Scalable Uncertainty Management

02 - Incomplete Databases

Rainer Gemulla

April 27, 2012

Overview

In this lecture

- Refresh relational algebra
- What is an incomplete database?
- How can incomplete information be represented?
- How expressive are these representations?
- How to query incomplete databases?
- How to query their representations?

Not in this lecture

- Complexity
- Efficiency
- Applications

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Notation

- Set of attributes \(\alpha \) (countably infinite, totally ordered)
- Domain \mathscr{D} of values for the attributes (countably infinite)
- ullet Elements of ${\mathscr D}$ are called constants
- Per-attribute domain denoted dom(A)
- Set of *relation names* \mathscr{R} , each associated with a finite set of attributes $\alpha(R) \subset \mathscr{A}$ (countably infinite names per finite set of attributes)
- A schema is a finite set of attributes (symbols U, W, V)
- A relation schema is a relation name (symbols R, S)
- A database schema is a nonempty finite set of relation names

Example

- $\mathscr{D} = \{ a_1, b_1, c_1, a_2, \dots \}$
 - $dom(A) = \{a_1, a_2, \dots\}$
 - $\bullet \ \mathscr{R} = \{ R, S, \dots \}$
 - $\alpha(R) = ABC$; write R[ABC]

The Named Perspective

- Let $U \subset \mathscr{A}$ be a schema
- Tuple t over U is a function $t: U \to \mathcal{D}$ (also called U-tuple)
- $\alpha(t)$ denotes the schema of t
- *Value* of attribute $A \in U$ of *U*-tuple *t* is denoted t(A) or t.A
- Restriction of U-tuple t to values in $V \subseteq U$ is denoted t[V]
- Relation instance I(R) of R is a finite <u>set</u> of tuples over $\alpha(R)$
- Database instance I of database schema R maps each relation name in $R \in R$ to a relation instance I(R)

Example

 $\begin{array}{c|ccccc}
R & & & & & & & \\
\hline
A & B & C & & & & \\
t_1: & a_1 & b_2 & c_1 & & & \\
t_2: & a_2 & b_1 & c_1 & & & \\
\end{array}$

- t_1 is a tuple over ABC
- $t_1 = \langle A : a_1, B : b_2, C : c_1 \rangle = a_1 b_2 c_1$
- $\alpha(t_1) = ABC$
- $t_1(A) = t_1.A = a_1$
- $t_1[AB] = a_1b_2$ is a tuple over AB
- $I(R) = \{ t_1, t_2 \} = \{ a_1b_2c_1, a_2b_1c_1 \}$ is relation instance over ABC

The Unnamed Perspective

- Tuple t is an ordered n-tuple $(n \ge 0)$ of constants, i.e., $t \in \mathcal{D}^n$
- Value of i-th coordinate denoted t(i)
- Natural correspondence to named perspective
 - ▶ *n*-tuples can be viewed as functions with domain $\{1, ..., n\}$
 - lacktriangle U-tuples can be viewed as |U|-tuples by using total order of attributes

Example

$$R$$
 t_1 : $\begin{vmatrix} a_1 & b_2 & c_1 \\ a_2 & b_1 & c_1 \end{vmatrix}$

•
$$t_1 = \langle a_1, b_2, c_1 \rangle = a_1 b_2 c_1$$

•
$$t_1(1) = a_1$$

For now, we will mostly use the named perspective.

Relational algebra (1)

- Relation name R
- Single-tuple, single-attribute constant relations (VALUES clause)

$$\{\langle A:a\rangle\}$$

for
$$A \in \mathcal{A}$$
, $a \in dom(A)$

• <u>Selection</u> σ (WHERE clause)

$$\sigma_{A=a}(I) = \{ t \in I \mid t.A = a \}$$

$$\sigma_{A=B}(I) = \{ t \in I \mid t.A = t.B \}$$

for $A, B \in \alpha(I)$ and $a \in dom(A)$.

Example

$$\left\{ \begin{array}{cc} \langle A \colon a \rangle \right\} & \sigma_{A=a_1}(R) \\ A & B & C \end{array}$$

$$\begin{array}{c|cccc}
A & B & C \\
a_1 & b_2 & c_1 \\
a_1 & b_1 & c_1
\end{array}$$

 $\sigma_{A=a_3}(R)$ $A \mid B \mid C$

Relational algebra (2)

• <u>Projection</u> π (SELECT DISTINCT clause)

$$\pi_U(I) = \{ t[U] \mid t \in I \}$$

for
$$U \subseteq \alpha(R)$$

• Natural Join ⋈ (FROM clause)

$$I \bowtie J = \{ t \text{ over } U \cup V \mid t[U] \in I \land t[V] \in J \},$$

where
$$U = \alpha(I)$$
, $V = \alpha(J)$

Example



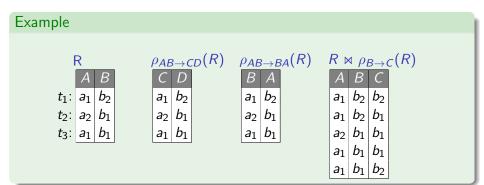
$R \bowtie S$					
Α	В	С	D		
a_1	b_2	c_1	d_1		
a_1	b_2	c_1	d_3		
a_1	b_1	C 1	d_1		
a ₁	b_1	C1	d ₃		

Relational algebra (3)

• <u>Renaming</u> of attributes ρ (AS clause)

$$\rho_{A_1...A_n \to B_1...B_n}(I) = \{ t \text{ over } V \mid (\exists u \in I)(\forall i \in [1, n]) \ u.A_i = t.B_i \},$$
where $\alpha(I) = \{ A_1, ..., A_n \}, \ V = \{ B_1, ..., B_n \}$

Short notation: only list attributes being renamed



Relational algebra (4)

• \underline{U} nion \cup (UNION clause)

$$I \cup J = \{ t \mid t \in I \lor t \in J \}$$

for
$$\alpha(I) = \alpha(J)$$

• <u>D</u>ifference — (EXCEPT clause)

$$I - J = \{ t \mid t \in I \land t \notin J \}$$

for
$$\alpha(I) = \alpha(J)$$

Example

ı	R		9	S		$R \cup$	5	R -	- <i>S</i>
	Α	В		Α	В	Α	В	Α	В
t_1 :	a_1	b_2	t ₄ :	a_1	b_2	a_1	b_2	a_1	b_1
<i>t</i> ₂ :	<i>a</i> ₂	b_1	t ₅ :	<i>a</i> ₂	b_1	<i>a</i> ₂	b_1		
<i>t</i> ₃ :	a_1	b_1	<i>t</i> ₆ :	<i>a</i> ₃	b_2	a_1	b_1		
						<i>a</i> ₃	<i>b</i> ₂		

\mathscr{L} -expression

Definition

Let $\mathscr{L} \subseteq \mathsf{SPJRUD}$ be an algebra. An \mathscr{L} -expression is any well-formed relational algebra expression composed of only relation names, constant relations, and the operations in \mathscr{L} . Algebra \mathscr{L} is *positive* if it does not contain the difference operator.

Example

- $\pi_A(\pi_{AB}(R))$ is a P-expression but not an S-expression
- $\sigma_{A=a}(R)$ is both an S-expression and a PS-expression, but not a P-expression
- R is an ∅-expression
- ullet All of the above expressions are positive, but R-S is not

Generalized Selection

- Relational algebra
 - $\sigma_{A=a}(R)$ for $A \in \alpha(R)$ and $a \in \text{dom}(A)$
 - $\sigma_{A=B}(R)$ for $A, B \in \alpha(R)$
 - ightharpoonup A = a and A = B are called *predicates*
- Generalized selection operators extend the class of predicates
- Positive conjunction

$$\sigma_{P_1 \wedge P_2}(R) = \sigma_{P_1}(\sigma_{P_2}(R))$$

• Positive disjunction (S^+)

$$\sigma_{P_1\vee P_2}(R)=\sigma_{P_1}(R)\cup\sigma_{P_2}(R)$$

• Negation (S^- , not positive)

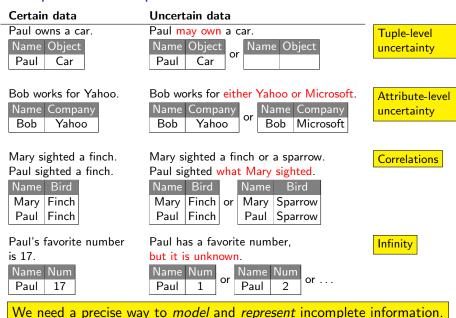
$$\sigma_{\neg P}(R) = R - \sigma_P(R)$$

• Note: Union and difference can simulate generalized selection but not vice versa! \rightarrow S⁺ and S⁻ variants of S

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Examples of incomplete information



14 / 7:

Examples of incomplete databases

Certain data	Uncertain data	
Paul owns a car.	Paul may own a car.	Tuple-level
Name Object	Name Object Name Object	uncertainty
Paul Car	Paul Car '	
Bob works for Yahoo.	Bob works for either Yahoo or Microsoft.	Attribute-level
Name Company	Name Company Name Company	uncertainty
Bob Microsoft	Bob Yahoo Bob Microsoft	amosi tamity
Mary sighted a finch.	Mary sighted a finch or a sparrow.	Correlations
Paul sighted a finch.	Paul sighted what Mary sighted.	
Name Bird	Name Bird Name Bird	
Mary Finch	{ Mary Finch, Mary Sparrow }	
Paul Finch	Paul Finch Paul Sparrow	
Paul's favorite number	Paul has a favorite number,	Infinity
is 17.	but it is unknown.	minicy
Name Num	Name Num Name Num	
Paul 17	Paul 1 Paul 2 ····	

An incomplete database is a set of "possible worlds" (i.e., DB instances).

Incomplete database

 $\mathcal{N}_U = \{ I \mid I \text{ is a (finite) relation instance over schema } U \}$

Definition

- An incomplete relation (i-relation) \mathcal{I} over U is a set of possible relation instances over U, i.e., $\mathcal{I} \subseteq \mathcal{N}_U$.
- An incomplete database (i-database) of a database schema \mathbf{R} maps each relation name $R \in \mathbf{R}$ to an incomplete relation over $\alpha(R)$.
- "Incomplete" refers to incomplete information
- ullet Focus on one relation o use i-relation and i-database synonymously
- Usual relation instances: $\mathcal{I} = \{I\}$
- No-information or zero-information database over U: $\mathcal{I} = \mathscr{N}_U$
- Incomplete databases can be *infinite* even though every relation instance is finite; e.g., $\{a_1, a_2, a_3, \dots\}$
- \mathcal{N}_U is (countably) infinite
- Set of all incomplete relations is uncountable

Representation system

- Incomplete databases are in general infinite
- Even if finite, they can be very large
- → Need compact representation!

Definition

A representation system consists of a set (a "language") \mathscr{T} whose elements we call *tables*, and a function Mod that associates to each table $T \in \mathscr{T}$ an incomplete database $\mathsf{Mod}(T)$.

- Again, we'll assume a single relation (reformulation for multiple relations possible)
- Mod(T) can be thought of as the set of database instances consistent with T (called the possible worlds)
- T can be viewed as logical assertion; Mod(T) are *models* of T

Codd tables

- Missing values are indicated by a single, untyped null value @
- Each occurrence of @ stands for a value of the attribute's domain
- Different occurrences may or may not refer to the same value

Example

SUPPLIER	LOCATION	PRODUCT	QUANTITY
Smith	London	Nails	@
Brown	@	Bolts	@
Jones	@	Nuts	40,000

Definition

An *@-tuple* on *U* is an extended tuple in which each attribute $A \in U$ takes values in dom(A) \cup { @ }. A *Codd table* is a finite set of @-tuples.

Models of Codd tables (1)

Definition

Under the *closed world interpretation*, a Codd table represents the set of relations obtained by replacing @-symbols by valid values.

Example

Suppose
$$dom(A) = \{ a_1, a_2 \}$$
 and $dom(B) = \{ b_1, b_2 \}$.

$$\mathsf{Mod} \left(\begin{bmatrix} a_1 & 0 \\ 0 & b_2 \end{bmatrix} \right) = \left\{ \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix} \right\}$$

Let $R^* \in RHS$ of the example:

- There is no certain tuple, i.e., $\nexists t \forall R^* \ t \in R^*$
- The first column contains a_1 , the second b_2
- R^* has at least one and at most 2 tuples
- a_2b_1 is not in R^*

...

Negative information can be represented.

Models of Codd tables (2)

Definition

Under the *open world interpretation*, a Codd table represents the set of relations obtained by replacing @-symbols by valid values and adding arbitrarily many additional tuples.

Equivalently, this means $S \in MOD(T) \iff (\exists R) R \in Mod(T) \land S \supseteq R$.

Example

$$\mathsf{MOD}\left(\begin{bmatrix} a_1 & 0 \\ 0 & b_2 \end{bmatrix}\right) = \left\{ \begin{bmatrix} a_1 & b_2 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}$$

Models of Codd tables (3)

Example

$$\mathsf{MOD}\left(\begin{bmatrix} a_1 & 0 \\ 0 & b_2 \end{bmatrix} \right) = \left\{ \begin{bmatrix} a_1 & b_2 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \\ a_2 & b_1 \end{bmatrix}$$

Let $R^* \in \mathsf{RHS}$ of the example:

- There is no certain tuple, i.e., $\nexists t \forall R^* \ t \in R^*$
- The first column contains a_1 , the second b_2
- R* has at least one tuple
- Every tuple is possible, i.e., $\forall t \exists R^* \ t \in R^*$
- ...

Negative information *cannot* be represented.

v-Tables

- Missing values are indicated by marked null values or variables
- V(A) = set of variables for attribute A (countably infinite)
- $V(A) \cap V(B) = \emptyset$ if $dom(A) \neq dom(B)$; otherwise V(A) = V(B)

Example

Course	Teacher	Weekday
Databases	X	Monday
Programming	у	Tuesday
Databases	X	Thursday
FORTRAN	Smith	Z

Definition

A v-tuple on U is an extended tuple in which each attribute $A \in U$ takes values in $dom(A) \cup V(A)$. A v-table is a finite set of v-tuples.

Models of v-tables

Example

Suppose $dom(A) = \{ a_1, a_2 \}, dom(B) = \{ b_1, b_2 \}, dom(C) = \{ c_1, c_2 \}.$

$$\operatorname{Mod} \begin{pmatrix} a_1 & x \\ y & b_2 \end{pmatrix} = \left\{ \begin{vmatrix} a_1 & b_1 \\ a_1 & b_2 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \begin{vmatrix} a_1 & b_2 \\ a_2 & b_2 \end{vmatrix} \right\}$$

$$\operatorname{Mod} \begin{pmatrix} c_1 & z \\ z & c_2 \end{pmatrix} = \left\{ \begin{vmatrix} c_1 & c_1 \\ c_1 & c_2 \end{vmatrix}, \begin{vmatrix} c_1 & c_2 \\ c_2 & c_2 \end{vmatrix} \right\}$$

$$\mathsf{Mod}\left(\left|z_{1}\right|z_{2}\right) = \left\{\left|\begin{array}{c|c} c_{1} & c_{1} \end{array}\right|, \left|\begin{array}{c|c} c_{1} & c_{2} \end{array}\right|, \left|\begin{array}{c|c} c_{2} & c_{1} \end{array}\right|, \left|\begin{array}{c|c} c_{2} & c_{2} \end{array}\right|\right\}$$

- $Var(T) = \{x \mid variable \ x \ occurs \ in \ T\}$
- Valuation $v : Var(T) \to \mathcal{D}$ assigns (valid) values to each variable
- \bullet v(T) is the relation obtained by replacing all variables by their values
- $Mod(T) = \{ v(T) \mid v \text{ is a valuation for } Var(T) \}$

Codd tables $\equiv v$ -tables in which each variable occurs at most once.

v-Tables and view updates

v-tables appear naturally when updating relational views.

Example						
	SL			SP		
	Supplier	Location		Supplier	Product	
	Smith	London		Smith	Nails	
	X	New York		X	Bolts	
	y	Los Angeles		y	Nuts	
		$\pi_{Location,F}$	$P_{\text{roduct}}(S)$	SL ⋈ SP)		
		Location	on Pro	duct		
		Londo	n N	ails		
		New Yo	ork B	olts		
		Los Ang	eles N	uts		

c-Tables

- c-tables are v-tables with an additional condition column con, indicating a "tuple existence condition" → conditional table
- ullet Conditions taken from a set $\mathscr C$ composed of
 - ▶ false, true
 - ▶ x = a for $x \in V(A)$ and $a \in dom(A)$ for some $A \in \mathcal{A}$
 - ▶ x = y for $x, y \in V(A)$ for some $A \in \mathcal{A}$
 - ▶ negation ¬, disjunction ∨, conjunction ∧
- ullet Positive conditions do not contain negations (set \mathscr{C}^+)

Example

Supplier	Location	Product	con
X	London	Nails	x = Smith
Brown	New York	Nails	$x \neq Smith$

Definition

A *c-tuple* t on U is an extended tuple over $U \cup \{con\}$ such that t[U] is a v-tuple and $t(con) \in \mathscr{C}$. A *c-table* is a finite set of c-tuples.

Models of c-Tables

Example

Suppose $dom(x) = dom(y) = \{1, 2\}.$

$$\operatorname{Mod} \begin{pmatrix} A & B & con \\ a_1 & b_1 & x = 1 \\ a_2 & b_1 & x \neq 1 \\ a_3 & b_2 & y = 1 \land x \neq 1 \\ a_4 & b_2 & y \neq 1 \lor x = 1 \end{pmatrix} = \begin{pmatrix} x1y1 & x1y2 & x2y1 & x2y2 \\ a_1 & b_1, & a_1 & b_1, & a_2 & b_1, & a_2 & b_1 \\ a_4 & b_2, & a_4 & b_2, & a_3 & b_2 \end{pmatrix}$$

$$= \left\{ \begin{array}{c|cccc} x1y1 & x1y2 & x2y1 & x2y2 \\ \hline a_1 & b_1 \\ a_4 & b_2 \end{array}, \begin{array}{c|cccc} a_1 & b_1 \\ a_4 & b_2 \end{array}, \begin{array}{c|cccc} a_2 & b_1 \\ a_4 & b_2 \end{array}, \begin{array}{c|cccc} a_2 & b_1 \\ a_3 & b_2 \end{array}, \begin{array}{c|cccc} a_2 & b_1 \\ a_4 & b_2 \end{array} \right\}$$

$$= \left\{ \begin{bmatrix} a_1 & b_1 \\ a_4 & b_2 \end{bmatrix}, \begin{bmatrix} a_2 & b_1 \\ a_3 & b_2 \end{bmatrix}, \begin{bmatrix} a_2 & b_1 \\ a_4 & b_2 \end{bmatrix} \right\}$$

- Valuation check conditions: $v(T) = \{ v(t[U]) \mid v(t(con)) = \text{true} \}$
- $Mod(T) = \{ v(T) \mid v \text{ is a valuation for } Var(T) \}$

v-tables are equivalent to c-tables in which each condition equals true.

Finite representation systems

Definition

In a finite-domain Codd-table, v-table, or c-table T, each variable $x \in Var(T)$ is associated with a finite domain dom(x).

- Important in practice
- Sometimes easier to study
- Basis for most probabilistic databases
- Incomplete database is finite (but attribute domain and no. variables still countably infinite)

Other finite representation systems

All of these models can be seen as special cases of finite-domain c-tables.

Example

In ?-tables, tuples are marked with ? if they may not exist.

$$\mathsf{Mod} \left(\begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix} ? \right) = \left\{ \begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix} \right\}$$

In or-set tables, t.A takes values in a finite subset of dom(A).

$$\mathsf{Mod} \left(\begin{bmatrix} a_1 & b_2 \\ a_1 & b_1 \| b_2 \\ a_2 & b_1 \| b_2 \end{bmatrix} \right) = \left\{ \begin{bmatrix} a_1 & b_2 \\ a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_2 \\ a_1 & b_2 \\ a_2 & b_2 \end{bmatrix} \right\}$$
Equivalent to finite-domain Codd tables.

Equivalent to Codd tables.

In a ?-or-set table, both are combined.

$$\mathsf{Mod}\left(\begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \| b_2 \end{bmatrix}?\right) = \left\{ \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \right\}$$

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Possible answer set semantics

Definition

The possible answer set to a query q on an incomplete database \mathcal{I} is the incomplete database $q(\mathcal{I}) = \{ q(I) \mid I \in \mathcal{I} \}$.

Example

Let
$$q(R) = \sigma_{A=a_1}(R)$$
.

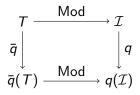
$$q\left(\left\{\begin{array}{c|c} a_1 & b_1 \\ a_1 & b_2 \end{array}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}, \begin{bmatrix} a_2 & b_1 \end{bmatrix}\right\}\right) = \left\{\begin{bmatrix} a_1 & b_1 \\ a_1 & b_2 \end{bmatrix}, \begin{bmatrix} a_1 & b_1 \\$$

Can we compute the representation of the possible answer set to a query from the representation of an incomplete database?

Strong representation systems

Definition

- A representation system is *closed* under a query language if for any query q and any table T there is a table $\bar{q}(T)$ that represents q(Mod(T)).
- If $\bar{q}(T)$ can always be computed from q and T, the representation system is called *strong* under the query language.



Intuitively, this means that the query language is "fully supported" by the representation system: query answers can be both computed and represented.

Normalized c-tables

Definition

A c-table T on U is normalized if $t[U] \neq t'[U]$ for all pairs of distinct c-tuples $t, t' \in T$.

Example

Normalized

$$\begin{vmatrix} a_1 & b_1 & x = 1 \lor x = 2 \\ a_2 & b_2 & \text{true} \end{vmatrix}$$

To normalize a c-table, repeatedly apply rule 3 (next slide).

We'll assume normalized c-tables throughout.

Mod-equivalence

Definition

Two tables T and T' are Mod-equivalent (or just equivalent) if Mod(T) = Mod(T'). We write $T \equiv_{Mod} T'$.

Mod-equivalent transformations on c-table T on U:

- Replace a condition by an equivalent condition; e.g., $(x = 1 \land y = 1) \lor (x \neq 1 \land y = 1)$ by y = 1
- **Q** Remove tuples in which condition is unsatisfiable; e.g., $x = 1 \land x = 2$
- **③** Merge tuples $t_1, ..., t_k ∈ T$ with $t_1[U] = ... = t_k[U]$ into a new tuple t' s.t. $t'[U] = t_1[U]$ and $t'.con = t_1.con ∨ ... ∨ t_k.con$.

Mod-equivalent transformations can be used to simplify c-tables.

c-Tables are strong

Theorem

c-tables, finite-domain c-tables, and Boolean c-tables are strong under $\mathcal{R}\mathcal{A}$.

Proof.

Given a \mathcal{RA} query q, construct \bar{q} by replacing in q the operators π , σ , \bowtie , \cup , and - by the respective operators $\bar{\pi}, \bar{\sigma}, \bar{\bowtie}, \bar{\cup}, \bar{-}$ of the c-table algebra. Then $v(\bar{q}(T)) = q(v(T))$ for all valuations v for Var(T).

- We assume and produce normalized c-tables
- Boolean c-table: all variables are boolean
- T(t) denotes t.con if $t \in T$; false otherwise
- T[] drops condition column of normalized c-table
- ullet Relational algebra operations on T[] treat variables as normal values

c-Projection

Definition

$$ar{\pi}_U(T)[] = \pi_U(T[])$$
 $ar{\pi}_U(T)(t) = \bigvee_{t' \in T \text{ s.t. } t'[U] = t} T(t')$

Example

Sightings

Name	Species	con
Anna	Guan	x = 1
Anna	Humming bird	x = 2
Bob	у	x = 3
Z	Guan	x = 4

$\bar{\pi}_{Name}(Sightings)$

Name	con
Anna	$x = 1 \lor x = 2$
Bob	x = 3
Z	x = 4

c-Selection

Definition

$$ar{\sigma}_P(T)[] = T[]$$

 $ar{\sigma}_P(T)(t) = T(t) \wedge P(t),$

where P(t) replaces in P each occurrence of an attribute A by t.A and evaluates subexpressions of form a = b (to false) and a = a (to true).

Example

Sightings

N S con

Α	G	x = 1
Α	Н	x = 2
В	y	x = 3
z	G	x = 4

 $\bar{\sigma}_{Species=Guan}(Sightings)$

Ν	S	con
Α	G	$x=1 \land true$
Α	Н	$x = 2 \land false$
В	y	$x = 3 \land y = G$
z	G	$x = 4 \land true$

 $\bar{\sigma}_{S=G}(Sightings)$ (simpl.)

N	S	con
Α	G	x = 1
В	y	$x = 3 \land y = G$
Z	G	x = 4

c-Union

Definition

$$(T_1 \bar{\cup} T_2)[] = T_1[] \cup T_2[]$$

 $(T_1 \bar{\cup} T_2)(t) = T_1(t) \vee T_2(t)$

Example

Sightings

٨	I	con		
Α	١	X	=	1
В	3	х	=	2
C		X	=	3

VIPs

Ν	con		
В	y = 1		
C	y=2		
z	y = 3		

 $\mathsf{Sightings}\,\bar{\cup}\,\mathsf{VIPs}$

N	con
Α	$x = 1 \lor false$
В	$x = 2 \lor y = 1$
C	$\begin{vmatrix} x = 2 \lor y = 1 \\ x = 3 \lor y = 2 \end{vmatrix}$
z	$false \vee y = 3$

SŪV (simplified)

Ν	con
Α	x = 1
В	$x = 2 \lor y = 1$
C	$x = 3 \lor y = 2$
z	y = 3

c-Join (1)

Definition

Set $U_1=\alpha(T_1)$, $U_2=\alpha(T_2)$, and denote by $V=U_1\cap U_2=A_1\dots A_k$ the join attributes. Let $V'=A'_1\dots A'_k$ be a fresh set of attributes (of matching domains). Set $T'_2=\rho_{V\to V'}(T_2)$ and $U'_2=\alpha(T'_2)$.

$$(T_1 oxtimes_{V o V'} T_2)[] = T_1[] \bowtie T_2'[]$$

 $(T_1 oximes_{V o V'} T_2)(t) = T_1(t[U_1]) \wedge T_2'(t[U_2']) \bigwedge_{A \in V} t.A = t.A'$
 $T_1 oximes_{T_2} = \bar{\pi}_{U_1 \cup U_2} (T_1 oximes_{V o V'} T_2').$

c-Join (2)

Example

Sightings

N	S	con
Α	G	x = 1
Α	Н	x = 2
z_1	Κ	x = 3
<i>z</i> ₂	L	x = 4

VIPs

N	con	
Α	y = 1	
В	y = 2	
<i>Z</i> 1	y = 3	

VIPs'

v 11	_
N'	con
Α	y = 1
В	y = 2
z_1	y = 3

Sightings $\bar{\bowtie}_{N \to N'} VIPs$

N	S	N′	con
Α	G	Α	$x = 1 \land y = 1 \land true$
Α	Н	Α	$x = 2 \land y = 1 \land true$
z_1	Κ	Α	$x = 3 \land y = 1 \land z_1 = A$
z_2	L	Α	$x = 4 \land y = 1 \land z_2 = A$
Α	G	В	$x = 1 \land y = 2 \land false$
Α	Н	В	$x = 2 \land y = 2 \land false$
z_1	Κ	В	$x = 3 \land y = 2 \land z_1 = B$
z_2	L	В	$x = 4 \land y = 2 \land z_2 = B$
Α	G	z_1	$x = 1 \land y = 3 \land z_1 = A$
Α	Н	z_1	$x = 2 \land y = 3 \land z_1 = A$
z_1	K	z_1	$x = 3 \land y = 3 \land z_1 = z_1$
<i>z</i> ₂	L	z_1	$x = 4 \land y = 3 \land z_2 = z_1$

c-Join (3)

Example (continued)

Sightings

Ν	S	con
Α	G	x1
Α	Н	x2
z_1	K	x3
Z 2	L	x4

/IPs	VIPs
	/

IV	con	/V	con
Α	<i>y</i> 1	Α	
В	<i>y</i> 2	В	<i>y</i> 2
7.	1/3	7.	v/3

Sightings $\bar{\bowtie}_{N \to N'}$ VIPs (simplified)

<u>a.88a/∧⇒//, (a</u>				
Ν	S	N'	con	
Α	G	Α	<i>x</i> 1 <i>y</i> 1	
Α	Н	Α	x2y1	
z_1	Κ	Α	$x3y1 \wedge z_1 = A$	
Z 2	L	Α	$x4y1 \wedge z_2 = A$	
z_1	Κ	В	$x3y2 \wedge z_1 = B$	
Z 2	L	В	$x4y2 \wedge z_2 = B$	
Α	G	z_1	$x1y3 \wedge z_1 = A$	
Α	Н	z_1	$x2y3 \wedge z_1 = A$	
z_1	K	<i>z</i> ₁	x3y3	
Z 2	L	z_1	$x4y3 \wedge z_2 = z_1$	

Sightings™VIPs (simplified)

- 0		8° (° 1° ° °)
Ν	5	con
Α	G	$x1y1 \lor (x1y3 \land z_1 = A)$
Α	Н	$x2y1 \lor (x2y3 \land z_1 = A)$
z_1	K	$(x3y1 \land z_1 = A) \lor (x3y2 \land z_1 = B) \lor x3y3$
z ₂	L	$(x4y1 \land z_2 = A) \lor (x4y2 \land z_2 = B) \lor (x4y3 \land z_2 = z_1)$

c-Difference

Definition (c-Table difference)

$$(T_1 - VIPs)[] = T_1[]$$

 $(T_1 - VIPs)(t) = T_1(t) \bigwedge_{t' \in VIPs} \neg(t = t' \land VIPs(t'))$

Example

Sig	hting	gs	VIPs		Sightings—VIPs (simplified)		
A	con		Α	con		Α	con
Α	x1		В	<i>y</i> 1		Α	$x1 \land \neg(z = A \land y3)$
В	x2		C	<i>y</i> 2		В	$x2 \land \neg y1 \land \neg(z = B \land y3)$
С	<i>x</i> 3		z	<i>y</i> 3		C	$x3 \land \neg y2 \land \neg(z = C \land y3)$

Sightings-VIPs

А	6011
Α	$x1 \land \neg (false \land y1) \land \neg (false \land y2) \land \neg (z = A \land y3)$
В	$x2 \land \neg(true \land y1) \land \neg(false \land y2) \land \neg(z = B \land y3)$
C	$x3 \land \neg (false \land y1) \land \neg (true \land y2) \land \neg (z = C \land y3)$
_	

Many representation systems are not closed

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables, ?-tables, or-set tables, and ?-or-set tables are not closed under \mathcal{RA} .

Proof.

By counterexample. Consider:

Codd tables / v-tables (standard and finite-domain), or-set tables,
 ?-or-set tables:

$$\sigma_{A\neq B} \begin{pmatrix} A & B \\ x & y \end{pmatrix}$$

where dom(x) = dom(y) and |dom(x)| > 1.

• ?-tables:

We will see: these systems are still very useful!

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Expressive power

Key question: How expressive is a given representation system?

Theorem

Neither Codd tables, v-tables, nor c-tables can represent all possible incomplete databases.

Proof.

Set of incomplete databases is uncountable, set of tables is countable.

- . . .
- ullet E.g., zero-information database \mathcal{N}_U cannot be represented with closed world assumption
- Need to study weaker forms of expressiveness
 - **1** $\mathcal{R}\mathcal{A}$ -completeness
 - 2 Finite completeness

\mathcal{RA} -definability (1)

- $\mathcal{Z}_V = \{ \{ t \} \mid \alpha(t) = V \}$
- ullet \mathcal{Z}_V is the minimal-information database for instances of cardinality 1

Example

Let
$$V = B_1B_2$$
, where dom $(B_1) = dom(B_2) = \{1, 2, ...\}$.

$$\mathcal{Z}_{V} = \left\{ \begin{array}{c|c} B_{1} & B_{2} \\ \hline 1 & 1 \end{array}, \begin{array}{c|c} B_{1} & B_{2} \\ \hline 1 & 2 \end{array}, \begin{array}{c|c} B_{1} & B_{2} \\ \hline 2 & 1 \end{array}, \begin{array}{c|c} B_{1} & B_{2} \\ \hline 2 & 2 \end{array}, \dots \right\}$$

Definition

An incomplete database \mathcal{I} over U is \mathcal{RA} -definable if there exists a relational algebra query q such that $\mathcal{I} = q(\mathcal{Z}_V)$ for some V.

\mathcal{RA} -definability (2)

Theorem

If \mathcal{I} is representable by some c-table T, then \mathcal{I} is \mathcal{RA} -definable.

Proof.

Let $\alpha(T) = U = A_1 \dots A_n$. Let x_1, \dots, x_k denote the variables in T and let $V = B_1 \dots B_k$ be a set of attributes such that $dom(B_j) = dom(x_j)$. Consider the query

$$q(Z) = \bigcup_{t \in T} \pi_U \left(\sigma_{\rho_{x_1...x_k \to B_1...B_k}(t.con)} \left[A_1(t) \bowtie \cdots \bowtie A_n(t) \bowtie Z \right] \right),$$

where

$$A_i(t) = \begin{cases} \{ \langle A_i : a \rangle \} & \text{if } t.A_i = a \\ \rho_{B_j \to A_i}(\pi_{B_j}(Z)) & \text{if } t.A_i = x_j \end{cases}$$

We have $q(\mathcal{Z}_V) = \mathcal{I}$.

\mathcal{RA} -definability (3)

Example

T

$\overline{A_1}$	A_2	con
a_1	b_1	x = 1
<i>a</i> ₂	b_1	$x \neq 1$
<i>a</i> ₃	b_2	$y = 1 \land x \neq 1$
<i>a</i> ₄	b_2	$x = 1$ $x \neq 1$ $y = 1 \land x \neq 1$ $y \neq 1 \lor x = 1$

$$\mathcal{Z}_{V} = \left\{ \begin{bmatrix} B_{1} & B_{2} \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} B_{1} & B_{2} \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} B_{1} & B_{2} \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} B_{1} & B_{2} \\ 2 & 2 \end{bmatrix}, \dots \right\}$$

\mathcal{RA} -completeness

Definition

A representation system is \mathcal{RA} -complete if it can represent any \mathcal{RA} -definable incomplete database.

Theorem

c-tables are \mathcal{RA} -complete.

Proof.

Let \mathcal{I} be \mathcal{RA} -definable using query $q(\mathcal{Z}_V)$. Let T be a c-table representing \mathcal{Z}_V , i.e., set

$$T = \begin{bmatrix} B_1 & B_2 & \dots & B_k & con \\ x_1 & x_2 & \dots & x_k & true \end{bmatrix}$$

Since c-tables are closed under \mathcal{RA} , $\bar{q}(T)$ produces a c-table that represents \mathcal{I} .

Finite completeness (1)

Definition

A representation system is *finitely complete* if it can represent any finite incomplete database.

Theorem

Boolean c-tables (and hence finite-domain and standard c-tables) are finitely complete.

Corollary

Every \mathcal{RA} -complete representation system is finitely complete.

Finite completeness (2)

Proof.

Let $\mathcal{I} = \{I^0, \dots, I^{n-1}\}$ be a finite incomplete database and assume wlog that $n = 2^m$ for some positive integer m. Let $\mathbf{x} = (x_{m-1}, \dots, x_0)$ be a vector of boolean variables. There are 2^m possible values of \mathbf{x} ; assign a unique one to each I^w , $w \in \{0, \dots, n-1\}$. Let $c_w(\mathbf{x})$ be a Boolean formula that checks whether \mathbf{x} takes the value assigned to I^w . Then set

$$T[] = \bigcup_{w} I^{w}$$
 $T(t) = \bigvee_{w \text{ s.t. } t \in I^{w}} c_{w}(\mathbf{x}).$

We have
$$Mod(T) = \mathcal{I}$$
.

Finite completeness (3)

Example

$$\mathcal{I} = \left\{ \begin{bmatrix} 1^0 & 1^1 & 1^2 & 1^3 \\ A & B & A & B \\ a_1 & b_1 \end{bmatrix}, \begin{bmatrix} A & B & A & B \\ a_2 & b_2 & A_1 & b_1 \\ a_3 & b_3 \end{bmatrix}, \begin{bmatrix} A & B & A & B \\ a_1 & b_1 & A_2 & b_2 \end{bmatrix}, \begin{bmatrix} A & B & A & B \\ A & B & A_1 & B_1 \\ A & A & B & A_2 & B_2 \end{bmatrix} \right\}$$

Instance	$\mathbf{x}=(x_1,x_0)$	$c_w(\mathbf{x})$
10	(F,F)	$\neg x_1 \wedge \neg x_0$
I^1	(F,T)	$\neg x_1 \wedge x_0$
I^2	(T,F)	$x_1 \wedge \neg x_0$
<i>I</i> ³	(T,T)	$x_1 \wedge x_0$

$$T = \begin{bmatrix} A & B & con \\ a_1 & b_1 & (\neg x_1 \wedge \neg x_0) \vee (x_1 \wedge \neg x_0) \\ a_2 & b_2 & (\neg x_1 \wedge x_0) \vee (x_1 \wedge \neg x_0) \\ a_3 & b_3 & (\neg x_1 \wedge x_0) \end{bmatrix}$$

Incompleteness results

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables, ?-tables, or-set tables, and ?-or-set tables are not finitely complete (and thus not \mathcal{RA} -complete).

Proof.

By counterexample. Consider the finite incomplete database

$$\mathcal{I} = \left\{ \begin{bmatrix} A_1 & A_2 \\ a_1 & a_1 \end{bmatrix}, \begin{bmatrix} A_1 & A_2 \\ a_2 & a_3 \end{bmatrix} \right\}.$$

Due to their simplicity (and completion properties), these representation systems are very useful in practice. This motivates the study of weak representation systems.

A note on compactness

In practice, compactness of representation is important!

Example

Let x_1, \ldots, x_k be variables with domain $\{1, 2, \ldots, n\}$. Consider the finite-domain v-table

$$\begin{array}{c|cccc} A_1 & A_2 & \dots & A_k \\ \hline x_1 & x_2 & \dots & x_k \end{array}$$

The corresponding Boolean c-table has n^k rows!

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Certain answer tuple semantics (1)

Definition

Let $\mathcal I$ be an incomplete database and q a relational algebra query. The q-information $\mathcal I^q$ is given by the set of certain tuples in $q(\mathcal I)$, i.e., $\mathcal I^q = \cap_{I \in q(\mathcal I)} I$. Note that $\mathcal I^q$ is a certain database; it constitutes the query result under the *certain answer tuple semantics*.

Example

$$\bullet \ \, \mathcal{I} = \left\{ \begin{matrix} I^1 \\ \hline \text{Anna | Guan} \\ \hline \text{Bob | Guan} \end{matrix}, \begin{matrix} I^2 \\ \hline \text{Anna | Guan} \\ \hline \text{Bob | Hb} \end{matrix} \right\}$$

- ullet $\mathcal{I}^R = I^1 \cap I^2 = \boxed{\mathsf{Anna} \ \mathsf{Guan}}$
- ullet $\mathcal{I}^{\pi_{\mathcal{S}}(R)}=\pi_{\mathcal{S}}(I^1)\cap\pi_{\mathcal{S}}(I^2)=$ Guan

Different relational queries expose more or less information about certain tuples!

Certain answer tuple semantics (2)

Definition

Let T be a table and q a relational algebra query. The q-information T^q is given by the set of certain tuples in $q(\operatorname{Mod}(\mathcal{I}))$, i.e., $T^q = \cap_{I \in q(\operatorname{Mod}(\mathcal{I}))} I$. Note that T^q is a certain database.

Example

Suppose $dom(x) = \{A, B\}$ and $dom(y) = \{G, H\}$.

$$\mathsf{Mod}\left(\begin{bmatrix}\mathsf{A} & \mathsf{y} \\ \mathsf{x} & \mathsf{H}\end{bmatrix}\right) = \left\{\begin{bmatrix}\mathsf{A} & \mathsf{G} \\ \mathsf{A} & \mathsf{H}\end{bmatrix}, \begin{bmatrix}\mathsf{A} & \mathsf{G} \\ \mathsf{B} & \mathsf{H}\end{bmatrix}, \begin{bmatrix}\mathsf{A} & \mathsf{H} \\ \mathsf{B} & \mathsf{H}\end{bmatrix}\right\}$$

- $T^R = \emptyset$
- $T^{\pi_N(R)} = \{A\}$
- $T^{\pi_S(R)} = \{ H \}$

Intuition: Uncertain tuples that remain after "applying" q are omitted.

\mathscr{L} -equivalency

Definition

Two sets of incomplete databases $\mathcal I$ and $\mathcal J$ are $\mathscr L$ -equivalent, denoted $\mathcal I \equiv_{\mathscr L} \mathcal J$ if $\mathcal I^q = \mathcal J^q$ for all $\mathscr L$ -expressions q.

Example

- ullet $\mathcal I$ and $\mathcal J$ are \emptyset -equivalent
- But: \mathcal{I} and \mathcal{J} are not P-equivalent (consider π_A)

 \mathscr{L} -equivalent databases are indistinguishable w.r.t. the certain tuples in the query result.

More examples of \mathscr{L} -equivalency

Example

$$\mathcal{I} = \left\{ \begin{array}{c|c} a_1 & b_1 & c_1 \\ \hline a_1 & b_1 & c_1 \\ \end{array}, \begin{array}{c|c} a_1 & b_2 & c_2 \\ a_2 & b_1 & c_2 \\ \end{array} \right\}$$

$$\mathcal{J} = \left\{ \begin{array}{c|c} a_1 & b_1 & c_1 \\ \hline a_2 & b_1 & c_3 \\ \end{array} \right\}$$

- ullet $\mathcal I$ and $\mathcal J$ are \emptyset -equivalent
- ullet ${\mathcal I}$ and ${\mathcal J}$ are P-equivalent
- ullet ${\mathcal I}$ and ${\mathcal J}$ are J-equivalent
- \mathcal{I} and \mathcal{J} are not PJ-equivalent; e.g., set $q(R) = \pi_{AB}(\pi_{AC}(R) \bowtie \pi_{BC}(R))$.

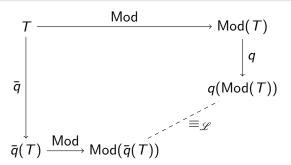
Then $a_1b_1 \in \mathcal{I}^q$ but $a_1b_1 \notin \mathcal{J}^q$.

Weak representation system

Definition

A representation system is *weak* under a query language \mathcal{L} if for any \mathcal{L} -expression q and any table T there is a computable table $\bar{q}(T)$ that \mathcal{L} -represents $q(\mathsf{Mod}(T))$.

$$\mathsf{Mod}(\bar{q}(T)) \equiv_{\mathscr{L}} q(\mathsf{Mod}(T)).$$



Weak representation systems correctly determine the certain tuples under \mathscr{L}

PS on Codd-Tables

Theorem

Codd tables are weak under PS.

$$\bar{\sigma}_P(T) = \{ t \mid t \in T \text{ and } P(v(t)) \text{ for all valuations for } Var(T) \}$$

 $\bar{\pi}_U(T) = \pi_U(T)$

Example								
	T			$\bar{\sigma}_{N=B}(T)$	$ar{\pi}_{\mathcal{NS}}(\mathcal{T})$	$\bar{\pi}_{NS}(\bar{\sigma}_{N=B}(T))$		
	Name	Species	Location	NSL	N S	N S		
	Anna	Guan	0	B K @	A G	BK		
	@	@	Paris		@ @			
	Bob	Kingf.	@		ВК			

These are single-relation queries!

PJ/PSU on Codd-Tables

Theorem

Codd tables are not weak under PJ or PSU.

Proof (for PJ).

- Consider Codd table T and set I = Mod(T)
- Set $q(R) = \pi_{AC}(R) \bowtie \pi_B(R)$
- c-table $T_{q,c}$ represents $\mathcal{I}_q = q(\mathsf{Mod}(T))$.
- ullet Suppose Codd table T_q PJ-represents \mathcal{I}_q
- Consider $q' = \pi_{AC}(\pi_{AB}(R) \bowtie \pi_{BC}(R))$
- For each valuation v, T_q must contain tuples t_1, t_2 s.t. $t_1.A = a_2$, $t_2.C = c_1$, and $v(t_1).B = v(t_2).B$
 - $\begin{array}{ll} \bullet & t_1=t_2 \text{, then } a_2c_1 \in T_q^{\pi_{AC}} \text{ but } a_2c_1 \notin \mathcal{I}_q^{\pi_{AC}} \\ & \to \mbox{$\frac{\ell}{2}$} \end{array}$
 - ② $t_1 \neq t_2$, then $t_1.B = t_2.B = b$, then $a_2b \in T_q^{\pi_{AB}}$ for some b but $\mathcal{I}_q^{\pi_{AB}} = \emptyset \rightarrow \cancel{\xi}$

 $T_{a,c}$

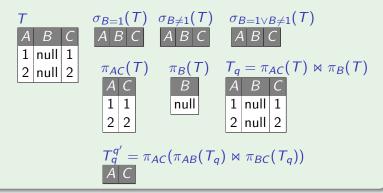
Null values in SQL

SQL null semantics is related but not equal to Codd tables \rightarrow Be careful!

Example

On PostgreSQL.

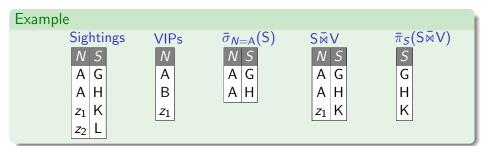
- $\sigma_{B=1}(T) \rightarrow \text{SELECT} * \text{FROM T WHERE B=1}$
- ullet $\pi_{AC}(T)
 ightarrow \mathtt{SELECT}$ DISTINCT A, C FROM T



Positive $\mathcal{R}\mathcal{A}$ on v-Tables

Theorem

v-tables are weak under the positive \mathcal{RA} . To obtain \bar{q} , simply treat variables as distinct constants and use standard \mathcal{RA} operators.



Easy to do in an off-the-shelf relational database system!

PS⁻ on v-tables

Theorem

v-tables are not weak under PS⁻.

Proof.

- Consider v-table T and set $\mathcal{I} = Mod(T)$
- Set $q(R) = \sigma_{(A=a_1 \land B=b) \lor (A=a_2 \land B \neq b)}(R)$
- c-table $T_{q,c}$ represents $\mathcal{I}_q = q(\mathsf{Mod}(T))$.
- Suppose v-table T_q PS $^-$ -represents \mathcal{I}_q
- Consider $q'(R) = \pi_C(\sigma_{A=a_1 \vee A=a_2}(R))$

 - ② $(\forall t \in T_q) t.A \in Var(T)$, then $T_q^{q'} = \emptyset \rightarrow \emptyset$

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Algebraic Completion

Definition

Let $(\mathcal{T},\mathsf{Mod})$ be a representation system and \mathscr{L} be a query language. The representation system obtained by $\mathit{closing}\,\,\mathscr{T}\,\,\mathit{under}\,\,\mathscr{L}$ is the set of tables $\{\,(T,q)\mid T\in\mathscr{T}, q\in\mathscr{L}\,\}$ and function $\mathsf{Mod}(T,q)=q(\mathsf{Mod}(T))$.

Example

No Codd table for \mathcal{I} , but closure of f.d. Codd tables under JR suffices.

$$\mathcal{I} = \left\{ \begin{vmatrix} A & B \\ a_1 & a_1 \end{vmatrix}, \begin{vmatrix} A & B \\ a_2 & a_2 \end{vmatrix} \right\}, \quad T = \begin{vmatrix} A \\ a_1 & a_2 \end{vmatrix}, \quad q(R) = R \bowtie \rho_{A \to B}(R)$$

- Think of q as a view over T
- View result need not be represented directly

Algebraic completion extends the power of a representation system with the power of a query language.

$\mathcal{R}\mathcal{A}$ -completion for Codd tables

Theorem

The closure of Codd tables under SPJRU is \mathcal{RA} -complete.

Proof.

- ullet c-tables are $\mathcal{R}\mathcal{A}$ -complete
- Every c-table T can be \mathcal{RA} -defined by an SPJRU-query q on \mathcal{Z}_V (see slide 46)
- ullet \mathcal{Z}_V can be represented as a Codd table T'

$$T' = \begin{bmatrix} B_1 & B_2 & \dots & B_k \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \end{bmatrix}$$

• $Mod(T', q) = q(Mod(T')) = q(\mathcal{Z}_V) = Mod(T)$

\mathcal{RA} -completion for v-tables

Theorem

The closure of v-tables under S^+P is \mathcal{RA} -complete.

Proof.

Let $T = \{t_1, \dots, t_m\}$ be a c-table on $A_1 \dots A_n$ and let $Var(T) = \{x_1, \dots, x_k\}$. Express T in terms of v-table T' and query q:

$$T' = \begin{bmatrix} A_1 & \dots & A_n & B_1 & \dots & B_k & C \\ t_1.A_1 & \dots & t_1.A_n & x_1 & \dots & x_k & 1 \\ t_2.A_1 & \dots & t_2.A_n & x_1 & \dots & x_k & 2 \\ \vdots & \vdots \\ t_m.A_1 & \dots & t_m.A_n & x_1 & \dots & x_k & m \end{bmatrix}$$

$$q(R) = \pi_{A_1...A_n}(\sigma_{\bigvee_{i=1}^m (\psi_i \wedge C=i)}(R))$$

where ψ_i is obtained from $t_i.con$ by replacing all variables x_j by the corresponding attribute B_i .

Finite completion results

Theorem

The following closures are finitely complete:

- or-set-tables under PJ,
- 2 finite v-tables under PJ or S^+P ,
- \odot ?-tables under $\mathcal{R}\mathcal{A}$.

Proof.

Try it yourself. Hints: Don't start with a c-table, but an incomplete database \mathcal{I} . You need two tables for cases 1 and 2; case 3 is quite tricky.

Outline

- Refresher: Relational Algebra
- 2 Incomplete Databases
- 3 Strong representation systems
- 4 Completeness
- 5 Weak Representation Systems
- 6 Completion
- Summary

Lessons learned

- Incomplete databases are sets of possible databases
- Representation systems are concise descriptions of incomplete databases
- Queries can be analyzed in terms of
 - Possible answer sets (strong representation)
 - ② Certain answer tuples (weak representation)
 - Possible answer tuples (finite i-databases only)
- Codd tables add null values; weak under PS
 - → Be careful with null values in SQL
- ullet v-tables add variables; weak under positive $\mathcal{R}\mathcal{A}$
- \bullet c-tables add variables and conditions; strong under $\mathcal{R}\mathcal{A}$ and $\mathcal{R}\mathcal{A}\text{-complete}$
- \mathcal{RA} -views on Codd tables are \mathcal{RA} -complete \rightarrow key property!

Suggested reading

- Charu C. Aggarwal (Ed.)
 Managing and Mining Uncertain Data (Chapter 2)
 Springer, 2009
- Dan Suciu, Dan Olteanu, Christopher Ré, Christoph Koch Probabilistic Databases (Chapter 2)
 Morgan & Claypool, 2011
- Serge Abiteboul, Richard Hull, Victor Vianu
 Foundations of Databases: The Logical Level (Chapter 19)
 Addison Wesley, 1994
- Tomasz Imieliński, Witold Lipski, Jr.
 Incomplete Infomation in Relational Databases
 Journal of the ACM, 31(4), Oct. 1984