
Scalable Uncertainty Management
02 – Incomplete Databases

Rainer Gemulla

April 27, 2012

Overview

In this lecture

Refresh relational algebra

What is an incomplete database?

How can incomplete information be represented?

How expressive are these representations?

How to query incomplete databases?

How to query their representations?

Not in this lecture

Complexity

Efficiency

Applications

2 / 72

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

3 / 72

Notation

Set of attributes A (countably infinite, totally ordered)

Domain D of values for the attributes (countably infinite)

Elements of D are called constants

Per-attribute domain denoted dom(A)

Set of relation names R, each associated with a finite set of attributes
α(R) ⊂ A (countably infinite names per finite set of attributes)

A schema is a finite set of attributes (symbols U,W ,V)

A relation schema is a relation name (symbols R, S)

A database schema is a nonempty finite set of relation names

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c1

A = {A,B,C ,D, . . . } = ABCD . . .

D = { a1, b1, c1, a2, . . . }
dom(A) = { a1, a2, . . . }
R = {R, S , . . . }
α(R) = ABC ; write R[ABC]

4 / 72

The Named Perspective

Let U ⊂ A be a schema
Tuple t over U is a function t : U → D (also called U-tuple)
α(t) denotes the schema of t
Value of attribute A ∈ U of U-tuple t is denoted t(A) or t.A
Restriction of U-tuple t to values in V ⊆ U is denoted t[V]
Relation instance I (R) of R is a finite set of tuples over α(R)
Database instance I of database schema R maps each relation name
in R ∈ R to a relation instance I(R)

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c1

t1 is a tuple over ABC

t1 = 〈A : a1,B : b2,C : c1〉 = a1b2c1

α(t1) = ABC

t1(A) = t1.A = a1

t1[AB] = a1b2 is a tuple over AB

I (R) = { t1, t2 } = { a1b2c1, a2b1c1 } is relation instance over ABC

5 / 72

The Unnamed Perspective

Tuple t is an ordered n-tuple (n ≥ 0) of constants, i.e., t ∈ Dn

Value of i-th coordinate denoted t(i)

Natural correspondence to named perspective
I n-tuples can be viewed as functions with domain { 1, . . . , n }
I U-tuples can be viewed as |U|-tuples by using total order of attributes

Example

R
t1: a1 b2 c1
t2: a2 b1 c1

t1 = 〈a1, b2, c1〉 = a1b2c1

t1(1) = a1

For now, we will mostly use the named perspective.

6 / 72

Relational algebra (1)

Relation name R
Single-tuple, single-attribute constant relations (VALUES clause)

{ 〈A : a〉 }
for A ∈ A , a ∈ dom(A)
Selection σ (WHERE clause)

σA=a(I) = { t ∈ I | t.A = a }
σA=B(I) = { t ∈ I | t.A = t.B }

for A,B ∈ α(I) and a ∈ dom(A).

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c2
t3: a1 b1 c1

{ 〈A : a〉 }
A
a

σA=a1(R)

A B C
a1 b2 c1
a1 b1 c1

σA=a3(R)

A B C

7 / 72

Relational algebra (2)

Projection π (SELECT DISTINCT clause)

πU(I) = { t[U] | t ∈ I }

for U ⊆ α(R)

Natural Join on (FROM clause)

I on J = { t over U ∪ V | t[U] ∈ I ∧ t[V] ∈ J } ,

where U = α(I), V = α(J)

Example

R
A B C

t1: a1 b2 c1
t2: a2 b1 c2
t3: a1 b1 c1

S
A D

t4: a1 d1
t5: a3 d2
t6: a1 d3

πAC (R)

A C
a1 c1
a2 c2

R on S
A B C D
a1 b2 c1 d1
a1 b2 c1 d3
a1 b1 c1 d1
a1 b1 c1 d3

8 / 72

Relational algebra (3)

Renaming of attributes ρ (AS clause)

ρA1...An→B1...Bn(I) = { t over V | (∃u ∈ I)(∀i ∈ [1, n]) u.Ai = t.Bi } ,

where α(I) = {A1, . . . ,An }, V = {B1, . . . ,Bn }
Short notation: only list attributes being renamed

Example

R
A B

t1: a1 b2

t2: a2 b1

t3: a1 b1

ρAB→CD(R)

C D
a1 b2

a2 b1

a1 b1

ρAB→BA(R)

B A
a1 b2

a2 b1

a1 b1

R on ρB→C (R)

A B C
a1 b2 b2

a1 b2 b1

a2 b1 b1

a1 b1 b1

a1 b1 b2

9 / 72

Relational algebra (4)

Union ∪ (UNION clause)

I ∪ J = { t | t ∈ I ∨ t ∈ J }
for α(I) = α(J)
Difference − (EXCEPT clause)

I − J = { t | t ∈ I ∧ t /∈ J }
for α(I) = α(J)

Example

R
A B

t1: a1 b2

t2: a2 b1

t3: a1 b1

S
A B

t4: a1 b2

t5: a2 b1

t6: a3 b2

R ∪ S
A B
a1 b2

a2 b1

a1 b1

a3 b2

R − S
A B
a1 b1

10 / 72

L -expression

Definition

Let L ⊆ SPJRUD be an algebra. An L -expression is any well-formed
relational algebra expression composed of only relation names, constant
relations, and the operations in L . Algebra L is positive if it does not
contain the difference operator.

Example

πA(πAB(R)) is a P-expression but not an S-expression

σA=a(R) is both an S-expression and a PS-expression, but not a
P-expression

R is an ∅-expression

All of the above expressions are positive, but R − S is not

11 / 72

Generalized Selection

Relational algebra
I σA=a(R) for A ∈ α(R) and a ∈ dom(A)
I σA=B(R) for A,B ∈ α(R)
I A = a and A = B are called predicates

Generalized selection operators extend the class of predicates

Positive conjunction

σP1∧P2(R) = σP1(σP2(R))

Positive disjunction (S+)

σP1∨P2(R) = σP1(R) ∪ σP2(R)

Negation (S−, not positive)

σ¬P(R) = R − σP(R)

Note: Union and difference can simulate generalized selection but not
vice versa! → S+ and S− variants of S

12 / 72

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

13 / 72

Examples of incomplete information
Certain data Uncertain data
Paul owns a car. Paul may own a car. Tuple-level

uncertaintyName Object
Paul Car

Name Object
Paul Car

or
Name Object

Bob works for Yahoo. Bob works for either Yahoo or Microsoft. Attribute-level
uncertaintyName Company

Bob Yahoo
Name Company
Bob Yahoo

or
Name Company
Bob Microsoft

Mary sighted a finch.
Paul sighted a finch.

Mary sighted a finch or a sparrow.
Paul sighted what Mary sighted.

Correlations

Name Bird
Mary Finch
Paul Finch

Name Bird
Mary Finch
Paul Finch

or
Name Bird
Mary Sparrow
Paul Sparrow

Paul’s favorite number
is 17.

Paul has a favorite number,
but it is unknown.

Infinity

Name Num
Paul 17

Name Num
Paul 1

or
Name Num
Paul 2

or . . .

We need a precise way to model and represent incomplete information.
14 / 72

Examples of incomplete databases
Certain data Uncertain data
Paul owns a car. Paul may own a car. Tuple-level

uncertaintyName Object
Paul Car

{
Name Object
Paul Car

,
Name Object

}

Bob works for Yahoo. Bob works for either Yahoo or Microsoft. Attribute-level
uncertaintyName Company

Bob Microsoft

{
Name Company
Bob Yahoo

,
Name Company
Bob Microsoft

}

Mary sighted a finch.
Paul sighted a finch.

Mary sighted a finch or a sparrow.
Paul sighted what Mary sighted.

Correlations

Name Bird
Mary Finch
Paul Finch


Name Bird
Mary Finch
Paul Finch

,
Name Bird
Mary Sparrow
Paul Sparrow


Paul’s favorite number
is 17.

Paul has a favorite number,
but it is unknown.

Infinity

Name Num
Paul 17

{
Name Num
Paul 1

,
Name Num
Paul 2

, . . .

}
An incomplete database is a set of “possible worlds” (i.e., DB instances).

15 / 72

Incomplete database

NU = { I | I is a (finite) relation instance over schema U }

Definition

An incomplete relation (i-relation) I over U is a set of possible
relation instances over U, i.e., I ⊆ NU .

An incomplete database (i-database) of a database schema R maps
each relation name R ∈ R to an incomplete relation over α(R).

“Incomplete” refers to incomplete information

Focus on one relation → use i-relation and i-database synonymously

Usual relation instances: I = { I }
No-information or zero-information database over U: I = NU

Incomplete databases can be infinite even though every relation
instance is finite; e.g.,

{
a1 , a2 , a3 , . . .

}
NU is (countably) infinite

Set of all incomplete relations is uncountable

16 / 72

Representation system

Incomplete databases are in general infinite

Even if finite, they can be very large

→ Need compact representation!

Definition

A representation system consists of a set (a “language”) T whose
elements we call tables, and a function Mod that associates to each table
T ∈ T an incomplete database Mod(T).

Again, we’ll assume a single relation
(reformulation for multiple relations possible)

Mod(T) can be thought of as the set of database instances consistent
with T (called the possible worlds)

T can be viewed as logical assertion; Mod(T) are models of T

17 / 72

Codd tables

Missing values are indicated by a single, untyped null value @

Each occurrence of @ stands for a value of the attribute’s domain

Different occurrences may or may not refer to the same value

Example

SUPPLIER LOCATION PRODUCT QUANTITY
Smith London Nails @
Brown @ Bolts @
Jones @ Nuts 40,000

Definition

An @-tuple on U is an extended tuple in which each attribute A ∈ U takes
values in dom(A) ∪ {@ }. A Codd table is a finite set of @-tuples.

18 / 72

Models of Codd tables (1)

Definition

Under the closed world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values.

Example

Suppose dom(A) = { a1, a2 } and dom(B) = { b1, b2 }.

Mod

(
a1 @
@ b2

)
=

{
a1 b1

a1 b2
,

a1 b1

a2 b2
, a1 b2 ,

a1 b2

a2 b2

}
Let R∗ ∈ RHS of the example:

There is no certain tuple, i.e., @t∀R∗ t ∈ R∗

The first column contains a1, the second b2

R∗ has at least one and at most 2 tuples

a2b1 is not in R∗

...
19 / 72

Negative information can be represented.

Models of Codd tables (2)

Definition

Under the open world interpretation, a Codd table represents the set of
relations obtained by replacing @-symbols by valid values and adding
arbitrarily many additional tuples.

Equivalently, this means S ∈ MOD(T) ⇐⇒ (∃R) R ∈ Mod(T) ∧ S ⊇ R.

Example

MOD
(T

a1 @
@ b2

)
=



a1 b2 ,
a1 b1

a1 b2
,

a1 b1

a2 b2
,

a1 b2

a2 b2
,

a1 b2

a2 b1
,

a1 b1

a1 b2

a2 b1

,
a1 b1

a1 b2

a2 b2

,
a1 b1

a2 b2

a2 b1

,
a1 b2

a2 b2

a2 b1

,

a1 b1

a1 b2

a2 b1

a2 b2



20 / 72

Models of Codd tables (3)

Example

MOD
(T

a1 @
@ b2

)
=



a1 b2 ,
a1 b1

a1 b2
,

a1 b1

a2 b2
,

a1 b2

a2 b2
,

a1 b2

a2 b1
,

a1 b1

a1 b2

a2 b1

,
a1 b1

a1 b2

a2 b2

,
a1 b1

a2 b2

a2 b1

,
a1 b2

a2 b2

a2 b1

,

a1 b1

a1 b2

a2 b1

a2 b2


Let R∗ ∈ RHS of the example:

There is no certain tuple, i.e., @t∀R∗ t ∈ R∗

The first column contains a1, the second b2

R∗ has at least one tuple

Every tuple is possible, i.e., ∀t∃R∗ t ∈ R∗

...

21 / 72

Negative information cannot be represented.

v-Tables

Missing values are indicated by marked null values or variables

V (A) = set of variables for attribute A (countably infinite)

V (A) ∩ V (B) = ∅ if dom(A) 6= dom(B); otherwise V (A) = V (B)

Example

Course Teacher Weekday
Databases x Monday

Programming y Tuesday
Databases x Thursday
FORTRAN Smith z

Definition

A v-tuple on U is an extended tuple in which each attribute A ∈ U takes
values in dom(A) ∪ V (A). A v-table is a finite set of v -tuples.

22 / 72

Models of v-tables

Example

Suppose dom(A) = { a1, a2 }, dom(B) = { b1, b2 }, dom(C) = { c1, c2 }.

Mod

(
a1 x
y b2

)
=

{
a1 b1

a1 b2
,

a1 b1

a2 b2
, a1 b2 ,

a1 b2

a2 b2

}

Mod

(
c1 z
z c2

)
=

{
c1 c1
c1 c2

,
c1 c2
c2 c2

}
Mod

(
z1 z2

)
=
{

c1 c1 , c1 c2 , c2 c1 , c2 c2
}

Var(T) = { x | variable x occurs in T }
Valuation v : Var(T)→ D assigns (valid) values to each variable
v(T) is the relation obtained by replacing all variables by their values
Mod(T) = { v(T) | v is a valuation for Var(T) }

Codd tables ≡ v -tables in which each variable occurs at most once.
23 / 72

v-Tables and view updates

v-tables appear naturally when updating relational views.

Example

SL
Supplier Location
Smith London

x New York
y Los Angeles

SP
Supplier Product
Smith Nails

x Bolts
y Nuts

πLocation,Product(SL on SP)

Location Product
London Nails

New York Bolts
Los Angeles Nuts

24 / 72

c-Tables

c-tables are v-tables with an additional condition column con,
indicating a “tuple existence condition” → conditional table
Conditions taken from a set C composed of

I false, true
I x = a for x ∈ V (A) and a ∈ dom(A) for some A ∈ A
I x = y for x , y ∈ V (A) for some A ∈ A
I negation ¬, disjunction ∨, conjunction ∧

Positive conditions do not contain negations (set C+)

Example

Supplier Location Product con
x London Nails x = Smith

Brown New York Nails x 6= Smith

Definition

A c-tuple t on U is an extended tuple over U ∪ {con} such that t[U] is a
v -tuple and t(con) ∈ C . A c-table is a finite set of c-tuples.

25 / 72

Models of c-Tables

Example

Suppose dom(x) = dom(y) = { 1, 2 }.

Mod


A B con
a1 b1 x = 1
a2 b1 x 6= 1
a3 b2 y = 1 ∧ x 6= 1
a4 b2 y 6= 1 ∨ x = 1

 =


x1y1

a1 b1

a4 b2

,

x1y2

a1 b1

a4 b2

,

x2y1

a2 b1

a3 b2

,

x2y2

a2 b1

a4 b2


=

{
a1 b1

a4 b2
,

a2 b1

a3 b2
,

a2 b1

a4 b2

}
Valuation check conditions: v(T) = { v(t[U]) | v(t(con)) = true }
Mod(T) = { v(T) | v is a valuation for Var(T) }

v-tables are equivalent to c-tables in which each condi-
tion equals true.

26 / 72

Finite representation systems

Definition

In a finite-domain Codd-table, v-table, or c-table T , each variable
x ∈ Var(T) is associated with a finite domain dom(x).

Important in practice

Sometimes easier to study

Basis for most probabilistic databases

Incomplete database is finite
(but attribute domain and no. variables still countably infinite)

27 / 72

Other finite representation systems

All of these models can be seen as special cases of finite-domain c-tables.

Example

In ?-tables, tuples are marked with ? if they may not exist.

Mod

(
a1 b1

a1 b2 ?

)
=

{
a1 b1 ,

a1 b1

a1 b2

}
In or-set tables, t.A takes values in a finite subset of dom(A).

Mod

 a1 b2

a1 b1‖b2

a2 b1‖b2

 =


a1 b2

a1 b1

a2 b1

,
a1 b2

a2 b1
,

a1 b2

a1 b1

a2 b2

,
a1 b2

a2 b2


In a ?-or-set table, both are combined.

Mod

(
a1 b1

a2 b1‖b2 ?

)
=

{
a1 b1 ,

a1 b1

a2 b1
,

a1 b1

a2 b2

}
28 / 72

Equivalent to

finite-domain

Codd tables.

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

29 / 72

Possible answer set semantics

Definition

The possible answer set to a query q on an incomplete database I is the
incomplete database q(I) = { q(I) | I ∈ I }.

Example

Let q(R) = σA=a1(R).

q

({
a1 b1

a1 b2
,

a1 b1

a2 b1
,

a1 b1

a2 b2
, a2 b1

})
=

{
a1 b1

a1 b2
, a1 b1 ,

}

Can we compute the representation of the possible answer
set to a query from the representation of an incomplete
database?

30 / 72

Strong representation systems

Definition

A representation system is closed under a query language if for any
query q and any table T there is a table q̄(T) that represents
q(Mod(T)).

If q̄(T) can always be computed from q and T , the representation
system is called strong under the query language.

T I

q̄(T) q(I)

Mod

Mod

q̄ q

Intuitively, this means that the query language is “fully sup-
ported” by the representation system: query answers can be
both computed and represented.

31 / 72

Normalized c-tables

Definition

A c-table T on U is normalized if t[U] 6= t ′[U] for all pairs of distinct
c-tuples t, t ′ ∈ T .

Example
Not normalized
a1 b1 x = 1
a1 b1 x = 2
a2 b2 true

Normalized
a1 b1 x = 1 ∨ x = 2
a2 b2 true

To normalize a c-table, repeatedly apply rule 3 (next slide).

We’ll assume normalized c-tables throughout.

32 / 72

Mod-equivalence

Definition

Two tables T and T ′ are Mod-equivalent (or just equivalent) if
Mod(T) = Mod(T ′). We write T ≡Mod T ′.

Mod-equivalent transformations on c-table T on U:

1 Replace a condition by an equivalent condition;
e.g., (x = 1 ∧ y = 1) ∨ (x 6= 1 ∧ y = 1) by y = 1

2 Remove tuples in which condition is unsatisfiable;
e.g., x = 1 ∧ x = 2

3 Merge tuples t1, . . . , tk ∈ T with t1[U] = · · · = tk [U] into a new
tuple t ′ s.t. t ′[U] = t1[U] and t ′.con = t1.con ∨ · · · ∨ tk .con.

Mod-equivalent transformations can be used to simplify c-tables.

33 / 72

c-Tables are strong

Theorem

c-tables, finite-domain c-tables, and Boolean c-tables are strong under
RA.

Proof.

Given a RA query q, construct q̄ by replacing in q the operators π, σ, on,
∪, and − by the respective operators π̄, σ̄, ōn, ∪̄, −̄ of the c-table algebra.
Then v(q̄(T)) = q(v(T)) for all valuations v for Var(T).

We assume and produce normalized c-tables

Boolean c-table: all variables are boolean

T (t) denotes t.con if t ∈ T ; false otherwise

T [] drops condition column of normalized c-table

Relational algebra operations on T [] treat variables as normal values

34 / 72

c-Projection

Definition

π̄U(T)[] = πU(T [])

π̄U(T)(t) =
∨

t′∈T s.t. t′[U]=t

T (t ′)

Example
Sightings

Name Species con
Anna Guan x = 1
Anna Humming bird x = 2
Bob y x = 3

z Guan x = 4

π̄Name(Sightings)

Name con
Anna x = 1 ∨ x = 2
Bob x = 3

z x = 4

35 / 72

c-Selection

Definition

σ̄P(T)[] = T []

σ̄P(T)(t) = T (t) ∧ P(t),

where P(t) replaces in P each occurence of an attribute A by t.A and
evaluates subexpressions of form a = b (to false) and a = a (to true).

Example
Sightings

N S con
A G x = 1
A H x = 2
B y x = 3
z G x = 4

σ̄Species=Guan(Sightings)

N S con
A G x = 1 ∧ true
A H x = 2 ∧ false
B y x = 3 ∧ y = G
z G x = 4 ∧ true

σ̄S=G(Sightings) (simpl.)

N S con
A G x = 1
B y x = 3 ∧ y = G
z G x = 4

36 / 72

c-Union

Definition

(T1∪̄T2)[] = T1[] ∪ T2[]

(T1∪̄T2)(t) = T1(t) ∨ T2(t)

Example
Sightings

N con
A x = 1
B x = 2
C x = 3

VIPs
N con
B y = 1
C y = 2
z y = 3

Sightings ∪̄VIPs

N con
A x = 1 ∨ false
B x = 2 ∨ y = 1
C x = 3 ∨ y = 2
z false ∨ y = 3

S∪̄V (simplified)

N con
A x = 1
B x = 2 ∨ y = 1
C x = 3 ∨ y = 2
z y = 3

37 / 72

c-Join (1)

Definition

Set U1 = α(T1), U2 = α(T2), and denote by V = U1 ∩U2 = A1 . . .Ak the
join attributes. Let V ′ = A′1 . . .A

′
k be a fresh set of attributes (of

matching domains). Set T ′2 = ρV→V ′(T2) and U ′2 = α(T ′2).

(T1ōnV→V ′T2)[] = T1[] on T ′2[]

(T1ōnV→V ′T2)(t) = T1(t[U1]) ∧ T ′2(t[U ′2])
∧
A∈V

t.A = t.A′

T1ōnT2 = π̄U1∪U2(T1ōnV→V ′T
′
2).

38 / 72

c-Join (2)

Example
Sightings

N S con
A G x = 1
A H x = 2
z1 K x = 3
z2 L x = 4

SightingsōnN→N′VIPs
N S N ′ con
A G A x = 1 ∧ y = 1 ∧ true
A H A x = 2 ∧ y = 1 ∧ true
z1 K A x = 3 ∧ y = 1 ∧ z1 = A
z2 L A x = 4 ∧ y = 1 ∧ z2 = A
A G B x = 1 ∧ y = 2 ∧ false
A H B x = 2 ∧ y = 2 ∧ false
z1 K B x = 3 ∧ y = 2 ∧ z1 = B
z2 L B x = 4 ∧ y = 2 ∧ z2 = B
A G z1 x = 1 ∧ y = 3 ∧ z1 = A
A H z1 x = 2 ∧ y = 3 ∧ z1 = A
z1 K z1 x = 3 ∧ y = 3 ∧ z1 = z1
z2 L z1 x = 4 ∧ y = 3 ∧ z2 = z1

VIPs
N con
A y = 1
B y = 2
z1 y = 3

VIPs′

N ′ con
A y = 1
B y = 2
z1 y = 3

39 / 72

c-Join (3)

Example (continued)

Sightings

N S con
A G x1
A H x2
z1 K x3
z2 L x4

SightingsōnN→N′VIPs (simplified)

N S N ′ con
A G A x1y1
A H A x2y1
z1 K A x3y1 ∧ z1 = A
z2 L A x4y1 ∧ z2 = A
z1 K B x3y2 ∧ z1 = B
z2 L B x4y2 ∧ z2 = B
A G z1 x1y3 ∧ z1 = A
A H z1 x2y3 ∧ z1 = A
z1 K z1 x3y3
z2 L z1 x4y3 ∧ z2 = z1

VIPs
N con
A y1
B y2
z1 y3

VIPs′

N ′ con
A y1
B y2
z1 y3

SightingsōnVIPs (simplified)

N S con
A G x1y1 ∨ (x1y3 ∧ z1 = A)
A H x2y1 ∨ (x2y3 ∧ z1 = A)
z1 K (x3y1 ∧ z1 = A) ∨ (x3y2 ∧ z1 = B) ∨ x3y3
z2 L (x4y1 ∧ z2 = A) ∨ (x4y2 ∧ z2 = B) ∨ (x4y3 ∧ z2 = z1)

40 / 72

c-Difference

Definition (c-Table difference)

(T1−̄VIPs)[] = T1[]

(T1−̄VIPs)(t) = T1(t)
∧

t′∈VIPs
¬(t = t ′ ∧ VIPs(t ′))

Example

Sightings

A con
A x1
B x2
C x3

VIPs
A con
B y1
C y2
z y3

Sightings−̄VIPs (simplified)
A con
A x1 ∧ ¬(z = A ∧ y3)
B x2 ∧ ¬y1 ∧ ¬(z = B ∧ y3)
C x3 ∧ ¬y2 ∧ ¬(z = C ∧ y3)

Sightings−̄VIPs
A con
A x1 ∧ ¬(false ∧ y1) ∧ ¬(false ∧ y2) ∧ ¬(z = A ∧ y3)
B x2 ∧ ¬(true ∧ y1) ∧ ¬(false ∧ y2) ∧ ¬(z = B ∧ y3)
C x3 ∧ ¬(false ∧ y1) ∧ ¬(true ∧ y2) ∧ ¬(z = C ∧ y3)

41 / 72

Many representation systems are not closed

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and ?-or-set tables are not closed under RA.

Proof.

By counterexample. Consider:

Codd tables / v-tables (standard and finite-domain), or-set tables,
?-or-set tables:

σA 6=B

(
A B
x y

)
where dom(x) = dom(y) and |dom(x)| > 1.

?-tables:

A B
a1 b1

a1 b2

on A
a1 ?

42 / 72

We will see: these systems are
still very useful!

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

43 / 72

Expressive power

Key question: How expressive is a given representation system?

Theorem

Neither Codd tables, v-tables, nor c-tables can represent all possible
incomplete databases.

Proof.

Set of incomplete databases is uncountable, set of tables is countable.

E.g., zero-information database NU cannot be represented with
closed world assumption

Need to study weaker forms of expressiveness
1 RA-completeness
2 Finite completeness

44 / 72

RA-definability (1)

ZV = { { t } | α(t) = V }
ZV is the minimal-information database for instances of cardinality 1

Example

Let V = B1B2, where dom(B1) = dom(B2) = { 1, 2, . . . }.

ZV =

{
B1 B2

1 1
,

B1 B2

1 2
,

B1 B2

2 1
,

B1 B2

2 2
, . . .

}

Definition

An incomplete database I over U is RA-definable if there exists a
relational algebra query q such that I = q(ZV) for some V .

45 / 72

RA-definability (2)

Theorem

If I is representable by some c-table T , then I is RA-definable.

Proof.

Let α(T) = U = A1 . . .An. Let x1, . . . , xk denote the variables in T and
let V = B1 . . .Bk be a set of attributes such that dom(Bj) = dom(xj).
Consider the query

q(Z) =
⋃
t∈T

πU

(
σρx1...xk→B1...Bk

(t.con) [A1(t) on · · · on An(t) on Z]
)
,

where

Ai (t) =

{
{ 〈Ai : a〉 } if t.Ai = a

ρBj→Ai
(πBj

(Z)) if t.Ai = xj

We have q(ZV) = I.
46 / 72

RA-definability (3)

Example

T
A1 A2 con
a1 b1 x = 1
a2 b1 x 6= 1
a3 b2 y = 1 ∧ x 6= 1
a4 b2 y 6= 1 ∨ x = 1

ZV =

{
B1 B2

1 1
,

B1 B2

1 2
,

B1 B2

2 1
,

B1 B2

2 2
, . . .

}

q(Z) := πA1A2

(
σB1=1

[
A1 A2

a1 b1
on Z

])
∪ πA1A2

(
σB1 6=1

[
A1 A2

a2 b1
on Z

])
∪ πA1A2

(
σB2=1∧B1 6=1

[
A1 A2

a3 b2
on Z

])
∪ πA1A2

(
σB2 6=1∨B1=1

[
A1 A2

a4 b2
on Z

])
47 / 72

RA-completeness

Definition

A representation system is RA-complete if it can represent any
RA-definable incomplete database.

Theorem

c-tables are RA-complete.

Proof.

Let I be RA-definable using query q(ZV). Let T be a c-table
representing ZV , i.e., set

T =
B1 B2 . . . Bk con
x1 x2 . . . xk true

Since c-tables are closed under RA, q̄(T) produces a c-table that
represents I.

48 / 72

Finite completeness (1)

Definition

A representation system is finitely complete if it can represent any finite
incomplete database.

Theorem

Boolean c-tables (and hence finite-domain and standard c-tables) are
finitely complete.

Corollary

Every RA-complete representation system is finitely complete.

49 / 72

Finite completeness (2)

Proof.

Let I =
{

I 0, . . . , I n−1
}

be a finite incomplete database and assume wlog
that n = 2m for some positive integer m. Let x = (xm−1, . . . , x0) be a
vector of boolean variables. There are 2m possible values of x; assign a
unique one to each Iw , w ∈ { 0, . . . , n − 1 }. Let cw (x) be a Boolean
formula that checks whether x takes the value assigned to Iw . Then set

T [] =
⋃
w

Iw

T (t) =
∨

w s.t. t∈Iw
cw (x).

We have Mod(T) = I.

50 / 72

Finite completeness (3)

Example

I =


I 0

A B
a1 b1

,

I 1

A B
a2 b2

a3 b3

,

I 2

A B
a1 b1

a2 b2

,

I 3

A B


Instance x = (x1, x0) cw (x)

I 0 (F ,F) ¬x1 ∧ ¬x0
I 1 (F ,T) ¬x1 ∧ x0
I 2 (T ,F) x1 ∧ ¬x0
I 3 (T ,T) x1 ∧ x0

T =

A B con
a1 b1 (¬x1 ∧ ¬x0) ∨ (x1 ∧ ¬x0)
a2 b2 (¬x1 ∧ x0) ∨ (x1 ∧ ¬x0)
a3 b3 (¬x1 ∧ x0)

51 / 72

Incompleteness results

Theorem

Codd tables, v-tables, finite-domain Codd tables, finite-domain v-tables,
?-tables, or-set tables, and ?-or-set tables are not finitely complete (and
thus not RA-complete).

Proof.

By counterexample. Consider the finite incomplete database

I =

{
A1 A2

a1 a1
,

A1 A2

a2 a3

}
.

Due to their simplicity (and completion properties), these
representation systems are very useful in practice. This moti-
vates the study of weak representation systems.

52 / 72

A note on compactness

In practice, compactness of representation is important!

Example

Let x1, . . . , xk be variables with domain { 1, 2, . . . , n }. Consider the
finite-domain v-table

A1 A2 . . . Ak

x1 x2 . . . xk
.

The corresponding Boolean c-table has nk rows!

53 / 72

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

54 / 72

Certain answer tuple semantics (1)

Definition

Let I be an incomplete database and q a relational algebra query. The
q-information Iq is given by the set of certain tuples in q(I), i.e.,
Iq = ∩I∈q(I)I . Note that Iq is a certain database; it constitutes the query
result under the certain answer tuple semantics.

Example

I =

I 1

Anna Guan
Bob Guan

,
I 2

Anna Guan
Bob Hb


IR = I 1 ∩ I 2 = Anna Guan

IπS (R) = πS(I 1) ∩ πS(I 2) = Guan

IπN(R) = πN(I 1) ∩ πN(I 2) =
Anna
Bob

55 / 72

Different relational
queries expose more or
less information about
certain tuples!

Certain answer tuple semantics (2)

Definition

Let T be a table and q a relational algebra query. The q-information T q is
given by the set of certain tuples in q(Mod(I)), i.e., T q = ∩I∈q(Mod (I))I .
Note that T q is a certain database.

Example

Suppose dom(x) = {A,B } and dom(y) = {G,H }.

Mod

(T
A y
x H

)
=

{
A G
A H

,
A G
B H

, A H ,
A H
B H

}

TR = ∅
TπN(R) = {A }
TπS (R) = {H }

Intuition: Uncertain tuples that remain after “applying” q are omitted.
56 / 72

L -equivalency

Definition

Two sets of incomplete databases I and J are L -equivalent, denoted
I ≡L J if Iq = J q for all L -expressions q.

Example

I =

{
Anna Guan
Bob Hum. bird

,
Anna Guan
Bob Kingfisher

}
J =

{
Anna Guan

}
I and J are ∅-equivalent

But: I and J are not P-equivalent (consider πA)

L -equivalent databases are indistinguishable
w.r.t. the certain tuples in the query result.

57 / 72

More examples of L -equivalency

Example

I =

{
a1 b1 c1 ,

a1 b2 c2
a2 b1 c2

}
J =

{
a1 b1 c1 ,

a1 b2 c2
a2 b1 c3

}

I and J are ∅-equivalent

I and J are P-equivalent

I and J are J-equivalent

I and J are not PJ-equivalent; e.g., set
q(R) = πAB(πAC (R) on πBC (R)).

Then a1b1 ∈ Iq but a1b1 /∈ J q.

58 / 72

Weak representation system

Definition

A representation system is weak under a query language L if for any
L -expression q and any table T there is a computable table q̄(T) that
L -represents q(Mod(T)).

Mod(q̄(T)) ≡L q(Mod(T)).

T Mod(T)

q(Mod(T))

q̄(T) Mod(q̄(T))

Mod

Mod

q̄

q

≡L

Weak representation systems correctly determine the certain tuples under L .
59 / 72

PS on Codd-Tables

Theorem

Codd tables are weak under PS.

σ̄P(T) = { t | t ∈ T and P(v(t)) for all valuations for Var(T) }
π̄U(T) = πU(T)

Example
T
Name Species Location
Anna Guan @

@ @ Paris
Bob Kingf. @

σ̄N=B(T)

N S L
B K @

π̄NS(T)

N S
A G
@ @
B K

π̄NS(σ̄N=B(T))

N S
B K

These are single-relation queries!

60 / 72

PJ/PSU on Codd-Tables

Theorem

Codd tables are not weak under PJ or PSU.

Proof (for PJ).

Consider Codd table T and set I = Mod(T)

Set q(R) = πAC (R) on πB(R)

c-table Tq,c represents Iq = q(Mod(T)).

Suppose Codd table Tq PJ-represents Iq
Consider q′ = πAC (πAB(R) on πBC (R))

For each valuation v , Tq must contain tuples t1, t2
s.t. t1.A = a2, t2.C = c1, and v(t1).B = v(t2).B

1 t1 = t2, then a2c1 ∈ TπAC
q but a2c1 /∈ IπAC

q

→
2 t1 6= t2, then t1.B = t2.B = b, then

a2b ∈ TπAB
q for some b but IπAB

q = ∅ →

T
A B C
a1 x c1
a2 y c2

Tq,c

A B C
a1 x c1
a1 y c1
a2 x c2
a2 y c2

Iq
′

q

A C
a1 c1
a1 c2
a2 c1
a2 c2

61 / 72

Null values in SQL

SQL null semantics is related but not equal to Codd tables → Be careful!

Example

On PostgreSQL.

σB=1(T) → SELECT * FROM T WHERE B=1

πAC (T) → SELECT DISTINCT A, C FROM T

T
A B C
1 null 1
2 null 2

σB=1(T)

A B C

σB 6=1(T)

A B C

σB=1∨B 6=1(T)

A B C

πAC (T)

A C
1 1
2 2

πB(T)

B
null

Tq = πAC (T) on πB(T)

A B C
1 null 1
2 null 2

T q′
q = πAC (πAB(Tq) on πBC (Tq))

A C

62 / 72

Positive RA on v-Tables

Theorem

v-tables are weak under the positive RA. To obtain q̄, simply treat
variables as distinct constants and use standard RA operators.

Example
Sightings

N S
A G
A H
z1 K
z2 L

VIPs
N
A
B
z1

σ̄N=A(S)

N S
A G
A H

SōnV
N S
A G
A H
z1 K

π̄S(SōnV)

S
G
H
K

Easy to do in an off-the-shelf relational database system!

63 / 72

PS− on v-tables

Theorem

v-tables are not weak under PS−.

Proof.
Consider v-table T and set I = Mod(T)

Set q(R) = σ(A=a1∧B=b)∨(A=a2∧B 6=b)(R)

c-table Tq,c represents Iq = q(Mod(T)).

Suppose v-table Tq PS−-represents Iq
Consider q′(R) = πC (σA=a1∨A=a2(R))

1 (∃t ∈ Tq) t1.A = ai , then ai ∈ TπA
q →

2 (∀t ∈ Tq) t.A ∈ Var(T), then T q′

q = ∅ →

T
A B C
a1 x c
a2 x c

Iq
′

q

C
c

Tq,c

A B C con
a1 x c x = b
a2 x c x 6= b

64 / 72

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

65 / 72

Algebraic Completion

Definition

Let (T ,Mod) be a representation system and L be a query language.
The representation system obtained by closing T under L is the set of
tables { (T , q) | T ∈ T , q ∈ L } and function Mod(T , q) = q(Mod(T)).

Example

No Codd table for I, but closure of f.d. Codd tables under JR suffices.

I =

{
A B
a1 a1

,
A B
a2 a2

}
, T =

A
a1‖a2

, q(R) = R on ρA→B(R)

Think of q as a view over T

View result need not be represented directly

Algebraic completion extends the power of a represen-
tation system with the power of a query language.

66 / 72

RA-completion for Codd tables

Theorem

The closure of Codd tables under SPJRU is RA-complete.

Proof.

c-tables are RA-complete

Every c-table T can be RA-defined by an SPJRU-query q on ZV

(see slide 46)

ZV can be represented as a Codd table T ′

T ′ =
B1 B2 . . . Bk

@ @ . . . @

Mod(T ′, q) = q(Mod(T ′)) = q(ZV) = Mod(T)

Relational databases with views can represent any RA-definable database!
67 / 72

RA-completion for v-tables

Theorem

The closure of v-tables under S+P is RA-complete.

Proof.

Let T = { t1, . . . , tm } be a c-table on A1 . . .An and let
Var(T) = { x1, . . . , xk }. Express T in terms of v-table T ′ and query q:

T ′ =

A1 . . . An B1 . . . Bk C
t1.A1 . . . t1.An x1 . . . xk 1
t2.A1 . . . t2.An x1 . . . xk 2

...
...

...
...

...
...

...
tm.A1 . . . tm.An x1 . . . xk m

q(R) = πA1...An(σ∨m
i=1(ψi∧C=i)(R))

where ψi is obtained from ti .con by replacing all variables xj by the
corresponding attribute Bj .

68 / 72

Finite completion results

Theorem

The following closures are finitely complete:

1 or-set-tables under PJ,

2 finite v-tables under PJ or S+P,

3 ?-tables under RA.

Proof.

Try it yourself. Hints: Don’t start with a c-table, but an incomplete
database I. You need two tables for cases 1 and 2; case 3 is quite
tricky.

69 / 72

Outline

1 Refresher: Relational Algebra

2 Incomplete Databases

3 Strong representation systems

4 Completeness

5 Weak Representation Systems

6 Completion

7 Summary

70 / 72

Lessons learned

Incomplete databases are sets of possible databases

Representation systems are concise descriptions of incomplete
databases

Queries can be analyzed in terms of
1 Possible answer sets (strong representation)
2 Certain answer tuples (weak representation)
3 Possible answer tuples (finite i-databases only)

Codd tables add null values; weak under PS
→ Be careful with null values in SQL

v-tables add variables; weak under positive RA
c-tables add variables and conditions; strong under RA and
RA-complete

RA-views on Codd tables are RA-complete → key property!

71 / 72

Suggested reading

Charu C. Aggarwal (Ed.)
Managing and Mining Uncertain Data (Chapter 2)
Springer, 2009

Dan Suciu, Dan Olteanu, Christopher Ré, Christoph Koch
Probabilistic Databases (Chapter 2)
Morgan & Claypool, 2011

Serge Abiteboul, Richard Hull, Victor Vianu
Foundations of Databases: The Logical Level (Chapter 19)
Addison Wesley, 1994

Tomasz Imieliński, Witold Lipski, Jr.
Incomplete Infomation in Relational Databases
Journal of the ACM, 31(4), Oct. 1984

72 / 72

	Refresher: Relational Algebra
	Incomplete Databases
	Strong representation systems
	Completeness
	Weak Representation Systems
	Completion
	Summary

