Scalable Uncertainty Management

02 — Incomplete Databases

Rainer Gemulla

April 27, 2012

Overview

In this lecture
@ Refresh relational algebra
What is an incomplete database?
How can incomplete information be represented?
How expressive are these representations?

How to query incomplete databases?

e 6 6 o6 o

How to query their representations?

Not in this lecture
o Complexity
o Efficiency

@ Applications

)

N

Outline

@ Refresher: Relational Algebra

3/72

Notation

Set of attributes </ (countably infinite, totally ordered)

Domain & of values for the attributes (countably infinite)

Elements of & are called constants

Per-attribute domain denoted dom(A)

Set of relation names Z, each associated with a finite set of attributes
a(R) C 7 (countably infinite names per finite set of attributes)

A schema is a finite set of attributes (symbols U, W, V)

A relation schema is a relation name (symbols R, S)

@ A database schema is a nonempty finite set of relation names

Example

o ={AB,C,D,...} =ABCD...
2 ={a,bi,c,a,...}

dom(A) ={a1,a,...}
Z={R,S,...}

a(R) = ABC; write R[ABC]

A C

® 6 6 6 o

The Named Perspective

Let U C & be a schema

Tuple t over U is a function t : U — 2 (also called U-tuple)

a(t) denotes the schema of t

Value of attribute A € U of U-tuple t is denoted t(A) or t.A
Restriction of U-tuple t to values in V C U is denoted t[V]
Relation instance I(R) of R is a finite set of tuples over a(R)
Database instance | of database schema R maps each relation name
in R € R to a relation instance I(R)

Example

t1 is a tuple over ABC

t1 =(A:a1,B: by, C: 1) = a1y

a(t) = ABC

ti(A) = t.A=a

t1[AB] = a1 b is a tuple over AB

I(R) ={ti,tr} = {aiboci,axbicy } is relation instance over ABC

v

5/72

The Unnamed Perspective

@ Tuple t is an ordered n-tuple (n > 0) of constants, i.e., t € Z"

@ Value of i-th coordinate denoted t(/)
@ Natural correspondence to named perspective
» n-tuples can be viewed as functions with domain {1,...,n}

» U-tuples can be viewed as |U|-tuples by using total order of attributes

Example

ty:
to:

R

al
an

b
b1

€1
€1

@ t; = (a1, br,c) = aihrc1

o tl(l) =a

‘ For now, we will mostly use the named perspective.

6/72

Relational algebra (1)

@ Relation name R
e Single-tuple, single-attribute constant relations (VALUES clause)

{(A:a)}
for A€ o/, a € dom(A)
o Selection o (WHERE clause)

oa=a(l)={tel|tA=a}
oa=g(l)={tel|tA=tB}
for A, B € a(l) and a € dom(A).

{(A:a)}
2]

Example

R

O'A:al(R) O'A:a3(R)

Relational algebra (2)
® Projection m (SELECT DISTINCT clause)
my(l) = {tlU] [tel}

for U C o(R)
e Natural Join x (FROM clause)

I'wJ={tover UUV |t[UlelNt[V]eJ},
where U = «(l), V = a(J)

Example
R S mac(R)
A B C A C
ti:|ai| b2 | c1 ty: ai|c
tilax| b1l ts:| az| do az|

tz:|a1|b1|c1 te:| a1 | ds

/72

Relational algebra (3)

@ Renaming of attributes p (AS clause)
pAl.',A"ﬁBIV.'Bn(/) = { t over V | (Elu € /)(\V/I S [1, n]) uA;=t.B; },

where a(l) ={ A1,...,An}, V={By,...,Bn}

@ Short notation: only list attributes being renamed

Example

R pa—cp(R) pag—Ba(R) R X pg_c(R)

ti:|a1| b2 a1 | bz
tr:|ar | by az| by
t3:| a1 by ai| by

Relational algebra (4)
@ Union U (UNION clause)

luJ={t|telvtel}
for a(l) = a(J)
e Difference — (EXCEPT clause)
I —J={t|telnt¢]}
for a(l) = a(J)

Example
S RUS R-S
A B Al B
ty:|a1| by
ts:|a | b1

ts:|az| b

10/72

L -expression

Definition
Let £ C SPJRUD be an algebra. An Z-expression is any well-formed
relational algebra expression composed of only relation names, constant

relations, and the operations in .. Algebra .Z is positive if it does not
contain the difference operator.

Example
o ma(mag(R)) is a P-expression but not an S-expression

@ 0a—,(R) is both an S-expression and a PS-expression, but not a
P-expression

@ R is an (l-expression

@ All of the above expressions are positive, but R — S is not

11/72

Generalized Selection

o Relational algebra
» 0a=s(R) for A€ a(R) and a € dom(A)
» oa—g(R) for A,B € a(R)
» A= aand A= B are called predicates

Generalized selection operators extend the class of predicates

Positive conjunction

UPI/\PZ(R) =0p (UP2(R))

Positive disjunction (ST)
UP1VP2(R) = UPI(R) U UPz(R)

Negation (S, not positive)

o-p(R) = R — op(R)

Note: Union and difference can simulate generalized selection but not
vice versal — St and S~ variants of S

Outline

9 Incomplete Databases

13/72

Examples of incomplete information

Certain data

Uncertain data

Paul owns a car.
Name Object

Paul | Car |

Bob works for Yahoo.
Name Company

Mary sighted a finch.
Paul sighted a finch.
Name Bird

Mary |Finch

Paul |Finch
Paul's favorite number
is 17.

Name Num
| Paul [17 |

Paul may own a car. Tuple-level

Name Object Name Object uncertainty
or
Paul | Car

Bob works for either Yahoo or Microsoft. | Attribute-level

Name Company ; Name Company uncertainty
Bob | Yahoo |°| Bob |Microsoft

Mary sighted a finch or a sparrow.

Paul sighted what Mary sighted.
Name Bird Name Bird

Mary |Finch | or | Mary | Sparrow
Paul |Finch Paul |Sparrow

Paul has a favorite number,

but it is unknown.

Paul | 1 |®[Paul| 2 |°

|We need a precise way to model and represent incomplete information.

7/ 72

Examples of incomplete databases

Certain data Uncertain data

Paul owns a car. Paul may own a car.

Name Object Name Object [l§ Name Object
m Paul | Car |

Tuple-level
uncertainty

Attribute-level
uncertainty

Bob works for Yahoo. Bob works for either Yahoo or Microsoft.
Name Company Name Company l§ Name Company
Bob | Yahoo || Bob [Microsoft
Mary sighted a finch. Mary sighted a finch or a sparrow.

Paul sighted a finch. Paul sighted what Mary sighted.

Name Bird Name Bird

Mary | Finch Mary |Finch|, | Mary |Sparrow
Paul |Finch Paul |Finch| | Paul |Sparrow

Paul's favorite number Paul has a favorite number,
is 17. but it is unknown.

Name Num
m Paul | 1 [|Paul| 2 |

Correlations

An incomplete database is a set of “possible worlds” (i.e., DB instances).

Incomplete database

Ay ={11]1is a (finite) relation instance over schema U}

Definition

An incomplete relation (i-relation) Z over U is a set of possible
relation instances over U, i.e., T C A.

@ An incomplete database (i-database) of a database schema R maps
each relation name R € R to an incomplete relation over a(R).

@ “Incomplete” refers to incomplete information

@ Focus on one relation — use i-relation and i-database synonymously

@ Usual relation instances: Z = {1/}

@ No-information or zero-information database over U: T = A,

@ Incomplete databases can be infinite even though every relation
instance is finite; e.g., {,, , .. }

e M is (countably) infinite

@ Set of all incomplete relations is uncountable

16

72

Representation system

@ Incomplete databases are in general infinite
@ Even if finite, they can be very large

— Need compact representation!

Definition
A representation system consists of a set (a “language”) .7 whose

elements we call tables, and a function Mod that associates to each table
T € .7 an incomplete database Mod(T).

@ Again, we'll assume a single relation
(reformulation for multiple relations possible)

@ Mod(T) can be thought of as the set of database instances consistent
with T (called the possible worlds)

@ T can be viewed as logical assertion; Mod(T) are models of T

17 /72

Codd tables

@ Missing values are indicated by a single, untyped null value @
@ Each occurrence of @ stands for a value of the attribute's domain

o Different occurrences may or may not refer to the same value

Example
SUPPLIER LOCATION PRODUCT QUANTITY
Smith London Nails (]
Brown (G] Bolts (]
Jones (] Nuts 40,000

Definition
An @-tuple on U is an extended tuple in which each attribute A € U takes
values in dom(A)U{@}. A Codd table is a finite set of @-tuples.

v

18/72

Models of Codd tables (1)

Definition

Under the closed world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values.

Example
Suppose dom(A) = { a1, a2 } and dom(B) = { b1, b2 }.
a1 (G] o a1 b1 al bl al b2
MOd(@ b2> _{31 b27 dn bg” d» bz}

Let R* € RHS of the example:

@ There is no certain tuple, i.e., AtVR* t € R*

@ The first column contains a;, the second b

@ R* has at least one and at most 2 tuples

@ apby is not in R* m— .
o ‘ Negative information can be represented.

19/72

Models of Codd tables (2)

Definition

Under the open world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values and adding

arbitrarily many additional tuples.

Equivalently, this means S € MOD(T) <= (IR)R € Mod(T)AS DO R.

Example

MOD(

by

ar|by| |a1|bi| |a1|b2| |a1| b2
21| bo), j
AR LAREALAREAL
a b1
a1|b1] [a1]b1] [a1]b1] [an]b2] |1
ai| by
ai|bal,|a1|b2|, |a2| b2, |a2| b2 b
az| by
ar|by| |az|ba| |a2|b1]| |a2| by b
ax| b

Models of Codd tables (3)

Example
a1 b1 a1 b1 a1 b2 a1 b2
T ’ dai b2 an b2 an b2 an b1
a| @\ _ b
MOD (I b2> = ai|bi| |a1|bi]| |a1|bi]| |a1| b2 zi b;
a1 |ba|, |a1| b2, |a2| b2}, |a2| b2 a| by
ar b1 an b2 ar b1 ar bl b
az| b

\

Let R* € RHS of the example:

R* has at least one tuple

Every tuple is possible, i.e., VtdR* t € R*

There is no certain tuple, i.e., ﬂtVR* te R*

The first column contains aj, the second by

Negative information cannot be represented.

21

72

v-Tables

@ Missing values are indicated by marked null values or variables
e V/(A) = set of variables for attribute A (countably infinite)
e V(A)N V(B) =0 if dom(A) # dom(B); otherwise V(A) = V(B)

Example
Course Teacher Weekday
Databases X Monday
Programming| y Tuesday
Databases x | Thursday
FORTRAN | Smith z
Definition

A v-tuple on U is an extended tuple in which each attribute A € U takes
values in dom(A) U V(A). A v-table is a finite set of v-tuples.

22/72

Models of v-tables

Example

Suppose dom(A) = { a1,a2 }, dom(B) = { b1, b2 }, dom(C) ={ a1, }.

dy| X . dl
od (||) = {12

b1 al
b2’ an

b ailb
b ar]ea) |2 2

Mod(cl Z):{Cl
Z | C C1

Cl| |G|
Q| ¢

Mod (z]z) = {[co

C1’C2

b

c|c|}

) CZ‘C17

@ Var(T) = { x| variable x occurs in T }

e Valuation v : Var(T) — Z assigns (valid) values to each variable

@ v(T) is the relation obtained by replacing all variables by their values
@ Mod(T)={v(T) | v is a valuation for Var(T) }

‘ Codd tables = v-tables in which each variable occurs at most once.

23 /72

v-Tables and view updates

v-tables appear naturally when updating relational views.

Example
SL SP
Supplier Location Supplier Product
London
X New York X Bolts
3% Los Angeles 3% Nuts

7"'Lot:ation,Product(SI- X SP)
Location Product

London
New York | Bolts
Los Angeles| Nuts

24 /72

c-Tables

@ c-tables are v-tables with an additional condition column con,
indicating a “tuple existence condition” — conditional table

@ Conditions taken from a set ¥ composed of

> false, true

» x=a forx € V(A) and a € dom(A) for some A € &/

» x=y forx,y € V(A) for some A € &/

» negation —, disjunction V, conjunction A
@ Positive conditions do not contain negations (set €')

Example
Supplier Location Product con
X London | Nails |x = Smith
Brown [New York| Nails |x # Smith
Definition

A c-tuple t on U is an extended tuple over U U {con} such that t[U] is a
v-tuple and t(con) € €. A c-table is a finite set of c-tuples.

v
25/72

Models of c-Tables

Example
Suppose dom(x) = dom(y) ={1,2}.

xlyl x1ly2 x2yl x2y2

Mod 32b1 X;é]. = 31b1,31b1,32b1,22b1
a3|bly =1Ax#1 a4|ba| |as|bo| |a3|bo| |as| b2
alb|ly #1vx=1

al b1 ar b1 an b1
a4 bz’a3 b2’84 b2

@ Valuation check conditions: v(T) = { v(t[U]) | v(t(con)) = true }
@ Mod(T)={v(T) | v is a valuation forVar(T) }

v-tables are equivalent to c-tables in which each condi-

tion equals true.

26 /72

Finite representation systems

Definition
In a finite-domain Codd-table, v-table, or c-table T, each variable
x € Var(T) is associated with a finite domain dom(x).

@ Important in practice
@ Sometimes easier to study
@ Basis for most probabilistic databases

@ Incomplete database is finite
(but attribute domain and no. variables still countably infinite)

27 /72

Other finite representation systems

All of these models can be seen as special cases of finite-domain c-tables.

Example

In ?-tables, tuples are marked with 7 if they may not exist.

b
od (12121,) = { [}

In or-set tables, t.A takes values in a finite subset of dom(A).

ai
ai

by
bo

|

al| b ai| b 15 ai| by b Equivalent to
Mod | [a1|b1||b2| | = < |a1| b1, al b2 ai| by al b2 finite-domain
az| b1 b a| by | E2E 5y | by | 122122 Codd tables,
In a 7-or-set table, both are combined.
ai| b ai|bi||a1|b1
(32 by b ?> {’ ax|bi||az|b>

28 /72

Outline

© Strong representation systems

29/72

Possible answer set semantics

Definition

The possible answer set to a query g on an incomplete database 7 is the
incomplete database q(Z) = {q(/) |/ € Z }.

Example
Let g(R) = oa=a(R).

ai|bi||a1|b1||a1|b ~ ([a]br
q({ ai|by||az| b1l a2 bz’}>_{al bz”m}

Can we compute the representation of the possible answer

set to a query from the representation of an incomplete
database?

[y

30/72

Strong representation systems

Definition
@ A representation system is closed under a query language if for any
query g and any table T there is a table g(T) that represents
q(Mod(T)).
@ If g(T) can always be computed from g and T, the representation
system is called strong under the query language.

T Mod T
GJ Jq
a(T) M9 (7

Intuitively, this means that the query language is “fully sup-
ported” by the representation system: query answers can be
both computed and represented.

31/72

Normalized c-tables

Definition

A c-table T on U is normalized if t[U] # t'[U] for all pairs of distinct
c-tuples t, t' € T.

Example
Not normalized Normalized
ai1lb|x=1 ailbi|lx=1vx=2
ailbi|x =2 as | by true
ar| by| true

To normalize a c-table, repeatedly apply rule 3 (next slide).

We'll assume normalized c-tables throughout. ‘

32/72

Mod-equivalence

Definition
Two tables T and T’ are Mod-equivalent (or just equivalent) if
Mod(T) = Mod(T"). We write T =poq T'.

Mod-equivalent transformations on c-table T on U:
© Replace a condition by an equivalent condition;
eg, (x=1ANy=1)V(x#1Ay=1)byy=1
@ Remove tuples in which condition is unsatisfiable;
eg, x=1Ax=2

© Merge tuples t1,...,tx € T with t;[U] = - -+ = t,[U] into a new
tuple t’ s.t. t'[U] = t1{U] and t'.con = ty.conV/ - - -V ty.con.

Mod-equivalent transformations can be used to simplify c-tables.

33/72

c-Tables are strong

Theorem

c-tables, finite-domain c-tables, and Boolean c-tables are strong under

RA.

Proof.

Given a RA query g, construct g by replacing in g the operators 7, o, X,
U, and — by the respective operators 7,7, X, U, — of the c-table algebra.
Then v(g(T)) = q(v(T)) for all valuations v for Var(T). O

We assume and produce normalized c-tables

Boolean c-table: all variables are boolean

°

°

e T(t) denotes t.con if t € T; false otherwise

e T[] drops condition column of normalized c-table
°

Relational algebra operations on T[] treat variables as normal values

34 /72

c-Projection

Definition
Tu(T[= mu(T()
Tu(T)(t) = \V T(t')

t'eT st. t'[U]=t

Example
Sightings T Name(Sightings)
Name Species

Anna|x=1Vx =2
Bob X =

35/72

c-Selection

Definition
ar(T)] =TIl
ap(T)(t) = T(t) A P(2),

where P(t) replaces in P each occurence of an attribute A by t.A and
evaluates subexpressions of form a = b (to false) and a = a (to true).

Example
Sightings

5Species=Guan (Sighti ngs)

7s—c(Sightings) (simpl.)

36/72

c-Union

Definition
(THOTL)[] = Ta[]U T[]

(T]_DTZ)(t) = T]_(t) V Tz(t)

Example
Sightings

Sightings U VIPs

x = 1V false

z|falsevy =3

SOV (simplified)

37/72

c-Join (1)

Definition

Set Ui = a(T1), Uo = a(T>), and denote by V = Ui N Us = Ay ... Ai the
join attributes. Let V/ = A} ... A} be a fresh set of attributes (of
matching domains). Set T} = py_,v/(T2) and U} = o(T3).

(Tixvov T2)[] = Tafl @ T3]

(Timv_ v T2)(t) = Ta(t[UL]) A TH(t[US)]) /\ tA=tA
AcV
T1D_<1 T = 7?U1UU2(T1D_4V—>V’ T2/)

38/72

c-Join (2)

Example

Sightings Sightingsx y_,nr VIPs
NS N con
A|IG|A| x=1Ay=1Atrue
AHA| x=2Ay=1Atrue
2KIA|x=3Ay=1ANzz=A
2|LIA|x=4ANy=1Nzn=A
A|IGIB| x=1Ay=2Afalse

VIPs VIPs' AH[B| x=2Ay =2Afalse
z1K|B|x=3Ay=2Az1=8B

Aly = Aly=1 2|L|B|x=4Ay=2A2z=B

Bly = Bly=2 AlGlzi|x=1ANy=3Azx=A

z1ly =3 71|y =3 AH|z1|x=2Ay=3ANzz =A
K|z x=3Ay=3ANz1=27
Lzl x=4Ny=3Nzn=27

39/72

c-Join (3)

Example (continued)

Sightings Sightingsxy_, ns VIPs (simplified)
N S N con
A[G| A x1lyl
AHIA x2y1
z1|KIA|x3ylAz=A
z|L|A|xd4yl ANz =A
z1|K| B |x3y2Az =B
z|L| B |x4y2 Nz =B
AlG|z1 | x1ly3Azr =A
AH|z1 | xX2y3Az1 =A
z1 K| z1 x3y3
z|L|zi | x4y3 Nz =27

AlG x1ylV (x1y3 Az = A)
AlH x2y1V (x2y3 Azy = A)
z|K (x3y1 Az =A)V (x3y2 Az = B) V x3y3

z|L|{(x4yl Az =A)V (x4y2 AN zo = B) V (x4y3 N\ 2o = z1)

v
70772

c-Difference

Definition (c-Table difference)
(T1=VIPs)[] = T4[]
(Ti=VIPs)(t) = Tu(t) J\ -

(t = t' AVIPs(t))
t’eVIPs

Example

Sightings VIPs

Sightings—VIPs (simplified)

Al x1 B|yl Al xIA-(z=AAy3)
B| x2 C|y2 B|{x2 A -yl A—=(z=BAy3)
C| x3

z|y3 CIx3A-y2A

—|(Z = C/\y3)

Sightings—VIPs

A|x1 A —(false A y1) A
B|x2 A —(true A y1)
C| x3 A —(false A y1)

—(false A y2) A
A —(false A y2) A
A =(true A y2) A

-(z=AAy3)
-(z=BAy3)
-(z=CAy3)

41/72

Many representation systems are not closed

Theorem
Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and 7-or-set tables are not closed under RA.

Proof.

By counterexample. Consider:

e Codd tables / v-tables (standard and finite-domain), or-set tables,
7-or-set tables:

TA+B (> where dom(x) = dom(y) and |dom(x)| > 1.

@ 7-tables:

Al B 7 We will see: these systems are
still very useful!

dal X ? y

a1

42/ /2

Outline

@ Completeness

43 /72

Expressive power

Key question: How expressive is a given representation system?
Theorem

Neither Codd tables, v-tables, nor c-tables can represent all possible
incomplete databases.

Proof.

Set of incomplete databases is uncountable, set of tables is countable.

Ol

o E.g., zero-information database .4}, cannot be represented with
closed world assumption
@ Need to study weaker forms of expressiveness
@ R.A-completeness
@ Finite completeness

v

44 /72

R A-definability (1)
o Zy={{t}|a(t) =V}

@ Zy is the minimal-information database for instances of cardinality 1

Example
Let V = B;B,, where dom(B;) = dom(B;) ={1,2,...}.

BN C. B2 B1 BB B B B>
VEYl L2222
Definition

An incomplete database Z over U is R.A-definable if there exists a
relational algebra query g such that Z = g(Zy) for some V.

45 /72

R A-definability (2)

Theorem
If T is representable by some c-table T, then T is R.A-definable.

Proof.

Let o(T)=U = A;... A, Let xy,...,xx denote the variables in T and
let V = By...Bx be a set of attributes such that dom(B;) = dom(x;).
Consider the query

A(Z) =\ 70 (0p s oy oy ecom [AL(E) 3 -2 3 An(t) ¢ Z])
teT
where

Ailt) = {{ (Aiza)} A=
pB—a(m8;(Z)) if t.A =X

We have q(Zv) =Z. O

46 /72

R A-definability (3)

Example
T

- _ | B2 BEEA B2 A2
VEAl a2l 2f

U WAIAZ(UBHA MZ)
U Taa, (UBZ:MBI#I NZ:>
o)

47/72

R.A-completeness

Definition
A representation system is R.A-complete if it can represent any
R A-definable incomplete database.

Theorem
c-tables are R.A-complete.

Proof.

Let Z be R.A-definable using query q(Z\/). Let T be a c-table
representing Zy, i.e., set

T_ By By ... Bx con
T x1 x| .. | xk |true
Since c-tables are closed under RA, g(T) produces a c-table that
represents 7. [

48 /72

Finite completeness (1)

Definition
A representation system is finitely complete if it can represent any finite
incomplete database.

Theorem

Boolean c-tables (and hence finite-domain and standard c-tables) are
finitely complete.

Corollary

Every R A-complete representation system is finitely complete.

49/72

Finite completeness (2)

Proof.

Let 7 = { JO oo 00 } be a finite incomplete database and assume wlog
that n = 2™ for some positive integer m. Let x = (xm_1,...,%0) be a
vector of boolean variables. There are 2™ possible values of x; assign a
unique one to each /", w € {0,...,n—1}. Let ¢, (x) be a Boolean
formula that checks whether x takes the value assigned to /. Then set

=
T(t)= \/ cw(x).

w s.t. telv

We have Mod(T) =T. O

50 /72

Finite completeness (3)

ai b1 as b2 ai bl
az|b3| |az| b2

Example

Instance x = (xy,xp) cw(x)
10 (F, F) —ix1 A\ TXg
IF- (F, T) —X1 \ Xo
12 (T, F) P AR)
IE (T, T) X1 N\ Xo

ai| by (—\Xl A —|X0) V (X1 A —|Xo)
as | by (—|X1 VAN Xo) V (X1 VAN —|X0)
as| bs (—|X1 A Xo)

Incompleteness results

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,

?-tables, or-set tables, and 7-or-set tables are not finitely complete (and
thus not RA-complete).

Proof.

By counterexample. Consider the finite incomplete database

Due to their simplicity (and completion properties), these
representation systems are very useful in practice. This moti-
vates the study of weak representation systems.

52 /72

A note on compactness
In practice, compactness of representation is important!

Example

Let x1,...,xx be variables with domain {1,2,...,n}. Consider the
finite-domain v-table

Al As .

-

The corresponding Boolean c-table has n rows!

53 /72

Outline

© Weak Representation Systems

54 /72

Certain answer tuple semantics (1)

Definition

Let Z be an incomplete database and g a relational algebra query. The
g-information 79 is given by the set of certain tuples in g(Z), i.e.,

79 = Njeq(z)!- Note that 79 is a certain database; it constitutes the query
result under the certain answer tuple semantics.

Example
It 12
@ 7 = < |Anna|Guan/|, [Anna|Guan
Bob |Guan] | Bob | Hb Different relational
e IR=11nJ2 = quer.ies expose more or
o I™s(R) = wg(IM) N7s(12) = Ice:rstal?:ii:r;?;?n about

Anna

o Z™(R) — 7TN(Il) ﬁﬂ'/\/(/2) = Bob

Certain answer tuple semantics (2)

Definition

Let T be a table and g a relational algebra query. The g-information T9 is
given by the set of certain tuples in g(Mod(Z)), i.e., T9 = NjcqMod (7))!-
Note that 79 is a certain database.

Example
Suppose dom(x) = { A,B} and dom(y) = { G,H }.
T
Aly)\ _ [[A]G] [A]G ATH
MOd<XH>_{AH’BH”BH}
e TR=10

o Tﬂ-N(R) = {A}
o T™s(R) = {H}

‘ Intuition: Uncertain tuples that remain after “applying” g are omitted.

56/ 72

Z-equivalency

Definition
Two sets of incomplete databases Z and J are .Z-equivalent, denoted
IT=¢ Jif 219 = 79 for all Z-expressions q.

Example

7_ Anna| Guan Anna| Guan
~ | | Bob [Hum. bird[| Bob |Kingfisher

7 = { [Anma Guan]}

@ 7 and J are (-equivalent

e But: Z and J are not P-equivalent (consider 74)

Z-equivalent databases are indistinguishable
w.r.t. the certain tuples in the query result.

57 /72

More examples of .Z-equivalency

Example

r-{ ka2 2}
7 ={(alala) 2217}

@ 7 and J are (-equivalent
@ 7 and J are P-equivalent
@ 7 and J are J-equivalent

@ 7 and J are not PJ-equivalent; e.g., set
q(R) = mag(mac(R) x mac(R)).

Then a1by € Z9 but a1b; ¢ J9.

58 /72

Weak representation system

Definition
A representation system is weak under a query language .Z if for any
Z-expression g and any table T there is a computable table g(T) that

Z-represents q(Mod(T)).

Mod(3(T)) =2 q(Mod(T)). |
T Mod Mod(T)
jq
q q(Mod(T))
a(T) M9 Mod(a(7))

Weak representation systems correctly determine the certain tuples under .i”ﬁ.q >

PS on Codd-Tables

Theorem
Codd tables are weak under PS.

ap(T)={t|te T and P(v(t)) for all valuations for Var(T) }
Tu(T) = mu(T)

Example

Name Species| Location NS L NS N S

Bob | Kingf. @

These are single-relation queries! |

60 /72

PJ/PSU on Codd-Tables

Theorem
Codd tables are not weak under PJ or PSU.

Proof (for PJ).

Consider Codd table T and set Z = Mod(T)
Set q(R) = mac(R) x m(R)

c-table Ty . represents Z, = q(Mod(T)).
Suppose Codd table T, PJ-represents Z,
Consider g’ = mac(mas(R) x mac(R))

For each valuation v, T4 must contain tuples ti, t
sit. t1.A=a, .C =c1, and v(t1).B = v(t2).B

Q t; = t, then arcy € Tg"c but axc; ¢ Ig"‘c
— ¢

Q t1 # ty, then t;.B = t,.B = b, then
ab € T7#¢ for some b but Z7#8 = () — 4

v
or/r2

Null values in SQL

SQL null semantics is related but not equal to Codd tables — Be careful!

Example

On PostgreSQL.

@ 0p_1(T) — SELECT * FROM T WHERE B=1
@ mac(T) — SELECT DISTINCT A, C FROM T

T

1 1
2 2

og=1(T) 0B+1(T) oB=1vB£1(T)

+5 M s CclliG]

62/72

Positive R.A on v-Tables

Theorem

v-tables are weak under the positive RA. To obtain g, simply treat
variables as distinct constants and use standard R.A operators.

Example

Sightings

N| S
A|G
AlH
ZlK
z|L

VIPs

N
A
B

21

5N:A(S)

N S

AlG
AlH

7s(SxV)
S
G
H
K

Easy to do in an off-the-shelf relational database system!

63/72

PS~ on v-tables

Theorem

v-tables are not weak under PS—.

Proof.
@ Consider v-table T and set Z = Mod(T)
@ Set g(R) = 0(a—a;nB=b)v(A=aABb) (R)
@ c-table Ty, . represents Zg = q(Mod(T)).
@ Suppose v-table T, PS™-represents Z,
@ Consider ¢'(R) = mc(0a=ava=s(R))
QO (3teTy)t1.A=aj, then 3, € T — 4
Q (Vte Ty)t.Ae Var(T), then T =0 — ¢

64 /72

Outline

@ Completion

65/72

Algebraic Completion

Definition
Let (.7, Mod) be a representation system and £ be a query language.

The representation system obtained by closing 7 under £ is the set of
tables {(T,q) | T € 9,9 € £} and function Mod(T, q) = g(Mod(T)).

Example
No Codd table for Z, but closure of f.d. Codd tables under JR suffices.

I= {,}, TZ, q(R) = R % pass(R)

@ Think of g as a view over T
@ View result need not be represented directly

Algebraic completion extends the power of a represen-
tation system with the power of a query language.

66 /72

R.A-completion for Codd tables

Theorem
The closure of Codd tables under SPJRU is RA-complete.

Proof.
@ c-tables are RA-complete

o Every c-table T can be R.A-defined by an SPJRU-query g on Zy
(see slide 46)

@ Zy can be represented as a Codd table T’

Bi B, ... B
—

@ Mod(T’,q) = g(Mod(T")) = q(Zy) = Mod(T)

O]

v

‘ Relational databases with views can represent any R.A-definable database!

67 /72

R.A-completion for v-tables

Theorem
The closure of v-tables under S P is RA-complete.

Proof.

Let T={t1,...,tm} be a ctable on A;... A, and let
Var(T) = {x1,...,xk }. Express T in terms of v-table T’ and query g:

q(R) = ma...a(oyr (pinc=i)(R))

where 1); is obtained from t;.con by replacing all variables x; by the
corresponding attribute B;. [

B8

Finite completion results

Theorem

The following closures are finitely complete:
© or-set-tables under PJ,
Q finite v-tables under PJ or ST P,
© 7-tables under RA.

Proof.

Try it yourself. Hints: Don't start with a c-table, but an incomplete
database Z. You need two tables for cases 1 and 2; case 3 is quite
tricky. [

69 /72

Outline

@ Summary

70/72

Lessons learned

Incomplete databases are sets of possible databases

Representation systems are concise descriptions of incomplete
databases

Queries can be analyzed in terms of
© Possible answer sets (strong representation)
@ Certain answer tuples (weak representation)
© Possible answer tuples (finite i-databases only)

o Codd tables add null values; weak under PS

— Be careful with null values in SQL

v-tables add variables; weak under positive RA

c-tables add variables and conditions; strong under R.A and
RA-complete

R.A-views on Codd tables are R.A-complete — key property!

71/72

Suggested reading

e Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 2)
Springer, 2009

@ Dan Suciu, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 2)
Morgan & Claypool, 2011

@ Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (Chapter 19)
Addison Wesley, 1994

@ Tomasz Imielinski, Witold Lipski, Jr.
Incomplete Infomation in Relational Databases
Journal of the ACM, 31(4), Oct. 1984

	Refresher: Relational Algebra
	Incomplete Databases
	Strong representation systems
	Completeness
	Weak Representation Systems
	Completion
	Summary

