Hidden Markov Models for Information Extraction

Speaker:

Bibek Paudel

Tutor:

Maximilian Dylla

Saarland University, Germany May 26, 2011

 Location -> Russisches Haus der Wissenschaft und Kultur

- Location -> Russisches Haus der Wissenschaft und Kultur
- Speaker -> Prof. Barbara Liskov

Subject: Invitation: Prof. Barbara Liskov From: "SWS Office Team" <office@mpi-sws.org> Date: Mon, May 9, 2011 1:32 pm To: sws-science@mpi-sws.org (more) Priority: Normal Options: View Full Header | View Printable Version | Download this as a file

As part of its Distinguished Lecture Series, the Max Planck Institute for Software

Prof. Barbara Liskov. Massachusetts Institute of Technology

Systems is pleased to announce: The Power of Abstraction

Monday, May 23, 2011 4:00 p.m. rotunda 57, TU Kaiserslautern

Simultaneous videocast to MPI-Inf room 024

- Location -> Russisches Haus der Wissenschaft und Kultur
- Speaker -> Prof. Barbara Liskov
- Document usually contains much irrelevant text (sparse)

- Location -> Russisches Haus der Wissenschaft und Kultur
- Speaker -> Prof. Barbara Liskov
- Document usually contains much irrelevant text (sparse)
- Find relations

- Location -> Russisches Haus der Wissenschaft und Kultur
- Speaker -> Prof. Barbara Liskov
- Document usually contains much irrelevant text (sparse)
- Find relations
- O Populate database slots with phrases from documents

Agenda

- Motivation
- Midden Markov Models
 - Introduction
 - The Task
- 3 Example
- Problems
- 5 Procedure
- Results
- Conclusion

• Finite State Machines

- Finite State Machines
- A generative process

Yes, Albert Einstein was born in Ulm.

- Finite State Machines
- A generative process
- Next state depends only on current state


```
Parameters: for all states S = \{s_p, s_2, ...\}
  Start state probabilities: P(s_*)
  Transition probabilities: P(s_i|s_{i-1})
                                                        Usually a multinomial over
  Observation (emission) probabilities: P(o_t|s_t) atomic, fixed alphabet
Training:
  Maximize probability of training observations (w/ prior)
```

- Finite State Machines
- A generative process
- Next state depends only on current state
- Given some text, recover the states that generated the text

Why HMM

Reasons for using HMM

Given:

a sequence of observations: Yes, Albert Einstein was born in Ulm.

a trained HMM

Given:

a sequence of observations: Yes, Albert Einstein was born in Ulm.

- a trained HMM
 - Find the most likely state sequence

Given:

a sequence of observations: Yes, Albert Einstein was born in Ulm.

- a trained HMM
 - Find the most likely state sequence
 - Any words generated by the 'red state' are 'names'

Given:

a sequence of observations: Yes, Albert Einstein was born in Ulm.

- a trained HMM
 - Find the most likely state sequence
 - Any words generated by the 'red state' are 'names'
 - Viterbi Algorithm

Agenda

- Motivation
- 2 Hidden Markov Models
 - Introduction
 - The Task
- Second Example
 Second Example
- 4 Problems
- Procedure
- Results
- Conclusion

• Prepare a matrix of conditional probabilities (pairwise)

• Prepare a matrix of conditional probabilities (pairwise)

$$\begin{bmatrix} 0.4 & 0.3 & 0.3 \\ 0.2 & 0.6 & 0.2 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

- Prepare a matrix of conditional probabilities (pairwise)
- ullet Define Observation Sequence $O=\{S_3,S_3,S_1,S_1,S_1,S_2,S_3\}$

- Prepare a matrix of conditional probabilities (pairwise)
- Define Observation Sequence $O = \{S_3, S_3, S_1, S_1, S_1, S_2, S_3\}$
- Find the probability $P(O \mid Model)$

- Prepare a matrix of conditional probabilities (pairwise)
- Define Observation Sequence $O = \{S_3, S_3, S_1, S_1, S_1, S_2, S_3\}$
- Find the probability $P(O \mid Model)$
- $P(O \mid Model) = P(S_3, S_3, S_1, S_1, S_1, S_2, S_3 \mid Model)$

6 / 12

- Prepare a matrix of conditional probabilities (pairwise)
- Define Observation Sequence $O = \{S_3, S_3, S_1, S_1, S_1, S_2, S_3\}$
- Find the probability $P(O \mid Model)$
- $P(O \mid Model) = P(S_3, S_3, S_1, S_1, S_1, S_2, S_3 \mid Model)$
- First order truncation by Markov property gives:

$$P(S_3) \prod P(q_t \mid q_{t-1})$$

- Prepare a matrix of conditional probabilities (pairwise)
- Define Observation Sequence $O = \{S_3, S_3, S_1, S_1, S_1, S_2, S_3\}$
- Find the probability $P(O \mid Model)$
- $P(O \mid Model) = P(S_3, S_3, S_1, S_1, S_1, S_2, S_3 \mid Model)$
- First order truncation by Markov property gives:

$$P(S_3) \prod_{t=1}^{n} P(q_t \mid q_{t-1})$$

$$P(S_3)P(S_3 \mid S_3)P(S_1 \mid S_3)P(S_1 \mid S_1)P(S_1 \mid S_1)P(S_2 \mid S_1)P(S_3 \mid S_2)$$

6 / 12

Figure: The Model

Agenda

- Motivation
- 2 Hidden Markov Models
 - Introduction
 - The Task
- 3 Example
- Problems
- Procedure
- Results
- Conclusion

Problems

For an observation sequence $O = O_1...O_T$, the three *canonical* HMM problems are:

- Evaluation Problem
 - Given a model, find probability of Observation Sequence
 - 2 Forward-Backward

Problems

For an observation sequence $O = O_1...O_T$, the three canonical HMM problems are:

- Evaluation Problem
- Inference Problem
 - **1** Given the Observation Sequence $O = O_1 ... O_T$ and the model λ , find the most likely state sequence
 - 2 Choose an optimal state sequence $Q = q_1 q_2 ... q_T$

7 / 12

Problems

For an observation sequence $O = O_1...O_T$, the three *canonical* HMM problems are:

- Evaluation Problem
- Inference Problem
- Learning Problem
 - How to model parameters in order to maximize probability of Observation Sequence?
 - We have to produce the actual model, the matrix

Agenda

- Motivation
- 2 Hidden Markov Models
 - Introduction
 - The Task
- 3 Example
- Problems
- Procedure
- Results
- Conclusion

Model $\lambda = (A, B, \pi)$ and observation sequence O

• Target, Prefix, Suffix and Background

Model $\lambda = (A, B, \pi)$ and observation sequence O

- Target, Prefix, Suffix and Background
- Lengthen, Split and Add

Model $\lambda = (A, B, \pi)$ and observation sequence O

- Target, Prefix, Suffix and Background
- Lengthen, Split and Add
- Shrinkage

Model $\lambda = (A, B, \pi)$ and observation sequence O

- Target, Prefix, Suffix and Background
- Lengthen, Split and Add
- Shrinkage
- Use dynamic programming to find the most likely state sequence

8 / 12

Model $\lambda = (A, B, \pi)$ and observation sequence O

- Target, Prefix, Suffix and Background
- Lengthen, Split and Add
- Shrinkage
- Use dynamic programming to find the most likely state sequence
- The Viterbi Algorithm

Figure: Viterbi

Procedure: The Details

• One HMM per class of information

Procedure: The Details

- One HMM per class of information
- Train on Labelled data

Procedure: The Details

- One HMM per class of information
- Train on Labelled data
- Background and Target States

Agenda

- Motivation
- 2 Hidden Markov Models
 - Introduction
 - The Task
- 3 Example
- Problems
- 5 Procedure
- 6 Results
- Conclusion

Results

	speaker	location	acquired	dlramt	title	company	conf	deadline	Average
Grown HMM	76.9	87.5	41.3	54.4	58.3	65.4	27.2	46.5	57.2
vs. SRV	+19.8	+16.0	+1.1	-1.6	_	_		_	+8.8
vs. Rapier	+23.9	+14.8	+12.5	+15.1	-11.7	+24.9	_	_	+13.3
vs. Simple HMM	+24.3	+5.6	+14.3	+5.6	+5.7	+11.1	+15.7	+6.7	+11.1
vs. Complex HMM	-2.1	+6.7	+7.5	-0.3	-0.3	+19.1	+0.0	-6.8	+3.0

Figure: Results

IE Seminar 10 / 12

Conclusion

- Automatic generation of HMMs for IE
- Very effective and popular
- Better alternatives exist today (eg: CRF)

IE Seminar 11 / 12

Sources

- Information Extraction with HMM Structures Learned by Stochastic Optimization. Dayne Freitag and Andrew McCallum. AAAI'00.
- ② A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Lawrence R. Rabiner.