Web Dynamics

Part 5 – Searching the Past

5.1 Time-travel problems

5.2 Efficient Time-Travel Search

5.3 Temporal measures of page importance

Time Travel Problems on the Web

Search engines index only the *current* Web

- But: Many interesting aspects on the *historical* Web:
- Search the Web as of a specific time in the past ("opinions of major US politicians on the Iraq War in 2002")
- Analyze the Web as of a specific time in the past ("most authoritative news page in 2002")
 - Analyze temporal development of the Web ("since when have political blogs been around?")

Web Archives don't provide these functionalities (at least not publicly)

Rare example: Google@2001

Google!	ris hilton In honor of our <u>10th birthday</u> , we've brought back our oldest available index. Take a look back at Google in January 2001.
2001 Web	Web Images Maps News Shopping Gmail more 🔹
Hilton Paris - France 3 prestigious hotels to discove attendees or enjoy typical fren	Google paris hilton Search Advanced Search Preferences
http://www.hilton-paris.com/ -	Web <u>News Images Video</u> Blogs Resul
Hotel Discounts : Hotel In Listing of Discounts of Hotels: http://www.vacationweb.com/h	Related searches: <u>paris hilton movie</u> <u>1 night in paris</u> <u>paris exposed</u>
Travelocity: Message Bo #2 of 3: Paris Hilton. katherin November of 1997. It is right b http://dest.travelocity.com/Cor	News results for paris hilton Paris Hilton debuts new single, "My BFF" - 8 hours ago By Jill Serjeant LOS ANGELES (Reuters) - Leave it to Paris Hilton to ratchet up the hype for her new TV show's debut, releasing a new single,
Paris Las Vegas - A Hilt Paris Las Vegas - A Hilton C Las Vegas. http://www.lasvegasstriphotels	Windsor Star Paris Hilton finds new BFF Ellen Oneindia - 9 related articles » Paris Hilton porno art goes on display - Stuff.co.nz - 4 related articles »
	Paris Hilton - Wikipedia, the free encyclopedia [19] In March 2008, it was reported that Hilton would star in a new MTV reality series tentatively titled Paris Hilton's My New BFF, about her looking for a en.wikipedia.org/wiki/Paris_Hilton - 141k - <u>Cached</u> - <u>Similar pages</u>
	Paris Hilton The Official Website ParisHilton.com Paris Hilton, Nicky Hilton Fashion, Pictures, Apparel, Jewellery , Film, and Fun. www. parishilton .com/ - 8k - <u>Cached</u> - <u>Similar pages</u>
	Paris Hilton Zone Paris Hilton Pictures, Pics, Photos 4000+ new Paris Hilton pictures, Paris wallpaper, sex tape, lyrics, audio, video , daily Paris pics & news. www.parishiltonzone.com/ - 49k - <u>Cached</u> - <u>Similar pages</u>
Summer Term 2010	

Web Dynamics

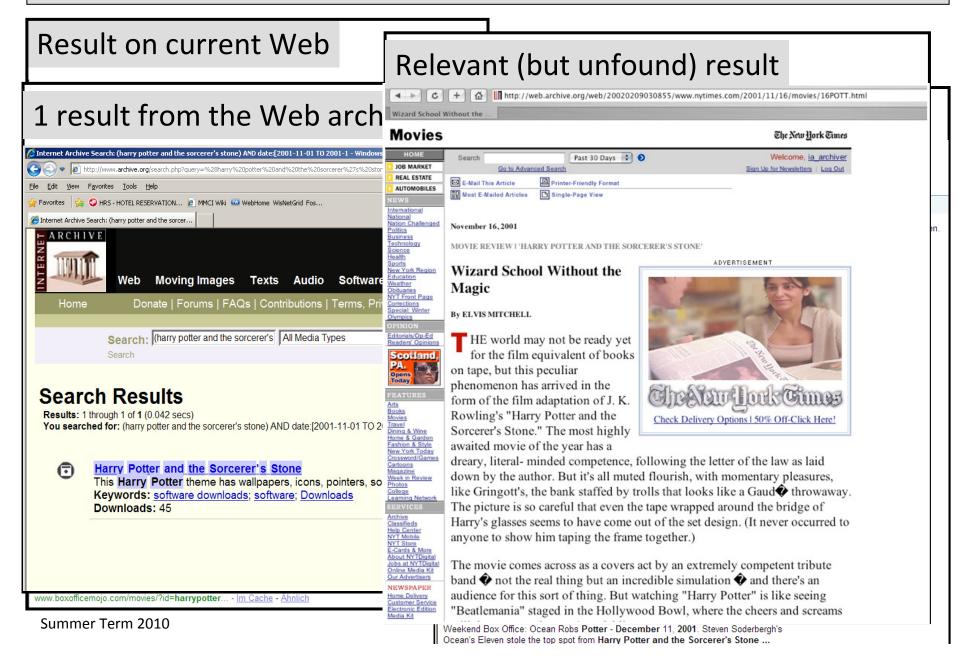
Part 5 – Searching the Past

5.1 Time-travel problems

5.2 Efficient Time-Travel Search

5.3 Temporal measures of page importance

(Some of the slides were contributed by Klaus Berberich)


Summer Term 2010

Web Dynamics

The Need for Time-Travel Search

- Historical information needs, e.g.,
 - Contemporary (~2001) articles about the movie "Harry Potter and the Sorcerer's Stone"
 - Search for prior art for a patent submitted 2005
 - Links to some illegal content before Feb 2009
- Relevant pages disappeared in the current Web, but preserved by Web archives (e.g., archive.org)
- Search in existing Web archives limited and ignores the time-axis

The Need for Time-Travel Search

Time-Travel Search Beyond the Web

More versioned document collections:

- Wikis (like Wikipedia)
- Repositories (e.g., controlled by CVS, Subversion)
- Your Desktop

Formal Model: Document Versions

Assume continuous time dimension $T=[0...\infty(.$

For each document (=url) d, maintain set of

different versions V(d), where each $v \in V(d)$ is a

tuple $v = (c_v, [s_v, e_v(), \text{ with } e_v = \infty \text{ for current versions.}$ content of v lifetime of v

Different versions of the same document have **disjoint lifetimes** \Rightarrow (d,s_v) identifies version

Archive can only estimate versions of a document

Time-Travel Keyword Queries

Time-travel keyword query q = (k, I) combination of

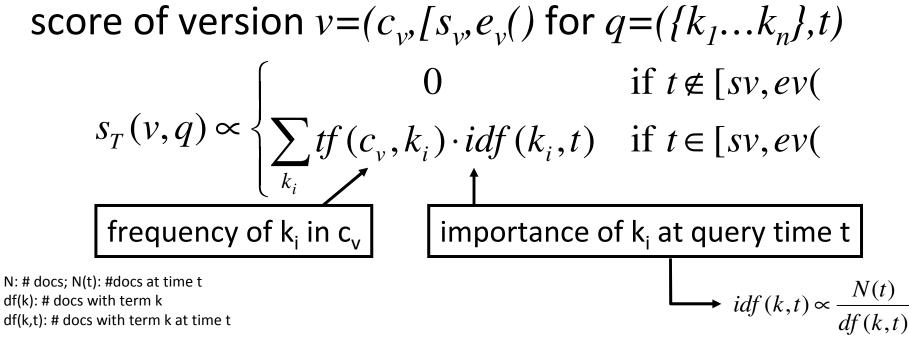
- standard keyword query $k = (k_1, \dots, k_n)$
- time-of-interest interval $I = [s_I, e_I]$

Two important subclasses:

• **Point-in-time** queries: $s_I = e_I$

• *Interval* queries: $e_I > s_I$

Example:


"harry potter" @ 2001/11/14

This is a point-in-time query if the granularity of time is 1 day!

Scoring Point-in-Time Time-Travel Queries

Reminder: score in standard text retrieval:

$$s(d,q) \propto \sum_{k \in q} tf(d,k) \cdot idf(k)$$
frequency of k in d
importance of k $\rightarrow idf(k) \propto \frac{N}{df(k)}$

Inverted Lists in Text IR

Reminder: Inverted Lists in text retrieval

For each term k, keep list (d, score(d, k)) of documents containing term n and their score, in some order

List for term k in score order

> d1,0.9 d7,0.85 d2,0.84763 d119,0.79 ...

List for term k in document order

d1,0.9 d2,0.84763 d4, 0.27 d7,0.85

Query processing using merge joins of these lists (plus optional top-n for efficiency)

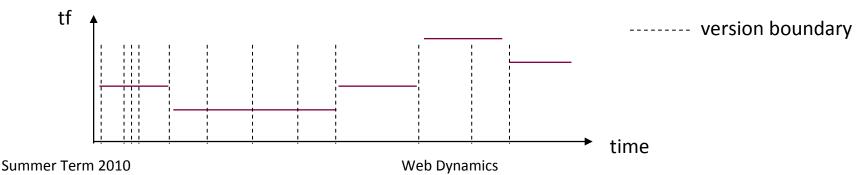
Extension for time-travel: SOPT

- 2. For each term k, keep list $(v, tf(v,k), (s_v, e_v))$ of document versions containing term k, their tf value, and their lifetime, in some order

List for term k in score order

```
d1,90,(2001/jan/01,2001/jan/15)
d1,90,(2001/jan/16,2001/feb/28)
d7,85,(2004/aug/14,2004/aug/16) ✓
d1,84,(2001/mar/01,∞) ✓
...
```

Example: k@2004/aug/15

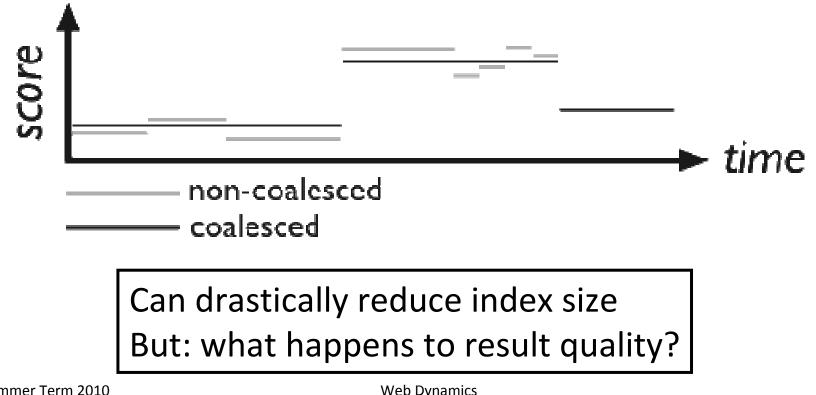

Query processing using merge joins of these lists

plus ignoring versions where lifetime does not match query

This is not good enough

Major problems of this simple approach:

- index size explodes (*one index entry per version per term*)
 - \Rightarrow for Wikipedia alone: 9.10⁹ entries!
- Many entries
 - differ only in their lifetimes
 - have almost identical tf values (hardly matters for ranking)



Reducing Index Size: Coalescing

Idea:

Coalesce sequences of temporally adjacent

postings having similar scores

Formal Optimization Problem

Problem Statement:

Given input sequence I find a *minimal length output sequence* O with approximation errors bounded by a threshold ϵ

Guarantee: $|p' - p_i| / |p_i| \le \epsilon$

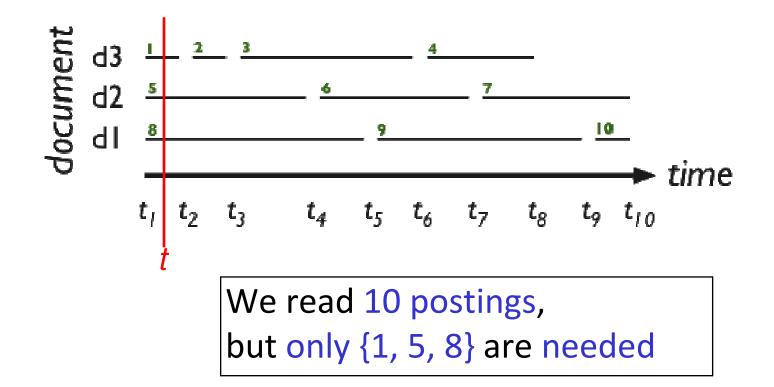
Approximate Temporal Coalescing (ATC):

finds an optimal output sequence using a greedy linear time algorithm

Approximate Temporal Coalescing (ATC)

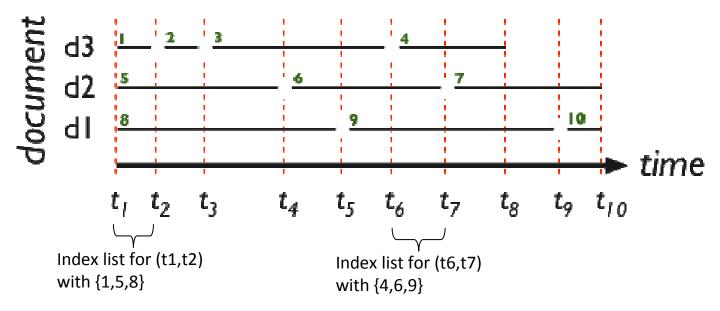
General approach:

- Scan from left to right
- Maintain current estimate for representative p'
- When next value is encountered, check if it can be represented within the error margin


If not, close current subsequence

Tuning query performance

Problem:


Many postings are *ignored* during query processing

Tuning Query Performance: POPT

Idea:

Materialize smaller sublists containing only postings that *overlap* with a smaller interval

Maintaining a sublist for each elementary interval yields optimal query performance

Tuning Index Performance

Two extreme solutions up to now:

- *space-optimal*: keep only a single list (SOPT)
- *performance-optimal*: keep one list per elementary time-interval (POPT)
- Now: two systematic techniques to trade-off space and performance
- *performance-guarantee*: consumes minimal space while retaining a performance guarantee (PG)
- space-bound: achieves best performance while not exceeding a space limit (SB)

Performance Guarantee (PG)

- consumes *minimal* space
- guarantees that for any t at most γ ·n_t postings
 are read where n_t is the number of postings that
 exist at time t
- **Optimal solution computable** for discrete time by means of induction (on the number of time points) *in* $O(T^2)$ *time and* $O(T^2)$ *space* (where Tis the number of distinct timestamps in the list)
 - start with elementary intervals (length 1)
 - compute optimal solution for intervals of length k+1 from solutions for intervals of length≤k

Space Bound (SB)

- achieves *minimal expected processing cost* (i.e., expected length of the list that is scanned)
- consumes at most k -n space where n is the length of the original list

Optimal solution computable using dynamic programming in $O(n^4)$ time and $O(n^3)$ space **Approximate solution** computable in $O(T^2)$ time and O(T) space using simulated annealing

Experimental Evaluation: Setup

Implementation:

Java, Oracle 10g

Datasets:

- WIKI: Revision history of English Wikipedia (2001-2005)
 892K documents / 13,976K versions / 0.7 TBytes
- UKGOV: Weekly crawls of 11 .gov.uk sites (2004-2005)
 502K documents / 8,687K versions / 0.4 TBytes

Queries:

- 300 keyword queries from AOL query log that most frequently produced a result click on en.wikipedia.org / .gov.uk
- Each keyword query is assigned one time point per month in the collection's lifespan (18K / 7.2K time-travel queries in total)

Experimental Evaluation: Setup

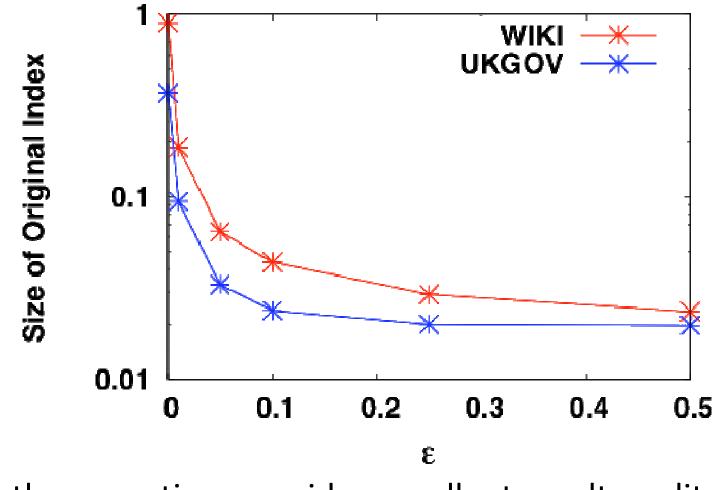
Implementation:

Java, Oracle 10g

Datasets:

- WIKI: Revision history of English Wikipedia (2001-2005)
 892K documents / 13,976K versions / 0.7 TBytes
- UKGOV: Weekly crawls of 11 .gov.uk sites (2004-2005)

<u> WIKI:</u>


ten commandments, abraham lincoln, da vinci code, harlem renaissance...

UKGOV:

1901 uk census, british royal family, migrant worker statistics, witness intimidation...

Approximate Temporal Coalescing

Indexes computed for different values of threshold ε

Web Dynamics

Sublist Materialization - Setup

Start with index created by ATC for $\varepsilon = 0.10$

For terms in query workloads (422/522) apply

- SOPT and POPT
- PG for γ varying between 1.10 and 3.00
- SB for к varying between 1.10 and 3.00

Report

- Space, i.e., total number of postings in materialized sublists
- Expected Processing Cost (EPC), i.e., expected length of scanned list for random term and time

Performance Guarantee

	WIKI		UKGOV	
	Space	EPC	Space	EPC
Рорт	14,428	% 100%	11,406%	100%
Sopt	100	963%	100%	147%

Performance Guarantee

	WIKI		UKGOV	
	Space	EPC	Space	EPC
γ = 1.10	1,004%	106%	616%	103%
γ = 1.50	295%	132%	233%	117%
γ = 2.00	195%	160%	163%	125%
γ = 3.00	145%	207%	132%	133%

EPC = Expected Processing Cost

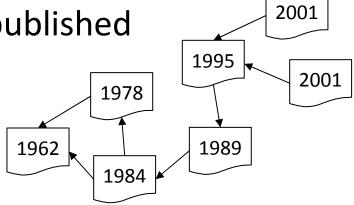
Space Bound

	WIKI		UKGOV	
	Space	EPC	Space	EPC
Popt	14,428%	100%	11,406%	100%
Sopt	100%	963%	100%	147%

Space Bound

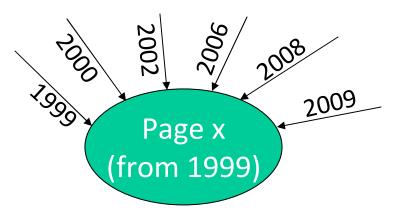
	WIKI		UKGOV	
	Space	EPC	Space	EPC
κ = 3.00	2889	6 139%	273%	107%
κ = 2.00	1949	6 171%	180%	119%
κ = 1.50	146%	6 214%	131%	131%
κ = 1.10	109%	406%	104%	145%

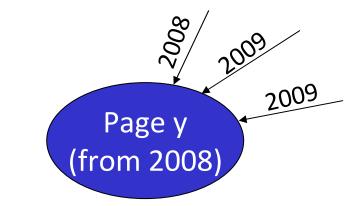
EPC = Expected Processing Cost


Web Dynamics

Part 5 – Searching the Past

5.1 Time-travel problems5.2 Efficient Time-Travel Search5.3 Temporal measures of page importance


Differences between Citations and Links

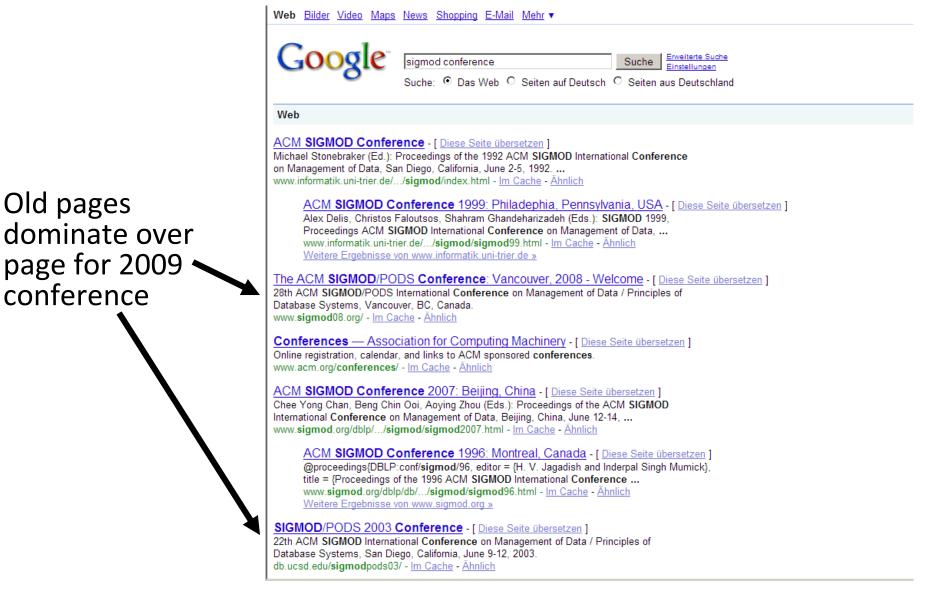

- Citations in printed documents (papers)
 - never change once paper is published
 - mostly to recent documents
 - ⇒ Old papers hardly cited, negative authority bias

- Links on the Web
 - frequently change after page is published
 - old (but updated!) pages still get many new links
 - \Rightarrow Old pages have **positive authority bias**

Temporal Development of Links

- PageRank (HITS, ...): x more authoritative than y
- But:

• Wh


Summer Te

- x has 6 links in 10 years
- y has 3 links in 2 years
- ⇒ y a lot more dynamic and up-to-date than x, but difficult to beat x's "temporal advantage"

Temporal notions of authority required!

999?

Example: Search for SIGMOD conference

Modelling Temporal Changes

For each page p, maintain

- timestamp of creation TS_C(p)
- timestamp of deletion $TS_D(p)$
- set of timestamps of modifications $TS_M(p)$

(timestamp: amount of time units since time 0)

Analogous definitions for link (x,y):

- timestamp of creation $TS_C(x,y)$: time when (x,y) added
- timestamp of deletion $TS_D(x,y)$: time when (x,y) del'ed
- set of timestamps of modifications $TS_M(x,y)$
- timestamp TS(x,y): last modification time of page x

Timestamped Link Profile (TLP)

Goal: Measure the "activity" of a topic on the Web

- \Rightarrow Construction of *Timestamped Link Profile*:
- Collect set of Web pages for the topic (e.g., by collecting results of keyword queries)
- Collect set of inlinks (x,y) to these pages (provided by search engines: link:url)
- Compute temporal distribution of timestamps of inlinks (partitioning time range into intervals)

Based on *limited sample* of the inlinks

Timestamps usually available for some inlinks only (last-modified timestamp of page)

Example TLP

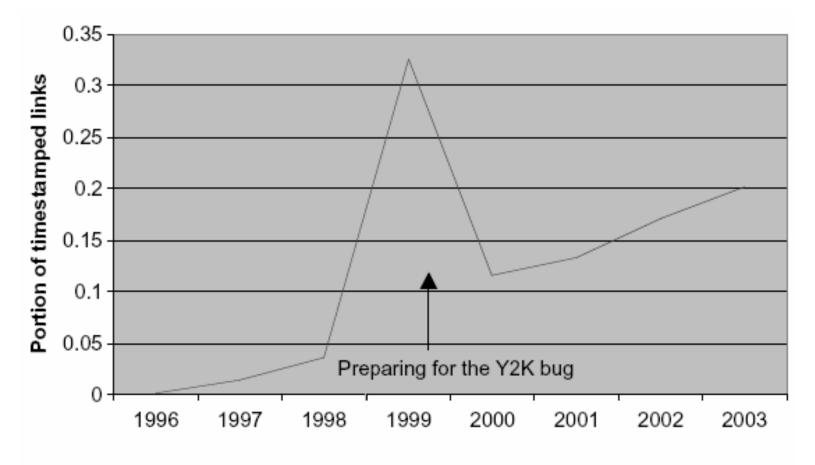


FIG. 2. TLP for the theme "Year 2000 Bug" (~750 timestamped links).

Towards Timely Authorities

Goal: Determine *currently* authoritative pages (opposed to those authoritative years ago, but still around)

Intuition of [Amitay et al.]:

- Deviate from uniform link weight in HITS etc
- Give more weight to recent links: *weight(x,y) ∝ 1/age(x,y)* = 1/(currentTime - TS(x,y)) (with linear or exponential decay)

Authoritative Pages in the Past

Goal: extend this approach towards

- finding important pages at *any interval* in the past
- including *page activity* as quality measure

Consider *interval of interest ti=[TS_{Origin}, TS_{End}]* with additional *tolerance interval [t1,t2]* where pages are less interesting, but still relevant to user $(t1 \leq TS_{Origin}, t2 \geq TS_{End})$

Freshness

Freshness measures relevance of timestamp to interval of interest:

$$f(ts) = \begin{cases} if \ TS_{Origin} \le ts \le TS_{End}: & 1 \\ if \ t_1 \le ts < TS_{Origin}: \frac{1-e}{TS_{Origin} - t_1} \cdot (ts - t_1) + e \\ if \ TS_{End} < ts \le t_2: & \frac{e-1}{t_2 - TS_{End}} \cdot (ts - TS_{End}) + 1 \\ otherwise: & e \end{cases} \xrightarrow{time} time$$

Freshness of node x: f(x) = f(TS(x))Freshness of edge (x,y): f(x,y) = f(TS(x,y))

Activity

Activity of set TS of timestamps measures frequency of change with respect to interval of interest:

$$a(TS) = \begin{cases} if \ TS \cap [t_1, t_2] \neq \emptyset : & \sum_{t=1}^{t^2} \{f(ts) | ts \in TS\} \\ otherwise : e \end{cases}$$

Activity of node x: $a(x) = a(TS_M(x))$ Activity of edge (x,y): $a(x,y) = a(TS_M(x,y))$

Restricting the Graph to an Interval

For graph *G* and interval of interest *ti=[ts,te]* with tolerance interval [*t*1,*t*2], consider *time projection* $G_{ti}=(V_{tiv}E_{ti})$ of G=(V,E): $V_{ti}=\{v \in V \mid TS_C(v) \leq t_2 \land TS_D(v) \geq t_1\}$ $E_{ti}=\{(x,y) \in E \mid (x,y) \in V_{ti} \times V_{ti} \land TS_C(x,y) \leq t_2 \land TS_D(x,y) \geq t_1\}$

Special case $t_1 = t_2$: G_{ti} snapshot of G as of time t_1

Towards Temporal PageRank

Standard definition of PageRank:

$$r(y) = \sum_{(x,y)\in E} (1-\varepsilon) \cdot \frac{r(x)}{\text{outdegree}(x)} + \frac{\varepsilon}{n}$$

Generalized version allowing for **non-uniform** transition and random jump probabilities:

$$r(y) = \sum_{(x,y)\in E} (1-\varepsilon) \cdot t(x,y) \cdot r(x) + \varepsilon \cdot s(y)$$

- t(x,y) describes transition probabilities
- *s(y)* describes random jump probabilities

Temporal Pagerank (T-Rank)

- Modified PageRank on Gti
- Transition probabilities *t(x,y)* depend on freshness of nodes and edges
- Random jump probabilities depend on freshness and activity of nodes and edges

T-Rank – Transitions

- Transitions favor *fresh* nodes/edges
- Coefficients w_{ti}: probabilities that random surfer follows (x,y) with probabilities proportional to
 - freshness of node y
 - freshness of edge (x,y)
 - average (mean) freshness of incoming edges of node y

$$t(x,y) = w_{t_1} \cdot \frac{f(y)}{\sum_{(x,z)\in E} f(z)} + w_{t_2} \cdot \frac{f(x,y)}{\sum_{(x,z)\in E} f(x,z)} + w_{t_3} \cdot \frac{avg\{f(v,y) \mid (v,y)\in E\}}{\sum_{(x,w)\in E} avg\{f(v,w) \mid (v,w)\in E\}}$$

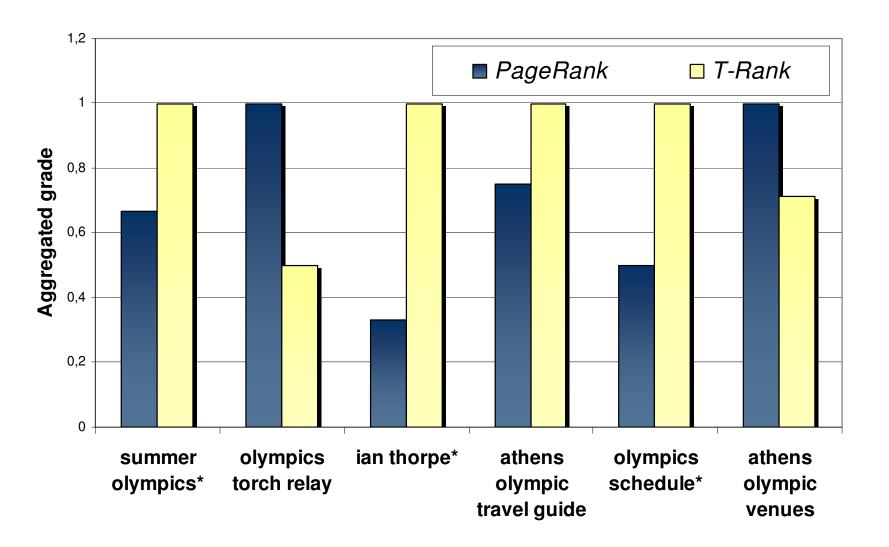
T-Rank – Random Jumps

- Random jumps favor *fresh and active* nodes/edges
- Coefficients w_{si} probabilities that random surfer jumps to node y with probabilities proportional to
 - freshness and activity of node y
 - average (mean) freshness and activity of incoming edges of node y

$$s(y) = W_{s1} \cdot \frac{f(y)}{\sum_{z \in V} f(z)} + W_{s2} \cdot \frac{a(y)}{\sum_{z \in V} a(z)} + W_{s3} \cdot \frac{avg\{f(v, y) \mid (v, y) \in E\}}{\sum_{z \in V} avg\{f(w, z) \mid (w, z) \in E\}} + W_{s4} \cdot \frac{avg\{a(v, y) \mid (v, y) \in E\}}{\sum_{z \in V} avg\{a(w, z) \mid (w, z) \in E\}}$$

T-Rank Experiment: DBLP

Digital Bibliography & Library Project (DBLP) freely available bibliographic dataset (as XML)


Evolving graph derived from DBLP: Authors as nodes, citations as edges

	PageRank 2000s	T-Rank 2000s
1	E. F. Codd	Jim Gray
2	Michael Stonebraker	Michael Stonebraker
3	Jim Gray	Jeffrey D. Ullman
4	Donald D. Chamberlin	Philip A. Bernstein
5	Jeffrey D. Ullman	Hector Garcia-Molina
6	Philip A. Bernstein	Jeffrey F. Naughton
7	Raymond A. Lorie	Donald D. Chamberlin
8	Morton M. Astrahan	David J. DeWitt
9	Kapali P. Eswaran	Jennifer Widom
10	John Miles Smith	Rakesh Agrawal

T-Rank Experiment: Web

- Theme: Olympic Games 2004
 - ~200K thematically related Web pages
 - 9 crawls in period July 26th to September 1st
- Blind test comparing PageRank and T-Rank
 - Users asked to grade quality of given top-10 lists
 - Half of the queries drawn from Google Zeitgeist

T-Rank Experiment: Web

References

Time-Travel Search:

- Klaus Berberich et al.: A Time Machine for Text Search, SIGIR Conference, 2007
- Klaus Berberich et al.: *FluxCapacitor: Efficient Time-Travel Text Search*, VLDB Conference, 2007

Temporal Link Analysis:

- L. Adamic & B.A. Huberman: *The Web's hidden order*, CACM 44(9), 2001
- Einat Amitay et al.: *Trend Detection Through Temporal Link Analysis,* Journal of the American Society for Information Science and Technology 55, pp. 1-12, 2004
- Ricardo Baeza-Yates et al.: Web Structure, Dynamics and Page Quality, SPIRE Conference, 2002
- Klaus Berberich et al.: *Time-Aware Authority Ranking*, Internet Mathematics 2(3), 2006
- Klaus Berberich et al.: A Pocket Guide to Web History, SPIRE Conference, 2007
- Philip S. Yu et al.: *On the Temporal Dimension of Search, WWW Conference*, 2004