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Motivation

Location -> Russisches Haus der Wissenschaft und
Kultur

Speaker -> Prof. Barbara Liskov

Document usually contains much irrelevant text
(sparse)

Find relations

Populate database slots with phrases from documents
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Introduction

Finite State Machines

A generative process
Next state depends only on current state
Given some text, recover the states that generated the text
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Why HMM

Reasons for using HMM
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The Task

Given:
a sequence of observations: Yes, Albert Einstein was born in Ulm.
a trained HMM

Find the most likely state sequence
Any words generated by the ’red state’ are ’names’
Viterbi Algorithm
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An Example

Prepare a matrix of conditional probabilities (pairwise)
Define Observation Sequence O = {S3, S3, S1, S1, S1, S2, S3}
Find the probability P(O | Model)
P(O | Model) = P(S3, S3, S1, S1, S1, S2, S3 | Model)
First order truncation by Markov property gives:

P(S3)
∏

P(qt | qt−1)
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An Example

Prepare a matrix of conditional probabilities (pairwise)
Define Observation Sequence O = {S3, S3, S1, S1, S1, S2, S3}
Find the probability P(O | Model)
P(O | Model) = P(S3, S3, S1, S1, S1, S2, S3 | Model)
First order truncation by Markov property gives:

P(S3)
∏

P(qt | qt−1)
P(S3)P(S3 | S3)P(S1 | S3)P(S1 | S1)P(S1 | S1)P(S2 | S1)P(S3 | S2)
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An Example

Figure: The Model
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Problems

For an observation sequence O = O1...OT , the three canonical HMM
problems are:

Evaluation Problem
1 Given a model, find probability of Observation Sequence
2 Forward-Backward

Inference Problem
Learning Problem
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Problems

For an observation sequence O = O1...OT , the three canonical HMM
problems are:

Evaluation Problem
Inference Problem

1 Given the Observation Sequence O = O1...OT and the model λ, find
the most likely state sequence

2 Choose an optimal state sequence Q = q1q2...qT

Learning Problem
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Problems

For an observation sequence O = O1...OT , the three canonical HMM
problems are:

Evaluation Problem
Inference Problem
Learning Problem

1 How to model parameters in order to maximize probability of
Observation Sequence ?

2 We have to produce the actual model, the matrix
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Procedure: HowTo

Model λ = (A,B, π) and observation sequence O

Target, Prefix, Suffix and Background

Lengthen, Split and Add
Shrinkage
Use dynamic programming to find the most likely state sequence
The Viterbi Algorithm
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Procedure: HowTo

Model λ = (A,B, π) and observation sequence O

Target, Prefix, Suffix and Background
Lengthen, Split and Add
Shrinkage
Use dynamic programming to find the most likely state sequence
The Viterbi Algorithm

Figure: Viterbi
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Procedure: The Details

One HMM per class of information

Train on Labelled data
Background and Target States
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Results

Figure: Results
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Conclusion

Automatic generation of HMMs for IE
Very effective and popular
Better alternatives exist today (eg: CRF)
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Sources

1 Information Extraction with HMM Structures Learned by Stochastic
Optimization. Dayne Freitag and Andrew McCallum. AAAI’00.

2 A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Lawrence R. Rabiner.
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