apply services in an orderly fashion so that you can
make changes to logical standby settings or perform planned
maintenance. This clause is useful for refreshing materialized
views or function-based indexes. Log transport services will
continue to send archived redo logs to the logical standby
database.

ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY

SQL Statements 13-17

ABORT Stops log apply services immediately. If the DBA_LOGSTDBY_
PARAMETERS view shows the TRANSACTION_CONSISTENCY
option is set to READ_ONLY or NONE, an ABORT might leave
transactions in an inconsistent manner. Only use the ABORT
keyword when an immediate shutdown is necessary.

Table 13–14 Keywords for the {STOP | ABORT} LOGICAL STANDBY APPLY Clause

Keyword Description

ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY

13-18 Oracle Data Guard Concepts and Administration

Views 14-1

14
 Views

This chapter describes the views that are used in a Data Guard environment. This is
a subset of the views that are available for use in a database. This chapter contains
the following sections:

■ About Views

■ DBA_LOGSTDBY_EVENTS (Logical Standby Databases Only)

■ DBA_LOGSTDBY_LOG (Logical Standby Databases Only)

■ DBA_LOGSTDBY_NOT_UNIQUE (Logical Standby Databases Only)

■ DBA_LOGSTDBY_PARAMETERS (Logical Standby Databases Only)

■ DBA_LOGSTDBY_PROGRESS (Logical Standby Databases Only)

■ DBA_LOGSTDBY_SKIP (Logical Standby Databases Only)

■ DBA_LOGSTDBY_SKIP_TRANSACTION (Logical Standby Databases Only)

■ DBA_LOGSTDBY_UNSUPPORTED (Logical Standby Databases Only)

■ V$ARCHIVE_DEST

■ V$ARCHIVE_DEST_STATUS

■ V$ARCHIVE_GAP

■ V$ARCHIVED_LOG

■ V$DATABASE

■ V$DATAFILE

■ V$DATAGUARD_STATUS

■ V$LOG

14-2 Oracle Data Guard Concepts and Administration

■ V$LOGFILE

■ V$LOG_HISTORY

■ V$LOGSTDBY (Logical Standby Databases Only)

■ V$LOGSTDBY_STATS (Logical Standby Databases Only)

■ V$MANAGED_STANDBY (Physical Standby Databases Only)

■ V$STANDBY_LOG

About Views

 Views 14-3

About Views

An Oracle database contains a set of underlying views that are maintained by the
server and accessible to the database administrator. These fixed views are also
called dynamic performance views because they are continuously updated while a
database is open and in use, and their contents relate primarily to performance.

Although these views appear to be regular database tables, they are not. These
views provide data on internal disk structures and memory structures. You can
select from these views, but you can never update or alter them.

Fixed view names are usually prefixed with either V$, or GV$, for example,
V$ARCHIVE_DEST or GV$ARCHIVE_DEST. The views that are prefixed with DBA_
display all relevant information in the entire database. Standard dynamic
performance views (V$ fixed views) store information on the local instance. In
contrast, global dynamic performance views (GV$ fixed views) store information on
all open instances. Each V$ fixed view has a corresponding GV$ fixed view. DBA_
views are intended only for administrators. They can be accessed only by users with
the SELECT_ANY_TABLE privilege. (This privilege is assigned to the DBA role
when the system is initially installed.)

In most cases, the information available in fixed views persists across instance
shutdowns. However, certain fixed view information is reset when the instance is
shut down; these views are specifically identified in this chapter.

For additional information about views, see Oracle9i Database Reference.

DBA_LOGSTDBY_EVENTS (Logical Standby Databases Only)

14-4 Oracle Data Guard Concepts and Administration

DBA_LOGSTDBY_EVENTS (Logical Standby Databases Only)

The DBA_LOGSTDBY_EVENTS view contains information about the activity of the
logical standby database system. It can be used to determine the cause of failures
that occur when log apply services apply redo logs. This view contains the
following columns:

Column Datatype Description

EVENT_TIME DATE Time the event was logged.

CURRENT_SCN NUMBER Change vector SCN for the event. If a failure
occurred, examine this column to determine which
archived redo log contains the source of the failure
(for example, an unsupported record).

COMMIT_SCN NUMBER SCN value for which the change was committed.

XIDUSN NUMBER Transaction ID undo segment number.

XIDSLT NUMBER Transaction ID slot number.

XIDSQN NUMBER Transaction ID sequence number.

EVENT CLOB The statement that was being processed when the
failure occurred.

STATUS_CODE NUMBER Status (or Oracle error code) belonging to the
STATUS message.

STATUS VARCHAR2(2000) Description of the current activity of the process or
the reason why the apply operation stopped.

DBA_LOGSTDBY_LOG (Logical Standby Databases Only)

 Views 14-5

DBA_LOGSTDBY_LOG (Logical Standby Databases Only)

The DBA_LOGSTDBY_LOG view shows the logs registered for a logical standby
database. The view contains the following columns:

Column Datatype Description

THREAD# NUMBER Thread ID of the archived redo log. The THREAD
number is 1 for a single instance. For Real
Application Clusters, this column will contain
different numbers.

SEQUENCE# NUMBER Sequence number of the archived redo log.

FIRST_CHANGE# NUMBER SCN of the current archived redo log.

NEXT_CHANGE# NUMBER SCN of the next archived redo log.

FIRST_TIME DATE Date of the current archived redo log.

NEXT_TIME DATE Date of the next archived redo log.

FILE_NAME VARCHAR2(3) Name of the archived redo log.

TIMESTAMP DATE Time when the archived redo log was registered.

DICT_BEGIN VARCHAR2(3) Value Y or N, where Y indicates that the beginning of
the dictionary build is in this particular archived
redo log.

DICT_END VARCHAR2(3) Value Y or N, where Y indicates that the end of the
dictionary build is in this particular archived redo
log.

Note: The SCN values in this view correlate to the SCN values in
the DBA_LOGSTDBY_PROGRESS (Logical Standby Databases
Only) view.

DBA_LOGSTDBY_NOT_UNIQUE (Logical Standby Databases Only)

14-6 Oracle Data Guard Concepts and Administration

DBA_LOGSTDBY_NOT_UNIQUE (Logical Standby Databases Only)

The DBA_LOGSTDBY_NOT_UNIQUE view identifies tables that have no primary and
no non-null unique indexes. Most of the tables displayed in this view are supported
because their columns contain enough information to be maintained in a logical
standby database. Some tables, however, cannot be supported because their
columns do not contain the necessary information. Unsupported tables usually
contain a column defined using an unsupported datatype. This view contains the
following columns:

Column Datatype Description

OWNER VARCHAR2(30) Schema name

TABLE_NAME VARCHAR2(30) Name of the table

BAD_COLUMN VARCHAR2(1) This column contains a value of Y or N:

■ Y indicates the table column is defined using an
unbounded datatype, such as LONG or BLOB. If
two rows in the table match except in their LOB
column, then the table cannot be maintained
properly. Log apply services will attempt to
maintain these tables, but you must ensure the
application does not allow uniqueness only in the
unbounded columns.

■ N indicates that enough column information is
present to maintain the table in the logical standby
database, but log transport services and log apply
services would run more efficiently if you added a
primary key. You should consider adding a
disabled RELY constraint to these tables.

DBA_LOGSTDBY_PARAMETERS (Logical Standby Databases Only)

 Views 14-7

DBA_LOGSTDBY_PARAMETERS (Logical Standby Databases Only)

The DBA_LOGSTDBY_PARAMETERS view contains the list of parameters used by log
apply services for logical standby databases. This view contains the following
columns:

Column Datatype Description

NAME VARCHAR2
(30)

Name of the parameter. Possible values are:

■ MAX_SGA - System global area (SGA) allocated for the log
apply services cache in megabytes.

■ MAX_SERVERS - Number of parallel query servers specifically
reserved for log apply services.

■ MAX_EVENTS_RECORDED - Number of events stored in the
DBA_LOGSTDBY_EVENTS view.

■ TRANSACTION_CONSISTENCY - Shows the level of transaction
consistency maintained: FULL, READ_ONLY, or NONE.

■ RECORD_SKIP_ERRORS - Indicates records that are skipped.

■ RECORD_SKIP_DDL - Indicates skipped DDL statements.

■ RECORD_APPLIED_DDL - Indicates applied DDL statements.

■ FIRST_SCN - SCN at which log transport services will begin
applying redo information.

■ PRIMARY - Database ID of the database to which logs are being
applied.

■ LMNR_SID - LogMiner Session ID. This internal value
indicates which LogMiner session is in use.

■ UNTIL_SCN - SCN value at which log apply services will shut
down until all transactions are applied.

■ END_PRIMARY_SCN - During a switchover, this value indicates
the last SCN applied by the new primary database from the
old primary database.

■ NEW_PRIMARY_SCN - During a switchover, this value indicates
the starting SCN for the new primary database.

■ COMPLETED_SESSION - Indicates that the log apply services
session has concluded. The value will indicate SWITCHOVER or
FAILOVER, as appropriate.

VALUE VARCHAR2
(2000)

Value of the parameter

DBA_LOGSTDBY_PROGRESS (Logical Standby Databases Only)

14-8 Oracle Data Guard Concepts and Administration

DBA_LOGSTDBY_PROGRESS (Logical Standby Databases Only)

The DBA_LOGSTDBY_PROGRESS view describes the progress of log apply services
on the logical standby database. This view contains the following columns:

Column Datatype Description

APPLIED_SCN NUMBER Shows the newest SCN at which all changes have been
applied. The values in the APPLIED_SCN and NEWEST_SCN
columns will match if all available redo log data was
processed.

APPLIED_TIME DATE Estimate of the time and date of the APPLIED_SCN.

READ_SCN NUMBER All log data greater than this SCN was read and saved.

READ_TIME DATE Estimate of the time and date of the READ_SCN.

NEWEST_SCN NUMBER Most recent SCN available on the standby system. If no
more logs are being transmitted to the standby database,
changes could be applied to this SCN. The values in the
APPLIED_SCN and NEWEST_SCN columns will match if all
available redo log data has been processed.

NEWEST_TIME DATE Estimate of the time and date of the NEWEST_SCN.

Note: The SCN values in this view correlate to the SCN values in
the DBA_LOGSTDBY_LOG (Logical Standby Databases Only)
view.

DBA_LOGSTDBY_SKIP (Logical Standby Databases Only)

 Views 14-9

DBA_LOGSTDBY_SKIP (Logical Standby Databases Only)

The DBA_LOGSTDBY_SKIP view lists the tables that will be skipped by log apply
services. The DBA_LOGSTDBY_SKIP view contains the following columns:

Column Datatype Description

ERROR BOOLEAN Indicates if the statement should be skipped or
just returns errors for the statement.

STATEMENT_OPT VARCHAR(30) Specifies the type of statement that should be
skipped. It must be one of the SYSTEM_AUDIT
statement options.

SCHEMA VARCHAR(30) Name of the schema under which this skip option
should be used.

NAME VARCHAR(30) Name of the option under which this skip option
should be used.

PROC VARCHAR(98) Name of a stored procedure that will be executed
when processing the skip option.

DBA_LOGSTDBY_SKIP_TRANSACTION (Logical Standby Databases Only)

14-10 Oracle Data Guard Concepts and Administration

DBA_LOGSTDBY_SKIP_TRANSACTION (Logical Standby Databases Only)

The DBA_LOGSTDBY_SKIP_TRANSACTION view lists the skip settings chosen. This
view contains the following columns:

Column Datatype Description

XIDUSN NUMBER Transaction ID undo segment number

XIDSLT NUMBER Transaction ID slot number

XIDSQN NUMBER Transaction ID sequence number

DBA_LOGSTDBY_UNSUPPORTED (Logical Standby Databases Only)

 Views 14-11

DBA_LOGSTDBY_UNSUPPORTED (Logical Standby Databases Only)

The DBA_LOGSTDBY_UNSUPPORTED view identifies the schemas and tables (and
columns in those tables) that contain unsupported datatypes. Use this view when
you are preparing to create a logical standby database. This view contains the
following columns:

Column Datatype Description

OWNER VARCHAR2(30) Schema name of the unsupported table

TABLE_NAME VARCHAR2(30) Name of the unsupported table

COLUMN_NAME VARCHAR2(30) Name of the unsupported column

DATA_TYPE VARCHAR2(106) Datatype of the unsupported column

V$ARCHIVE_DEST

14-12 Oracle Data Guard Concepts and Administration

V$ARCHIVE_DEST

The V$ARCHIVE_DEST view describes, for the current instance, all the archived
redo log destinations, their current value, mode, and status.

The V$ARCHIVE_DEST view contains the following columns:

Note: The information in this view does not persist across an
instance shutdown.

Column Description

DEST_ID Identifies the log archive destination parameter.

STATUS Identifies the current status of the destination. Possible values are:

■ VALID - Initialized and available

■ INACTIVE - No destination information

■ DEFERRED - Manually disabled by the user

■ ERROR - Error during open or copy

■ DISABLED - Disabled after error

■ BAD PARAM - Error with the LOG_ARCHIVE_DEST_n parameter

■ ALTERNATE - Destination in an alternate state

■ FULL - Exceeded quota size for the destination

BINDING Specifies how failure will affect the archival operation. Possible values are:

■ OPTIONAL - Successful archival operation not required

■ MANDATORY - Successful archival operation required

NAME_SPACE Identifies the scope of parameter setting. Possible values are:

■ SYSTEM - System definition

■ SESSION - Session definition

TARGET Specifies if the archive destination is local or remote to the primary database.
Possible values are:

■ PRIMARY - Local

■ STANDBY - Remote

V$ARCHIVE_DEST

 Views 14-13

ARCHIVER Identifies the archiver process relative to the database where the query is issued.
Possible values are:

■ ARCn

■ FOREGROUND

■ LGWR

■ RFS

SCHEDULE Indicates if the archiving of this destination is INACTIVE, PENDING, ACTIVE, or
LATENT.

DESTINATION Displays the location where the archived redo logs are to be archived.

LOG_SEQUENCE Identifies the sequence number of the last archived redo log to be archived.

REOPEN_SECS Identifies the retry time, in seconds, after an error.

DELAY_MINS Identifies the delay interval, in minutes, before the archived redo log is
automatically applied to a standby database.

PROCESS Identifies the archiver process relative to the primary database, even if the query is
issued on the standby database. Possible values are:

■ ARCn

■ FOREGROUND

■ LGWR

REGISTER Indicates whether or not the archived redo log is registered in the remote
destination control file. If the archived redo log is registered, it is available to the
managed recovery operation. Possible values are:

■ YES

■ NO

FAIL_DATE Indicates the date and time of the error.

FAIL_SEQUENCE Indicates the sequence number of the archived redo log being archived when the last
error occurred.

FAIL_BLOCK Indicates the block number of the archived redo log being archived when the last
error occurred.

FAILURE_COUNT Identifies the current number of consecutive archival operation failures that
occurred for the destination.

MAX_FAILURE Allows you to control the number of times log transport services will attempt to
reestablish communication and resume archival operations with a failed destination.

ERROR Displays the error text.

Column Description

V$ARCHIVE_DEST

14-14 Oracle Data Guard Concepts and Administration

ALTERNATE Identifies the alternate destination, if any.

DEPENDENCY Identifies the dependent archive destination, if any.

REMOTE_TEMPLATE Displays the template to be used to derive the location to be recorded.

QUOTA_SIZE Identifies the destination quotas, expressed in bytes.

QUOTA_USED Identifies the size of all archived redo logs currently residing on the specified
destination.

MOUNTID Identifies the instance mount identifier.

AFFIRM Displays the disk I/O mode.

ASYNC_BLOCKS Specifies the number of blocks for the ASYNC attribute.

TRANSMIT_MODE Displays network transmission mode. Possible values are:

■ PARALLELSYNC

■ SYNCHRONOUS

■ ASYNCHRONOUS

TYPE Indicates if the archived log destination definition is PUBLIC or PRIVATE. Only
PUBLIC destinations can be modified at runtime using the ALTER SYSTEM SET or
ALTER SESSION SET statements. By default, all archived log destinations are
PUBLIC.

NET_TIMEOUT Specifies the number of seconds the log writer process will wait for status from the
network server of a network operation issued by the log writer process.

Column Description

V$ARCHIVE_DEST_STATUS

 Views 14-15

V$ARCHIVE_DEST_STATUS

The V$ARCHIVE_DEST_STATUS view displays runtime and configuration
information for the archived redo log destinations.

The V$ARCHIVE_DEST_STATUS view contains the following columns:

Note: The information in this view does not persist across an
instance shutdown.

Column Description

DEST_ID Identifies the log archive destination parameter.

STATUS Identifies the current status of the destination. Possible values are:

■ VALID - Initialized and available

■ INACTIVE - No destination information

■ DEFERRED - Manually disabled by the user

■ ERROR - Error during open or copy

■ DISABLED - Disabled after error

■ BAD PARAM - Error with the LOG_ARCHIVE_DEST_n parameter

■ ALTERNATE - Destination in an alternate state

■ FULL - Exceeded quota size for the destination

TYPE Identifies the type of archival destination database. Possible values are:

■ LOCAL - Local to primary instance

■ PHYSICAL - Physical standby database

■ CROSS-INSTANCE - An instance of the primary database

DATABASE_MODE Identifies the current mode of the archival destination database. Possible values are:

■ STARTED - Instance started, not mounted

■ MOUNTED - Mounted

■ MOUNTED-STANDBY - Mounted standby

■ OPEN - Open read/write

■ OPEN_READ-ONLY - Open read-only

V$ARCHIVE_DEST_STATUS

14-16 Oracle Data Guard Concepts and Administration

RECOVERY_MODE Identifies the current mode of media recovery at the archival destination database.
Possible values are:

■ IDLE - Managed recovery not active

■ MANUAL - Manual media recovery active

■ MANAGED - Managed recovery active

DESTINATION Displays the location where the archived redo logs are to be archived.

ARCHIVED_THREAD# Identifies the thread number of the most recent archived redo log received at the
destination.

ARCHIVED_SEQ# Identifies the log sequence number of the most recent archived redo log received at
the destination.

APPLIED_THREAD# Identifies the thread number of the most recent applied redo log received at the
destination.

APPLIED_SEQ# Identifies the log sequence number of the most recent applied redo log received at
the destination.

ERROR Displays the error text.

STANDBY_LOGFILE_
COUNT

Indicates the total number of standby redo logs created on the standby database.

STANDBY_LOGFILE_
ACTIVE

Indicates the total number of standby redo logs on the standby database that are
active and contain primary database online redo log information

PROTECTION_MODE Indicates if and how the database is protected. Possible values are:

■ MAXIMUM PROTECTION

■ MAXIMUM AVAILABILITY

■ RESYNCHRONIZATION

■ MAXIMUM PERFORMANCE

■ UNPROTECTED

SRL Indicates the use of standby redo logs on the standby database. Possible values are:

■ YES

■ NO

Column Description

V$ARCHIVE_GAP

 Views 14-17

V$ARCHIVE_GAP

The V$ARCHIVE_GAP view displays information to help you identify an archive
gap. The V$ARCHIVE_GAP view contains the following columns:

Column Description

THREAD# Specifies the thread number

LOW_SEQUENCE# Specifies the low number of the log

HIGH_SEQUENCE# Specifies the high number of the log

V$ARCHIVED_LOG

14-18 Oracle Data Guard Concepts and Administration

V$ARCHIVED_LOG

The V$ARCHIVED_LOG view displays archived redo log information from the
control file, including archived log names. This view contains the following
columns:

Column Description

RECID Archived log record ID.

STAMP Archived log record stamp.

NAME Archived log filename. If set to NULL, the log was cleared
before it was archived.

DEST_ID The original destination from which the archived log was
generated. Value is 0 if the destination identifier is not
available.

THREAD# Redo thread number.

SEQUENCE# Redo log sequence number.

RESETLOGS_CHANGE# Resetlogs change number of the database when this log was
written.

RESETLOGS_TIME Resetlogs time of the database when this log was written.

FIRST_CHANGE# First change number in the archived log.

FIRST_TIME Timestamp of the first change.

NEXT_CHANGE# First change in the next log.

NEXT_TIME Timestamp of the next change.

BLOCKS Size of the archived log in blocks.

BLOCK_SIZE Redo log block size. This is the logical block size of the
archived log, which is the same as the logical block size of the
online log from which this archived log was copied. The
online log logical block size is a platform-specific value that is
not adjustable by the user.

CREATOR Identifies the creator of the archived log.

REGISTRAR Identifies the registrar of the entry.

STANDBY_DEST Indicates if the entry is an archived log destination.

V$ARCHIVED_LOG

 Views 14-19

ARCHIVED Indicates that the online redo log was archived or that RMAN
only inspected the log and created a record for future
application of redo logs during recovery.

APPLIED Indicates whether or not the archived log was applied to its
corresponding standby database.

DELETED Specifies whether or not an RMAN DELETE command has
physically deleted the archived redo log from disk, as well as
logically removing it from the control file of the target
database and from the recovery catalog.

STATUS The status of this archived log. Possible values are:

■ A - Available

■ D - Deleted

■ U - Unavailable

■ X - Expired

COMPLETION_TIME Indicates the time when the archiving completed.

DICTIONARY_BEGIN Indicates whether or not this log contains the start of a
LogMiner dictionary.

DICTIONARY_END Indicates whether or not this log contains the end of a
LogMiner dictionary.

BACKUP_COUNT Indicates the number of times this file was backed up. Values
range from 0 to 15. If the file was backed up more than 15
times, the value remains 15.

END_OF_REDO Indicates whether or not this archived redo log contains the
end of all redo information from the primary database. Values
are YES and NO.

ARCHIVAL_THREAD# Indicates the redo thread number of the instance that
performed the archival operation. This column differs from the
THREAD# column only when a closed thread is archived by
another instance.

ACTIVATION# Indicates the number assigned to the database instantiation.

Column Description

V$DATABASE

14-20 Oracle Data Guard Concepts and Administration

V$DATABASE

The V$DATABASE view provides database information from the control file. This
view contains the following columns:

Column Description

DBID The database identifier that is calculated when the database is created. This
identifier is stored in all file headers.

NAME Name of the database.

CREATED Creation date.

RESETLOGS_CHANGE# Change number at open resetlogs.

RESETLOGS_TIME Timestamp of open resetlogs.

PRIOR_RESETLOGS_
CHANGE#

Change number at prior resetlogs.

PRIOR_RESETLOGS_
TIME

Timestamp of prior resetlogs.

LOG_MODE Archive log mode.

CHECKPOINT_CHANGE# Last SCN checkpointed.

ARCHIVE_CHANGE# Last SCN archived.

CONTROLFILE_TYPE The type of control file. Possible values are:

■ STANDBY - Indicates the database is in standby mode.

■ LOGICAL - Indicates the database is a logical standby database.

■ CLONE - Indicates a clone database.

■ BACKUP | CREATED - Indicates the database is being recovered using a
backup or created control file.

■ CURRENT - Indicates the database is available for general use.

CONTROLFILE_CREATED Control file creation timestamp.

CONTROLFILE_
SEQUENCE#

Control file sequence number incremented by control file transactions.

CONTROLFILE_CHANGE# Last change number in the backup control file. Set to NULL if the control file is not
a backup.

V$DATABASE

 Views 14-21

CONTROLFILE_TIME Last timestamp in the backup control file. Set to NULL if the control file is not a
backup.

OPEN_RESETLOGS Indicates if the next database open allows or requires the resetlogs option.

VERSION_TIME The version time.

OPEN_MODE Open mode information.

PROTECTION_MODE Indicates if and how the database is protected. Possible values are:

■ MAXIMUM PROTECTION

■ MAXIMUM AVAILABILITY

■ RESYNCHRONIZATION

■ MAXIMUM PERFORMANCE

■ UNPROTECTED

PROTECTION_LEVEL Displays the aggregated protection mode currently in effect on the primary or
standby database. Possible values are:

■ MAXIMUM PROTECTION

■ MAXIMUM AVAILABILITY

■ RESYNCHRONIZATION

■ MAXIMUM PERFORMANCE

■ UNPROTECTED

REMOTE_ARCHIVE The value of the REMOTE_ARCHIVE_ENABLE initialization parameter. Possible
values are:

■ TRUE

■ FALSE

■ SEND

■ RECEIVE

ACTIVATION# Number assigned to the database instantiation.

DATABASE_ROLE Current role of the database; either primary or standby.

ARCHIVELOG_CHANGE# Highest NEXT_CHANGE# (from the V$ARCHIVED_LOG view) for an archived log.

Column Description

V$DATABASE

14-22 Oracle Data Guard Concepts and Administration

SWITCHOVER_STATUS
(Physical Standby
Databases Only)

Specifies if switchover is allowed. This column currently is supported only for use
with physical standby databases. Possible values are:

■ NOT ALLOWED - Either this is a standby database and the primary database
has not been switched first, or this is a primary database and there are no
standby databases.

■ SESSIONS ACTIVE - Indicates that there are active SQL sessions attached to
the primary or standby database that need to be disconnected before the
switchover operation is permitted. Query the V$SESSION view to identify the
specific processes that need to be terminated.

■ SWITCHOVER PENDING - This is a standby database and the primary
database switchover request has been received but not processed.

■ SWITCHOVER LATENT - The switchover was in pending mode, but did not
complete and went back to the primary database.

■ TO PRIMARY - This is a standby database and is allowed to switch over to a
primary database.

■ TO STANDBY - This is a primary database and is allowed to switch over to a
standby database.

■ RECOVERY NEEDED - This is a standby database that has not received the
switchover request.

GUARD_STATUS Protects data from being changed. Possible values are:

■ ALL - Indicates all users other than SYS are prevented from making changes
to any data in the database.

■ STANDBY - Indicates all users other than SYS are prevented from making
changes to any database object being maintained by logical standby.

■ NONE - Indicates normal security for all data in the database.

SUPPLEMENTAL_LOG_
DATA_MIN

Ensures that LogMiner will have sufficient information to support chained rows
and various storage arrangements such as cluster tables.

See Oracle9i SQL Reference for additional information about the ALTER DATABASE
ADD SUPPLEMENTAL LOG DATA statement.

SUPPLEMENTAL_LOG_
DATA_PK

For all tables with a primary key, ensures that all columns of the primary key are
placed into the redo log whenever an update operation is performed.

See Oracle9i SQL Reference for additional information about the ALTER DATABASE
ADD SUPPLEMENTAL LOG DATA statement.

SUPPLEMENTAL_LOG_
DATA_UI

For all tables with a unique key, ensures that if any unique key columns are
modified, all other columns belonging to the unique key are also placed into the
redo log.

See Oracle9i SQL Reference for additional information about the ALTER DATABASE
ADD SUPPLEMENTAL LOG DATA statement.

Column Description

V$DATABASE

 Views 14-23

FORCE_LOGGING Redo generation is forced even for NOLOGGING operations. Possible values are:

■ YES

■ NO

DATAGUARD_BROKER Indicates if the Data Guard configuration is being managed by the broker. Possible
values are:

■ ENABLED indicates the configuration is under the control of the broker

■ DISABLED indicates the configuration is not under the control of the broker

Column Description

V$DATAFILE

14-24 Oracle Data Guard Concepts and Administration

V$DATAFILE

The V$DATAFILE view provides datafile information from the control file. This
view contains the following columns:

Column Description

FILE# File identification number.

CREATION_CHANGE# Change number at which the datafile was created.

CREATION_TIME Timestamp of the datafile creation.

TS# Tablespace number.

RFILE# Tablespace relative datafile number.

STATUS Type of file (system or user) and its status. Possible values are:

■ OFFLINE - cannot be written to

■ ONLINE - can be written to

■ SYSTEM - system datafile

■ RECOVER - needs recovery

■ SYSOFF - offline system

ENABLED Describes how accessible the file is from SQL. Possible values are:

■ DISABLED - no SQL access allowed

■ READ ONLY - no SQL updates allowed

■ READ WRITE - full access allowed

CHECKPOINT_CHANGE# SCN at last checkpoint.

CHECKPOINT_TIME Timestamp of the last checkpoint.

UNRECOVERABLE_
CHANGE#

Last unrecoverable change number made to this datafile. This column is always
updated when an unrecoverable operation completes.

UNRECOVERABLE_TIME Timestamp of the last unrecoverable change.

LAST_CHANGE# Last change number made to this datafile. Set to NULL if the datafile is being
changed.

LAST_TIME Timestamp of the last change.

OFFLINE_CHANGE# Offline change number of the last offline range. This column is updated only when
the datafile is brought online.

V$DATAFILE

 Views 14-25

ONLINE_CHANGE# Online change number of the last offline range.

ONLINE_TIME Online timestamp of the last offline range.

BYTES Current datafile size in bytes; 0 if inaccessible.

BLOCKS Current datafile size in blocks; 0 if inaccessible.

CREATE_BYTES Size when created, in bytes.

BLOCK_SIZE Block size of the datafile.

NAME Datafile name.

PLUGGED_IN Describes if the tablespace is plugged in. The value is 1 if the tablespace is plugged
in and has not been made read/write; 0 if not.

BLOCK1_OFFSET The offset from the beginning of the file to where the Oracle generic information
begins. The exact length of the file can be computed as follows: BYTES +
BLOCK1_OFFSET.

AUX_NAME The auxiliary name that has been set for this file.

Column Description

V$DATAGUARD_STATUS

14-26 Oracle Data Guard Concepts and Administration

V$DATAGUARD_STATUS

The V$DATAGUARD_STATUS view displays and logs events that would typically be
triggered by any message to the alert log or server process trace files.

The V$DATAGUARD_STATUS view contains the following columns:

Note: The information in this view does not persist across an
instance shutdown.

Column Description

INST_ID The ID of the instance encountering the event. This column is present in the
GV$DATAGUARD_STATUS view and not in the V$DATAGUARD_STATUS view.

FACILITY Facility that encountered the event. Possible values are:

■ CRASH RECOVERY

■ LOG TRANSPORT SERVICES

■ LOG APPLY SERVICES

■ ROLE MANAGEMENT SERVICES

■ REMOTE FILE SERVER

■ FETCH ARCHIVE LOG

■ DATA GUARD

■ NETWORK SERVICES

SEVERITY The severity of the event. Possible values are:

■ INFORMATIONAL - informational message

■ WARNING - warning message

■ ERROR - indicates the process has failed

■ FATAL-indicates the process, the database, or both have failed

■ CONTROL - an expected change in state, such as the start or completion of an
archival, log recovery, or switchover operation

DEST_ID The destination ID number to which the event pertains. If the event does not
pertain to a particular destination, the value is 0.

MESSAGE_NUM A chronologically increasing number giving each event a unique number.

V$DATAGUARD_STATUS

 Views 14-27

ERROR_CODE The error ID pertaining to the event.

CALLOUT Indicates whether or not the current entry is a callout event. Possible values are:

■ YES

■ NO

A YES value indicates that this event might require the DBA to perform some
action. Examine the ERROR_CODE and MESSAGE columns for more information.

A NO value generally corresponds to an INFORMATIONAL or WARNING event that
does not require any action by the DBA.

TIMESTAMP The date and time when the entry was created.

MESSAGE A text message describing the event.

Column Description

V$LOG

14-28 Oracle Data Guard Concepts and Administration

V$LOG

The V$LOG view contains log file information from the online redo logs. This view
contains the following columns:

Column Description

GROUP# Log group number.

THREAD# Log thread number.

SEQUENCE# Log sequence number.

BYTES Size of the log in bytes.

MEMBERS Number of members in the log group.

ARCHIVED Archive status.

STATUS Indicates the log status. Possible values are:

■ UNUSED - The online redo log has never been written to. This is the status of a
redo log that was just added, or just after specifying a RESETLOGS option when
it is not the current redo log.

■ CURRENT - This is the current redo log. This implies that the redo log is active.
The redo log could be open or closed.

■ ACTIVE - The log is active but is not the current log. It is needed for failure
recovery. It might be in use for block recovery. It might or might not be
archived.

■ CLEARING - The log is being re-created as an empty log after an ALTER
DATABASE CLEAR LOGFILE statement. After the log is cleared, the status
changes to UNUSED.

■ CLEARING_CURRENT - The current log is being cleared of a closed thread. The
log can stay in this status if there is some failure in the switch, such as an I/O
error writing the new log header.

■ INACTIVE - The log is no longer needed for instance recovery. It might be in
use for managed recovery. It might or might not be archived.

■ INVALIDATED - Archived the current redo log without a log switch

FIRST_CHANGE# Lowest SCN in the log.

FIRST_TIME Time of first SCN in the log.

V$LOGFILE

 Views 14-29

V$LOGFILE

The V$LOGFILE view contains information about the online redo logs. This view
contains the following columns:

Column Description

GROUP# Redo log group identifier number.

STATUS Status of this log member. Possible values are:

■ INVALID - File is inaccessible.

■ STALE - Contents are incomplete.

■ DELETED - File is no longer used.

■ blank (no value listed) - File is in use.

MEMBER Redo log member name

TYPE Specifies if this is a standby log or an online log. Possible values
are:

■ STANDBY

■ ONLINE

V$LOG_HISTORY

14-30 Oracle Data Guard Concepts and Administration

V$LOG_HISTORY

The V$LOG_HISTORY view contains log history information from the control file.
This view contains the following columns:

Column Description

RECID Control file record ID

STAMP Control file record stamp

THREAD# Thread number of the archived log

SEQUENCE# Sequence number of the archived log

FIRST_CHANGE# Lowest SCN in the log

FIRST_TIME Time of first entry (lowest SCN) in the log

NEXT_CHANGE# Highest SCN in the log

V$LOGSTDBY (Logical Standby Databases Only)

 Views 14-31

V$LOGSTDBY (Logical Standby Databases Only)

The V$LOGSTDBY view provides dynamic information about what is happening to
log apply services. This view is very helpful when you are diagnosing performance
problems during the logical application of archived redo logs to the standby
database, and it can be helpful for other problems. The V$LOGSTDBY view contains
the following columns:

Column Datatype Description

SERIAL# NUMBER Contains the SQL session serial number. This data is
used when joining this view with V$SESSION and
V$PX_SESSION views.

LOGSTDBY_ID NUMBER Contains the parallel query slave ID.

PID VARCHAR2(9) Contains the process ID.

TYPE VARCHAR2(30) Indicates the task being performed by the process:
COORDINATOR, APPLIER, ANALYZER, READER,
PREPARER, BUILDER.

STATUS_CODE NUMBER Contains the status number (or Oracle error code)
belonging to the STATUS message.

STATUS VARCHAR2(256) Description of the current activity of the process.

HIGH_SCN NUMBER Contains the highest SCN seen by the process. This
column is used to confirm the progress of the
individual process.

V$LOGSTDBY_STATS (Logical Standby Databases Only)

14-32 Oracle Data Guard Concepts and Administration

V$LOGSTDBY_STATS (Logical Standby Databases Only)

The V$LOGSTDBY_STATS view displays LogMiner statistics, current state, and
status information for a logical standby database during SQL apply operations. If
log apply services are not running, the values for the statistics are cleared. This view
contains the following columns:

Column Datatype Description

NAME VARCHAR2(64) Name of the statistic, state, or status:

Note: Many of the following statistics are subject to change or deletion;
programmers should write application code to tolerate missing or extra
statistics.

■ Number of preparers

■ Number of appliers

■ Maximum SGA for LCR cache

■ Parallel servers in use

■ Transaction consistency

■ Coodinator state

■ Transactions scheduled

■ Transactions applied

■ Preparer memory allocation failures

■ Builder memory allocation failures

■ Attempts to handle low memory

■ Successful low memory recovery

■ Memory spills avoided

■ Rollback attempts

■ Successful rollbacks

■ Memory spill attempts

■ Successful memory spills

■ Preparer ignored memory low water mark

■ Builder ignored memory low water mark

■ Mining resumed

VALUE VARCHAR2(64) The value of the statistic or state information

V$MANAGED_STANDBY (Physical Standby Databases Only)

 Views 14-33

V$MANAGED_STANDBY (Physical Standby Databases Only)

The V$MANAGED_STANDBY view displays current status information for Oracle
database server processes related to physical standby databases in the Data Guard
environment. The V$MANAGED_STANDBY view contains the columns shown in the
following table; the information does not persist after an instance shutdown.

Column Description

PROCESS Type of process whose information is being reported. Possible values are:

■ ARCH - archiver process

■ RFS - remote file server

■ MRP0 - detached recovery server process

■ MR(fg) - foreground recovery session

PID Operating system identifier of the process.

STATUS Current process status. Possible values are:

■ UNUSED - No active process.

■ ALLOCATED - Process is active but not currently connected to a primary database.

■ CONNECTED - Network connection is established to a primary database.

■ ATTACHED - Process is attached to, and communicating with, a primary database.

■ IDLE - Process is not performing any activities.

■ ERROR - Process has failed.

■ OPENING - Process is opening the archived redo log.

■ CLOSING - Process has completed the archival operation and is closing the archived redo
log.

■ WRITING - Process is actively writing archived redo log data.

■ RECEIVING - Process is receiving network communication.

■ ANNOUNCING - Process is announcing the existence of a potential dependent archived
redo log.

■ REGISTERING - Process is registering the existence of a completed dependent archived
redo log.

■ WAIT_FOR_LOG - Process is waiting for the archived redo log to be completed.

■ WAIT_FOR_GAP - Process is waiting for the archive gap to be resolved.

■ APPLYING_LOG - Process is applying the archived redo log to the standby database.

V$MANAGED_STANDBY (Physical Standby Databases Only)

14-34 Oracle Data Guard Concepts and Administration

CLIENT_
PROCESS

Identifies the corresponding primary database process. Possible values are:

■ ARCHIVAL - foreground (manual) archival process (SQL)

■ ARCH - background ARCn process

■ LGWR - background LGWR process

CLIENT_PID Operating system identifier of the client process.

CLIENT_DBID Database identifier of the primary database.

GROUP# Standby redo log group.

THREAD# Archived redo log thread number.

SEQUENCE# Archived redo log sequence number.

BLOCK# Last processed archived redo log block number.

BLOCKS Size of the archived redo log in 512-byte blocks.

DELAY_MINS Archived redo log delay interval in minutes.

KNOWN_
AGENTS

Total number of standby database agents processing an archived redo log.

ACTIVE_
AGENTS

Number of standby database agents actively processing an archived redo log.

Column Description

V$STANDBY_LOG

 Views 14-35

V$STANDBY_LOG

The V$STANDBY_LOG view contains the following columns:

Column Description

GROUP# Log group number.

THREAD# Log thread number.

SEQUENCE# Log sequence number.

BYTES Size of the log in bytes.

USED Number of bytes used in the log.

ARCHIVED Archive status.

STATUS Indicates the log status. Possible values are:

■ UNUSED - The online redo log has never been written to. This is the status of a
redo log that was just added, or just after specifying a RESETLOGS option when
it is not the current redo log.

■ CURRENT - This is the current redo log. This implies that the redo log is active.
The redo log could be open or closed.

■ ACTIVE - The log is active but is not the current log. It is needed for failure
recovery. It might be in use for block recovery. It might or might not be
archived.

■ CLEARING - The log is being re-created as an empty log after an ALTER
DATABASE CLEAR LOGFILE statement. After the log is cleared, the status
changes to UNUSED.

■ CLEARING_CURRENT - The current log is being cleared of a closed thread. The
log can stay in this status if there is some failure in the switch, such as an I/O
error writing the new log header.

■ INACTIVE - The log is no longer needed for instance recovery. It might be in
use for managed recovery. It might or might not be archived.

■ INVALIDATED - Archived the current redo log without a log switch.

FIRST_CHANGE# Lowest SCN in the log.

FIRST_TIME Time of first SCN in the log.

LAST_CHANGE# Last change number made to this datafile. Set to NULL if the datafile is being
changed.

LAST_TIME Timestamp of the last change.

V$STANDBY_LOG

14-36 Oracle Data Guard Concepts and Administration

Part III
 Appendixes and Glossary

This part contains the following:

■ Appendix A, "Troubleshooting the Standby Database"

■ Appendix B, "Manual Recovery"

■ Appendix C, "Standby Database Real Application Clusters Support"

■ Appendix D, "Cascaded Redo Log Destinations"

■ Appendix E, "Sample Disaster Recovery ReadMe File"

■ Glossary

Troubleshooting the Standby Database A-1

A
Troubleshooting the Standby Database

This appendix provides help troubleshooting a standby database. This appendix
contains the following sections:

■ Problems During Standby Database Preparation

■ Log Destination Failures

■ Ignoring Logical Standby Database Failures

■ Problems Switching Over to a Standby Database

■ What to Do If SQL Apply Operations to a Logical Standby Database Stop

■ Network Tuning for Redo Log Transmission

■ Managing Data Guard Network Timeout

A.1 Problems During Standby Database Preparation
If you encounter a problem during standby database preparation, it will probably
be one of the following:

■ The Standby Archive Destination Is Not Defined Properly

■ The Standby Site Does Not Receive Logs Archived by the Primary Database

■ You Cannot Mount the Physical Standby Database

A.1.1 The Standby Archive Destination Is Not Defined Properly
If the STANDBY_ARCHIVE_DEST initialization parameter is not defined as a valid
directory name on the standby site, the Oracle database server will not be able to
determine the directory in which to store the archived redo logs. Check the

Problems During Standby Database Preparation

A-2 Oracle Data Guard Concepts and Administration

DESTINATION and ERROR columns in the V$ARCHIVE_DEST view. For example,
enter:

SQL> SELECT DESTINATION, ERROR FROM V$ARCHIVE_DEST;

Make sure the destination is valid.

A.1.2 The Standby Site Does Not Receive Logs Archived by the Primary Database
If the standby site is not receiving the logs, the first thing you should do is obtain
information about the archiving status of the primary database by querying the
V$ARCHIVE_DEST view. Check especially for error messages. For example, enter
the following query:

SQL> SELECT DEST_ID "ID",
 2> STATUS "DB_status",
 3> DESTINATION "Archive_dest",
 4> ERROR "Error"
 5> FROM V$ARCHIVE_DEST;

ID DB_status Archive_dest Error
-- --------- ------------------------------ ------------------------------------
 1 VALID /vobs/oracle/work/arc_dest/arc
 2 ERROR standby1 ORA-16012: Archivelog standby database identifier mismatch
 3 INACTIVE
 4 INACTIVE
 5 INACTIVE
5 rows selected.

If the output of the query does not help you, check the following list of possible
issues. If any of the following conditions exist, the primary database will fail to
archive to the standby site:

■ The service name for the standby instance is not configured correctly in the
tnsnames.ora file at the primary site.

■ The service name listed in the LOG_ARCHIVE_DEST_n parameter of the
primary initialization parameter file is incorrect.

■ The LOG_ARCHIVE_DEST_STATE_n parameter specifying the state of the
standby archiving destination has the value DEFER.

■ The listener.ora file has not been configured correctly at the standby site.

■ The listener is not started.

■ The standby instance is not started.

Log Destination Failures

Troubleshooting the Standby Database A-3

■ You have added a standby archiving destination to the primary initialization
parameter file, but have not yet enabled the change.

■ You used an invalid backup as the basis for the standby database (for example,
you used a backup from the wrong database, or did not create the standby
control file using the correct method).

A.1.3 You Cannot Mount the Physical Standby Database
If any of the following conditions exist, you cannot mount the physical standby
database:

■ The standby instance is not started in NOMOUNT mode. You must first start the
instance and then mount the database.

■ The standby control file was not created with the ALTER DATABASE CREATE
STANDBY CONTROLFILE ... statement or RMAN. You cannot use the
following types of control file backups:

– An operating system-created backup

– A backup created using an ALTER DATABASE statement without the
STANDBY option

A.2 Log Destination Failures
If you specify REOPEN for an OPTIONAL destination, it is possible for the Oracle
database server to reuse online redo logs even if there is an error. If you specify
REOPEN for a MANDATORY destination, the log transport services component stalls
the primary database when it cannot successfully archive redo logs.

The REOPEN attribute is required when you use the MAX_FAILURE attribute.
Example A–1 shows how to set a retry time of 5 seconds and limit retries to 3 times.

Example A–1 Setting a Retry Time and Limit

LOG_ARCHIVE_DEST_1=’LOCATION=/arc_dest REOPEN=5 MAX_FAILURE=3’

Using the ALTERNATE attribute of the LOG_ARCHIVE_DEST_n parameter, you can
specify alternate archive destinations. An alternate archive destination can be used
when the archiving of an online redo log to a standby site fails. If archiving fails and
the NOREOPEN attribute has been specified, or the MAX_FAILURE attribute
threshold has been exceeded, log transport services will attempt to archive redo
logs to the alternate destination on the next archiving operation.

Ignoring Logical Standby Database Failures

A-4 Oracle Data Guard Concepts and Administration

Use the NOALTERNATE attribute to prevent the original archive destination from
automatically changing to an alternate archive destination when the original
archive destination fails.

Example A–2 shows how to set the initialization parameter file so that a single,
mandatory, local destination will automatically fail over to a different destination if
any error occurs.

Example A–2 Specifying an Alternate Destination

LOG_ARCHIVE_DEST_1=’LOCATION=/disk1 MANDATORY ALTERNATE=LOG_ARCHIVE_DEST_2’
LOG_ARCHIVE_DEST_STATE_1=ENABLE
LOG_ARCHIVE_DEST_2=’LOCATION=/disk2 MANDATORY’
LOG_ARCHIVE_DEST_STATE_2=ENABLE
LOG_ARCHIVE_DEST_STATE_2=ALTERNATE

If the LOG_ARCHIVE_DEST_1 destination fails, the archiving process will
automatically switch to the LOG_ARCHIVE_DEST_2 destination at the next log
switch on the primary database.

A.3 Ignoring Logical Standby Database Failures
An important skip tool is DBMS_LOGSTDBY.SKIP_ERROR. Depending on how
important a table is, you might want to do one of the following:

■ Ignore failures for a table or specific DDL

■ Associate a stored procedure with a filter so that runtime determinations can be
made whether to skip the statement, execute this statement, or execute a
replacement statement

Taking one of these actions prevents the SQL apply operations from stopping. Later,
you can query the DBA_LOGSTDBY_EVENTS view to find and correct any problems
that exist.

A.4 Problems Switching Over to a Standby Database
If you encounter a problem switching over from a primary database to a standby
database, it will probably be one of the following:

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for
more information about using the DBMS_LOGSTDBY package with
PL/SQL callout procedures

Problems Switching Over to a Standby Database

Troubleshooting the Standby Database A-5

■ Switchover Fails

■ Recovering After An Unsuccessful Switchover Operation

■ Startup of Second Physical Standby Database Fails

■ Archived Redo Logs Are Not Applied After a Switchover

■ Switchover Fails When SQL Sessions Are Active

A.4.1 Switchover Fails
ALTER DATABASE COMMIT TO SWITCHOVER failed with ORA-01093 error "Alter
database close only permitted with no sessions connected."

This error occurs because the COMMIT TO SWITCHOVER statement implicitly closed
the database and, if there are any other user sessions connected to the database, the
close fails.

Action: Make sure all user sessions are disconnected from the database. You can
query the V$SESSION fixed view to see what sessions are still around. For example:

SQL> SELECT SID, PROCESS, PROGRAM FROM V$SESSION;

 SID PROCESS PROGRAM
---------- --------- --
 1 26900 oracle@dbuser-sun (PMON)
 2 26902 oracle@dbuser-sun (DBW0)
 3 26904 oracle@dbuser-sun (LGWR)
 4 26906 oracle@dbuser-sun (CKPT)
 5 26908 oracle@dbuser-sun (SMON)
 6 26910 oracle@dbuser-sun (RECO)
 7 26912 oracle@dbuser-sun (ARC0)
 8 26897 sqlplus@dbuser-sun (TNS V1-V3)
 11 26917 sqlplus@dbuser-sun (TNS V1-V3)

9 rows selected.

In the previous example, the first seven sessions are all server background
processes. Among the two SQL*Plus sessions, one is the current SQL*Plus session
issuing the query, and the other is an extra session that should be disconnected
before the switchover operation.

Problems Switching Over to a Standby Database

A-6 Oracle Data Guard Concepts and Administration

A.4.2 Recovering After An Unsuccessful Switchover Operation
In most cases, following the steps described in Section 7.2.1 will result in a
successful switchover operation. However, if the switchover operation is initially
unsuccessful, you might still be able to use one of the following recovery options to
complete the switchover operation successfully.

Option 1: Continue the current switchover operation.
If the switchover operation does not complete successfully, you can query the
SEQUENCE# column in the V$ARCHIVED_LOG view to see if the last archived log
was archived and applied on the old physical standby database. If the last log was
not archived to the old physical standby database, you can manually copy the
archived log from the old primary database to the old physical standby database
and register it with the SQL ALTER DATABASE REGISTER LOGFILE filespec
statement. If you then start up the managed recovery process, the archived log will
be applied automatically. Query the SWITCHOVER_STATUS column in the
V$DATABASE view. The TO PRIMARY value in the SWITCHOVER_STATUS column
verifies that switchover to the primary role is now possible.

SQL> SELECT SWITCHOVER_STATUS FROM V$DATABASE;
SWITCHOVER_STATUS

TO PRIMARY
1 row selected

To continue with the switchover operation, return to Section 7.2.1 Step 5, and try
again to switch the target physical standby database to the primary role.

Option 2: Rollback the unsuccessful switchover operation and start over.
In situations where an error has occurred and it is not possible to continue with the
switchover operation, it might still be possible to revert the new physical standby
back to the primary role by using the following steps:

1. When the switchover operation to change the role from primary to standby was
initiated, a trace file was written in the log directory. This trace file contains the
SQL statements required to re-create the original primary control file. Locate the
trace file and extract the SQL statements into a temporary file. Execute the
temporary file from SQL*Plus. This will revert the new physical standby
database back to the primary role.

See Also: Chapter 14 for information about other valid values for
the SWITCHOVER_STATUS column of the V$DATABASE view

Problems Switching Over to a Standby Database

Troubleshooting the Standby Database A-7

2. Shut down the original physical standby database.

3. Create a new physical standby control file. This is necessary to resynchronize
the primary database and physical standby database. Copy the standby control
file to the original physical standby site.

4. Restart the original physical standby instance.

If this procedure is successful and archive gap management is enabled, the FAL
processes will start and re-archive any missing archived redo logs to the
physical standby database. Force a log switch on the primary database and
examine the alert logs on both the primary database and physical standby
database to ensure that the archived redo log sequence numbers are correct.

5. Try the switchover operation again.

At this point, the Data Guard configuration has been rolled back to its initial
state, and you can try the switchover operation again (after correcting any
problems that might have led to the initial unsuccessful switchover operation).

A.4.3 Startup of Second Physical Standby Database Fails
Suppose the standby database and the primary database reside on the same site.
After both the ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL
STANDBY and the ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY
statements are successfully executed, shut down and restart the physical standby
database and the primary database. However, the startup of the second database
fails with ORA-01102 error "cannot mount database in EXCLUSIVE mode."

This could happen during the switchover if you forget to set the LOCK_NAME_
SPACE parameter in the initialization parameter file that is used by the standby
database (that is, the original primary database). If the LOCK_NAME_SPACE
parameter of the standby database is not set, the standby and the primary databases
both use the same mount lock and cause the ORA-01102 error during the startup of
the second database.

See Also: Section 3.2.3 for information about creating a standby
control file.

See Also: Section 6.4 for information about archive gap
management and Section 6.7 for information about locating the
trace files.

Problems Switching Over to a Standby Database

A-8 Oracle Data Guard Concepts and Administration

Action: Add LOCK_NAME_SPACE=unique_lock_name to the initialization
parameter file used by the physical standby database and shut down and restart
both the standby and the primary databases.

A.4.4 Archived Redo Logs Are Not Applied After a Switchover
The archived redo logs are not applied to the standby database after the switchover.

This might happen because some environment or initialization parameters have not
been properly set after the switchover.

Action:

■ Check the tnsnames.ora file at the primary site and the listener.ora file
at the standby site. There should be entries for a listener at the standby site and
a corresponding tnsname at the primary site.

■ Start the listener at the standby site if it has not been started.

■ Check if the LOG_ARCHIVE_DEST_n initialization parameter has been set to
properly archive logs from the primary site to standby site. For example, query
the V$ARCHIVE_DEST fixed view at the primary site as follows:

SQL> SELECT DEST_ID, STATUS, DESTINATION FROM V$ARCHIVE_DEST;

If you do not see an entry corresponding to the standby site, you need to set
LOG_ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n initialization
parameters.

■ Set the STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT initialization
parameters correctly at the standby site so that the archived redo logs are
applied to the desired location.

■ At the standby site, set the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_
CONVERT initialization parameters. Set the STANDBY_FILE_MANAGEMENT
initialization parameter to AUTO if you want the standby site to automatically
add new datafiles that are created at the primary site.

A.4.5 Switchover Fails When SQL Sessions Are Active
If you do not include the WITH SESSION SHUTDOWN clause as a part of the ALTER
DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY statement, active
SQL sessions might prevent a switchover from being processed. Active SQL
sessions can include other Oracle processes.

Problems Switching Over to a Standby Database

Troubleshooting the Standby Database A-9

When sessions are active, an attempt to switch over fails with the following error
message:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY;
ALTER DATABASE COMMIT TO SWITCHOVER TO PHYSICAL STANDBY *
ORA-01093: ALTER DATABASE CLOSE only permitted with no sessions connected

Action: Query the V$SESSION view to determine which processes are causing the
error. For example:

SQL> SELECT SID, PROCESS, PROGRAM FROM V$SESSION
 2> WHERE TYPE = ’USER’
 3> AND SID <> (SELECT DISTINCT SID FROM V$MYSTAT);
SID PROCESS PROGRAM
--------- -------- --
 7 3537 oracle@nhclone2 (CJQ0)
 10
 14
 16
 19
 21
 6 rows selected.

In the previous example, the JOB_QUEUE_PROCESSES parameter corresponds to
the CJQ0 process entry. Because the job queue process is a user process, it is counted
as a SQL session that prevents switchover from taking place. The entries with no
process or program information are threads started by the job queue controller.

Verify that the JOB_QUEUE_PROCESSES parameter is set using the following SQL
statement:

SQL> SHOW PARAMETER JOB_QUEUE_PROCESSES;
NAME TYPE VALUE
------------------------------ ------- --------------------
job_queue_processes integer 5

Then, set the parameter to 0. For example:

SQL> ALTER SYSTEM SET JOB_QUEUE_PROCESSES=0;
Statement processed.

Because JOB_QUEUE_PROCESSES is a dynamic parameter, you can change the
value and have the change take effect immediately without having to restart the
instance. You can now retry the switchover procedure.

What to Do If SQL Apply Operations to a Logical Standby Database Stop

A-10 Oracle Data Guard Concepts and Administration

Do not modify the parameter in your initialization parameter file. After you shut
down the instance and restart it after switchover has completed, the parameter will
be reset to the original value. This applies to both primary and physical standby
databases.

Table A–1 summarizes the common processes that prevent switchover and what
corrective action you need to take.

A.5 What to Do If SQL Apply Operations to a Logical Standby Database
Stop

Log apply services cannot apply unsupported DML statements, DDL statements,
and Oracle supplied packages to a logical standby database in SQL apply mode.

When an unsupported statement or package is encountered, SQL apply operations
stop. You can take the actions described in Table A–2 to correct the situation and
start applying SQL statements to the logical standby database again.

Table A–1 Common Processes That Prevent Switchover

Type of
Process Process Description Corrective Action

CJQ0 The Job Queue Scheduler
Process

Change the JOB_QUEUE_PROCESSES dynamic
parameter to the value 0. The change will take
effect immediately without having to restart the
instance.

QMN0 The Advanced Queue Time
Manager

Change the AQ_TM_PROCESSES dynamic
parameter to the value 0. The change will take
effect immediately without having to restart the
instance.

DBSNMP The Oracle Enterprise
Manager Intelligent Agent

Issue the agentctl stop command from the
operating system prompt.

Network Tuning for Redo Log Transmission

Troubleshooting the Standby Database A-11

A.6 Network Tuning for Redo Log Transmission
The process of archiving redo logs involves reading a buffer from the redo log and
writing it to the archive log location. When the destination is remote, the buffer is
written to the archive log location over the network using Oracle Net services.

The default archive log buffer size is 1 megabyte. The default transfer buffer size for
Oracle Net is 2 kilobytes. Therefore, the archive log buffer is divided into units of
approximately 2 kilobytes for transmission. These units could get further divided
depending on the maximum transmission unit (MTU) of the underlying network
interface.

The Oracle Net parameter that controls the transport size is session data unit
(SDU). This parameter can be adjusted to reduce the number of network packets
that are transmitted. This parameter allows a range of 512 bytes to 32 kilobytes.

Table A–2 Fixing Typical SQL Apply Operations Errors

If... Then...

You suspect an unsupported statement or
Oracle supplied package was encountered

Find the last statement in the DBA_LOGSTDBY_EVENTS view.
This will indicate the statement and error that caused SQL
apply operations to fail. If an incorrect SQL statement caused
SQL apply operations to fail, transaction information, as well
as the statement and error information, can be viewed. The
transaction information can be used with other Oracle9i
LogMiner tools to understand the cause of the problem.

An error requiring database management
occurred, such as running out of space in a
particular tablespace

Fix the problem and resume SQL apply operations using the
ALTER DATABASE START LOGICAL STANDBY APPLY
statement.

An error occurred because a SQL statement
was entered incorrectly, such as an incorrect
standby database filename being entered in a
tablespace command

Enter the correct SQL statement and use the DBMS_
LOGSTDBY.SKIP_TRANSACTION procedure to ensure that the
incorrect statement is ignored the next time SQL apply
operations are run. Then restart SQL apply operations using
the ALTER DATABASE START LOGICAL STANDBY APPLY
statement.

An error occurred because skip parameters
were incorrectly set up, such as specifying that
all DML for a given table be skipped but
CREATE, ALTER, and DROP TABLE statements
were not specified to be skipped

Issue a DBMS_LOGSTDBY.SKIP(’TABLE’,’schema_
name’,’table_name’,null) call, then restart SQL apply
operations.

See Also: Chapter 14 for information about querying the DBA_
LOGSTDBY_EVENTS view to determine the cause of failures

Managing Data Guard Network Timeout

A-12 Oracle Data Guard Concepts and Administration

For optimal performance, set the Oracle Net SDU parameter to 32 kilobytes for the
associated SERVICE destination parameter.

The following example shows a database initialization parameter file segment that
defines a remote destination netserv:

LOG_ARCHIVE_DEST_3=’SERVICE=netserv’
SERVICE_NAMES=srvc

The following example shows the definition of that service name in the
tnsnames.ora file:

netserv=(DESCRIPTION=(SDU=32768)(ADDRESS=(PROTOCOL=tcp)(HOST=host) (PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=srvc)(ORACLE_HOME=/oracle)))

The following example shows the definition in the listener.ora file:

LISTENER=(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)
(HOST=host)(PORT=1521))))

SID_LIST_LISTENER=(SID_LIST=(SID_DESC=(SDU=32768)(SID_NAME=sid)
(GLOBALDBNAME=srvc)(ORACLE_HOME=/oracle)))

If you archive to a remote site using high-latency/high-bandwidth connections, you
can improve performance by increasing the TCP send and receive window sizes.
Use caution, however, because this might adversely affect networked applications
that do not exhibit the same characteristics as archiving. This method consumes a
large amount of system resources.

You can also use cascade standby databases to off-load network processing from the
primary database to a standby database. See Appendix D for more information.

A.7 Managing Data Guard Network Timeout
For any given Oracle Data Guard network connection, there are two processes
communicating with each other. When the network connection is unexpectedly
broken, how these processes react differs greatly. This is a discussion of what
actually occurs when a network connection is broken, and how it affects the Data
Guard environment and configuration. This discussion applies to both physical and
logical standby databases.

See Also: Oracle9i Net Services Administrator’s Guide

Managing Data Guard Network Timeout

Troubleshooting the Standby Database A-13

Data Guard uses a peer-to-peer connection protocol, whereby a primary database
process, if it is the Log Writer (LGWR) or the Archiver (ARCH), establishes a
network connection to the standby database. As a result of the network connection
request, the listener on the standby site creates a separate process on the standby
database - called the Remote File Server (RFS) process. This RFS process uses
network messages from the primary database; it reads from the network and sends
an acknowledgement message back to the primary when it is done processing the
request.

During normal Data Guard operations, when redo data is transmitted from the
primary to the standby, network messages are initiated from the primary database
(the network ‘client’), and always acknowledged by the standby database (the
network ‘server’). In this case, the LGWR and ARCH processes are the network
clients, and the RFS process is the network server.

Consider the simple scenario where the network between the primary and standby
systems is disconnected. This results in what is known as a dead connection. A
dead connection indicates that there is no physical connection, but the connection
appears to still be there to the processes on each system.

When the LGWR process attempts to send a new message to the RFS process over
the dead connection, the LGWR process receives an error from Oracle Net, after a
TCP timeout, indicating that the connection has been broken. In this way, the
LGWR is able to establish that network connectivity has been lost, and take
corrective action. The Data Guard attributes [NO]MAX_FAILURE, [NO]REOPEN and
[NO]NET_TIMEOUT, which are options for the LOG_ARCHIVE_DEST_n parameter,
provide LGWR with the desired flexibility to control the timeout intervals and
number of retries associated with a network connection that is not responding.

In contrast to the LGWR process, the RFS process on the standby database is always
synchronously waiting for a new message to arrive from the primary database. The
RFS process that is doing the network read operation is blocked until some data
arrives to its reading buffer, or until the underlying network software determines
the dead connection is no longer valid.

Oracle Net periodically sends a network probe to verify that a client/server
connection is still active. This ensures that connections are not left open indefinitely
due to an abnormal client termination. If the probe finds a dead connection or a
connection that is no longer in use, it returns an error that causes the RFS process to
exit.

You can use the Oracle Net parameter SQLNET.EXPIRE_TIME to specify the time
interval, expressed in seconds, when to send a probe to verify that the network
session is active. Setting this parameter to a small value allows for more timely

Managing Data Guard Network Timeout

A-14 Oracle Data Guard Concepts and Administration

detections of dead connections. Connections that do not respond to this probe
signal are disconnected. This parameter should be set up for the standby database,
as well as the primary, to prepare it for future switchover scenarios.

 Limitations on using the dead connection detection feature are:

■ Though very small, a probe packet generates additional traffic. However,
compared to the network traffic generated by Data Guard that is based on the
primary database workload, this additional packet traffic is insignificant.

■ Depending on which operating system is in use, the server might need to
perform additional processing to distinguish the connection-probing event from
other events that occur. This can affect network performance.

Once the RFS process receives notification of the dead network connection, it will
terminate itself. However, until such time as the RFS process terminates itself, it will
retain lock information on the archivelog on the standby site, or the standby redo
log, whose redo information was being received from the primary database. During
this interval, no new RFS processes can receive redo information from the primary
database for the same archived redo log (or the standby redo log).

The dead network connection detection timer expiration value can also be
controlled using the TCP/IP keepalive parameter that specifies the number of
seconds to wait before verifying the network connection is valid. Note that the
value of the TCP/IP keepalive parameter defaults on most system to two hours,
which means that in the default case the RFS process will wait for 2 hours before
timing out on a dead network connection.

Therefore, Oracle Corporation recommends setting the Oracle Net
SQLNET.EXPIRE_TIME parameter and the TCP/IP keepalive parameter to 60
seconds. This is a reasonable value for most systems, and setting the parameter to a
small value does not significantly impact production systems.

Once the network problem is resolved, and the primary database processes are
again able to establish network connections to the standby database, a new RFS
process will automatically be spawned on the standby database for each new
network connection. These new RFS processes will resume the reception of redo
data from the primary database.

Manual Recovery B-1

B
Manual Recovery

Although Oracle Corporation recommends that you use the managed recovery
mode for your physical standby databases, you can also use manual recovery
mode. You might choose manual recovery mode for any of the following reasons:

■ Manual recovery mode allows you to have more than 10 standby databases,
which is the limit with managed recovery operations.

■ If you do not want to connect to the primary and standby databases over the
Oracle Net network, then open the database in manual recovery mode.

■ If you are performing managed recovery operations and, for some reason,
managed recovery operations no longer work, you can change to manual
recovery mode.

This appendix explains how to work in manual recovery mode. It includes the
following topics:

■ Preparing a Standby Database for Manual Recovery: Basic Tasks

■ Placing the Standby Database in Manual Recovery Mode

■ Resolving Archive Gaps Manually

■ Renaming Standby Database Files Manually

B.1 Preparing a Standby Database for Manual Recovery: Basic Tasks
Table B–1 summarizes the basic tasks for setting up a standby database in
preparation for manual recovery. This procedure assumes that you plan to connect
to the standby database through Oracle Net. If you do not want to use Oracle Net to
connect to the standby database, skip steps 4 and 5.

Placing the Standby Database in Manual Recovery Mode

B-2 Oracle Data Guard Concepts and Administration

B.2 Placing the Standby Database in Manual Recovery Mode
After you have started and mounted the standby database, you can place it in
manual recovery mode. To keep the standby database current, you must manually
apply archived redo logs from the primary database to the standby database.
Figure B–1 shows a database in manual recovery mode.

Table B–1 Task List: Preparing for Manual Recovery

Step Task Procedure

1 Either make a new backup of the primary
database datafiles or access an old backup.

Section 3.2.2

2 Connect to the primary database and
create the standby control file.

Section 3.2.3

3 Prepare and copy the backup datafiles and
standby control file from the primary site
to the standby site.

Section 3.2.4 and Section 3.2.5

4 If you want to create an Oracle Net
connection to the standby database, create
a service name.

Section 6.4 and LOCATION and
SERVICE in Chapter 12

5 If you want to create an Oracle Net
connection to the standby database,
configure the listener on the standby site
so that it can receive requests for
connections to the standby instance.

Section 6.4

6 Create the standby initialization parameter
file on the standby site and set the
initialization parameters for the standby
database. Optionally, set DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_
CONVERT to automatically rename primary
files in the standby control file.

Section 5.8

7 Start the standby instance and mount the
standby database.

Section 6.2.1

8 While connected to the standby database,
manually change the names of the primary
datafiles and redo logs in the standby
control file for all files not automatically
renamed using DB_FILE_NAME_CONVERT
and LOG_FILE_NAME_CONVERT in step 6.
If step 6 renamed all files, skip this step.

Section B.4

Placing the Standby Database in Manual Recovery Mode

Manual Recovery B-3

Figure B–1 Standby Database in Manual Recovery Mode

This section contains the following topics:

■ Initiating Manual Recovery Mode

■ When Is Manual Recovery Required?

B.2.1 Initiating Manual Recovery Mode
Archived redo logs arrive at the standby site in one of the following ways:

■ The primary database automatically archives the logs (only if you implement a
Data Guard environment).

■ You manually transfer logs using an operating system utility or some other
means.

The standby database assumes that the archived log group is in the location
specified by either of the following parameters in the standby initialization
parameter file:

0001

0002

Online Redo
Logs

San Francisco

Boston

Standby
Database

Archived
Redo Logs

0001

0002

0003

Application

Archived
Redo
Logs

0001

0002

0003

Read/Write
Transactions

Local
Archiving

Copy of
Archived

Logs

Manual
Standby
Recovery

Primary
Database

Placing the Standby Database in Manual Recovery Mode

B-4 Oracle Data Guard Concepts and Administration

■ First valid disk location specified by LOG_ARCHIVE_DEST_n (where n is an
integer from 1 to 10)

■ Location specified by LOG_ARCHIVE_DEST_n

If the archived logs are not in the location specified in the initialization parameter
file, you can specify an alternative location using the FROM option of the RECOVER
statement.

To place the standby database in manual recovery mode
1. Use SQL*Plus to connect to the standby instance and then start the Oracle

instance at the standby database. For example, enter:

STARTUP NOMOUNT pfile=initSTANDBY.ora

2. Mount the standby database:

ALTER DATABASE MOUNT STANDBY DATABASE;

3. If log transport services are not archiving logs automatically to the standby site,
then manually copy the logs to the desired location on the standby site using an
appropriate operating system utility for transferring binary data. For example,
enter:

% cp /oracle/arc_dest/*.arc /standby/arc_dest

4. Issue a RECOVER statement to place the standby database in manual recovery
mode.

For example, execute one of the following statements:

RECOVER STANDBY DATABASE # uses location for logs specified in
 # initialization parameter file
RECOVER FROM '/logs' STANDBY DATABASE # specifies nondefault location

As the Oracle database server generates archived redo logs, you must continually
copy and apply them to the standby database to keep it current.

Note: Specify the FROM 'location' option only if the archived
log group is not in the location specified by the LOG_ARCHIVE_
DEST_n parameter (where n is an integer from 1 to 10) or the LOG_
ARCHIVE_DEST_n parameter in the standby initialization
parameter file.

Resolving Archive Gaps Manually

Manual Recovery B-5

B.2.2 When Is Manual Recovery Required?
Manual recovery mode is required in a non-Data Guard environment. A non-Data
Guard environment is one in which you manually:

■ Transfer the archived redo logs from the primary site to the standby site

■ Apply the archived redo logs to the standby database

Even if you implement a Data Guard environment, you might occasionally choose
to perform manual recovery on the standby database. For example, you might
choose to manually resolve an existing archive gap by using manual recovery
mode.

B.3 Resolving Archive Gaps Manually
An archive gap is a range of archived redo logs created whenever you are unable to
apply the next archived redo log generated by the primary database to the standby
database. This section contains the following topics:

■ What Causes Archive Gaps?

■ Determining If an Archive Gap Exists

■ Manually Transmitting the Logs in the Archive Gap to the Standby Site

■ Manually Applying the Logs in the Archive Gap to the Standby Database

B.3.1 What Causes Archive Gaps?
An archive gap can occur whenever the primary database archives a log, but the log
is not archived to the standby site. Because the standby database requires the
sequential application of redo logs, media recovery stops at the first missing log
encountered.

Archive gaps can occur in the following situations:

■ Creation of the Standby Database

■ Shutdown of the Standby Database When the Primary Database Is Open

Note: Typically, archive gaps are resolved automatically without
the need for manual intervention. See Section 6.4 for more
information about how log apply services automatically recover
from gaps in the redo logs.

Resolving Archive Gaps Manually

B-6 Oracle Data Guard Concepts and Administration

■ Network Failure Preventing the Archiving of Logs to the Standby Site

B.3.1.1 Creation of the Standby Database
One example of an archive gap occurs when you create the standby database from
an old backup. For example, if the standby database is made from a backup that
contains changes through log 100, and the primary database currently contains
changes through log 150, then the standby database requires that you apply logs
101 to 150. Another typical example of an archive gap occurs when you generate the
standby database from a hot backup of an open database.

For example, assume the scenario illustrated in Figure B–2.

Figure B–2 Manual Recovery of Archived Logs in an Archive Gap

5

4

0001

0002

00038

7

6

0001

00025

4

Read/Write
Transactions

Local
Archiving

Archived
Redo Logs

Time Primary Site Standby Site

Preparing standby database . . .

Archived redo log files
generated while
preparing standby
database
(archive gaps)

0001

00025

4
Read/Write

Transactions

Continue
local
archiving

Archived
Redo Logs

Start remote
archiving

t

t+1 0001

0002

00038

7

6

Manual
media
recovery

Manually copy
archive gaps

Archive
Gaps

Archived
Redo Logs

Resolving Archive Gaps Manually

Manual Recovery B-7

The following steps occur:

1. You take a hot backup of database primary.

2. At time t, while you are busy configuring the network files, primary archives
log sequences 4 and 5.

3. At time t + 1, you start the standby instance.

4. primary archives log sequences 6, 7, and 8 to both the primary site and the
standby site.

Archived log sequences 4 and 5 are now part of an archive gap, and these logs must
be applied to the standby database.

B.3.1.2 Shutdown of the Standby Database When the Primary Database Is Open
You might be required to shut down the standby database to resolve maintenance
issues. For example, you must shut down the standby database when you change a
control file parameter, such as MAXDATAFILE, in the primary database.

To avoid creating archive gaps, follow these rules:

■ Start the standby databases and listeners before starting the primary database.

■ Shut down the primary database before shutting down the standby database.

If you violate either of these two rules, then the standby database is down while the
primary database is open and archiving. Consequently, the Oracle database server
can create an archive gap.

B.3.1.3 Network Failure Preventing the Archiving of Logs to the Standby Site
If you maintain a Data Guard environment, and the network goes down, the
primary database might continue to archive to disk but be unable to archive to the
standby site. In this situation, archived logs accumulate as usual on the primary
site, but the standby instance is unaware of them.

To prevent this problem, you can specify that the standby destination have
mandatory status. If the archiving destination is mandatory, then the primary

Note: If the standby site is specified as MANDATORY in one of the
LOG_ARCHIVE_DEST_n parameters of the primary initialization
parameter file, dynamically change it to OPTIONAL before shutting
down the standby database. Otherwise, the primary database
eventually stalls because it cannot archive its online redo logs.

Resolving Archive Gaps Manually

B-8 Oracle Data Guard Concepts and Administration

database will not archive any logs until it is able to archive to the standby site. For
example, you can set the following in the primary initialization parameter file to
make standby1 a mandatory archiving destination:

LOG_ARCHIVE_DEST_2 = 'SERVICE=standby1 MANDATORY'

One consequence of this configuration is that unless the network problem is fixed,
the primary database eventually stalls because it cannot switch into an unarchived
online redo log. This problem is exacerbated if you maintain only two online redo
logs in your primary database.

B.3.2 Determining If an Archive Gap Exists
To determine if there is an archive gap, query the V$ARCHIVED_LOG and V$LOG
views. If an archive gap exists, the output of the query specifies the thread number
and log sequence number of all logs in the archive gap. If there is no archive gap for
a given thread, the query returns no rows.

To identify the logs in the archive gap
Query the V$ARCHIVED_LOG and V$LOG views on the standby database. For
example, the following query shows that there is a difference in the RECD and SENT
sequence numbers for the destination specified by DEST_ID=2, indicating that
there is a gap:

SQL> SELECT MAX(R.SEQUENCE#) LAST_SEQ_RECD, MAX(L.SEQUENCE#) LAST_SEQ_SENT FROM
 2> V$ARCHIVED_LOG R, V$LOG L WHERE
 3> R.DEST_ID=2 AND L.ARCHIVED='YES';

LAST_SEQ_RECD LAST_SEQ_SENT
------------- -------------
 7 10

Use the following query to determine the names of the archived redo logs on the
local system that must be copied to the standby system that has the gap:

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1 AND
 2> SEQUENCE# BETWEEN 7 AND 10;

See Also:

■ Section 5.4.3 for a detailed account of the significance of the
OPTIONAL and MANDATORY attributes for standby archival

■ Section 10.4 for a related scenario

Resolving Archive Gaps Manually

Manual Recovery B-9

NAME

--

/primary/thread1_dest/arcr_1_7.arc
/primary/thread1_dest/arcr_1_8.arc
/primary/thread1_dest/arcr_1_9.arc
/primary/thread1_dest/arcr_1_10.arc

B.3.3 Manually Transmitting the Logs in the Archive Gap to the Standby Site
After you have obtained the log sequence numbers of the logs in the archive gap,
you can obtain their filenames by querying the V$ARCHIVED_LOG view on the
primary site. The archived log filenames on the standby site are generated by the
STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT parameters in the standby
initialization parameter file.

If the standby database is on the same site as the primary database, or the standby
database is on a remote site with a different directory structure than the primary
database, the filenames for the logs on the standby site cannot be the same as the
filenames of the logs archived by the primary database. Before transmitting the
archived logs to the standby site, determine the correct filenames for the logs at the
standby site.

To copy logs in an archive gap to the standby site
1. Review the list of archive gap logs that you obtained earlier. For example,

assume you have the following archive gap:

THREAD# LOW_SEQUENCE# HIGH_SEQUENCE#
---------- ------------- --------------
 1 460 463
 2 202 204
 3 100 100

If a thread appears in the view, then it contains an archive gap. You need to
copy logs from threads 1, 2, and 3.

2. Determine the filenames of the logs in the archive gap that were archived by the
primary database. After connecting to the primary database, issue a SQL query
to obtain the name of a log in each thread. For example, use the following SQL
statement to obtain filenames of logs for thread 1:

SQL> SELECT NAME FROM V$ARCHIVED_LOG WHERE THREAD#=1 AND DEST_ID=1
 2> AND SEQUENCE# > 459 AND SEQUENCE# < 464;

Resolving Archive Gaps Manually

B-10 Oracle Data Guard Concepts and Administration

NAME

/primary/thread1_dest/arcr_1_460.arc
/primary/thread1_dest/arcr_1_461.arc
/primary/thread1_dest/arcr_1_462.arc
/primary/thread1_dest/arcr_1_463.arc
4 rows selected

Perform similar queries for threads 2 and 3.

3. On the standby site, review the settings for STANDBY_ARCHIVE_DEST and
LOG_ARCHIVE_FORMAT in the standby initialization parameter file. For
example, you discover the following:

STANDBY_ARCHIVE_DEST = /standby/arc_dest/
LOG_ARCHIVE_FORMAT = log_%t_%s.arc

These parameter settings determine the filenames of the archived redo logs at
the standby site.

4. On the primary site, copy the archive gap logs from the primary site to the
standby site, renaming them according to values for STANDBY_ARCHIVE_DEST
and LOG_ARCHIVE_FORMAT. For example, enter the following copy commands
to copy the archive gap logs required by thread 1:

% cp /primary/thread1_dest/arcr_1_460.arc /standby/arc_dest/log_1_460.arc
% cp /primary/thread1_dest/arcr_1_461.arc /standby/arc_dest/log_1_461.arc
% cp /primary/thread1_dest/arcr_1_462.arc /standby/arc_dest/log_1_462.arc
% cp /primary/thread1_dest/arcr_1_463.arc /standby/arc_dest/log_1_463.arc

Perform similar copy commands to copy archive gap logs for threads 2 and 3.

5. On the standby site, if the LOG_ARCHIVE_DEST and STANDBY_ARCHIVE_DEST
parameter values are not the same, then copy the archive gap logs from the
STANDBY_ARCHIVE_DEST directory to the LOG_ARCHIVE_DEST directory. If
these parameter values are the same, then you do not need to perform this step.

For example, assume the following standby initialization parameter settings:

STANDBY_ARCHIVE_DEST = /standby/arc_dest/
LOG_ARCHIVE_DEST = /log_dest/

Because the parameter values are different, copy the archived logs to the LOG_
ARCHIVE_DEST location:

% cp /standby/arc_dest/* /log_dest/

Resolving Archive Gaps Manually

Manual Recovery B-11

When you initiate manual recovery, the Oracle database server looks at the
LOG_ARCHIVE_DEST value to determine the location of the logs.

Now that all required logs are in the STANDBY_ARCHIVE_DEST directory, you can
proceed to Section B.3.4 to apply the archive gap logs to the standby database.

B.3.4 Manually Applying the Logs in the Archive Gap to the Standby Database
After you have copied the logs in the archive gap to the standby site, you can apply
them using the RECOVER AUTOMATIC statement.

To apply the archived redo logs in the archive gap
1. Start up and mount the standby database (if it is not already mounted). For

example, enter:

SQL> STARTUP NOMOUNT PFILE=/oracle/admin/pfile/initSTBY.ora
SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

2. Recover the database using the AUTOMATIC option:

SQL> ALTER DATABASE RECOVER AUTOMATIC STANDBY DATABASE;

The AUTOMATIC option automatically generates the name of the next archived
redo log needed to continue the recovery operation.

After recovering the available logs, the Oracle database server prompts for the
name of a log that does not exist. The reason is that the recovery process does
not know about the logs archived to the standby site by the primary database.
For example, you might see:

ORA-00308: cannot open archived log '/oracle/standby/standby_logs/arcr_1_
540.arc'
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

3. Cancel recovery after the Oracle database server has applied the available logs,
by executing the following statement (or typing CTRL+C):

SQL> CANCEL
Media recovery cancelled.

See Also: Section 6.5.3 and V$ARCHIVED_LOG in Chapter 14

Renaming Standby Database Files Manually

B-12 Oracle Data Guard Concepts and Administration

The following error messages are acceptable after recovery cancellation and do
not indicate a problem:

ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error
below
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: ’some_filename’
ORA-01112: media recovery not started

Oracle Corporation recommends automatically applying the logs in the archive gap
using the RECOVER MANAGED STANDBY DATABASE clause of the ALTER
DATABASE statement.

B.4 Renaming Standby Database Files Manually
Sometimes all of the primary datafiles and redo logs cannot be renamed in the
standby control file by conversion parameters. For example, assume that your
database has the following datafiles, which you want to rename as shown in the
following table:

You can set DB_FILE_NAME_CONVERT as follows to convert the filenames for the
first two datafiles:

DB_FILE_NAME_CONVERT = ’/oracle/dbs’, ’/standby’

Nevertheless, this parameter will not capture the renaming of /data/df3.dbf.
You must rename this datafile manually in the standby database control file by
issuing a SQL statement as follows:

SQL> ALTER DATABASE RENAME FILE ’/data/df3.dbf’ to ’/standby/df3.dbf’;

To rename a datafile manually
1. Start up and mount the standby database (if it is not already started) and then

mount the database:

See Also: Section 6.4 for additional information

Primary Filename Standby Filename

/oracle/dbs/df1.dbf /standby/df1.dbf

/oracle/dbs/df2.dbf /standby/df2.dbf

/data/df3.dbf /standby/df3.dbf

Renaming Standby Database Files Manually

Manual Recovery B-13

SQL> STARTUP NOMOUNT PFILE=initSTANDBY1.ora;
SQL> ALTER DATABASE MOUNT STANDBY DATABASE;

2. Issue an ALTER DATABASE statement for each datafile requiring renaming,
where old_name is the old name of the datafile as recorded in the control file
and new_name is the new name of the datafile that will be recorded in the
standby control file:

SQL> ALTER DATABASE RENAME FILE ’old_name’ TO ’new_name’;

When you manually rename all of the datafiles that are not captured by the DB_
FILE_NAME_CONVERT parameter, the standby database control file can correctly
interpret the log stream during the recovery process.

Renaming Standby Database Files Manually

B-14 Oracle Data Guard Concepts and Administration

Standby Database Real Application Clusters Support C-1

C
Standby Database Real Application

Clusters Support

Oracle9i provides the ability to perform true database archiving from a primary
database to a standby database when either or both databases reside in a Real
Application Clusters environment. This chapter summarizes the configuration
requirements and considerations that apply when using Oracle Data Guard with
Oracle Real Application Clusters databases. It contains the following sections:

■ Configuring Standby Databases in a Real Application Clusters Environment

■ Configuration Considerations in Real Application Clusters Environments

■ Troubleshooting

C.1 Configuring Standby Databases in a Real Application Clusters
Environment

You can configure a standby database to protect a primary database using Real
Application Clusters. The following table describes the possible combinations of
instances in the primary and standby databases:

Instance Combinations
Single-Instance Standby
Database

Multi-Instance Standby
Database

Single-Instance Primary
Database

Yes Yes (for read-only queries)

Multi-Instance Primary
Database

Yes Yes

Configuring Standby Databases in a Real Application Clusters Environment

C-2 Oracle Data Guard Concepts and Administration

In each scenario, each instance of the primary database archives its own online redo
logs to the standby database.

C.1.1 Setting Up a Multi-Instance Primary Database with a Single-Instance Standby
Database

Figure C–1 illustrates a Real Application Clusters database with two primary
database instances (a multi-instance primary database) archiving redo logs to a
single-instance standby database.

Figure C–1 Archiving Redo Logs from a Multi-instance Primary Database

In this case, Instance 1 of the primary database transmits logs 1, 2, 3, 4, 5 while
Instance 2 transmits logs 32, 33, 34, 35, 36. If the standby database is in managed
recovery mode, it automatically determines the correct order in which to apply the
archived redo logs.

To set up a primary database in a Real Application Clusters environment
Perform the following steps to set up log transport services on the primary
database:

Standby
Database

Archived Redo Logs

Recover
Standby
Database

Primary Database
Instance 1

Online Redo Logs

1, 3, 5 2, 4, 6

Archived Redo Logs

T2_L1 T2_L3 T2_L5

T2_L2 T2_L4

Archived Redo LogsPrimary Database
Instance 2

Online Redo Logs

32, 34, 36 33, 35, 37

Archived Redo Logs

T1_L32 T1_L34 T1_L36

T1_L33 T1_L35

Archived Redo Logs

T2_L1 T2_L3 T2_L5

T2_L2 T2_L4

Archived Redo Logs

T1_L32 T1_L34 T1_L36

T1_L33 T1_L35

Configuring Standby Databases in a Real Application Clusters Environment

Standby Database Real Application Clusters Support C-3

1. On all instances, designate the ARCH or LGWR process to perform the archival
operation.

2. Designate the standby database as the receiving node. This is accomplished
using the SERVICE attribute of the LOG_ARCHIVE_DEST_n initialization
parameter.

The standby database also applies the archived redo log it receives through
managed recovery to keep itself current with the primary database.
.

To set up a single instance standby database
Perform the following steps to set up log transport services on a single instance
standby database:

1. Create the standby redo logs if LGWR process is used in log transport services.

2. Define the archived log destination to archive locally if LGWR process is used.
This is accomplished using the LOCATION attribute of the LOG_ARCHIVE_
DEST_1 initialization parameter. If ARCH process is used in log transport
services, define STANDBY_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT to
specify the location of archived redo logs.

3. Start the MRP on the standby database.

C.1.2 Setting Up a Multi-Instance Primary Database with a Multi-Instance Standby
Database

This next example shows a configuration where both primary and standby
databases are in a Real Application Clusters environment. This allows you to
separate the log transport services processing from the log apply services
processing on the standby database, thereby improving overall primary and
standby database performance. Figure C–2 illustrates a standby database
configuration in a Real Application Clusters environment.

See Also: Oracle9i Real Application Clusters Setup and Configuration
for information about configuring a database for Real Application
Clusters

Configuring Standby Databases in a Real Application Clusters Environment

C-4 Oracle Data Guard Concepts and Administration

Figure C–2 Standby Database in Real Application Clusters

In Figure C–2, the numbers within circles indicate local connections, and the
numbers within boxes indicate remote connections.

When you use the standby database in a Real Application Clusters environment,
any instance can receive archived logs from the primary database; this is the
receiving instance. However, the archived logs must ultimately reside on disk
devices accessible by the node on which the managed recovery operation is
performed; this is the recovery instance. Transferring the standby database
archived logs from the receiving instance to the recovery instance is achieved using
the cross-instance archival operation, performed on the standby database.

The standby database cross-instance archival operation requires use of standby redo
logs as the temporary repository of primary database archived logs. Using the
standby redo logs not only improves standby database performance and reliability,
but also allows the cross-instance archival operation to be performed. However,

Oracle Net

Standby
Redo
Logs

LGWR

RFS

LGWR

Online
Redo
Logs

RFS

Archived Redo
Log Files

Archived Redo
Log Files

Oracle Net
RFS

Archived Redo
Log Files

ARCn

RFS

ARCn

Primary Instance A Standby Receiving Instance C

Primary Instance B Standby Recovery Instance D

1

1 1

1

2

2

3

Configuring Standby Databases in a Real Application Clusters Environment

Standby Database Real Application Clusters Support C-5

because standby redo logs are required for the cross-instance archival operation, the
primary database must use the log writer process (LGWR) to perform the primary
database archival operation.

When both your primary and standby databases are in a Real Application Clusters
configuration, and the standby database is in managed recovery mode, then a single
instance of the standby database applies all sets of logs transmitted by the primary
instances. In this case, the standby instances that are not applying redo cannot be in
read-only mode while managed recovery is in progress; in most cases, the
nonrecoverable instances should be shut down, although they can also be mounted.

To set up a standby database in a Real Application Clusters environment
Perform the following steps to set up log transport services on the standby
database:

1. Create the standby redo logs. In a Real Application Clusters environment, the
standby redo logs must reside on disk devices shared by all instances, such as
raw devices.

2. On the recovery instance where the managed recovery process (MRP) is to
operate, define the archived log destination to archive locally, because
cross-instance archiving is not necessary. This is accomplished using the
LOCATION attribute of the LOG_ARCHIVE_DEST_1 initialization parameter.

3. On the receiving instance, define the archived log destination to archive to the
node where the MRP is to operate. This is accomplished using the SERVICE
attribute of the LOG_ARCHIVE_DEST_1 initialization parameter.

4. Start the ARCn process on all standby database instances.

5. Start the MRP on the recovery instance.

To set up a primary database in a Real Application Clusters environment
Perform the following steps to set up log transport services on the primary
database:

1. On all instances, designate the LGWR process to perform the archival
operation.

2. Designate the standby database as the receiving node. This is accomplished
using the SERVICE attribute of the LOG_ARCHIVE_DEST_n initialization
parameter.

Ideally, each primary database instance should archive to a corresponding standby
database instance. However, this is not required.

Configuration Considerations in Real Application Clusters Environments

C-6 Oracle Data Guard Concepts and Administration

C.1.3 Setting Up a Cross-Instance Archival Database Environment
It is possible to set up a cross-instance archival database environment. Within a Real
Application Clusters configuration, each instance directs its archived redo logs to a
single instance of the cluster. This instance is called the recovery instance and is
typically the instance where managed recovery is performed. This instance typically
has a tape drive available for RMAN backup and restore support. Example C–1
shows how to set up the LOG_ARCHIVE_DEST_n initialization parameter for
archiving redo logs across instances. Execute this example on all instances except
the recovery instance.

Example C–1 Setting Destinations for Cross-Instance Archiving

SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_1 = ‘LOCATION=archivelog MANDATORY REOPEN=120’;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_1 = enable;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_2 = ‘SERVICE=prmy1 MANDATORY REOPEN=300’;
SQL> ALTER SYSTEM SET LOG_ARCHIVE_DEST_STATE_2 = enable;

Destination 1 is the repository containing the local archived redo logs required for
instance recovery. This is a mandatory destination. Because the expected cause of
failure is lack of adequate disk space, the retry interval is 2 minutes. This should be
adequate to allow the DBA to purge unnecessary archived redo logs. Notification of
destination failure is accomplished by manually searching the primary database
alert log.

Destination 2 is the recovery instance on the primary database where RMAN is
used to back up the archived redo logs from local disk storage to tape. This is a
mandatory destination, with a reconnect threshold of 5 minutes. This is the time
needed to fix any network-related failures. Notification of destination failure is
accomplished by manually searching the primary or standby database alert log.

Cross-instance archiving is available using the ARCn process only. Using the LGWR
process for cross-instance archiving results in the RFS process failing and the
archive log destination being placed in the Error state.

C.2 Configuration Considerations in Real Application Clusters
Environments

This section contains the Data Guard configuration information that is specific to
Real Application Clusters environment. It contains the following topics:

■ Archived Log File Format

■ Archive Destination Quotas

Configuration Considerations in Real Application Clusters Environments

Standby Database Real Application Clusters Support C-7

■ Data Protection Modes

■ Role Transitions

C.2.1 Archived Log File Format
The format for archive log filenames are usually in the form of log_%parameter
where %parameter can be one or more of the following:

For example, LOG_ARCHIVE_FORMAT = "log_%t_%s.arc". The thread
parameters%t or %T are mandatory for Real Application Clusters in order to
uniquely identify the archived redo logs with the LOG_ARCHIVE_FORMAT
parameter.

C.2.2 Archive Destination Quotas
You can specify the amount of physical storage on a disk device to be available for
an archiving destination using the QUOTA_SIZE attribute of the LOG_ARCHIVE_
DEST_n initialization parameter. An archive destination can be designated as being
able to occupy all or some portion of the physical disk represented by the
destination. For example, in a Real Application Clusters environment, a physical
archived redo log disk device can be shared by two or more separate nodes
(through a clustered file system, such as is available with Sun Clusters). As there is
no cross-instance initialization parameter knowledge, none of the Real Application
Clusters nodes is aware that the archived redo log physical disk device is shared
with other instances. This leads to substantial problems when the destination disk
device becomes full; the error is not detected until every instance tries to archive to
the already full device. This seriously affects database availability.

Parameter Description

%T Thread number, left-zero-padded

%t Thread number, not padded

%S Log sequence number, left-zero-padded

%s Log sequence number, not padded

See Also: Section 5.8.4.5 for more information about storage
locations for archived redo logs

Configuration Considerations in Real Application Clusters Environments

C-8 Oracle Data Guard Concepts and Administration

C.2.3 Data Protection Modes
In a Real Application Clusters configuration, any node that loses connectivity with
a standby destination will cause all other members of the cluster to stop sending
data to that destination (this maintains the data integrity of the data that has been
transmitted to that destination and can be recovered).

When the failed standby destination comes back up, Data Guard runs the site in
resynchronization mode until the primary and standby databases are identical (no
gaps remain). Then, the standby destination can participate in the Data Guard
configuration.

The following list describes the effect of the three data protection configurations in
Real Application Clusters environment:

■ Maximum protection configuration

If a lost destination is the last participating standby site, then the instance on the
node that loses connectivity will be shut down. Other nodes in a Real
Application Clusters configuration that still have connectivity to the last
standby site will recover the lost instance and continue sending to their standby
site. Only when every node in a Real Application Clusters configuration loses
connectivity to the last standby site will the configuration, including the
primary database, be shut down.

When a failover operation occurs to a site that is participating in the maximum
protection configuration, all data that was ever committed on the primary
database will be recovered on the standby site.

■ Maximum availability configuration

Losing the last standby destination does not cause the primary database
instance to shut down.

Note: If you are running Real Application Clusters and Data
Guard in maximum protection mode and you expect the network
to be down for an extended period of time, consider changing the
primary database to run in either the maximum availability or the
maximum performance mode until network connectivity is
restored. See Section C.3.2 for information about changing the
primary database temporarily to run in the maximum availability
or maximum performance mode.

Configuration Considerations in Real Application Clusters Environments

Standby Database Real Application Clusters Support C-9

When a failover operation occurs to a site that is participating in the maximum
availability configuration, all data that was ever committed on the primary
database and was successfully sent to the standby database will be recovered on
the standby site.

■ Maximum performance configuration

Losing the last standby destination does not cause the primary database
instance to shut down.

When a failover operation occurs to any standby site, data that was received
from the primary database will be recovered on the standby database up to the
last transactionally consistent point in time. In a single-instance configuration,
this means all data received will be recovered. In a failover situation, it is
possible to lose some transactions from one or more logs that have not yet been
transmitted.

C.2.4 Role Transitions

C.2.4.1 Switchover Operations
For a Real Application Clusters database, only one primary instance and one
standby instance can be active during a switchover operation. Therefore, before a
switchover operation, shut down all but one primary instance and one standby
instance. After the switchover operation completes, restart the primary and standby
instances that were shut down during the switchover operation.

C.2.4.2 Failover Operations
Before performing a failover to a Real Application Clusters standby database, first
shut down all but one standby instance. After the failover operation completes,
restart the instances that were shutdown.

If you issue the SQL statement ALTER DATABASE RECOVER MANAGED STANDBY
DATABASE FINISH SKIP STANDBY LOGFILE to force a standby database into
the primary role, log apply services apply archived redo logs until the first
unarchived redo log is encountered. All archived redo logs beyond this point are
not recovered and all data in them is lost. In a Real Application Clusters
environment, use of the FINISH SKIP STANDBY LOGFILE clause can result in
additional data loss because multiple instances might have dependencies on the
redo logs.

Troubleshooting

C-10 Oracle Data Guard Concepts and Administration

C.3 Troubleshooting
This section provides help troubleshooting problems with Real Application
Clusters. It contains the following sections:

■ Switchover Fails in a Real Application Clusters Configuration

■ Avoiding Downtime in Real Application Clusters During a Network Outage

C.3.1 Switchover Fails in a Real Application Clusters Configuration
When your database is using Real Application Clusters, active instances prevent a
switchover from being performed. When other instances are active, an attempt to
switch over fails with the following error message:

SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY;
ALTER DATABASE COMMIT TO SWITCHOVER TO STANDBY *
ORA-01105: mount is incompatible with mounts by other instances

Action: Query the GV$INSTANCE view as follows to determine which instances are
causing the problem:

SQL> SELECT INSTANCE_NAME, HOST_NAME FROM GV$INSTANCE
 2> WHERE INST_ID <> (SELECT INSTANCE_NUMBER FROM V$INSTANCE);
INSTANCE_NAME HOST_NAME
------------- ---------
INST2 standby2

In the previous example, the identified instance must be manually shut down
before the switchover can proceed. You can connect to the identified instance from
your instance and issue the SHUTDOWN statement remotely, for example:

SQL> CONNECT SYS/CHANGE_ON_INSTALL@standby2 AS SYSDBA
SQL> SHUTDOWN;
SQL> EXIT

C.3.2 Avoiding Downtime in Real Application Clusters During a Network Outage
If you configured Data Guard to support a primary database in a Real Application
Clusters environment and the primary database is running in maximum protection
mode, a network outage between the primary database and all of its physical
standby databases will disable the primary database until the network connection is
restored. The maximum protection mode dictates that if the last participating
physical standby database becomes unavailable, processing halts on the primary
database.

Troubleshooting

Standby Database Real Application Clusters Support C-11

If you expect the network to be down for an extended period of time, consider
changing the primary database to run in either the maximum availability or the
maximum performance mode until network connectivity is restored. If you change
the primary database to maximum availability mode, it is possible for there to be a
lag between the primary and standby databases, but you gain the ability to use the
primary database until the network problem is resolved.

If you choose to change the primary database to the maximum availability mode, it
is important to use the following procedures to prevent damage to your data.

Perform the following steps if the network goes down, and you want to change the
protection mode for the Real Application Clusters configuration:

1. Shut down the physical standby database.

2. Follow the instructions in Section 5.7 (or see Oracle9i Data Guard Broker if you
are using the broker) to change the mode from the maximum protection mode
to either maximum availability or maximum performance mode.

3. Open the Real Application Clusters primary database for general access.

Later, when the network comes back up, perform the following steps to revert to the
maximum protection mode:

1. Shut down the Real Application Clusters primary database, and then mount it
without opening it for general access.

2. Mount the physical standby database.

3. Change mode on the Real Application Clusters primary database from its
current (maximum availability or maximum performance) mode to the
maximum protection mode.

4. Open the Real Application Clusters primary database.

Troubleshooting

C-12 Oracle Data Guard Concepts and Administration

Cascaded Redo Log Destinations D-1

D
Cascaded Redo Log Destinations

To reduce the load on your primary system, you can implement cascaded redo log
destinations, whereby a standby database receives its redo logs from another
standby database, instead of directly from the primary database. You can configure:

■ A physical standby database to retransmit the incoming redo logs it receives
from the primary database to other remote destinations in the same manner as
the primary database, with up to one level of redirection.

■ A logical standby database (because it is open in read/write mode) to send the
redo logs it generates (after filtering and applying the redo data it receives from
the primary database) to its own set of standby (physical or logical) databases.

Figure D–1 shows cascaded redo logs to physical and logical standby databases.

Figure D–1 Cascaded Redo Log Destination Configuration Example

Redo Data

Generated

Retransmitted

Primary
Database

Physical Standby
Database

Redo Data
Oracle

Net

Logical Standby
Database

Physical Standby
Database

Physical Standby
Database

Configuring Cascaded Redo Log Destinations

D-2 Oracle9i Data Guard Concepts and Administration

A standby database can cascade redo data to up to nine destinations. This means
that a Data Guard configuration potentially can contain up to 90 standby databases:
1 primary database with 9 standby databases, each of which in turn cascades redo
data to 9 additional standby databases. However, from a practical perspective, only
standby databases primarily intended to off-load reporting or backup operations
typically would be configured to receive cascaded redo data. Standby databases
that could potentially be involved in role transition operations typically are
configured to receive redo data directly from the primary database and have LOG_
ARCHIVE_DEST_n and LOG_ARCHIVE_DEST_STATE_n parameters defined so that
when a switchover or failover operation occurs, logs continue to be received
directly from the new primary database.

This appendix contains the following sections:

■ Configuring Cascaded Redo Log Destinations

■ Examples of Cascaded Redo Log Destinations

D.1 Configuring Cascaded Redo Log Destinations
The following sections describe how to set up a Data Guard configuration to use
cascaded redo log destinations:

■ Configuring Cascaded Redo Log Destinations for Physical Standby Databases

■ Configuring Cascaded Redo Log Destinations for Logical Standby Databases

D.1.1 Configuring Cascaded Redo Log Destinations for Physical Standby Databases
To enable a physical standby database to send the incoming redo logs to another set
of destinations, you must define the following items:

■ Define the LOG_ARCHIVE_DEST_n initialization parameter on the primary
database to set up a physical standby database that will be the starting point for
a cascade to use the LGWR transport method. Use either SYNC or ASYNC network
protocols depending on your requirements.

■ On the receiving physical standby database, define sufficient standby redo log
files and ensure that archiving is enabled.

At this point, you can begin defining the LOG_ARCHIVE_DEST_n initialization
parameter on the physical standby database that will define the end points of the
cascade. Remember, as part of the original setup of the physical standby database,
you should have defined a local archive destination that will be used for local
archiving when the physical standby database transitions to the primary role. For

Configuring Cascaded Redo Log Destinations

Cascaded Redo Log Destinations D-3

example, you might define the LOG_ARCHIVE_DEST_1 initialization parameter to
be the‘LOCATION=/physical1/arch’ location. When the physical standby
database switches roles, any archived redo logs will be put into that directory with
the same format that you defined with the LOG_ARCHIVE_FORMAT initialization
parameter. This local archiving destination can be the same as the one defined in the
parameter STANDBY_ARCHIVE_DEST, but this is not required.

A side effect of this configuration is that the archive process on the standby
database will now try to send the logs not only to the cascading end points but also
to the other standby databases and the primary database if they are defined and
enabled. This is not a problem, because the receiving database will either reject it if
it is the primary database or a standby database that has already received the same
log successfully. If the destination is another standby database and it has not
received the log successfully, then this acts as an active gap resolution. You can
avoid this by setting the state to DEFER for any destinations not involved in the
cascade. However, you will have to remember to enable them again if you do a
switchover or failover operation.

If you want to have one initialization parameter file to handle both the cascaded
redo log destinations and the original primary and standby destinations, define the
destinations for the primary database and other standby databases as well as the
cascading standby databases. However, the total remote destinations still cannot
exceed 10, including the local archiving destination.

Because it is the archiver process and not the log writer process that (during the
archiving of the standby online redo logs) is sending the redo information to the
cascaded redo log destinations, you are limited to one set of cascaded redo log
destinations per standby database that is connected directly to the primary
database.

D.1.2 Configuring Cascaded Redo Log Destinations for Logical Standby Databases
A logical standby database that receives redo data directly from the primary
database can be configured to cascade the redo data it generates (after it has filtered
and applied the redo data it receives from the primary database) to other standby
databases. Because redo data cascaded from a logical standby database is not
identical to the redo data originally generated by the primary database, it cannot be
applied to any standby database instantiated directly from the primary database.
Instead, any standby databases that receives cascaded redo data from a logical
standby database must be created from a copy of the logical standby database, and
the following will be true:

Examples of Cascaded Redo Log Destinations

D-4 Oracle9i Data Guard Concepts and Administration

■ Physical standby databases created from a logical standby database will be a
block-for-block copy of the logical standby database and a logical copy of the
original primary database.

■ Logical standby databases created from a logical standby database will be
logical copies of the parent logical standby database and might bear only a
partial resemblance to the original primary database. This is because the
original primary database’s data is there but so is anything else stored in the
parent logical standby database as well as any other changes such as different
indexes or materialized views.

For standby databases that receive cascaded redo data from a logical standby
database, you must perform the same setup tasks as for a physical or logical
standby database that receives redo data directly from the primary database. You
can use any transport mode (LGWR or ARCH) and network protocol (SYNC or
ASYNC). If you use the LGWR network protocol, you can optionally use standby
online redo logs on your physical standby databases.

D.2 Examples of Cascaded Redo Log Destinations
The following scenarios demonstrate configuration options and uses for cascaded
redo log destinations.

D.2.1 Scenario 1
You have a primary database in your corporate offices, and you want to create a
standby database in another building on your local area network (LAN). In
addition, you have a legal insurance requirement to keep the redo information and
backup copies off-site at a geographically distant location outside of your LAN but
on your wide area network (WAN).

You could define two destinations on your primary database so that redo logs could
be transmitted to both of these sites, but this would put an extra workload on your
primary database throughput due to the network latency of sending the redo logs
over the WAN.

To solve this problem, you could define a tight connection between your primary
and physical standby databases in your LAN using the LGWR and SYNC network
transports and standby online redo logs. This would protect against losing access to
the primary database and provide an alternate site for production when
maintenance is required on the primary database. The secondary location on the
WAN could be serviced by the physical standby database, ensuring that the redo
information is stored off-site. Nightly backup operations on the production

Examples of Cascaded Redo Log Destinations

Cascaded Redo Log Destinations D-5

database could then be moved to the WAN remote standby database, which
removes the requirement to ship tapes to the off-site storage area.

Finally, in a worst case scenario where you lose access to both the primary database
and the physical standby database on the LAN, you could fail over to the remote
standby database with minimal data loss. If you can gain access to the online redo
log of the last standby database from the original standby database, you could
recover it on the remote standby database, incurring no data loss.

The only time you would incur problems by sending the information over the WAN
is during a switchover or failover operation, when the physical standby database
has transitioned to the primary role. However, this configuration would still meet
your insurance requirements.

D.2.2 Scenario 2
You have a primary database in a remote city, and you would like to have access to
its data locally for reporting purposes. The primary database already has a standby
database set up for failure protection in an off-site location on the LAN. Putting a
destination on the primary database to send the information to your site would
adversely affect the performance of the primary database.

Solving this problem is similar to the solution that is described in scenario 1, except
that you are sending the redo logs to a logical standby database, because you
already have a physical standby database. First, ensure that:

■ The physical standby database is receiving its redo logs from the log writer of
the primary database.

■ Standby redo logs are defined and being used.

If standby redo logs are not defined, you can define them dynamically on the
standby database. The standby database will begin using the standby redo logs
after the next log switch on the primary database. If the LGWR network
transport is not being used, you can dynamically set log transport services on
the primary database, and the primary database will start using the log writer
at the next log switch.

Next, perform the normal setup tasks for a logical standby database. Any of the
steps required to prepare to use a logical standby database must be done at the
primary location as usual. After the logical standby database is up and running,
define your destination parameters on the physical standby database to send the
redo logs over the WAN, where they will be applied to the logical standby database.

Examples of Cascaded Redo Log Destinations

D-6 Oracle9i Data Guard Concepts and Administration

D.2.3 Scenario 3
A primary database located in a manufacturing site already is configured with two
physical standby databases. One standby database is located on the LAN in another
building, and the second standby database is more remotely located on a WAN in
the corporate offices. You cannot use cascading standby databases for the standby
database on the WAN, because there is a requirement to have two standby
databases in no-data-loss mode. Also, the marketing department has requested
access to the manufacturing data for sales predictions. The marketing department
needs access to the data on a daily basis, and they want to combine sales data with
manufacturing data to better understand sales versus the actual manufacturing
times.

One solution would be to allow marketing to access a physical standby database in
the corporate offices using read-only mode. However, putting the standby database
in read-only mode requires stopping managed recovery operations. This means that
the physical standby database can only catch up with the primary database at night,
while it is still receiving data from the second and third shifts at the manufacturing
plant. In addition, the standby database would always be at least 12 hours behind in
applying redo logs. You could add another destination to the primary database to
send the redo logs to a new logical standby database in the corporate offices.
Because the systems used in the corporate office are different for the physical
standby database and the proposed logical standby database, you cannot use the
DEPENDENCY attribute when defining the standby destinations. Because redo logs
need to be transmitted over a WAN, it would degrade performance on the primary
database to send the redo data twice, which has been deemed to be unacceptable.

Cascaded redo log destinations can solve this problem. To set this up, you would
create a logical standby database following the instructions in Chapter 4, but you
would also set up the corporate physical standby database to transmit the redo logs
over the corporate LAN to the new logical standby database. In this way, the
primary database is only sending the data once over the WAN. The logical standby
database could then be modified with new materialized views so that the marketing
group can manage the data more efficiently. Because the logical standby database is
open for read/write operations, the marketing group can add new schemas and
load in sales data without affecting performance on the primary database, or the
viability and current state of the physical standby database.

D.2.4 Scenario 4
You have five Sales offices around the world, each with its own primary database.
You would like to implement a failure protection strategy for all of them, as well as
a way to get timely access to all data with minimal effect on each primary database.

Examples of Cascaded Redo Log Destinations

Cascaded Redo Log Destinations D-7

To solve this problem, you would first implement a no-data-loss environment for
each of the five offices by creating a physical standby database (with LGWR and
SYNC attributes) local to each office. The physical standby databases could be on a
LAN or a WAN. Then, create a logical standby database from each of the five
primary databases and locate the logical standby databases in your corporate office.
However, instead of having log transport services on each of the five primary
databases send the redo logs, you would configure each of the five standby
databases to send the redo logs to its logical standby database over the WAN. At
one logical standby database (or all of them), you would define database links to
each of the other logical standby databases and use them to access all of the sales
data. If you decide that you do not need all of the information from each of the five
primary databases, but only certain tables, you can use the SKIP routines to stop
applying data that you do not need on each of the logical standby databases.

D.2.5 Scenario 5
You have a primary database that is currently protected only by nightly backup
operations. You have been told that you must implement a major failure recovery
strategy immediately. You have another system of the same hardware type
in-house, but it does not have enough power to serve as a standby database for
failover purposes, and it does not have enough disks for the entire database. The
only other system available to you that is large enough to hold the entire database is
too far away to be put on the LAN, and the WAN that connects to it is extremely
slow. The deadline for implementing the strategy is well before any network
upgrades can occur. Adding a destination (on the primary database) to send the
redo logs to the remote location would severely affect performance.

The interim solution to this problem would be to create a physical standby database
on the remote system and create a distribution repository on the local smaller
system. A distribution repository is comprised of only the standby control file and
the standby database online redo logs, not the data files. You would configure the
primary database to send the redo information to the repository locally using the
log writer process (LGWR) in synchronous mode (SYNC). Because the connection is
over the LAN, the effect on performance would be minimal. The repository would
then be configured to send the data onwards over the WAN to the real standby
database.

The risk with this configuration is that while the primary database has transmitted
all of its data to a standby database, it is possible that the repository has not
completed sending the data to the remote standby database at the time of a failure
at the primary database. In this environment, as long as both systems do not fail at

Examples of Cascaded Redo Log Destinations

D-8 Oracle9i Data Guard Concepts and Administration

the same time, the remote standby database should receive all the data sent up to
the last log switch. You would have to send the current online redo log manually.

Once the WAN is upgraded to permit a direct connection to the remote standby
database, you can either redirect the destination to the repository to point to the
remote standby database directly or create a new destination to the remote standby
database and continue transmitting to the repository as an archive log repository.

Sample Disaster Recovery ReadMe File E-1

E
Sample Disaster Recovery ReadMe File

In a multiple standby database configuration, you cannot assume that the database
administrator (DBA) who set up the multiple standby database configuration is
available to decide which standby database to fail over to in the event of a disaster.
Therefore, it is imperative to have a disaster recovery plan at each standby site, as
well as at the primary site. Each member of the disaster recovery team needs to
know about the disaster recovery plan and be aware of the procedures to follow.

Example E–1 shows the kind of information that the person who is making the
decision would need when deciding which standby database should be the target of
the failover operation.

A ReadMe file is created and maintained by the DBA and should describe how to:

■ Log on to the local database server as a DBA

■ Log on to each system where the standby databases are located

There might be firewalls between systems. The ReadMe file should include
instructions for going through the firewalls.

■ Log on to other database servers as a DBA

■ Identify the most up-to-date standby database

■ Perform the standby database failover operation

■ Configure network settings to ensure that client applications access the new
primary database instead of the original primary database

Example E–1 Sample Disaster Recovery ReadMe File

----------------Standby Database Disaster Recovery ReadMe File----------------

Warning:

E-2 Oracle Data Guard Concepts and Administration

**
Perform the steps in this procedure only if you are responsible for failing over
to a standby database after the primary database fails.

If you perform the steps outlined in this file unnecessarily, you might corrupt
the entire database system.
**

Multiple Standby Database Configuration:

No. Location Type IP Address
--- --------------- --------- --------------
 1 San Francisco Primary 128.1.124.25
 2 San Francisco Standby 128.1.124.157
 3 Boston Standby 136.132.1.55
 4 Los Angeles Standby 145.23.82.16
 5 San Francisco Standby 128.1.135.24

You are in system No. 3, which is located in Boston.

Perform the following steps to fail over to the most up-to-date and available
standby database:

1. Log on to the local standby database as a DBA.

 a) Log on with the following user name and password:

 username: Standby3
 password: zkc722Khn

 b) Invoke SQL*Plus as follows:

 % sqlplus

 c) Connect as the DBA as follows:

 CONNECT sys/s23LsdIc AS SYSDBA

2. Connect to as many remote systems as possible. You can connect to a maximum
 of four systems. System 4 does not have a firewall, so you can connect to it
 directly. Systems 1, 2, and 5 share the same firewall host. You need to go
 to the firewall host first and then connect to each system. The IP address
 for the firewall host is 128.1.1.100. Use the following user name and
 password:
 username: Disaster

Sample Disaster Recovery ReadMe File E-3

 password: 82lhsIW32

3. Log on to as many remote systems as possible with the following user names
 and passwords:

 Login information:

 No. Location IP Address username password
 --- --------------- ------------- ---------- ----------
 1 San Francisco 128.1.124.25 Oracle9i sdd290Ec
 2 San Francisco 128.1.124.157 Standby2 ei23nJHb
 3 (L o c a l)
 4 Los Angeles 145.23.82.16 Standby4 23HHoe2a
 5 San Francisco 128.1.135.24 Standby5 snc#$dnc

4. Invoke SQL*Plus on each remote system you are able to log on to as follows:

 % sqlplus

5. Connect to each remote database as follows:

 CONNECT sys/password AS SYSDBA

 The DBA passwords for each location are:

 No. Location Password
 --- --------------- -----------
 1 San Francisco x2dwlsd91
 2 San Francisco a239s1DAq
 3 (L o c a l)
 4 Los Angeles owKL(@as23
 5 San Francisco sad_KS13x

6. If you are able to log on to System 1, invoke SQL*Plus and execute the
 following statements:

 SQL> SHUTDOWN IMMEDIATE;
 SQL> STARTUP PFILE=PRMYinit.ora;

 Note: If you are able to execute the STARTUP statement successfully, the
 primary database has not been damaged. Do not continue with this
 procedure.

7. Execute the following SQL statements on each standby database (including the
 one on this system) that you were able to connect to:

E-4 Oracle Data Guard Concepts and Administration

 SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE CANCEL;
 SQL> SELECT THREAD#, MAX(SEQUENCE#) FROM V$LOG_HISTORY GROUP BY THREAD#;

 Compare the query results of each standby database. Fail over to the
 standby database with the largest sequence number.

8. Fail over to the standby database with the largest sequence number.

 On the standby database with the largest sequence number, invoke SQL*Plus
 and execute the following SQL statements:

 SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
 2> DISCONNECT FROM SESSION;
 SQL> ALTER DATABASE RECOVER MANAGED STANDBY DATABASE FINISH;
 SQL> ALTER DATABASE COMMIT TO SWITCHOVER TO PRIMARY;
 SQL> SHUTDOWN IMMEDIATE;
 SQL> STARTUP PFILE=Failover.ora;

9. Update the other standby databases with the new primary database information
and ensure the log transport and apply services are working correctly.

------------End of Standby Database Disaster Recovery ReadMe File-------------

Glossary-1

Glossary

ARCH

See archiver process (ARCn)

archive gap

A range of archived redo logs created whenever you are unable to apply the next
archived redo log generated by the primary database to the standby database.

archived redo log

A copy of one of the filled members of an online redo log group made when the
database is in ARCHIVELOG mode. As the LGWR process fills each online redo log
with redo records, log transport services copy the log to one or more offline archive
log destinations. This copy is the archived redo log, also known as the offline redo
log.

See also ARCHIVELOG mode, online redo log, and redo log

ARCHIVELOG mode

The mode of the database in which log transport services archive filled online redo
logs to disk. Specify the mode at database creation or by using the SQL ALTER
DATABASE ARCHIVELOG statement. You can enable automatic archiving either
dynamically using the SQL ALTER SYSTEM ARCHIVE LOG START statement or
by setting the initialization parameter LOG_ARCHIVE_START to TRUE.

Running your database in ARCHIVELOG mode has several advantages over
NOARCHIVELOG mode. You can:

■ Back up your database while it is open and being accessed by users

■ Recover your database to any desired point in time

Glossary-2

To protect your database that is in ARCHIVELOG mode in case of failure, back up
your archived logs.

See also archived redo log, NOARCHIVELOG mode, and redo log

archiver process (ARCn)

On the primary database location, the process (or a SQL session performing an
archival operation) that creates a copy of the online redo logs, either locally or
remotely, for standby databases. On the standby database location, the ARCn
process archives the standby redo logs to be applied by the managed recovery
process (MRP).

archiving

The operation in which the ARCn background process copies filled online redo logs
to offline destinations. You must run the primary database in ARCHIVELOG mode to
archive redo logs.

ARCn

See archiver process (ARCn)

availability

The measure of the ability of a system or resource to provide the desired service
when required. Measured in terms of the percentage of time the device is accessible
out of the total time it is needed. Businesses that require uninterrupted computing
services have an availability goal of 100%, or 24x365. The sum of availability and
downtime equals 100%.

See also downtime and switchover

backup control file

A backup of the control file. Make the backup by:

■ Using the Recovery Manager utility (RMAN) backup or copy command.
Never create a backup control file by using operating system commands.

■ Using the SQL statement ALTER DATABASE BACKUP CONTROLFILE TO
'filename'.

Typically, you restore backup control files when all copies of the current control file
are damaged; sometimes you restore them before performing certain types of
point-in-time recovery.

See also control file and current control file

Glossary-3

backup piece

A physical file in a format specific to RMAN. The file belongs to only one backup
set. A backup set usually contains only one backup piece. The only time RMAN
creates more than one backup piece is when you limit the piece size using the
MAXPIECESIZE option of the RMAN ALLOCATE or CONFIGURE command.

See also backup set and Recovery Manager (RMAN)

backup set

An RMAN-specific logical grouping of one or more physical files called backup
pieces. The output of the RMAN BACKUP command is a backup set. Extract the files
in a backup set by using the RMAN RESTORE command. You can multiplex files
into a backup set, that is, intermingle blocks from input files into a single backup
set.

There are two types of backup sets:

■ Datafile backup sets, which are backups of any datafiles or a control file. This
type of backup set is compressed, which means that it only contains datafile
blocks that have been used; unused blocks are omitted.

■ Archive log backup sets, which are backups of archived redo logs.

See also backup piece and Recovery Manager (RMAN)

broker

A distributed management framework that automates and simplifies most of the
operations associated with the creation, control, and monitoring of a Data Guard
configuration. The broker includes two user interfaces: Oracle Data Guard Manager
(a graphical user interface) and the Data Guard command-line interface.

cascading standby database

A standby database that receives its redo logs from another standby database, not
from the original primary database.

child destination

A log transport services archiving destination that is configured to receive redo logs
from the primary database and depends on the successful completion of archival
operations for the parent destination.

See also destination dependency, destinations, and parent destination

Glossary-4

closed backup

A backup of one or more database files taken while the database is closed. Typically,
a closed backup is also a whole database backup (a backup of the control file and all
datafiles that belong to a database). If you closed the database cleanly, then all the
files in the backup are consistent. If you shut down the database using a SHUTDOWN
ABORT statement or the instance terminated abnormally, then the backups are
inconsistent.

See also consistent backup

cold backup

See closed backup

consistent backup

A whole database backup (a backup of the control file and all datafiles that belong
to a database) that you can open with the RESETLOGS option without performing
media recovery. In other words, you do not need to apply redo logs to datafiles in
this backup for it to be consistent. All datafiles in a consistent backup must:

■ Have the same checkpoint system change number (SCN) in their headers,
unless they are datafiles in tablespaces that are read-only or offline normal (in
which case they will have a clean SCN that is earlier than the checkpoint SCN)

■ Contain no changes past the checkpoint SCN

■ Match the datafile checkpoint information stored in the control file

You can only make consistent backups after you have made a clean shutdown of the
database. The database must not be opened until the backup has completed.

See also closed backup

control file

A binary file associated with a database that maintains the physical structure and
timestamps of all files in that database. The Oracle database server updates the
control file continuously during database use and must have it available for writing
whenever the database is mounted or open.

See also backup control file and current control file

cross-instance archival environment

The environment in which each instance in a Real Application Clusters
configuration directs its archived redo logs to a single instance of the cluster. This
single instance is known as the recovery instance.

Glossary-5

See also recovery instance

current control file

The control file on disk for a primary database; it is the most recently modified
control file for the current incarnation of the database. For a control file to be
considered current during recovery, it must not have been restored from backup.

See also backup control file and control file

current online redo log

The online redo log in which the LGWR background process is currently logging
redo records. Those logs to which LGWR is not writing are called inactive.

When LGWR gets to the end of the log, it performs a log switch and begins writing
to a new log. If you run the database in ARCHIVELOG mode, then the ARCn process
or processes copy the redo data into an archived redo log.

See also online redo log and redo log

Data Guard

The management, monitoring, and automation software that works with a
production database and one or more standby databases to protect your data
against errors, failures, and corruptions that might otherwise destroy your
database.

See also primary database and standby database

data loss

Data loss occurs when you fail over to a standby database that has not received all
redo data from the primary database.

datafile

A physical operating system file on disk that was created by the Oracle database
server and contains data structures such as tables and indexes. A datafile can only
belong to one database.

See also tablespace

destination dependency

Configuring log transport services so that archiving redo logs to a specified
destination is dependent upon the success or failure of archiving redo logs to
another destination.

Glossary-6

See also child destination, destinations, and parent destination

destinations

Log transport services allow the primary database to be configured to archive redo
logs to up to 10 local and remote locations called destinations.

See also child destination, destination dependency, and parent destination

downtime

The measure of the inability of a system or resource to provide the desired service
when required. Measured in terms of the percentage or amount of time the device is
not accessible out of the total time it is needed. The sum of availability and
downtime equals 100%.

A period of time for performing routine maintenance tasks, such as hardware and
software upgrades and value-added services is planned downtime. The computing
system is not available for productive operations during such scheduled
maintenance tasks.

See also availability and switchover

failover

An irreversible role transition in which a standby database transitions to the
primary role, and the old primary database is rendered unable to participate in the
configuration. Depending on the protection mode under which the old primary
database was operating before the failover, there might be no or some data loss
during a failover. A failover is typically used only when a primary database
becomes incapacitated (for example, due to a system or software failure), and there
is no possibility of performing a switchover or of successfully repairing the primary
database within a reasonable amount of time.

See also role transition and switchover

FAL client

See fetch archive log (FAL) client

FAL server

See fetch archive log (FAL) server

fetch archive log (FAL)

See fetch archive log (FAL) client and fetch archive log (FAL) server

Glossary-7

fetch archive log (FAL) client

A background Oracle database server process. The initialization parameter for the
FAL client is set on the standby database. The FAL client pulls archived redo logs
from the primary location and initiates and requests the transfer of archived redo
logs automatically when it detects an archive gap on the standby database.

See also fetch archive log (FAL) server

fetch archive log (FAL) server

A background Oracle database server process that runs on the primary or other
standby databases and services the fetch archive log (FAL) requests coming from
the FAL client. For example, servicing a FAL request might include queuing
requests (to send archived redo logs to one or more standby databases) to an Oracle
database server that runs the FAL server. Multiple FAL servers can run on the same
primary database at one time. A separate FAL server is created for each incoming
FAL request. The initialization parameter for the FAL server is set on the standby
database.

See also fetch archive log (FAL) client

full supplemental logging

Ensures supplemental logging is set up correctly by performing log switches and
then invoking the DBMS_LOGMNR_D.BUILD procedure.

See also supplemental logging

hot backup

See open backup

LGWR

See log writer process (LGWR)

listener

An application that receives requests by clients and redirects them to the
appropriate server.

log apply services

The component of the Data Guard environment that is responsible for applying
archived redo logs on the standby database to maintain transactional
synchronization with the primary database.

See also log transport services, role management services, and SQL apply mode

Glossary-8

log switch

The point at which LGWR stops writing to the active redo log and switches to the
next available redo log. LGWR switches when either the active log is filled with
redo records or you force a switch manually.

If you run your database in ARCHIVELOG mode, log transport services archive the
redo data in inactive logs into archived redo logs. When a log switch occurs and
LGWR begins overwriting the old redo data, you are protected against data loss
because the archived redo log contains the old data. If you run in NOARCHIVELOG
mode, log transport services overwrite old redo data at a log switch without
archiving it. Hence, you lose all old redo data.

See also redo log

log transport services

The component of the Data Guard environment that is responsible for the
automated transfer of primary database online redo data. Log transport services
provide for the management of archived redo log permissions, destinations,
transmission, reception, and failure resolution. In a Data Guard environment, the
log transport services component coordinates its activities with the log apply
services component.

See also log apply services, no data loss, and role management services

log writer process (LGWR)

The background process that collects transaction redo and updates the online redo
logs. The log writer process can also create local archived redo logs and transmit
online redo logs to standby databases.

logging

See full supplemental logging and supplemental logging

logical standby database

A standby database that is logically identical to the primary database and can be
used to take over processing if the primary database is taken offline. A logical
standby database is the logical equivalent of the primary database; they share the
same schema definition.

See also physical standby database and standby database

logical standby process (LSP)

The LSP applies archived redo log information to the logical standby database.

Glossary-9

managed recovery mode

An environment in which the primary database automatically archives redo logs to
the standby location, initiated by entering the following SQL statement:

ALTER DATABASE RECOVER MANAGED STANDBY DATABASE;

When a standby database runs in managed recovery mode, it automatically applies
redo logs received from the primary database.

managed recovery process (MRP)

The process that applies archived redo log information to the standby database.

managed standby environment

See standby database environment

manual recovery mode

An environment in which the primary database does not automatically archive redo
logs to the standby location. In this environment, you must manually transfer
archived logs to the standby location and manually apply them by issuing the
following SQL statement:

ALTER DATABASE RECOVER STANDBY DATABASE;

This mode allows you to recover a standby database manually.

maximum availability mode

A log transport services data availability mode that can be set to ensure that redo
logs are available at a standby database before the current database transaction is
committed.

See also no data loss, log transport services, maximum performance mode, and
maximum protection mode

maximum performance mode

A log transport services data availability mode that offers the lowest level of data
protection. In this mode, the archiver process writes redo log data asynchronously
to a standby database with as little effect as possible on the performance of the
primary database. In a failover operation, it is possible to lose data from one or
more logs that have not yet been transmitted. This is the default protection mode.

See also no data loss, log transport services, maximum availability mode, and
maximum protection mode

Glossary-10

maximum protection mode

A log transport services data availability mode that can be set to ensure that redo
logs are available at a standby database before primary database processing can
continue. This mode is not supported on logical standby databases because standby
redo logs are required for this mode.

See also no data loss, log transport services, maximum availability mode, and
maximum performance mode

MRP

See managed recovery process (MRP)

no data loss

A log transport services option that can be configured to ensure that data
modifications made to the primary database are not acknowledged until those data
modifications are also available on (but not necessarily applied to) the standby
database.

See also log transport services, maximum availability mode, and maximum
protection mode

NOARCHIVELOG mode

The mode of the database in which log transport services do not require filled
online redo logs to be archived to disk. Specify the mode at database creation or
change it by using the SQL ALTER DATABASE statement. Oracle Corporation does
not recommend running in NOARCHIVELOG mode because it severely limits the
possibilities for recovery of lost data.

See also ARCHIVELOG mode

node

See site

non-managed recovery mode

See manual recovery mode

offline redo log

See archived redo log

Glossary-11

online redo log

A set of two or more files that records all changes made to datafiles and control
files. Whenever a change is made to the database, the Oracle database server
generates a redo record in the redo buffer. The LGWR process flushes the contents
of the redo buffer into the online redo log.

Every database must contain at least two online redo logs. If you are multiplexing
your online redo log, LGWR concurrently writes the same redo data to multiple
files. The individual files are called members of an online redo log group.

See also archived redo log, current online redo log, redo log, and standby redo log

open backup

A backup of one or more datafiles taken while a database is open. This is also
known as a hot backup.

parent destination

A log transport services archiving destination that has a child destination associated
with it.

See also child destination, destination dependency, and destinations

physical standby database

A standby database that is physically identical to the primary database because
recovery applies changes block-for-block using the physical row ID.

See also logical standby database and standby database

planned downtime

See availability, downtime, and switchover

primary database

In a Data Guard configuration, a production database is referred to as a primary
database. A primary database is used to create a standby database. Every standby
database is associated with one and only one primary database. A single primary
database can, however, support multiple standby databases.

See also standby database

protected mode

See maximum protection mode

Glossary-12

read-only database

A database opened with the SQL statement ALTER DATABASE OPEN READ ONLY.
As their name suggests, read-only databases are for queries only and cannot be
modified. A standby database can be run in read-only mode, which means that it
can be queried while still serving as an up-to-date emergency replacement for the
primary database.

See also read-only mode

read-only mode

A physical standby database mode initiated by issuing the following SQL
statement:

ALTER DATABASE OPEN READ ONLY;

This mode allows you to query the physical standby database, but not to make
changes to it.

See also read-only database

receiving instance

When you use a standby database in a Real Application Clusters configuration, any
instance can receive archived logs from the primary database; this is the receiving
instance.

See also recovery instance

recovery catalog

A set of tables and views used by Recovery Manager (RMAN) to store information
about Oracle databases. RMAN uses this data to manage the backup, restoration,
and recovery of Oracle databases. If you choose not to use a recovery catalog,
RMAN uses the target database control file. You should not store the recovery
catalog in your target database.

See also recovery catalog database and Recovery Manager (RMAN)

recovery catalog database

An Oracle database that contains a recovery catalog schema.

See also recovery catalog

Glossary-13

recovery instance

The node where managed recovery is performed. Within a Real Application
Clusters configuration, each primary instance directs its archived redo logs to this
node of the standby cluster.

See also cross-instance archival environment and receiving instance

Recovery Manager (RMAN)

A utility that backs up, restores, and recovers Oracle databases. You can use it with
or without the central information repository called a recovery catalog. If you do not
use a recovery catalog, RMAN uses the control file of the database to store
information necessary for backup and recovery operations. You can use RMAN in
conjunction with a media manager, which allows you to back up files to tertiary
storage.

See also backup piece, backup set, and recovery catalog

redo log

A file containing redo records. There are three types of redo logs: online redo logs,
standby redo logs, and archived redo logs.

The online redo log is a set of two or more files that records all changes made to
datafiles and control files. The LGWR process records the redo records in the log.
The current online redo log is the one to which LGWR is currently writing.

The standby redo log is an optional location where the standby database can store
the redo data received from the primary database. This redo data can be stored on
the standby location using either standby redo logs or archived redo logs.

The archived redo log, also known as the offline redo log, is a copy of the online redo
log that has been copied to an offline destination. If the database is in ARCHIVELOG
mode, the ARCn process or processes copy each online redo log to one or more
archive log destinations after it is filled.

See also archived redo log, ARCHIVELOG mode, current online redo log, log switch,
online redo log, and standby redo log

reliability

The ability of a computing system or software to operate without failing.

remote file server (RFS)

The remote file server process on the standby location receives archived redo logs
from the primary database.

Glossary-14

RMAN

See Recovery Manager (RMAN)

role management services

The component of the Data Guard environment that is responsible for the changing
of database roles. Database role transitions include switchover and failover if the
primary database is unavailable due to an unplanned shutdown.

See also log apply services and log transport services

role transition

A database can be in one of two mutually exclusive roles: primary or standby. You
can change these roles dynamically as a planned transition (switchover), or you can
change these roles as a result of an unplanned failure (failover).

See also failover and switchover

rolling upgrade

A software installation technique that allows a clustered system to continue to
provide service while the software is being upgraded to the next release. This
process is called a rolling upgrade because each database or system in the cluster is
upgraded and rebooted in turn, until all databases or systems have been upgraded.

site

In a Data Guard configuration, this term is sometimes used to refer to the local or
geographically remote location of a primary or standby database.

In a Data Guard broker configuration, a site is a managed unit of failover.

SQL apply mode

The mode in which log apply services automatically apply archived redo log
information to a logical standby database by transforming transaction information
into SQL statements and then executing the SQL statement to the logical standby
database.

See also log apply services

standby database

An identical copy of a primary database that you can use for disaster protection.
You can update your standby database with archived redo logs from the primary
database to keep it current. Should a disaster destroy or compromise the primary
database, you can fail over to the standby database and make it the new primary

Glossary-15

database. A standby database has its own initialization parameter file, control file,
and datafiles.

See also logical standby database, physical standby database, and primary database

standby database environment

The physical configuration of the primary and standby databases. The environment
depends on many factors, including the:

■ Number of standby databases associated with a primary database

■ Number of host systems used by the databases

■ Directory structures of the databases

■ Network configuration

A configuration in which a primary database automatically archives redo logs to a
standby location is a managed standby environment. If the standby database is in
managed recovery mode, it automatically applies the logs received from the
primary database to the standby database. Note that in a managed standby
environment, a primary database continues to transmit archived redo logs even if
the standby database is not in managed recovery mode.

standby redo log

The standby redo log is an optional set of logs where the standby database can store
the redo data received from the primary database. (Redo data can also be stored on
the standby location using archived redo logs.) Standby redo logs are created using
the ADD STANDBY LOGFILE clause of the SQL ALTER DATABASE statement.
Additional log group members can be added later to provide another level of
reliability against disk failure on the standby location. Standby redo logs are
required if you are using the maximum protection mode. Standby redo logs are not
supported for logical standby databases.

See also redo log

supplemental logging

The ability to log additional information in the redo log stream to enable LogMiner
to group and merge the redo streams related to a row change during log mining,
and also to be able to identify the row using an identification key.

See also full supplemental logging

Glossary-16

switchover

A reversible role transition between the primary database and one of its standby
databases. The primary database and standby database involved in the switchover
operation exchange roles with no loss of application data and no need to restart or
re-create any of the other standby databases in the configuration. You cannot use a
switchover operation to perform a rolling upgrade of Oracle software. However, it
might be possible to use a switchover operation to perform a hardware-based
rolling upgrade.

See also availability, downtime, failover, and role transition

system change number (SCN)

A stamp that defines a committed version of a database at a point in time. The
Oracle database server assigns every committed transaction a unique SCN.

tablespace

One or more logical storage units into which a database is divided. Each tablespace
has one or more physical datafiles exclusively associated with it.

See also datafile

TAF

See transparent application failover (TAF)

target database

In RMAN, the database that you are backing up or restoring.

tempfile

A file that belongs to a temporary tablespace, and is created with the TEMPFILE
option. Temporary tablespaces cannot contain permanent database objects such as
tables, and are typically used for sorting. Because tempfiles cannot contain
permanent objects, RMAN does not back them up.

See also temporary tablespace

temporary tablespace

Tablespace of temporary tables created during the processing of a SQL statement.
This allows you to add tempfile entries in read-only mode for the purpose of
making queries. You can then perform on-disk sorting operations in a read-only
database without affecting dictionary files or generating redo entries.

See also tablespace and tempfile

Glossary-17

transparent application failover (TAF)

The ability of client applications to automatically reconnect to a database and
resume work after a failover occurs.

Glossary-18

Index-1

Index
A
ABORT LOGICAL STANDBY clause

of ALTER DATABASE, 13-16
ACTIVATE STANDBY DATABASE clause

of ALTER DATABASE, 7-26, 10-17, 13-1
ADD STANDBY LOGFILE clause

of ALTER DATABASE, 5-9, 6-7, 7-14, 8-15, 13-2
ADD STANDBY LOGFILE GROUP clause

of ALTER DATABASE, 5-10, 13-2
ADD STANDBY LOGFILE MEMBER clause

of ALTER DATABASE, 5-10, 6-7, 13-3
ADD STANDBY LOGFILE THREAD clause

of ALTER DATABASE, 13-2
ADD STANDBY MEMBER clause

of ALTER DATABASE, 5-10
ADD SUPPLEMENTAL LOG DATA clause

of ALTER DATABASE, 4-9, 4-10, 13-4
ADD TEMPFILE clause

of ALTER TABLESPACE, 4-22, 8-6
adding

datafiles, 6-6, 8-10, 9-14, 9-15
examples, 8-10

indexes on logical standby databases, 1-7, 2-4,
9-4

new or existing standby databases, 1-5
online redo logs, 5-8, 8-14
standby redo logs, 5-9
tablespaces, 8-10
temporary files, 4-22

AFFIRM attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-19, 5-25, 12-2, 12-6, 12-54
ALTER DATABASE RECOVER MANAGED

STANDBY DATABASE
DELAY control option, 5-6

ALTER DATABASE statement, 13-1
ABORT LOGICAL STANDBY clause, 13-16
ACTIVATE STANDBY DATABASE

clause, 7-26, 10-17, 13-1
ADD STANDBY LOGFILE clause, 5-9, 6-7, 7-14,

8-15, 13-2, 13-3
keywords for, 13-2

ADD STANDBY LOGFILE GROUP clause, 5-9,
5-10

ADD STANDBY LOGFILE MEMBER
clause, 5-10, 6-7

keywords for, 13-3
ADD SUPPLEMENTAL LOG DATA

clause, 4-9, 4-10, 13-4
ALTER STANDBY LOGFILE clause, 5-9
ALTER STANDBY LOGFILE GROUP

clause, 5-10
CLEAR UNARCHIVED LOGFILES clause, 8-17
COMMIT TO SWITCHOVER clause, 7-12, 7-14,

7-17, 7-19, 7-20, 10-19, 13-5, 13-16, E-4
in Real Application Clusters, C-10
troubleshooting, A-5, A-7, A-8, A-9

CREATE CONTROLFILE clause, 8-9, 8-16, 8-17
CREATE DATAFILE AS clause, 6-7
CREATE STANDBY CONTROLFILE

clause, 3-4, A-3
REUSE clause, 13-6

DROP LOGFILE clause, 6-7
DROP STANDBY LOGFILE MEMBER

clause, 6-7, 13-7
FORCE LOGGING clause, 2-6, 3-2, 4-2, 10-21,

13-8, 13-9

Index-2

GUARD clause, 4-19, 7-21, 9-3
keywords of, 9-3, 9-4

MOUNT STANDBY DATABASE clause, 3-9,
6-3, 7-12, 8-2, 8-5, 8-14, 10-19, 13-9, B-4

NOFORCE LOGGING clause, 13-8, 13-9
online redo logs and, 7-13
OPEN READ ONLY clause, 8-5, 13-9
OPEN RESETLOGS clause, 4-19, 4-21, 8-17
RECOVER MANAGED STANDBY DATABASE

clause, 3-9, 5-6, 7-14, 8-5, 8-7, 10-9, 10-17,
13-9, B-12, C-9

background process, 6-4, 8-2, 13-10
cancelling, 6-5
cancelling log apply services, 8-5
controlling redo apply operations, 6-5
failover operations, 13-2
foreground session, 6-4, 13-10
gap resolution, 6-15
initiating failover, 7-17
keywords, 13-11
overriding the delay interval, 12-17
skipping standby logfiles, 7-17, 13-2, C-9
switchover scenario, 10-18
syntax, 13-10

REGISTER LOGFILE clause, 7-18, 12-43, 13-13,
A-6

keywords, 13-14
REGISTER LOGICAL LOGFILE clause, 4-22,

10-14
RENAME FILE clause, 4-18, 6-7, B-12, B-13
restrictions, 6-7
SET STANDBY DATABASE clause, 5-26

TO MAXIMIZE AVAILABILITY
clause, 13-14

TO MAXIMIZE PERFORMANCE
clause, 7-10, 13-14

TO MAXIMIZE PROTECTION clause, 13-14
START LOGICAL STANDBY APPLY

clause, 6-9, 7-27, 13-15, A-11
INITIAL keyword, 4-23
NEW PRIMARY keyword, 7-27

STOP LOGICAL STANDBY APPLY clause, 6-9,
7-26, 10-14, 13-16

TEMPFILE clause, 4-22
ALTER SYSTEM statement

ARCHIVE LOG CURRENT clause, 3-10, 4-23,
10-21

SET LOG_ARCHIVE_DEST_STATE_n
clause, 7-19, 7-20, 7-27

SET LOG_ARCHIVE_TRACE clause, 6-25
SET LOG_PARALLELISM clause, 4-3

ALTER TABLESPACE
skipping, 8-11

ALTER TABLESPACE statement, 8-11, 8-13, 9-15,
10-23

ADD TEMPFILE clause, 4-22, 8-6
FORCE LOGGING clause, 8-16
skipping, 9-7
TEMPFILE clause, 4-22

altering
control files, 8-15

alternate archive destinations
setting up initialization parameters for, A-4

ALTERNATE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-9, A-3
LOG_ARCHIVE_DEST_STATE_n initialization

parameter, 5-12
ANALYZER process, 9-10
APPLIED_SCN column

of DBA_LOGSTDBY_PROGRESS view, 10-12
APPLIER process, 9-10
apply delay interval

disabling, 7-25
specifying

for logical standby databases, 9-12
for physical standby databases, 5-6, 13-11

superceding, 5-6
APPLY_SET procedure

of DBMS_LOGSTDBY, 9-3
APPLY_UNSET procedure

of DBMS_LOGSTDBY, 9-3
applying

redo logs on standby database, 1-4, 2-2, 6-1
SQL statements to logical standby

databases, 6-7
AQ_TM_PROCESSES dynamic parameter, A-10
ARCH attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-18, 12-14

Index-3

archive destinations
 See destinations
alternate, A-3

archive gap
defined, 6-11

archive gaps
causes of, B-5
identifying the logs, 6-14, B-8
manually applying redo logs to standby

database, B-11
manually copying the logs in, B-9
preventing, B-7
resolving using Oracle Net Manager, 6-14

ARCHIVE LOG CURRENT clause
of ALTER SYSTEM, 3-10, 4-23, 10-21

archive tracing
standby databases and, 5-33, 6-24

ARCHIVE_LAG_TARGET
initialization parameter, 11-6

archived redo logs
accessing information about, 6-16, 8-21
applying

redo apply technology, 1-4
SQL apply technology, 1-5
to physical and logical standby

databases, 1-3
defined, 5-5
delayed application, 5-6, 9-12, 13-11

cancelling, 9-12
on the standby database, 5-6

destinations, 5-12 to 5-19
disabling, 5-12
displaying with DBA_LOGSTDBY_LOG

view, 10-12
displaying with V$ARCHIVE_DEST

view, 14-12
displaying with V$ARCHIVE_DEST_STATUS

view, 14-15
enabling, 5-12

determining the most recently archived, 5-32
listing, 10-12
managing gaps, 1-8, 6-10, 6-11

 See also gap management
manually transmitting, B-9
progression to the standby site, 11-22

redo data transmitted, 1-4, 6-1
registering, 4-22, 6-13, 7-24, 10-14

during failover, 7-23
partial, 10-15

retrieving missing, 10-14
specifying

dependent destinations, 5-15
location on the standby database, 5-13

standby databases and, 6-15, 6-19
ARCHIVELOG mode

switching from primary role to standby, 7-8
archiver process

 See ARCn process
archiving

automatically, 5-7
cross-instance, C-6
redo logs

setting permissions for, 5-5
specifying failure resolution policies for, 5-16
specifying network transmission modes

for, 5-18
starting, 3-10, 4-23
to failed destinations, 5-16
to standby databases, 5-7

See also archived redo logs
ARCn process

defined, 5-19
setting up cross-instance archival, C-6

ASYNC attribute
initiating network I/O operations, 12-50
LOG_ARCHIVE_DEST_n initialization

parameter, 5-19, 12-48
required for no data loss environments, 5-19

asynchronous network I/O operations, 12-48
asynchronous network transmission method, 5-19
attribute compatibility

LOG_ARCHIVE_DEST_n initialization
parameter, 12-54

automatic detection of missing logs, 1-5, 1-8, 6-10

B
backup operations

after unrecoverable operations, 10-24
configuring on a physical standby database, 1-3

Index-4

datafiles, 10-23
offloading on the standby database, 1-7
primary databases, 1-2, 3-4, 7-18
used by the broker, 1-5

benefits
Data Guard, 1-7
logical standby database, 2-4
physical standby database, 2-2

broker
command-line interface, 1-8
defined, 1-5
graphical user interface, 1-8

BUILD procedure
of DBMS_LOGSTDBY, 4-14, 9-3

BUILDER process, 9-10

C
CANCEL IMMEDIATE option

of managed recovery operations, 13-11
CANCEL NOWAIT option

of managed recovery operations, 13-11
CANCEL option

managed recovery and, 8-2
of managed recovery operations, 13-11

cancelling
log apply services, 8-5
managed recovery, 13-10

cascaded redo log destinations
defined, D-1
for logical standby databases, D-3
for physical standby databases, D-1, D-2
materialized view on logical standby

databases, D-6
scenario, D-4 to D-8

changing
attributes for LOG_ARCHIVE_DEST_n

initialization parameter, 12-2
logical standby database name, 4-19, 4-20

checklist
tasks for creating logical standby

databases, 4-11
tasks for creating physical standby

databases, 3-2
CJQ0 process, A-10

CLEAR UNARCHIVED LOGFILES clause
of ALTER DATABASE, 8-9, 8-17

closed backup operations
creating a logical standby database, 4-13

command-line interface
broker, 1-8

COMMIT TO SWITCHOVER clause
of ALTER DATABASE, 7-12, 7-14, 7-17, 7-19,

7-20, 10-19, 13-5, 13-16, E-4
in Real Application Clusters, C-10
troubleshooting, A-5, A-7, A-8, A-9

COMMIT TO SWITCHOVER TO PRIMARY clause
of ALTER DATABASE, 7-20

communication
between databases in a Data Guard

configuration, 1-1
COMPATIBLE

initialization parameter, 11-7
configuration options

of online redo logs, 5-4
of standby environment, 5-26
physical standby databases

location and directory structure, 2-7
standby databases

cross-instance archival, 5-17, C-6
delayed standby, 5-6, 10-16

typical, 1-3
configurations

creating, 1-5
overview, 1-1

configuring
backup operations on standby databases, 1-3
cascaded redo log destinations, D-2
cascaded redo log destinations standby databases

logical, D-3
disaster recovery, 1-3
initialization parameters

for alternate archive destinations, A-4
for logical standby database, 4-15
for physical standby database, 3-5
in anticipation of a failover, 7-10
in anticipation of a switchover, 7-6
to create a standby database with a time

lag, 10-16
to set up log transport services, 5-12

Index-5

listener for logical standby databases, 4-17
listener for physical standby databases, 3-8
no data loss, 1-5
online redo logs, 5-4
physical standby databases, 2-7
reporting operations on a logical standby

database, 1-3
standby databases, 5-26
standby databases at remote locations, 1-3
standby redo log groups, 5-8
standby redo logs, 5-9

constraints
handled on a logical standby database, 9-6

control file
creating for standby databases, 3-4

control files
altering, 8-15
copying, 3-5, 4-15
effect on physical standby databases, 8-15
switchover and, 7-12

CONTROL_FILE_RECORD_KEEP_TIME
initialization parameter, 5-5, 11-8

CONTROL_FILES
initialization parameter, 11-9

COORDINATOR process, 9-10
LSP background process, 4-26, 5-22, 9-10

copy a new tablespace to a remote standby
database, 8-11

copying
control files, 3-5, 4-15
tablespace to a remote standby location, 8-11

CREATE CONTROLFILE clause
of ALTER DATABASE, 8-9, 8-16, 8-17

CREATE CONTROLFILE statement
effect on physical standby databases, 8-15

CREATE DATABASE statement
FORCE LOGGING clause, 10-21

CREATE DATAFILE AS clause
of ALTER DATABASE, 6-7

CREATE STANDBY CONTROLFILE clause
of ALTER DATABASE, 3-4, 13-6, A-3

CREATE TABLESPACE statement, 4-10
skipping, 9-7

CREATE TEMPORARY TABLESPACE
statement, 8-6

TEMPFILE clause, 8-6
creating

back up files for the primary databases, 8-8
database link, 7-21, 7-26
indexes on logical standby databases, 9-4
logical standby databases, 4-1 to 4-23

from a closed backup, 4-11
roles required, 4-1

physical standby databases, 3-1 to 3-10
standby redo log groups, 5-9
standby redo log members, 5-9, 5-10
temporary files, 4-22

for read-only physical standby
databases, 8-6

temporary tablespaces
for read-only physical standby

databases, 8-6
traditional initialization parameter file

for logical standby database, 4-15
for physical standby database, 3-5

cross-instance archival, 5-17
in Real Application Clusters configurations, C-4
setting destinations, C-6
standby redo logs and, C-4
using the log writer process, C-5
V$ARCHIVE_DEST_STATUS view, 14-15
where the MRP operates, C-5

D
data availability

balancing against system performance
requirements, 1-8

data corruption
safeguarding against, 1-7

Data Guard
protection modes

overview, 1-6
services

defined, 1-4
log transport services, 1-4
role management services, 1-5

Data Guard broker
defined, 1-5

Data Guard configuration

Index-6

archiving to standby destination using the
logwriter process, 5-23

archiving to standby destinations using the
archive process, 5-22

defined, 1-1
for gap detection and resolution, 5-24
log transport services and, 5-2
scenarios, 10-1 to 10-24

Data Guard Manager, 1-8
data loss

due to failover, 1-5, 7-8
minimizing, 7-15
switchover and, 7-4

data protection
balancing against performance, 1-7
benefits, 1-7
flexibility, 1-7
provided by Data Guard, 1-1

data protection modes
affect on network timeouts, 12-34
enforced by log transport services, 1-4
ensuring no data loss, 2-3
influence on network reconnection, 12-34
maximum availability mode, 1-6, 13-14
maximum performance mode, 1-6, 13-14
maximum protection mode, 1-6, 13-14
overview, 1-6
providing no data loss, 5-3
setting up synchronous and asynchronous

network I/O operations, 12-48
database link

creating, 7-21, 7-26
database roles

LOGSTDBY_ADMINISTRATOR, 4-1, 9-2, 9-9
primary, 1-2, 7-1
role management services, 1-5
role reversals, 1-5
SELECT_CATALOG_ROLE, 4-1, 9-2
standby, 1-2, 4-1, 7-1
transition, 7-1

database roles, irreversible transitions, 1-5
database schema

physical standby databases, 1-2
databases

cascading standby databases See cascaded redo

log destinations
failover operations and, 7-8
logical standby See logical standby databases
physical standby See physical standby databases
primary See primary database
role transition and, 7-1
surviving disasters and data corruptions, 1-1

datafiles
adding to primary database, 6-6, 8-10
deleting from the primary database, 8-12
renaming on the primary database, 8-13
renaming standby manually, B-12

datatypes
filtering out unsupported from SQL apply

operations, 9-7
on logical standby databases

supported, 4-3
unsupported, 4-4

DB_FILE_NAME_CONVERT
initialization parameter, 3-6, 11-10

DB_FILES
initialization parameter, 11-11

DB_NAME initialization parameter, 3-6, 11-12
DBA_DATA_FILES view, 8-17
DBA_LOGSTDBY_EVENTS view, 9-10, 14-4, A-11
DBA_LOGSTDBY_LOG view, 6-20, 14-5

listing archived redo logs, 10-12
DBA_LOGSTDBY_NOT_UNIQUE view, 4-7, 14-6
DBA_LOGSTDBY_PARAMETERS view, 14-7
DBA_LOGSTDBY_PROGRESS view, 6-21, 9-12,

14-8
log apply service and LSP progress, 6-10
querying SCN information and, 10-12

DBA_LOGSTDBY_SKIP view, 14-9
DBA_LOGSTDBY_SKIP_TRANSACTION

view, 14-10
DBA_LOGSTDBY_UNSUPPORTED view, 4-4,

14-11
DBA_TABLESPACES view, 8-17
DBMS_LOGMNR_D package

SET_TABLESPACE procedure, 4-10
DBMS_LOGSTDBY package

APPLY_SET procedure, 9-3
APPLY_UNSET procedure, 9-3
BUILD procedure, 4-14, 9-3

Index-7

GUARD_BYPASS_OFF procedure, 9-3
GUARD_BYPASS_ON procedure, 7-21, 7-26,

9-3
INSTANTIATE_TABLE procedure, 9-3, 9-9
SKIP procedure, 9-3, 9-7, A-11
SKIP_ERROR procedure, 9-3
SKIP_TRANSACTION procedure, 9-3, A-11
UNSKIP procedure, 9-3, 9-9
UNSKIP_ERROR procedure, 9-3
UNSKIP_TRANSACTION procedure, 9-3
using to manage SQL apply operations, 9-2

DBMS_LOGSTDBY.APPLY_SET procedure
delay applying archived redo log s, 5-6

DBMS_LOGSTDBY.GUARD_BYPASS_OFF
procedure, 9-16

DBMS_LOGSTDBY.GUARD_BYPASS_ON
procedure, 9-16

DBMS_LOGSTDBY.INSTANTIATE_TABLE
procedure, 9-9

DBMS_MVIEW.REFRESH routine
refreshing materialized views, 4-6, 9-16

DBNEWID (nid) utility, 4-19, 4-20
DBSNMP process, A-10
DDL transactions

filtering from SQL apply operations, 9-7
dead connection

troubleshooting, A-12, A-13
DEFAULT DELAY option

of managed recovery operations, 13-11
DEFER attribute

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 5-12, 10-20

DELAY attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-6, 10-16, 12-16
DELAY option

of ALTER DATABASE RECOVER MANAGED
STANDBY DATABASE, 5-6, 13-11

delaying
application of archived redo logs, 5-6, 9-12,

13-11
deleting

datafiles, 8-12
redo logs, 8-14

DEPENDENCY attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-15, 12-19

dependent destinations, 5-15
destinations

archived redo logs, 5-12 to 5-19
cross-instance archival, 5-17, 14-15, C-4
dependent, 5-15
setting cross-instance archival operations, C-6
sharing among multiple standby

databases, 5-15
detecting

missing archived redo logs, 1-5, 1-8, 6-10
network disconnects between primary and

standby databases, 12-34
determining

the applied redo log data, 9-12
the highest applicable (newest) SCN, 10-11

direct path load operations
physical standby databases and, 8-16

directory structure
of physical standby databases, 2-7

disabling
a destination for archived redo logs, 5-12
apply delay interval, 7-25
archived redo log operations, 7-19

disaster recovery
benefits, 1-7
configuring, 1-3
provided by Data Guard, 1-1
provided by standby databases, 1-3
ReadMe file at standby site, 10-4

DISCONNECT FROM SESSION, 8-2
DISCONNECT option

of managed recovery operations, 13-11
DML transactions

filtering from SQL apply operations, 9-7
DROP STANDBY LOGFILE clause

of ALTER DATABASE, 6-7
DROP STANDBY LOGFILE MEMBER clause

of ALTER DATABASE, 6-7, 13-7
dropping

obsolete tempfiles, 4-21
online redo logs, 8-14
tablespaces from primary database, 8-12
temporary files, 4-22

Index-8

dynamic parameters
AQ_TM_PROCESSES, A-10
JOB_QUEUE_PROCESSES, A-10

dynamic performance views, 8-18, 14-3
See also views

E
ENABLE attribute

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 5-12, 10-20

enabling
destinations for archived redo logs, 5-12
supplemental logging, 4-9

events
recording, 9-10
viewing on logical standby databases, 9-10

EXPIRE option
of managed recovery operations, 13-11

EXPIRE_TIME parameter
recommended values, 12-34
setting on the standby database, 12-33

F
failover, 1-5

data loss due to, 7-8
defined, 1-5, 7-8
determining the target logical standby

database, 10-10
initialization parameters and, 7-10
logical standby databases and, 7-22, 10-1, 10-10
minimal data loss and, 10-13
minimal performance impact, 10-13
performing a, 7-15
physical standby databases and, 7-14, 10-1, 13-2
preparing for, 7-10
re-creating after, 7-15
scenario involving a time lag, 10-17
transferring redo data prior to, 7-10
with maximum performance mode, 7-10
with maximum protection mode, 7-10

failure resolution policies
log transport services, 5-16

FAL client, 5-20, 11-13

FAL server, 5-20, 11-13, 11-14
FAL_CLIENT initialization parameter, 6-13, 11-13
FAL_SERVER initialization parameter, 6-13, 11-14
false network failure detection, 12-34, 12-35
fetch archive log client

 See FAL client
fetch archive log server

 See FAL server, 5-20
FINISH option

of managed recovery operations, 13-11
fixed views

See views
FORCE LOGGING clause

of ALTER DATABASE, 2-6, 3-2, 4-2, 10-21, 13-8,
13-9

of ALTER TABLESPACE, 8-16
of CREATE DATABASE, 10-21

G
gap management, 6-10

automatic detection and resolution, 1-5, 1-8
defined, 6-11
detecting missing logs, 1-8
registering archived redo logs, 4-22, 6-13, 7-24

during failover, 7-23
 See also archived redo logs

global dynamic performance views, 8-18, 14-3
See also views

GUARD clause
of ALTER DATABASE, 4-19, 7-21, 9-3

GUARD_BYPASS_OFF procedure
of DBMS_LOGSTDBY, 9-3

GUARD_BYPASS_ON procedure
of DBMS_LOGSTDBY, 7-21, 7-26, 9-3

GV$ fixed views, 8-18, 14-3
See also views

GV$INSTANCE view, C-10

H
high availability

benefits, 1-7
provided by Data Guard, 1-1

Index-9

I
initialization parameter file

creating from server parameter
for logical standby database, 4-15

creating from server parameter file
for physical standby database, 3-5

modifying
for logical standby database, 4-15
for physical standby database, 3-5

setting up for log transport services, 5-26
setting up primary for logical standby

database, 4-3
initialization parameters

ARCHIVE_LAG_TARGET, 11-6
COMPATIBLE, 11-7
CONTROL_FILE_RECORD_KEEP_TIME, 5-5,

11-8
CONTROL_FILES, 11-9
DB_FILE_NAME_CONVERT, 11-10
DB_FILES, 11-11
DB_NAME, 11-12
FAL_CLIENT, 6-13, 11-13
FAL_SERVER, 6-13, 11-14
LOCK_NAME_SPACE, 11-15, A-7
LOG_ARCHIVE_DEST, 5-13, 5-14, B-10
LOG_ARCHIVE_DEST_1, 5-13
LOG_ARCHIVE_DEST_n, 5-11, 11-16,

12-1 to 12-54, B-4
LOG_ARCHIVE_DEST_STATE_n, 5-12, 11-17,

12-2
LOG_ARCHIVE_FORMAT, 5-13, 11-18
LOG_ARCHIVE_MAX_PROCESSES, 11-19
LOG_ARCHIVE_MIN_SUCCEED_

DEST, 11-20, 12-26
LOG_ARCHIVE_START, 11-21
LOG_ARCHIVE_TRACE, 5-33, 6-24, 6-25, 11-22
LOG_FILE_NAME_CONVERT, 11-23
LOG_PARALLELISM, 11-24
modifying for logical standby databases, 4-15
modifying for physical standby databases, 3-5
PARALLEL_MAX_SERVERS, 4-16, 9-19, 11-25
preparing for a failover, 7-10
preparing for switchover and, 7-6
REMOTE_ARCHIVE_ENABLE, 5-5, 11-26

SHARED_POOL_SIZE, 11-27
SORT_AREA_SIZE, 8-7, 11-28
STANDBY_ARCHIVE_DEST, 5-13, 11-29
STANDBY_FILE_MANAGEMENT, 6-6, 11-30
USER_DUMP_DEST, 6-24, 11-31

initiating
network I/O operations, 12-50

INSTANTIATE_TABLE procedure
of DBMS_LOGSTDBY, 9-3, 9-9

irreversible role transitions, 1-5

J
JOB_QUEUE_PROCESSES dynamic

parameter, A-10

K
keepalive parameters

recommended values, 12-34
setting on the standby database, 12-33

L
LGWR attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-18, 12-14

LGWR process
 See log writer process

listener.ora file
configuring, 3-8, 4-17
log transport services tuning and, A-12
troubleshooting, 10-20, A-2, A-12

listing
archived redo logs, 10-12

LOCATION attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-23, A-4
LOCK_NAME_SPACE initialization

parameter, 11-15, A-7
log apply services, 6-1 to 6-10

canceling on physical standby databases, 13-10
defined, 1-4, 6-1
for logical standby databases, 1-4, 6-1, 9-2
for physical standby database, 6-1

Index-10

initiating, 6-4
introduction, 1-4, 6-1
logical standby databases, 6-7
LSP process example, 5-22
RFS and LSP processes communication, 5-24,

6-8
viewing activity for logical standby

databases, 9-10
viewing progress in DBA_LOGSTDBY_

PROGRESS view, 6-10
viewing SQL apply operations, 9-10

log switching, 4-9
log transport services, 5-1 to 5-33

archive destinations
specifying quotas for, C-7

archived redo logs
confirming successful disk write, 5-19
specifying filenames and locations on the

standby database, 5-13
defined, 1-4, 5-1
failure resolution policies, 5-16
generating archived redo log filenames, 5-13
interfaces to, 5-26
introduction to maximum availability

mode, 1-6
introduction to maximum performance

mode, 1-6
introduction to maximum protection mode, 1-6
monitoring, 5-31
network transmission modes, 5-18

ASYNC, 5-19
SYNC, 5-18

network tuning, A-11
permission for archiving online redo logs

and, 5-5
providing no data loss, 5-18
re-archiving to failed destinations, 5-16
reception of redo data and, 5-2, 5-17
redo log destinations and, 5-11
setting up the primary database initialization

parameters, 5-12
specifying alternate destinations for

archiving, A-3
specifying storage locations for archived redo

logs, 5-13

specifying storage locations for standby redo
logs, 5-13

transmission of redo data and, 5-2, 5-17
log writer process, 5-19

acknowledging network timeouts, 12-33
detecting a network disconnect, 12-34
reconnecting after a network timeout, 12-34
re-connecting to the standby database, 12-34
setting up synchronous or asynchronous network

I/O operation, 12-48
LOG_ARCHIVE_DEST_1 initialization

parameter, 5-13
LOG_ARCHIVE_DEST_n initialization

parameter, 5-11, 5-13, 11-16, 12-1 to 12-54, B-4
AFFIRM attribute, 5-19, 5-25, 12-2, 12-6, 12-54
ALTERNATE attribute, 12-9, A-3
ARCH attribute, 5-18, 12-14
ASYNC attribute, 5-19, 12-48
attribute compatibility, 12-54
changing attributes for with SQL, 12-2
DELAY attribute, 5-6, 10-16, 12-16
DEPENDENCY attribute, 5-15, 12-19
LGWR attribute, 5-18, 12-14
LOCATION attribute, 12-23, A-4
MANDATORY attribute, 12-26
MAX_FAILURE attribute, 12-29, 12-47
NET_TIMEOUT attribute, 12-32
NOAFFIRM attribute, 5-19, 12-6
NOALTERNATE attribute, 12-9, A-4
NODELAY attribute, 5-6, 12-16
NODEPENDENCY attribute, 12-19
NOMAX_FAILURE attribute, 12-29, 12-47
NONET_TIMEOUT attribute, 12-32
NOQUOTA_SIZE attribute, 12-36
NOQUOTA_USED attribute, 12-39
NOREGISTER attribute, 12-42
NOREOPEN attribute, 5-16, 12-46
NOTEMPLATE attribute, 12-51
OPTIONAL attribute, 12-26
QUOTA_SIZE attribute, 12-36, C-7
QUOTA_USED attribute, 12-39
REGISTER attribute, 12-42
REGISTER=location_format attribute, 12-44
REOPEN attribute, 5-16, 12-46
SERVICE attribute, 12-23

Index-11

specifying destinations using, 12-2
SYNC attribute, 5-18, 5-19, 12-48
TEMPLATE attribute, 12-51

LOG_ARCHIVE_DEST_STATE_n initialization
parameter, 5-12, 11-17, 12-2

ALTERNATE attribute, 5-12
DEFER attribute, 5-12, 10-20
ENABLE attribute, 5-12, 10-20

LOG_ARCHIVE_FORMAT initialization
parameter, 5-13, 5-14, 11-18

LOG_ARCHIVE_MAX_PROCESSES
initialization parameter, 11-19

LOG_ARCHIVE_MIN_SUCCEED_DEST
initialization parameter, 11-20, 12-26

LOG_ARCHIVE_START initialization
parameter, 11-21

LOG_ARCHIVE_TRACE initialization
parameter, 5-33, 6-24, 6-25, 11-22

LOG_FILE_NAME_CONVERT initialization
parameter, 11-23

LOG_PARALLELISM initialization
parameter, 11-24

logical corruptions
resolving, 1-7

logical standby databases
access for queries and reporting purposes, 1-3
adding

datafiles, 9-14
indexes, 1-7, 2-4, 9-4
tables, 9-8, 9-9

applying redo logs, 6-7
DBMS_LOGSTDBY.APPLY_SET

procedure, 5-6
delaying, 5-6, 9-12
ensuring redo logs are applied, 6-9
SQL apply technology, 1-5, 6-1
supported datatypes, 4-3
unsupported objects, 4-4

background processes, 4-26, 5-22, 9-10
benefits, 1-7, 2-4
cascading, D-1, D-3
controlling user access to database tables, 9-3
creating, 1-5, 4-1 to 4-23

checklist of tasks, 4-11
configuring a listener, 4-17

database roles required for, 4-1
from a closed backup, 4-13
modifying initialization parameters for, 4-16
traditional initialization parameter file, 4-15

DDL statements automatically skipped, 4-5
defined, 1-2
enabling

LOGSTDBY_ADMINSTRATOR role, 4-1
SELECT_CATALOG_ROLE role, 4-1

executing SQL statements on, 1-2
failover operations, 7-22, 10-1

scenario, 10-17
target of, 10-10

logical standby process (LSP) and, 4-26, 5-22,
5-24, 6-8, 9-10

managing, 9-1 to 9-19
manual recovery mode, B-4
materialized views

creating on, 1-7, 2-4, D-4, D-6
refreshing on, 4-6, 9-16

monitoring, 14-1
parallel execution processes, 9-19
read-only operations, 1-7
remote file server (RFS) and, 6-8
renaming datafiles and, B-12
role transitions, 7-19
scenarios

failover, 10-17
recovery, 10-21

skipping
SQL statements, 9-7
tables, 9-7

SQL apply technology, 1-5, 6-2
supported datatypes, 4-3
switchover operations, 7-19, 10-1
tables in the SYS and SYSTEM schemas, 4-10
tuning system performance, 9-17
uniquely identifying tables, 4-7
unsupported

datatypes, 4-4
sequences, 4-4
tables, 4-4

viewing events, 9-10
logical standby process (LSP), 6-8

communication with RFS process, 5-24, 6-8

Index-12

COORDINATOR process, 4-26, 5-22, 9-10
information in DBA_LOGSTDBY_PROGRESS

view, 6-10
LOGSTDBY_ADMINISTRATOR role

enabling, 4-1
required for DBMS_LOGSTDBY.INSTANTIATE_

TABLE procedure, 9-9

M
managed recovery operations, 2-2

cancelling, 13-10
definition, 2-2
in foreground session, 6-4
managed recovery process (MRP) and, 6-2
modifying, 13-10
monitoring, 6-5
options

CANCEL, 13-11
CANCEL IMMEDIATE, 13-11
CANCEL NOWAIT, 13-11
DEFAULT DELAY, 13-11
DELAY, 13-11
DISCONNECT, 13-11
EXPIRE, 13-11
FINISH, 13-11
NEXT, 13-11
NO EXPIRE, 13-12
NO TIMEOUT, 13-12
NODELAY, 10-18, 13-11
NOPARALLEL, 13-12
PARALLEL, 6-16, 13-12
THROUGH ALL ARCHIVELOG, 13-13
THROUGH...SEQUENCE, 13-12
THROUGH...SWITCHOVER, 13-13
TIMEOUT, 13-13

starting, 3-9, 6-4, 13-10
managed recovery process (MRP), 5-22

cross-instance archival, C-5
See also managed recovery operations

managing
with the broker, 1-5

MANDATORY attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-14, 12-26

manual recovery mode
initiating, B-3
preparing for, B-1
when is it required, B-5

materialized views
creating on logical standby databases, 1-7, 2-4,

D-6
on cascaded redo log destinations, D-4
refreshing on logical standby databases, 4-6,

9-16
MAX_FAILURE attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-29, 12-47

maximum availability mode
for Real Application Clusters, C-8
influence on network reconnection, 12-34
introduction, 1-6
providing no data loss, 5-3

maximum performance mode, 7-10
for Real Application Clusters, C-9
influence on network reconnection, 12-34
introduction, 1-6

maximum protection mode
for Real Application Clusters, C-8
influence on network reconnection, 12-34
introduction, 1-6
providing no data loss, 5-3
standby databases and, 7-10

missing log sequence
 See also gap management
detecting, 1-8

modifying
a logical standby database, 9-4
initialization parameters for logical standby

databases, 4-16
initialization parameters for physical standby

databases, 3-5
managed recovery operations, 13-10

monitoring
log apply services, 6-5
log transport services, 5-31
standby databases, 8-8

MOUNT STANDBY DATABASE clause
of ALTER DATABASE, 3-9, 6-3, 7-12, 8-2, 8-5,

8-14, 10-19, 13-9, B-4

Index-13

MRP
See managed recovery operations

multiple standby databases
specifying dependent destinations and, 5-16

N
NET_TIMEOUT attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-32

network I/O operations
acknowledging, 12-33
coordinating timeout parameter values, 12-34
detecting a disconnect, 12-34
false failures, 12-34, 12-35
influence of data protection modes, 12-34
initiating, 12-50
network timers

EXPIRE_TIME parameter, 12-33
NET_TIMEOUT attribute, 12-32
setting comparably on primary and standby

databases, 12-34
TCP/IP keepalive parameter, 12-34

setting up synchronous or asynchronous, 12-48
transmission method, 5-19
troubleshooting, A-12
tuning

log transport services, A-11
NEWEST_SCN column

of DBA_LOGSTDBY_PROGRESS view, 10-12
NEXT option

of managed recovery operations, 13-11
no data loss

benefits, 1-7
data protection modes overview, 1-6
ensuring, 1-5, 2-3
environments, 5-18
guaranteeing, 1-5
provided by maximum availability mode, 1-6,

5-3
provided by maximum protection mode, 1-6,

5-3
requires synchronous network transmission

method, 5-19
NO EXPIRE option

of managed recovery operations, 13-12
NO TIMEOUT option

of managed recovery operations, 13-12
NOAFFIRM attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-6

NOALTERNATE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-9, A-4
NODELAY attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-6, 12-16

NODELAY option
of managed recovery operations, 10-18, 13-11

NODEPENDENCY attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-19
NOFORCE LOGGING clause

of ALTER DATABASE, 13-8, 13-9
NOMAX_FAILURE attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-29, 12-47

NONET_TIMEOUT attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-32
NOPARALLEL option

of managed recovery operations, 13-12
NOQUOTA_SIZE attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-36

NOQUOTA_USED attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-39
NOREGISTER attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-42

NOREOPEN attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-16, 12-46
NOTEMPLATE attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-51

Index-14

O
on-disk database structures

physical standby databases, 1-2
online redo logs

adding, 8-14
ALTER DATABASE statement and, 7-13
configuration considerations for, 5-4
dropping, 8-14
manually adding to physical standby

database, 7-13
OPEN READ ONLY clause

of ALTER DATABASE, 8-5, 13-9
OPEN RESETLOGS clause

of ALTER DATABASE, 4-19, 4-21, 8-17
operational requirements, 2-5
OPTIONAL attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 5-14, 12-26

Oracle Net
communication between databases in a Data

Guard configuration, 1-1
recommended parameter settings, 12-34
setting the EXPIRE_TIME parameter, 12-33

Oracle Net Manager
configuring the listener, 6-14
creating a network service name, 6-14

P
parallel execution processes

adjusting for logical standby databases, 9-19
PARALLEL option

of managed recovery operations, 6-16, 13-12
parallel recovery

on physical standby databases, 6-16
PARALLEL_MAX_SERVERS

initialization parameter, 4-16, 9-19, 11-25
partial archived redo logs

registering, 7-24, 10-15
performance

balancing against data availability, 1-8
balancing against data protection, 1-7

permission
log transport services and, 5-5

physical standby databases
altering

control files, 8-15
redo log files, 8-14

applying redo logs, 6-1
archiver (ARCn) process and, 6-2
cascading, D-1
delaying, 5-6, 13-11
redo apply technology, 1-4
starting, 6-4

background processes, 5-22
benefits, 2-2
configuration options, 2-7

delayed standby, 5-6
creating, 1-5, 3-1 to 3-10

checklist of tasks, 3-2
configuring a listener, 3-8
directory structure, 2-7, 2-9
initialization parameters for, 3-5
temporary tablespace, 8-6
traditional initialization parameter file, 3-5

defined, 1-2
direct path load operations, 8-16
failover, 10-1

checking for updates, 7-11
preparing for, 7-10

managed recovery operations, 2-2
cancelling, 13-10
modifying, 13-10
starting, 13-10

managed recovery process (MRP) and, 5-22, 6-2
manual recovery mode

procedures, B-4
renaming datafiles, B-12

monitoring, 6-5, 8-8, 14-1
online backup operations and, 2-3
read-only operations, 2-2, 8-3
remote file server (RFS) and, 6-2
reverting back to primary database, A-6
role transition and, 7-11
starting

database instance, 6-3
log apply services, 6-4
managed recovery operations, 13-10

support for DDL, 2-3

Index-15

support for DML, 2-3
switchover, 7-11, 10-1

adding online redo logs prior to, 7-13
preparing for, 7-6

PREPARER process, 9-10
primary database

backup operations and, 4-13, 7-18, 8-8
configuring

for cross-instance archival operations, C-5
on Real Application Clusters, 1-2
single-instance, 1-2

datafiles
adding, 6-6, 8-10
renaming, 8-12

defined, 1-2
failover and, 7-8
gap resolution, 1-8
gathering redo log archival information, 5-31
initialization parameters

and logical standby database, 4-3
and physical standby database, 3-5

log transport services on, 1-4
network connections

avoiding network hangs, 12-32
detecting disconnections, 12-34
handling network timeouts, 12-33
influence of data protection modes on

network reconnection, 12-34
terminating, 12-33

preparing for logical standby database
creation, 4-1

preparing for physical standby database
creation, 3-1

Real Application Clusters and
setting up, C-2, C-5

reducing workload on, 1-7
setting archive tracing, 5-33
switchover, 7-4

initiating, 7-12
tablespaces

adding, 8-10
dropping, 8-12

primary role, 1-2
processes

archiver (ARCn), 5-19

CJQ0, A-10
DBSNMP, A-10
log writer (LGWR), 5-19
QMN0, A-10
See also logical standby process (LSP)
See also managed recovery process (MRP)

production database
 See primary database

protection modes
 See data protection modes

Q
QMN0 process, A-10
queries

improved performance, 1-7
offloading on the standby database, 1-7

QUOTA_SIZE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-36, C-7
QUOTA_USED attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-39

R
READER process, 9-10
read-only operations, 1-4

definition, 2-2
logical standby databases, 1-7
physical standby databases and, 8-3

Real Application Clusters, 5-17, C-3
cross-instance archival, C-4
instance recovery, C-6
performing switchover and, 7-7, 7-10, C-9
primary databases and, 1-2, C-2, C-5
setting

cross-instance archiving, C-6
maximum data availability, C-8
maximum data performance mode, C-9
maximum data protection, C-8

skipping standby logfiles, C-9
standby databases and, 1-2, C-1, C-5
standby redo logs and, 5-8, C-4

reception

Index-16

of redo data, 5-2
reconnecting

network connection
when in maximum availability mode, 12-34
when in maximum performance mode, 12-34
when in maximum protection mode, 12-34

recording logical standby database events, 9-10
RECOVER MANAGED STANDBY DATABASE

clause
of ALTER DATABASE, 3-9, 5-6, 6-4, 7-14, 8-5,

8-7, 10-9, 10-17, 13-2, 13-9, 13-11, B-12, C-9
background process, 6-4, 8-2, 13-10
CANCEL IMMEDIATE option, 13-11
CANCEL NOWAIT option, 13-11
CANCEL option, 13-11
cancelling, 6-5
cancelling log apply services, 8-5
controlling redo apply operations, 6-5
DEFAULT DELAY option, 13-11
DELAY option, 13-11
DISCONNECT option, 13-11
EXPIRE option, 13-11
FINISH option, 13-11
foreground session, 6-4, 13-10
gap resolution, 6-15
initiating failover, 7-17
NEXT option, 13-11
NO EXPIRE option, 13-12
NO TIMEOUT option, 13-12
NODELAY option, 13-11
NOPARALLEL option, 13-12
overriding the delay interval, 12-17
PARALLEL option, 13-12
skipping standby logfiles, 7-17, 13-2, C-9
switchover scenario, 10-18
syntax, 13-10
THROUGH ALL ARCHIVELOG

option, 13-13
THROUGH...SEQUENCE option, 13-12
THROUGH...SWITCHOVER option, 13-13
TIMEOUT option, 13-13

recovering
after a NOLOGGING clause is specified, 10-21
from errors, 9-13

re-creating

a table on a logical standby database, 9-8
redo apply technology, 1-4
redo data

applying
through redo apply technology, 1-4
through SQL apply technology, 1-5

archived on the standby system, 1-4, 6-1
transmitting, 1-2, 1-4
validated, 1-7

redo logs
adding, 8-14
applying to standby database, 1-2, 6-1 to 6-27
archive gap managing, 6-11
deleting, 8-14
logging supplemental information, 4-8, 4-9
receiving and storing on standby databases See

log transport services
setting permission to archive, 5-5
transmitting See log transport services
update standby database tables, 1-7
when applied to logical standby database, 6-9

refreshing materialized views, 9-16
REGISTER attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-42

REGISTER LOGFILE clause
of ALTER DATABASE, 7-18, 12-43, 13-13, A-6

REGISTER LOGICAL LOGFILE clause, 10-15
of ALTER DATABASE, 4-22, 6-13, 7-23, 7-24,

10-14
REGISTER=location_format attribute

LOG_ARCHIVE_DEST_n initialization
parameter, 12-44

registering
archived redo logs, 4-22, 6-13, 7-24, 10-14

during failover, 7-23
partial archived redo logs, 10-15

RELY constraint
creating, 4-8

remote file server process (RFS)
communicating with LSP process, 5-24, 6-8
defined, 5-7, 5-20
log writer process and, 5-18, 5-23
sample configuration, 5-22
standby redo logs reused by, 5-8

Index-17

trace file, 5-8
REMOTE_ARCHIVE_ENABLE initialization

parameter, 5-5, 11-26
RENAME FILE clause

of ALTER DATABASE, 4-18, 6-7, B-12, B-13
renaming

datafiles
manually, B-12
on the primary database, 8-13
on the standby database, B-12

REOPEN attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-16, 12-46
reporting operations

configuring, 1-3
offloading on the standby database, 1-7
performing on a logical standby database, 1-3

resolving
logical corruptions, 1-7

retrieving
missing archived redo logs, 1-5, 1-8, 6-10, 10-14

RFS
 See remote file server process (RFS)

role management, 1-5, 7-1
role transitions, 7-1

choosing a type of, 7-2
logical standby database and, 7-19
physical standby databases and, 7-11
reversals, 1-5, 7-1

roles
LOGSTDBY_ADMINSTRATOR, 4-1
SELECT_CATALOG_ROLE, 4-1

rolling upgrade
during switchover, 7-8

S
scenarios

cascaded redo log destinations, D-4 to D-8
choosing best standby database for role

transition, 10-1
failing over with a time lag, 10-17
recovering

a logical standby database, 10-21
after NOLOGGING is specified, 10-21

from a network failure, 10-20
time lag in redo logs, 10-16

schemas
data manipulation on logical standby

databases, 1-7
identical to primary database, 1-2

SCN
determine the highest applicable

(newest), 10-11
SELECT_CATALOG_ROLE role

enabling, 4-1
sequences

unsupported on logical standby databases, 4-4
server parameter file

modifying
for logical standby database, 4-15
for physical standby database, 3-5

setting up
for log transport services, 5-26
primary for logical standby databases, 4-3

SERVICE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-23
SET LOG_ARCHIVE_DEST_STATE_n clause

of ALTER SYSTEM, 7-19, 7-20, 7-27
SET LOG_ARCHIVE_TRACE clause

of ALTER SYSTEM, 6-25
SET LOG_PARALLELISM clause

of ALTER SYSTEM, 4-3
SET STANDBY DATABASE clause

of ALTER DATABASE, 5-26, 7-10, 13-14
SET_TABLESPACE procedure

of DBMS_LOGMNR_D, 4-10
setting

network timers on primary and standby
databases, 12-34

Oracle Net EXPIRE_TIME network
timers, 12-34

TCP/IP network timers, 12-34
SHARED_POOL_SIZE

initialization parameter, 11-27
SKIP procedure

of DBMS_LOGSTDBY, 9-3, 9-7, A-11
SKIP_ERROR procedure

of DBMS_LOGSTDBY, 9-3

Index-18

SKIP_TRANSACTION procedure
of DBMS_LOGSTDBY, 9-3, A-11

skipping
ALTER TABLESPACE, 9-7
standby logfiles, 10-17, 13-2, C-9

SORT_AREA_SIZE initialization parameter, 8-7,
11-28

SQL apply operations, 1-5
ANALYZER process, 9-10
APPLIER process, 9-10
applying redo data to logical standby

databases, 9-2
BUILDER process, 9-10
COORDINATOR process, 9-10
DBMS_LOGSTDBY PL/SQL package and, 9-2
definition, 6-2
PREPARER process, 9-10
READER process, 9-10
uniquely identifying table rows, 4-7
viewing activity with V$LOGSTDBY view, 9-10

SQL statements, 13-1
executing on logical standby databases, 1-2, 1-5
skipping on logical standby databases, 4-5, 9-7
switchover and, 7-12

standby databases
applying redo logs on, 1-4, 1-7, 6-1
cascading, D-1
configuring, 1-1

a single log file destination, 5-15
cross-instance archival, 5-17, 14-15, C-4, C-6
delayed standby, 10-16
mandatory destinations, 5-14
maximum number of, 2-1
network connections, 12-33
on Real Application Clusters, 1-2, C-1, C-5
on remote locations, 1-3
optional destinations, 5-14
single-instance, 1-2

creating, 1-2, 3-1, 4-1
with a time lag, 5-6, 10-17

defined, 2-1
failover to, 7-8

re-creating after, 7-15
log apply services on, 6-1
operational requirements, 2-5

renaming datafiles and, B-12
resynchronizing with the primary database, 1-8
setting TCP/IP keepalive parameters, 12-33
skipping logfiles, 10-17
See also logical standby databases
See also physical standby databases

standby redo logs
creating, 5-9

log groups and members, 5-8, 5-9
redo log members, 5-10

cross-instance archival and, C-4
Real Application Clusters and, 5-8, C-4
specifying storage locations for, 5-13

standby role, 1-2
STANDBY_ARCHIVE_DEST initialization

parameter, 5-13, 11-29
STANDBY_FILE_MANAGEMENT initialization

parameter, 6-6, 11-30
START LOGICAL STANDBY APPLY clause

of ALTER DATABASE, 4-23, 6-9, 7-27, 13-15,
A-11

starting
managed recovery, 13-10
physical standby instances, 6-3

STOP LOGICAL STANDBY APPLY clause
of ALTER DATABASE, 6-9, 7-26, 10-14, 13-16

stopping
managed recovery operations, 13-10

superceding
apply delay interval, 5-6

supplemental logging
adding data to redo logs, 4-8, 4-9
creating a unique key, 4-7
enabling, 13-4
log switching and, 4-9
on primary database, 4-8

SUPPLEMENTAL_LOG_DATA_PK column
of V$DATABASE, 4-9

SUPPLEMENTAL_LOG_DATA_UI column
of V$DATABASE, 4-9

switchover, 1-5, 7-4
control files and, 7-12
defined, 1-5
initialization parameters and, 7-6
initiating on the primary database, 7-12

Index-19

logical standby databases and, 7-19, 10-1
no data loss and, 7-4
performing a rolling upgrade and, 7-8
physical standby databases and, 7-7, 7-11, 7-13,

10-1
preparing for, 7-6
processes that prevent, A-10

CJQ0, A-10
DBSNMP, A-10
QMN0, A-10

redo logs and, 7-13
rolling upgrade and, 7-8
SQL statements and, 7-12
standby databases not involved in, 7-14
typical use for, 7-4
using Real Application Clusters and, 7-7, 7-10,

C-9
V$DATABASE view and, 7-11, 7-13
verifying, 7-13

SWITCHOVER_STATUS column
of V$DATABASE view, 7-12, 7-13, A-6

SYNC attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 5-18, 5-19, 12-48
required for no data loss environments, 5-19

SYS schema
tables used by logical standby databases, 4-10

system resources
efficient utilization of, 1-7

SYSTEM schema
tables used by logical standby databases, 4-10

T
tables

logical standby databases
adding on, 9-8
identifying rows in, 4-7
re-creating tables on, 9-8
skipping on, 9-7
unsupported on, 4-4

tablespaces
adding

a new datafile, 9-15
to primary database, 8-10

creating and associating temporary files, 8-6
dropping from primary database, 8-12
managing, 4-10
sorting without, 8-7

TCP/IP network interconnect
expired network timers, 12-33
recommended parameter settings, 12-34
setting the keepalive parameter, 12-33

TEMPFILE clause
of ALTER DATABASE, 4-22
of ALTER TABLESPACE, 4-22
of CREATE TEMPORARY TABLESPACE, 8-6

TEMPLATE attribute
LOG_ARCHIVE_DEST_n initialization

parameter, 12-51
tempfiles

See temporary files
temporary files

adding, 4-22, 8-6
creating, 4-22, 8-7
dropping, 4-22
dropping obsolete, 4-21

temporary tablespaces
adding tempfile entries, 8-6
creating, 8-6

terminating
network connection, 12-32

THROUGH ALL ARCHIVELOG option
of managed recovery operations, 13-13

THROUGH...SEQUENCE option
of managed recovery operations, 13-12

THROUGH...SWITCHOVER option
of managed recovery operations, 13-13

time lag
in standby database, 5-6, 10-17, 12-16

TIMEOUT option
of managed recovery operations, 13-13

tnsnames.ora file
log transport services tuning and, A-12
troubleshooting, 10-20, A-2, A-8, A-12

trace files
levels of tracing data, 6-25
location of, 6-24
RFS process, 5-8
setting, 6-24

Index-20

transactionally consistent read-only access, 1-4
triggers

handled on a logical standby database, 9-6
troubleshooting

apply operations, A-10
dead network connections, A-12, A-13
listener.ora file, 10-20, A-2, A-12
tnsnames.ora file, 10-20, A-2, A-8, A-12

tuning
logical standby databases, 9-17

U
unrecoverable operations, 10-22

backing up after, 10-24
UNSKIP procedure

of DBMS_LOGSTDBY, 9-3, 9-9
UNSKIP_ERROR procedure

of DBMS_LOGSTDBY, 9-3
UNSKIP_TRANSACTION procedure

of DBMS_LOGSTDBY, 9-3
user errors

safeguarding against, 1-7
USER_DUMP_DEST initialization parameter, 6-24,

11-31

V
V$ARCHIVE_DEST view, 5-32, 10-20, 14-12, A-2
V$ARCHIVE_DEST_STATUS view, 5-32, 6-5, 6-16,

14-15
cross-instance archival column, 14-15

V$ARCHIVE_GAP view, 14-17
V$ARCHIVED_LOG view, 5-13, 5-32, 6-16, 14-18,

A-6, B-8
determining the most recently archived redo

log, 5-32
V$DATABASE view, 14-20

SUPPLEMENTAL_LOG_DATA_PK
column, 4-9

SUPPLEMENTAL_LOG_DATA_UI
column, 4-9

switchover and, 7-11, 7-13
SWITCHOVER_STATUS column and, 7-12,

7-13, A-6

V$DATAFILE view, 3-3, 4-12, 10-22, 10-24, 14-24
V$DATAGUARD_STATUS view, 6-17, 14-26
V$LOG view, 5-31, 14-28
V$LOG_HISTORY view, 6-17, 8-21, 14-30
V$LOGFILE view, 14-29
V$LOGSTDBY view, 6-9, 9-10, 14-31

viewing SQL apply operations, 9-10
V$LOGSTDBY_STATS view, 9-11, 14-32
V$MANAGED_STANDBY view, 6-5, 6-15, 14-33
V$PX_SESSION view, 14-31
V$RECOVER_FILE view, 8-17
V$SESSION view, 14-31, A-5, A-9
V$STANDBY_LOG view, 14-35
V$TEMPFILE view, 4-21

temporary files
querying, 4-22

V$THREAD view, 8-16
validating

redo data, 1-7
views, 8-18, 14-1

DBA_LOGSTDBY_EVENTS, 9-10, 14-4, A-11
DBA_LOGSTDBY_LOG, 6-20, 10-12, 14-5
DBA_LOGSTDBY_NOT_UNIQUE, 4-7, 14-6
DBA_LOGSTDBY_PARAMETERS, 14-7
DBA_LOGSTDBY_PROGRESS, 6-10, 6-21, 9-12,

14-8
DBA_LOGSTDBY_SKIP, 14-9
DBA_LOGSTDBY_SKIP_

TRANSACTION, 14-10
DBA_LOGSTDBY_UNSUPPORTED, 4-4, 14-11
DBA_TABLESPACES, 8-17
GV$INSTANCE, C-10
V$ARCHIVE_DEST, 5-32, 10-20, 14-12, A-2
V$ARCHIVE_DEST_STATUS, 5-32, 6-5, 6-16,

14-15
V$ARCHIVE_GAP, 14-17
V$ARCHIVED_LOG, 5-13, 5-32, 6-16, 14-18, B-8
V$DATABASE, 14-20
V$DATAFILE, 3-3, 4-12, 10-22, 10-24, 14-24
V$DATAGUARD_STATUS, 6-17, 14-26
V$LOG, 5-31, 14-28
V$LOG_HISTORY, 6-17, 8-21, 14-30
V$LOGFILE, 14-29
V$LOGSTDBY, 6-9, 9-10, 14-31
V$LOGSTDBY_STATS, 9-11, 14-32

Index-21

V$MANAGED_STANDBY, 6-5, 6-15, 14-33
V$PX_SESSION, 14-31
V$RECOVER_FILE, 8-17
V$SESSION, 14-31, A-5, A-9
V$STANDBY_LOG, 14-35
V$TEMPFILE, 4-21
V$THREAD, 8-16

Index-22

	Contents
	List of Examples
	List of Figures
	List of Tables
	Send Us Your Comments
	Preface
	Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	What’s New in Data Guard?
	Oracle9i Release 2 (9.2) New Features in Data Guard
	Oracle9i Release 1 (9.0.1) New Features in Data Guard

	Part I� Concepts and Administration
	1 Introduction to Oracle Data Guard
	1.1� Data Guard Configurations
	1.1.1� Primary Database
	1.1.2� Standby Databases
	1.1.3� Configuration Example

	1.2� Data Guard Services
	1.2.1� Log Transport Services
	1.2.2� Log Apply Services
	1.2.3� Role Management Services

	1.3� Data Guard Broker
	1.4� Data Guard Protection Modes
	1.5� Summary of Data Guard Benefits

	2 Getting Started with Data Guard
	2.1� Choosing a Standby Database Type
	2.1.1� Physical Standby Databases
	2.1.2� Logical Standby Databases

	2.2� Choosing a Data Guard User Interface
	2.3� Data Guard Operational Prerequisites
	2.4� Standby Database Directory Structure Considerations

	3 Creating a Physical Standby Database
	3.1� Preparing the Primary Database for Standby Database Creation
	3.1.1� Enable Forced Logging
	3.1.2� Enable Archiving and Define a Local Archiving Destination

	3.2� Creating a Physical Standby Database
	3.2.1� Identify the Primary Database Datafiles
	3.2.2� Make a Copy of the Primary Database
	3.2.3� Create a Control File for the Standby Database
	3.2.4� Prepare the Initialization Parameter File to be Copied to the Standby Database
	3.2.5� Copy Files from the Primary System to the Standby System
	3.2.6� Set Initialization Parameters on a Physical Standby Database
	3.2.7� Create a Windows Service
	3.2.8� Configure Listeners for the Primary and Standby Databases
	3.2.9� Enable Dead Connection Detection on the Standby System
	3.2.10� Create Oracle Net Service Names
	3.2.11� Create a Server Parameter File for the Standby Database
	3.2.12� Start the Physical Standby Database
	3.2.13� Initiate Log Apply Services
	3.2.14� Enable Archiving to the Physical Standby Database

	3.3� Verifying the Physical Standby Database

	4 Creating a Logical Standby Database
	4.1� Preparing the Primary Database for Standby Database Creation
	4.1.1� Enable Forced Logging
	4.1.2� Enable Archiving and Define a Local Archiving Destination
	4.1.3� Verify the LOG_PARALLELISM Initialization Parameter
	4.1.4� Determine Support for Datatypes or Tables
	4.1.5� Ensure That Table Rows in the Primary Database Can Be Uniquely Identified
	4.1.6� Ensure That Supplemental Logging Is Enabled
	4.1.7� Create an Alternate Tablespace

	4.2� Creating a Logical Standby Database
	4.2.1� Identify the Primary Database Datafiles and Log Files
	4.2.2� Make a Copy of the Primary Database
	4.2.3� Prepare the Initialization Parameter File to Be Copied to the Standby System
	4.2.4� Copy Files from the Primary Database Location to the Standby Location
	4.2.5� Set Initialization Parameters on the Logical Standby Database
	4.2.6� Create a Windows Service
	4.2.7� Configure the Listener for Both the Primary and Standby Databases
	4.2.8� Enable Dead Connection Detection on the Standby System
	4.2.9� Create Oracle Net Service Names
	4.2.10� Start and Mount the Logical Standby Database
	4.2.11� Rename the Datafiles on the Logical Standby Database
	4.2.12� Rename Online Redo Logs on the Logical Standby Database
	4.2.13� Turn On the Database Guard
	4.2.14� Reset the Database Name of the Logical Standby Database
	4.2.15� Change the Database Name in the Parameter File
	4.2.16� Create a New Temporary File for the Logical Standby Database
	4.2.17� Register the Archived Redo Log and Start SQL Apply Operations
	4.2.18� Enable Archiving to the Logical Standby Database

	4.3� Verify the Logical Standby Database

	5 Log Transport Services
	5.1� Introduction to Log Transport Services
	5.2� Data Protection Modes
	5.3� Transporting Redo Data
	5.3.1� Online Redo Logs
	5.3.2� Archived Redo Logs
	5.3.2.1� Setting Permission to Archive Redo Logs
	5.3.2.2� Controlling the Reuse of Archived Redo Logs
	5.3.2.3� Specifying a Time Lag for the Application of Redo Logs

	5.3.3� Standby Redo Logs
	5.3.3.1� Size and Number of Standby Redo Logs
	5.3.3.1.1� Number of Standby Redo Log Groups
	5.3.3.1.2� Guidelines for Standby Redo Log Groups

	5.3.3.2� Creating Standby Redo Logs
	5.3.3.3� Creating Standby Redo Log Groups
	5.3.3.4� Adding Standby Redo Log Members to an Existing Group

	5.4� Destination Parameters and Attributes
	5.4.1� Specifying Archive Destinations for Redo Logs
	5.4.2� Specifying Storage Locations for Archived Redo Logs and Standby Redo Logs
	5.4.3� Specifying Mandatory and Optional Destinations
	5.4.4� Sharing a Log File Destination Among Multiple Standby Databases
	5.4.5� Specifying Archive Failure Policies
	5.4.6� Other Destination Types

	5.5� Transmission and Reception of Redo Data
	5.5.1� Specifying the Process that Transmits Redo Data
	5.5.2� Specifying Network Transmission Mode
	5.5.3� Writing Redo Data to Disk

	5.6� Log Transport Services in Sample Configurations
	5.7� Setting the Data Protection Mode of a Data Guard Configuration
	5.8� Log Transport Services Administration
	5.8.1� Database Initialization Parameters
	5.8.1.1� Setting Log Transport Parameters in the Initialization Parameter File
	5.8.1.2� Setting Log Transport Parameters at Runtime Using SQL Statements

	5.8.2� Preparing Initialization Parameters for Role Transitions
	5.8.2.1� Primary Database Initialization Parameters
	5.8.2.2� Standby Database Initialization Parameters
	5.8.2.3� Enabling Initialization Parameters During Role Transition
	5.8.2.4� Logical Standby Database Considerations

	5.9� Monitoring Redo Log Archival Information

	6 Log Apply Services
	6.1� Introduction to Log Apply Services
	6.2� Applying Redo Data to Physical Standby Databases
	6.2.1� Starting the Physical Standby Instance
	6.2.2� Starting Managed Recovery Operations
	6.2.2.1� Starting Log Apply Services
	6.2.2.2� Monitor the Recovery Process

	6.2.3� Controlling Redo Apply Operations
	6.2.4� Datafile Management
	6.2.4.1� Setting the STANDBY_FILE_MANAGEMENT Initialization Parameter
	6.2.4.2� Setting the DB_FILE_NAME_CONVERT Initialization Parameter
	6.2.4.3� Restrictions on ALTER DATABASE Operations

	6.3� Applying Redo Data to Logical Standby Databases
	6.3.1� Starting and Stopping Log Apply Services
	6.3.2� Ensuring That Redo Logs Are Being Applied

	6.4� Managing Archive Gaps
	6.4.1� What Is an Archive Gap?
	6.4.2� When Is an Archive Gap Discovered?
	6.4.3� Determining If an Archive Gap Exists on a Physical Standby Database
	6.4.4� How Is a Gap Resolved?

	6.5� Monitoring Log Apply Services for Physical Standby Databases
	6.5.1� Accessing the V$MANAGED_STANDBY Fixed View
	6.5.2� Accessing the V$ARCHIVE_DEST_STATUS Fixed View
	6.5.3� Accessing the V$ARCHIVED_LOG Fixed View
	6.5.4� Accessing the V$LOG_HISTORY Fixed View
	6.5.5� Accessing the V$DATAGUARD_STATUS Fixed View

	6.6� Monitoring Log Apply Services for Logical Standby Databases
	6.6.1� Accessing the DBA_LOGSTDBY_EVENTS View
	6.6.2� Accessing the DBA_LOGSTDBY_LOG View
	6.6.3� Accessing the DBA_LOGSTDBY_PROGRESS View
	6.6.4� Accessing the V$LOGSTDBY Fixed View
	6.6.5� Accessing the V$LOGSTDBY_STATS Fixed View

	6.7� Setting Archive Tracing
	6.7.1� Determining the Location of the Trace Files
	6.7.2� Setting the Log Trace Parameter
	6.7.3� Choosing an Integer Value

	7 Role Management
	7.1� Introduction to Role Transitions
	7.1.1� Which Role Transition to Use
	7.1.2� Switchover Operations
	7.1.3� Failover Operations

	7.2� Role Transitions Involving Physical Standby Databases
	7.2.1� Switchover Operations Involving a Physical Standby Database
	7.2.2� Failover Operations Involving a Physical Standby Database

	7.3� Role Transitions Involving Logical Standby Databases
	7.3.1� Switchover Operations Involving a Logical Standby Database
	7.3.2� Failover Operations Involving a Logical Standby Database

	8 Managing a Physical Standby Database
	8.1� Starting Up and Shutting Down a Physical Standby Database
	8.1.1� Starting Up a Physical Standby Database
	8.1.2� Shutting Down a Physical Standby Database

	8.2� Using a Standby Database That Is Open for Read-Only Access
	8.2.1� Assessing Whether to Open a Standby Database for Read-Only Access
	8.2.2� Opening a Standby Database for Read-Only Access
	8.2.3� Sorting Considerations For Standby Databases Open for Read-Only Access

	8.3� Creating Primary Database Back Up Files Using a Physical Standby Database
	8.4� Managing Primary Database Events That Affect the Standby Database
	8.4.1� Adding a Datafile or Creating a Tablespace
	8.4.2� Dropping a Tablespace in the Primary Database
	8.4.3� Renaming a Datafile in the Primary Database
	8.4.4� Adding or Dropping Online Redo Logs
	8.4.5� Altering the Primary Database Control File
	8.4.6� NOLOGGING or Unrecoverable Operations

	8.5� Monitoring the Primary and Standby Databases
	8.5.1� Alert Log
	8.5.2� Dynamic Performance Views (Fixed Views)
	8.5.3� Monitoring Recovery Progress

	9 Managing a Logical Standby Database
	9.1� Configuring and Managing Logical Standby Databases
	9.1.1� Managing SQL Apply Operations
	9.1.2� Controlling User Access to Tables in a Logical Standby Database
	9.1.3� Modifying a Logical Standby Database
	9.1.4� Handling Triggers and Constraints on a Logical Standby Database
	9.1.5� Skipping SQL Apply Operations on a Logical Standby Database
	9.1.6� Adding or Re-Creating Tables on a Logical Standby Database
	9.1.7� Viewing and Controlling Logical Standby Events
	9.1.8� Viewing SQL Apply Operations Activity
	9.1.9� Delaying the Application of Archived Redo Logs
	9.1.10� Determining How Much Redo Log Data Was Applied
	9.1.11� Recovering from Errors
	9.1.12� Refreshing Materialized Views

	9.2� Tuning Logical Standby Databases

	10 Data Guard Scenarios
	10.1� Choosing the Best Available Standby Database for a Role Transition
	10.1.1� Example: Best Physical Standby Database for a Failover Operation
	10.1.2� Example: Best Logical Standby Database for a Failover Operation

	10.2� Using a Physical Standby Database with a Time Lag
	10.2.1� Establishing a Time Lag on a Physical Standby Database
	10.2.2� Failing Over to a Physical Standby Database with a Time Lag

	10.3� Switching Over to a Physical Standby Database That Has a Time Lag
	10.4� Recovering from a Network Failure
	10.5� Recovering After the NOLOGGING Clause Is Specified
	10.5.1� Recovery Steps for Logical Standby Databases
	10.5.2� Recovery Steps for Physical Standby Databases
	10.5.3� Determining If a Backup Is Required After Unrecoverable Operations

	Part II� Reference
	11 Initialization Parameters
	11.1� Viewing Initialization Parameters
	11.2� Modifying a Server Parameter File
	11.2.1� Exporting a Server Parameter File to an Editable File for Modifications
	11.2.2� Using SQL ALTER SYSTEM SET to Modify a Server Parameter File

	11.3� Initialization Parameters for Instances in a Data Guard Configuration
	ARCHIVE_LAG_TARGET
	COMPATIBLE
	CONTROL_FILE_RECORD_KEEP_TIME
	CONTROL_FILES
	DB_FILE_NAME_CONVERT
	DB_FILES
	DB_NAME
	FAL_CLIENT
	FAL_SERVER
	LOCK_NAME_SPACE
	LOG_ARCHIVE_DEST_n
	LOG_ARCHIVE_DEST_STATE_n
	LOG_ARCHIVE_FORMAT
	LOG_ARCHIVE_MAX_PROCESSES
	LOG_ARCHIVE_MIN_SUCCEED_DEST
	LOG_ARCHIVE_START
	LOG_ARCHIVE_TRACE
	LOG_FILE_NAME_CONVERT
	LOG_PARALLELISM
	PARALLEL_MAX_SERVERS
	REMOTE_ARCHIVE_ENABLE
	SHARED_POOL_SIZE
	SORT_AREA_SIZE
	STANDBY_ARCHIVE_DEST
	STANDBY_FILE_MANAGEMENT
	USER_DUMP_DEST

	12 LOG_ARCHIVE_DEST_n Parameter Attributes
	12.1� About LOG_ARCHIVE_DEST_n Parameter Attributes
	12.2� Changing Destination Attributes Using SQL Statements
	12.3� Incrementally Changing LOG_ARCHIVE_DEST_n Parameter Settings
	12.3.1� Viewing Current Settings of Destination Initialization Parameters

	AFFIRM and NOAFFIRM
	ALTERNATE and NOALTERNATE
	ARCH and LGWR
	DELAY and NODELAY
	DEPENDENCY and NODEPENDENCY
	LOCATION and SERVICE
	MANDATORY and OPTIONAL
	MAX_FAILURE and NOMAX_FAILURE
	NET_TIMEOUT and NONET_TIMEOUT
	QUOTA_SIZE and NOQUOTA_SIZE
	QUOTA_USED and NOQUOTA_USED
	REGISTER and NOREGISTER
	REGISTER=location_format
	REOPEN and NOREOPEN
	SYNC and ASYNC
	TEMPLATE and NOTEMPLATE
	12.4� Attribute Compatibility for Archive Destinations

	13 SQL Statements
	13.1� ALTER DATABASE ACTIVATE STANDBY DATABASE
	13.2� ALTER DATABASE ADD [STANDBY] LOGFILE
	13.3� ALTER DATABASE ADD [STANDBY] LOGFILE MEMBER
	13.4� ALTER DATABASE ADD SUPPLEMENTAL LOG DATA
	13.5� ALTER DATABASE COMMIT TO SWITCHOVER
	13.6� ALTER DATABASE CREATE STANDBY CONTROLFILE AS
	13.7� ALTER DATABASE DROP [STANDBY] LOGFILE
	13.8� ALTER DATABASE DROP [STANDBY] LOGFILE MEMBER
	13.9� ALTER DATABASE [NO]FORCE LOGGING
	13.10� ALTER DATABASE MOUNT STANDBY DATABASE
	13.11� ALTER DATABASE OPEN READ ONLY
	13.12� ALTER DATABASE RECOVER MANAGED STANDBY DATABASE
	13.13� ALTER DATABASE REGISTER LOGFILE
	13.14� ALTER DATABASE SET STANDBY DATABASE TO MAXIMIZE {PROTECTION | AVAILABILITY | PERFORMANCE}
	13.15� ALTER DATABASE START LOGICAL STANDBY APPLY
	13.16� ALTER DATABASE {STOP | ABORT} LOGICAL STANDBY APPLY

	14 Views
	About Views
	DBA_LOGSTDBY_EVENTS (Logical Standby Databases Only)
	DBA_LOGSTDBY_LOG (Logical Standby Databases Only)
	DBA_LOGSTDBY_NOT_UNIQUE (Logical Standby Databases Only)
	DBA_LOGSTDBY_PARAMETERS (Logical Standby Databases Only)
	DBA_LOGSTDBY_PROGRESS (Logical Standby Databases Only)
	DBA_LOGSTDBY_SKIP (Logical Standby Databases Only)
	DBA_LOGSTDBY_SKIP_TRANSACTION (Logical Standby Databases Only)
	DBA_LOGSTDBY_UNSUPPORTED (Logical Standby Databases Only)
	V$ARCHIVE_DEST
	V$ARCHIVE_DEST_STATUS
	V$ARCHIVE_GAP
	V$ARCHIVED_LOG
	V$DATABASE
	V$DATAFILE
	V$DATAGUARD_STATUS
	V$LOG
	V$LOGFILE
	V$LOG_HISTORY
	V$LOGSTDBY (Logical Standby Databases Only)
	V$LOGSTDBY_STATS (Logical Standby Databases Only)
	V$MANAGED_STANDBY (Physical Standby Databases Only)
	V$STANDBY_LOG

	Part III� Appendixes and Glossary
	A Troubleshooting the Standby Database
	A.1� Problems During Standby Database Preparation
	A.1.1� The Standby Archive Destination Is Not Defined Properly
	A.1.2� The Standby Site Does Not Receive Logs Archived by the Primary Database
	A.1.3� You Cannot Mount the Physical Standby Database

	A.2� Log Destination Failures
	A.3� Ignoring Logical Standby Database Failures
	A.4� Problems Switching Over to a Standby Database
	A.4.1� Switchover Fails
	A.4.2� Recovering After An Unsuccessful Switchover Operation
	A.4.3� Startup of Second Physical Standby Database Fails
	A.4.4� Archived Redo Logs Are Not Applied After a Switchover
	A.4.5� Switchover Fails When SQL Sessions Are Active

	A.5� What to Do If SQL Apply Operations to a Logical Standby Database Stop
	A.6� Network Tuning for Redo Log Transmission
	A.7� Managing Data Guard Network Timeout

	B Manual Recovery
	B.1� Preparing a Standby Database for Manual Recovery: Basic Tasks
	B.2� Placing the Standby Database in Manual Recovery Mode
	B.2.1� Initiating Manual Recovery Mode
	B.2.2� When Is Manual Recovery Required?

	B.3� Resolving Archive Gaps Manually
	B.3.1� What Causes Archive Gaps?
	B.3.2� Determining If an Archive Gap Exists
	B.3.3� Manually Transmitting the Logs in the Archive Gap to the Standby Site
	B.3.4� Manually Applying the Logs in the Archive Gap to the Standby Database

	B.4� Renaming Standby Database Files Manually

	C Standby Database Real Application Clusters Support
	C.1� Configuring Standby Databases in a Real Application Clusters Environment
	C.1.1� Setting Up a Multi-Instance Primary Database with a Single-Instance Standby Database
	C.1.2� Setting Up a Multi-Instance Primary Database with a Multi-Instance Standby Database
	C.1.3� Setting Up a Cross-Instance Archival Database Environment

	C.2� Configuration Considerations in Real Application Clusters Environments
	C.2.1� Archived Log File Format
	C.2.2� Archive Destination Quotas
	C.2.3� Data Protection Modes
	C.2.4� Role Transitions

	C.3� Troubleshooting
	C.3.1� Switchover Fails in a Real Application Clusters Configuration
	C.3.2� Avoiding Downtime in Real Application Clusters During a Network Outage

	D Cascaded Redo Log Destinations
	D.1� Configuring Cascaded Redo Log Destinations
	D.1.1� Configuring Cascaded Redo Log Destinations for Physical Standby Databases
	D.1.2� Configuring Cascaded Redo Log Destinations for Logical Standby Databases

	D.2� Examples of Cascaded Redo Log Destinations
	D.2.1� Scenario 1
	D.2.2� Scenario 2
	D.2.3� Scenario 3
	D.2.4� Scenario 4
	D.2.5� Scenario 5

	E Sample Disaster Recovery ReadMe File
	Glossary
	Index

