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Overview

In this lecture

Statistical relational learning (SRL)

Introduction to probabilistic graphical models (PGM)

Basics of undirected models (called Markov networks)

Markov logic as a template for undirected models

Basics of inference in Markov logic networks

Not in this lecture

Directed models (called Bayesian networks)

Other SRL approaches (such as probabilistic relational models)

High coverage and in-depth discussion of inference

Learning Markov logic networks
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Correlations in probabilistic databases

Simple probabilistic models
I Tuple-independent databases
I Block-disjoint independent databases
I Key/foreign key constraints, . . .

Correlations (mainly) through RA queries/views
I Any discrete probability distribution can be modeled
I Queries describe precisely how result is derived

Example (Nell)
NellExtraction

Subject Pattern Object Source P
Sony produces Walkman 1 0.96
IBM produces PC 1 0.96
IBM produces PC 2 1

Microsoft produces MacOS 2 0.9
AlbertEinstein bornIn Ulm 1 0.9

Produces(x , y)←NellExtraction(x , ’produces’, y , s),

NellSource(s)

NellSource
Source P

1 0.99
2 0.1

Produces
Subject Object P

Sony Walkman 0.9504
IBM PC 0.95536

Microsoft MacOS 0.09
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Statistical relational learning (I)

Does John smoke?

Learn correlations from structured data, then apply to new data.
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Statistical relational learning (II)

Goal: Declarative modelling of correlations in structured data
Idea: Use (subsets of) first-order logic

I Very expressive formalism; lots of knowledge bases use it
I Symmetry: ∀x .∀y .Friends(x , y) ⇐⇒ Friends(y , x)
I Everybody has a friend: ∀x .∃y .Friends(x , y)
I Transitivity: ∀x .∀y .∀z .Friends(x , y) ∧ Friends(y , z) =⇒ Friends(x , z)
I Smoking causes cancer: ∀x .Smokes(x) =⇒ Cancer(x)
I Friends have similar smoking habits:
∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Problem: Real-world knowledge is incomplete, contradictory, complex
→ Above rules do not generally hold, but they are “likely” to hold!
Approach: Combine first-order logic with probability theory

I Expressiveness of first-order logic
I Principled treatment of uncertainty using probability theory

There are many approaches of this kind. Our focus is on
Markov logic, a recent and very successful language.
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Markov logic networks

Definition

A Markov logic network is a set of pairs (Fi ,wi ), where Fi is a formula in
first-order logic and the weight wi is a real number.

Example

1.5
{ Smoking causes cancer
∀x .Smokes(x) =⇒ Cancer(x)

1.1
{ Friends have similar smoking habits
∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Formulas may or may not hold
Weights express confidence

I High positive weight → confident that formula holds
I High negative weight → confident that formula does not hold
I But careful: weights actually express confidence of certain

“groundings” of a formula and not the formula as a whole (more later)

Formulas may introduce complex correlations 7 / 78



Simple MLN for entity resolution

Which citations refer to the same publication?

author Richardson, Matt
and Domingos,
Pedro

M. Richardson and
P. Domingos

Domingos, Pedro and
Richardson, Matthew

title Markov Logic
Networks

Markov logic
networks

Markov Logic: A Unifying
Framework for Statistical
Relational Learning

year 2006 2006 2007

// predicates
HasToken(token, field, citation ) // e.g ., HasToken(’Logic’, ’ title ’, C1)
SameField(field, citation , citation ) // Semantic equality of values in a field
SameCitation(citation, citation ) // Semantic equality of citations

// formulas
HasToken(+t, +f, c1) ˆ HasToken(+t, +f, c2) => SameField(+f, c1, c2)
SameField(+f, c1, c2) => SameCitation(c1, c2)
SameCitation(c1, c2) ˆ SameCitation(c2, c3) => SameCitation(c1, c3)

Rule weights are usually learned from data. The same rule may
have different weights for different constants (indicated by “+”).
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Alchemy

Alchemy is well-known software package for Markov logic

Developed at University of Washington

Supports a wide range of tasks
I Structure learning
I Weight learning
I Probabilistic inference

Has been used for wide range of applications
I Information extraction
I Social network modeling
I Entity resolution
I Collective classification
I Link prediction

Check out http://alchemy.cs.washington.edu/
I Code
I Real-world datasets
I Real-world Markov logic networks
I Literature
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From Markov logic to graphical models (example)
Friends
Name1 Name2 Value
Anna Bob Yes
Bob Anna Yes

Anna Anna Yes
Bob Bob Yes

Smokes
Name Value
Anna Yes

Cancer
Name Value
Anna No

10 / 78

1.5
{ Smoking causes cancer

∀x .Smokes(x) =⇒ Cancer(x)

1.1
{ Friends have similar smoking habits

∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

Friends(A,B)

Friends(A,A) Smokes(A) Smokes(B) Friends(B,B)

Cancer(A) Friends(B,A) Cancer(B)

Inference result

P ( Bob smokes ) = 84.6%

P ( Bob has cancer ) = 76.9%

Example is simplified;

actual semantics are

slightly different.

Inference (conceptual)

S(B) C(B) #R1 #R2
∑

w P
No No 1 1 2.6 7.7%
No Yes 1 1 2.6 7.7%
Yes No 0 3 3.3 15.4%
Yes Yes 1 3 4.8 69.2%



Probabilistic databases and graphical models

Probabilistic databases Graphical models

Probabilistic
model

Simple
(disjoint-independent tuples)

Complex
(independencies given by graph)

Query Complex
(e.g., ∃x .∃y .R(x , y) ∧ S(x))

Simple
(e.g., P (X1,X2 | Z1,Z2,Z3 ))

Network Dynamic
(database + query)

Static
(Bayesian or Markov network)

Complexity
measured in
size of

Database Network

Complexity
parameter

Query Treewidth

System Extension to RDBMS Stand-alone

Hybrid approaches have many potential applications and are under
active research.
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Reasoning with uncertainty

Goal: Automated reasoning system
I Take all available information

(e.g., patient information: symptoms, test results, personal data)
I Reach conclusions

(e.g., which diseases the patient has, which medication to give)

Desiderata
1 Separation of knowledge and reasoning

F Declarative, model-based representation of knowledge
F General suite of reasoning algorithms, applicable to many domains

2 Principled treatment of uncertainty
F Partially observed data
F Noisy observations
F Non-deterministic relationships

Lots of applications
I medical diagnosis, fault diagnosis, analysis of genetic and genomic

data, communication and coding, analysis of marketing data, speech
recognition, natural language understanding, segmenting and denoising
images, social network analysis, . . .
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Probabilistic models

Multiple interrelated aspects may relate to the reasoning task
I Possible diseases
I Hundreds of symptoms and diagnostic tests
I Personal characteristics

1 Characterize data by a set of random variables
I Flu (yes / no)
I Hayfever (yes / no)
I Season (Spring / Sommer / Autumn / Winter)
I Congestion (yes / no)
I MusclePain (yes / no)

→ Variables and their domain are important design decision
2 Model dependencies by a joint distribution

I Diseases, season, and symptoms are correlated
I Probabilistic models construct joint probability space
→ 2 · 2 · 4 · 2 · 2 outcomes (64 values, 63 non-redundant)

I Given joint probability space, interesting questions can be answered

P ( Flu | Season=Spring,Congestion,¬MusclePain )

Specifying a joint distribution is infeasible in general!
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Probabilistic graphical models

A graph-based representation of direct probabilistic interactions
A break-down of high-dimensional distributions into smaller factors
(here: 63 vs. 17 non-redundant parameters)
A compact representation of a set of (conditional) independencies

Example (directed graphical model)

Graph representation Season

Flu Hayfever

CongestionMusclePain

Factorization P ( S ,F ,H,M,C )
= P (S )P (F | S )P (H | S )P (C | F ,H )P (M | F )

Independencies (F ⊥ H | S), (C ⊥ S | F ,H), (M ⊥ H,C , S | F )
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Main components
1 Representation

I Tractability
F Variables tend to interact directly only with very few others
F Natural and compact encoding as graphical model

I Transparency
F Models can be understood/evaluated by human experts

2 Inference
I Answer queries using the distribution as model of the world
I Work on graph structure
→ orders of magnitude faster than working on joint probability

3 Learning
I Learn a model from data that captures past experience to a good

approximation
I Human experts may provide rough guidance
I Details filled in by fitting the model to the data
→ Often better reflection of domain than hand-constructed models,
sometimes surprising insights

Graphical models exploit locality structure that appears in
many distributions that arise in practice.
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Notation

Let X and Y be sets of random variables with domain Dom(X) and
Dom(Y). Let x ∈ Dom(X) and y ∈ Dom(Y).

Expression Shortcut notation

P (X = x ) P ( x )
P (X = x | Y = y ) P ( x | y )
∀x.P (X = x ) = f (x) P (X ) = f (X)
∀x.∀y.P (X = x | Y = y ) = f (x, y) P (X | Y ) = f (X,Y)

P (X ) and P (X | Y ) are entire probability distributions

Can be thought of as functions from Dom(X)→ [0, 1] or
(Dom(X),Dom(Y))→ [0, 1], respectively

fy(X) = P (X | y ) is often referred to as conditional probability
distribution (CPD)

For discrete variables, may be represented as a table (CPT)
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Conditional independence

Definition

Let X,Y and Z be sets of random variables. X and Y are said to be
conditionally independent given Z if and only if

P (X,Y | Z ) = P (X | Z )P (Y | Z ) .

We write (X ⊥ Y | Z) for this conditional independence statement. If
Z = ∅, we write (X ⊥ Y) for marginal independence.

Example

Season

Flu Hayfever

CongestionMusclePain

(F ⊥ H | S), (C ⊥ S | F ,H)
(M ⊥ H,C ,S | F )

P (S ,F ,H,M,C )
= P (S ) · P (F | S ) · P (H | S )
·P (C | F ,H ) · P (M | F )
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Properties of conditional independence

Theorem

In general, (X ⊥ Y) does not imply nor is implied by (X ⊥ Y | Z)

The following relationships hold:

(X ⊥ Y | Z) ⇐⇒ (Y ⊥ X | Z) (symmetry)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z) (decomposition)
(X ⊥ Y,W | Z) =⇒ (X ⊥ Y | Z,W) (weak union)

(X ⊥W | Z,Y) ∧ (X ⊥ Y | Z) =⇒ (X ⊥ Y,W | Z) (contraction)

For positive distributions and mutally disjoint sets X,Y,Z,W:

(X ⊥ Y | Z,W) ∧ (X ⊥W | Z,Y) =⇒ (X ⊥ Y,W | Z) (intersection)

Proof.

Discussed in exercise group.
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Querying a distribution (1)

Consider a joint distribution on a set of variables X
Let E ⊆ X be a set of evidence variables that takes values e

Let W = X − E be the set of latent variables

Let Y ⊆W be a set of query variables

Let Z = W − Y be the set of non-query variables

Example

X = { Season,Congestion,MusclePain,Flu,Hayfever }
E = {Season,Congestion,MusclePain }
e = { Spring,Yes,No }
W = {Flu,Hayfever }
Y = {Flu }
Z = {Hayfever }
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Querying a distribution (2)
1 Conditional probability query

I Compute the posterior distribution of the query variables
P (Y | e )

2 MAP query
I Compute the most likely value of the latent variables

MAP(W | e) = argmaxw P (w | e ) = argmaxw P (w, e )
3 Marginal MAP query

I Compute the most likely value of the query variables
MAP(Y | e) = argmaxy P ( y | e ) = argmaxy

∑
z P ( y, z, e )

Example

P (W | e ) Flu ¬Flu

Hayfever 5% 35%
¬Hayfever 40% 20%

1 P ( Flu | Spring,Congestion,¬MusclePain ) → Yes (45%), No (55%)

2 MAP(Flu,Hayfever | Spring,Congestion,¬MusclePain) → Only flu

3 MAP(Flu | Spring,Congestion,¬MusclePain) → No flu (!)
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Querying graphical models

Graphical models induce conditional independences

Queries reason about dependencies between variables

Can we evaluate queries more efficiently given a graphical
model and its associated independences?

Example

Independence properties help inference!

Season

Flu Hayfever

CongestionMusclePain

Table known to satisfy (F ⊥ H | E)
P (W | e ) Flu ¬Flu

Hayfever 24% 16% 40%
¬Hayfever 36% 24% 60%

60% 40%

Thus, for example, monotonicity is now known to hold for MAP:
MAP(Flu,Hayfever | E) = (MAP(Flu | E),MAP(Hayfever | E))
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Misconception example

Example

Alice, Bob, Charles, and Debbie study in pairs for the SUM exam

A

D B

C

Lecturer misspoke in class, giving rise to a possible misconception

Some students figured out the problem, others did not

Which of the students has the misconception?

If A does not have the misconception, he may help B and D
→ Students influence each other

If A has the misconception, he may be helped by B and D
→ Influence has no natural “direction”

A does not study with C → No direct influence between A and C
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Markov network

Definition

A Markov network is an undirected graph H = (X , E), where X is a set of
random variables and E ⊆ X × X is the set of edges.

Example

A

D B

C

X = {A,B,C ,D }
E = { (A,B), (B,C ), (C ,D), (D,A) }

We will see that Markov networks encode a set of conditional
independence assumptions between its variables.
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Local models

Definition

Let D be a set of random variables. A factor φ is a function from
Dom(D)→ R. A factor is nonnegative if has range R+. The set D is
called the scope of the factor and is denoted Scope[φ].

We restrict attention to nonnegative factors.

Example

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A

D B

C

Factors describe “compatibility” between values (not normalized)

φ1: More “weight” when A and B agree than when they disagree

φ1: More weight when A and B are both right than when both are wrong

φ1: If they disagree, more weight when A is right than when B is right
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Combining local models

Definition

Let X, Y, Z be three disjoint sets of random variables and let φ1(X,Y)
and φ2(Y,Z) be two factors. The factor product ψ = φ1 × φ2 is given by
the factor ψ : Dom(X,Y,Z)→ R with

ψ(X,Y,Z) = φ1(X,Y) · φ2(Y,Z).

Example

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

A B C ψ
a0 b0 c0 3000
a0 b0 c1 30
a0 b1 c0 5
a0 b1 c1 500
a1 b0 c0 100
a1 b0 c1 1
a1 b1 c0 10
a1 b1 c1 1000

29 / 78
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Factor products and the product rule of probability

Recall the product rule of probability

P (X,Y ) = P (Y )P (X | Y ) .

Example
MusclePain

M P
Yes 0.1
No 0.9

Flu | MusclePain

M F P
Yes Yes 0.8
Yes No 0.2

No Yes 0.1
No No 0.9

Flu, MusclePain
M F P

Yes Yes 0.08
Yes No 0.02
No Yes 0.09
No No 0.81

Set φ1(MusclePain) = P ( MusclePain )

Set φ2(MusclePain,Flu) = P ( Flu | MusclePain )

Set ψ(MusclePain,Flu) = P ( MusclePain,Flu )

Then ψ = φ1 × φ2

Factor products generalize the product rule of probability.
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Gibbs distribution

Definition

A distribution PΦ is a Gibbs distribution parameterized by a set of factors
Φ = {φ1(D1), . . . , φm(Dm) } if it is defined by

PΦ (X1, . . . ,Xn ) =
1

Z
P̃Φ (X1, . . . ,Xn )

P̃Φ (X1, . . . ,Xn ) = φ1(D1)× φ2(D2)× · · · × φm(Dm)

Z =
∑

X1,...,Xn

P̃Φ (X1, . . . ,Xn )

Here, P̃Φ (X1, . . . ,Xn ) is an unnormalized measure and Z a normalizing
constant called the partitioning function.

Factors contribute to the overall joint distribution
Overall dist. takes into consideration the contribution from all factors

A set of factors defines a Gibbs distribution, i.e., a joint prob-
ability distribution over all variables.
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Gibbs distribution for Misconception example

A

D B

C

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A B C D P̃ P
a0 b0 c0 d0 300,000 0.04
a0 b0 c0 d1 300,000 0.04
a0 b0 c1 d0 300,000 0.04
a0 b0 c1 d1 30 4.1 · 10−6

a0 b1 c0 d0 500 6.9 · 10−5

a0 b1 c0 d1 500 6.9 · 10−5

a0 b1 c1 d0 5,000,000 0.69
a0 b1 c1 d1 500 6.9 · 10−5

a1 b0 c0 d0 100 1.4 · 10−5

a1 b0 c0 d1 1,000,000 0.14
a1 b0 c1 d0 100 1.4 · 10−5

a1 b0 c1 d1 100 1.4 · 10−5

a1 b1 c0 d0 10 1.4 · 10−6

a1 b1 c0 d1 100,000 0.014
a1 b1 c1 d0 100,000 0.014
a1 b1 c1 d1 100,000 0.014

Z = 7,201,840 32 / 78



Factorization and factor graphs

Definition

A distribution PΦ with Φ = {φ1(D1), . . . , φm(Dm) } factorizes over a
Markov network H if each Di is a complete subgraph of H. The factors φi
are often called clique potentials.

Example

H1 H2 FΦ FΨ

A

D B

C

A

D B

C

A

D B

C

φ1

φ2φ3

φ4

A

D B

C

ψ1

ψ2

Φ = {φ1(A,B), φ2(B,C ), φ3(C ,D), φ4(D,A) }
Ψ = {ψ1(A,B,D), ψ2(B,C ) }
PΦ factorizes over both H1 and H2

PΨ factorizes over only H2 33 / 78



Active paths

Definition

Let X1—. . . —Xk be a path in H = (X , E). Let Z ⊆ X be a set of
observed variables. The path X1—. . . —Xk is active given Z if Xi /∈ Z for
1 ≤ i ≤ k.

Example

A

D B

C

All active paths given A:

D–C

C–B

D–C–B

Some inactive paths given A:

D–A–B

C–D–A–B
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Separation and independencies for Markov networks

Definition

We say that a set of nodes Z separates X and Y in H, denoted
sepH(X;Y | Z), if there is no active path between any node in X and any
node in Y given Z. We associate with H the following set of
independencies:

I(H) = { (X ⊥ Y | Z) : sepH(X;Y | Z) }

Example

AA

D BBB

CC

∅ does not separate any nodes

{A } does not separate any nodes

{A,C } separates {B } and {D }
{A,B,C } does not separate any nodes

I(H) = { (B ⊥ D | A,C ), (D ⊥ B | A,C )

(A ⊥ C | B,D), (C ⊥ A | B,D) }
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Relationship Gibbs distributions and Markov networks

Definition

Let P be a probability distribution over X. Define I(P) to be the set
of independence assertions of the form (X ⊥ Y | Z) that hold in P.

A Markov network H is an I-map for P if I(H) ⊆ I(P).

Theorem

Let P be a distribution and H be a Markov network over X . If P is a
Gibbs distribution that factorizes over H, then H is an I-map for P.

Theorem (Hammersley-Clifford theorem)

Let P be a positive distribution and H be a Markov network over X . If H
is an I-map for P, then P is a Gibbs distribution that factorizes over H.

Theorem

If X and Y are not separated given Z in H, then X and Y are dependent
for some distribution P that factorizes over H.
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Application: Image denoising

37 / 78

Original Noisy image Denoised image

Li and Huttenlocher, ECCV 2008

http://portal.acm.org/citation.cfm?id=1478201


Application: Stanford Named Entity Recognizer

Named Entity Recognition (NER) labels sequences of words in a text
which are the names of things, such as person and company names, or
gene and protein names.

Local evidence often strong clue for label

Long-range evidence (label consistency) helps when local evidence is
insufficient

38 / 78Finkel, Grenager, and Manning, ACL 2005

http://nlp.stanford.edu/software/CRF-NER.shtml
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Semantics of Markov logic networks

Definition

A Markov logic network L = { (Fi ,wi ) } is a template for constructing
Markov networks. Given a set of constants C , a ground Markov logic ML,C

specifies a distribution over the possible worlds as follows

P (X = x ) ∝ exp

[∑
i

wini (x)

]
,

where ni (x) is the number of “true groundings” of formula Fi in the
possible world x.

A possible world x is likely if
1 It satisfies many groundings with positive weight
2 If satisfies few groundings with negative weight
3 It satisfies groundings with high positive weight
4 It does not satisfy groundings with high negative weight
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How many true groundings does a formula have?

F1 = M(A)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

n1 = 1 n1 = 0

F2 = M(A) ∨M(B)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

n2 = 1 n2 = 1 n2 = 0
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How many true groundings does a formula have? (2)

F3 = M(A) ∧M(B)
M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 0 0 (strict)
MLN: n3 = 2 n3 = 1 n3 = 0 (smoothed)

F4 = ∀x .M(x)
M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 0 0 (strict)
MLN: n4 = 4 n4 = 3 n4 = 0 (smoothed)

Conjunctions in FOL are sensitive to noise: If just one of the conjuncts is unsat-

isfied, the formula is also unsatisfied. MLNs count how many of the conjuncts

are true and thus are less sensitive to noise. 43 / 78



How many true groundings does a formula have? (3)

F5 = ∃x .M(x)

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

M(A)

M(D) M(B)

M(C )

FOL: 1 1 0 (strict)
MLN: n4 = 1 n4 = 1 n4 = 0 (strict)

Disjunctions in FOL are insensitive to noise, so we are fine.
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Grounding a formula in Markov logic

Let F be a formula and C = { c1, . . . , cd } be a set of constants.
Conceptually, we obtain the set G (F ) of ground formulas as follows:

1 Whenever a subformulas of form ∃x .F ′(x) occurs, replace by
(F ′(c1) ∨ · · · ∨ F ′(cd))

2 Convert the formula to form ∀x.F ′(x), where F ′ is in conjunctive
normal form and is quantifier-free, optionally simplify, denote result
by cnf(F )

3 For all c ∈ C |x|, set G (F , c) = {G : G is a clause in F ′(c) }
4 Set G (F ) =

{
G (F , c) : c ∈ C |x|

}
Example

C = {A,B }
F1 = ∀x .Smokes(x) =⇒ Cancer(x)

1 No existential quantifiers → nothing to do
2 cnf(F1) = ∀x .¬S(x) ∨ C(x)
3 G (F1,A) = {¬S(A) ∨ C(A) }

G (F1,B) = {¬S(B) ∨ C(B) }
4 G (F1) = { {¬S(A) ∨ C(A) } , {¬S(B) ∨ C(B) } } 45 / 78



Grounding a formula (example)

Example

C = {A,B }
F2 = ∀x .∀y .Friends(x , y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

1 No existential quantifiers → nothing to do

2 cnf(F2) = ∀x .∀y .[¬F(x , y)∨ S(x)∨¬S(y)]∧ [¬F(x , y)∨¬S(x)∨ S(y)]

3 G(F2, (A,A)) = {¬F(A,A) ∨ S(A) ∨ ¬S(A), ¬F(A,A) ∨ ¬S(A) ∨ S(A) }
G(F2, (A,B)) = {¬F(A,B) ∨ S(A) ∨ ¬S(B), ¬F(A,B) ∨ ¬S(A) ∨ S(B) }
G(F2, (B,A)) = {¬F(B,A) ∨ S(B) ∨ ¬S(A), ¬F(B,A) ∨ ¬S(B) ∨ S(A) }
G(F2, (B,B)) = {¬F(B,B) ∨ S(A) ∨ ¬S(B), ¬F(B,B) ∨ ¬S(A) ∨ S(B) }

4 G (F2) = {{¬F(A,A) ∨ S(A) ∨ ¬S(A), ¬F(A,A) ∨ ¬S(A) ∨ S(A) } ,
{¬F(A,B) ∨ S(A) ∨ ¬S(B), ¬F(A,B) ∨ ¬S(A) ∨ S(B) } ,
{¬F(B,A) ∨ S(B) ∨ ¬S(A), ¬F(B,A) ∨ ¬S(B) ∨ S(A) } ,
{¬F(B,B) ∨ S(A) ∨ ¬S(B), ¬F(B,B) ∨ ¬S(A) ∨ S(B) } }
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Grounding a Markov logic network

Given an MLN { (Fi ,wi ) } and a set of constants C .

1 Create a Boolean variable R(c) for each predicate that occurs in one
of the formulas and each c ∈ Cm, where m is the arity of the relation

2 For each formula Fi
1 Ground Fi to obtain G (Fi )
2 For each ground set of clauses G (Fi , c) ∈ G (Fi )

1 Split weight evenly among clauses: w ′i = wi/|G(Fi , c)|
2 For each clause Fij in G(Fi , c), create a factor

φ(Dij) = w ′i fij(Dij),

where Dij is the set of variables that occur in Fij , and

fij(Dij) =

{
1 if j-th clause in in G(Fi , c) is satisfied for assignment Dij

0 otherwise

is an “indicator feature” with weight w ′i .

The weight of a ground CNF formula is split evenly among its clauses.
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Grounding a Markov logic network (example)

F1: 1.5
{ Smoking causes cancer

∀x.Smokes(x) =⇒ Cancer(x)

F2: 1.1
{ Friends have similar smoking habits

∀x.∀y.Friends(x, y) =⇒ (Smokes(x) ⇐⇒ Smokes(y))

C = {A, B }
G(F1) = {{¬S(A) ∨ C(A) } , f11,w

′
11 = 1.50

{¬S(B) ∨ C(B) } } f12,w
′
12 = 1.50

G(F2) = {{¬F(A, A) ∨ S(A) ∨ ¬S(A), f21,w
′
21 = 0.55

¬F(A, A) ∨ ¬S(A) ∨ S(A) }, f22,w
′
22 = 0.55

{¬F(A, B) ∨ S(A) ∨ ¬S(B), f23,w
′
23 = 0.55

¬F(A, B) ∨ ¬S(A) ∨ S(B) }, f24,w
′
24 = 0.55

{¬F(B, A) ∨ S(B) ∨ ¬S(A), f25,w
′
25 = 0.55

¬F(B, A) ∨ ¬S(B) ∨ S(A) }, f26,w
′
26 = 0.55

{¬F(B, B) ∨ S(A) ∨ ¬S(B), f27,w
′
27 = 0.55

¬F(B, B) ∨ ¬S(A) ∨ S(B) } } f28,w
′
28 = 0.55
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φ21

φ22
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Log-linear model

Definition

A positive distribution P is a log-linear model over a Markov network H if
it is associated with

a set of features F = { f1(D1), . . . , fm(Dm) }, where each Di is a
complete subgraph in H
a set of weights w1, . . . ,wm

such that

P (X1, . . . ,Xn ) ∝ exp

[
m∑
i=1

wi fi (Di )

]
.

The terms εi (Di ) = −wi fi (Di ) are called energy functions.

logP (X1, . . . ,Xn ) is a linear combination of the the features.
The linearity allows us to detect and eliminate redundancy in
the features (using standard linear algebra techniques).
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From factors to features

Definition

Let D be a subset of variables. An indicator feature is a function
f (D) : D→ { 0, 1 }.

Theorem

Every factor of a graphical model on discrete variables can be expressed in
terms of a linear combination of weighted indicator features.

Proof (Boolean case).

Consider a factor φ(X1, . . . ,Xk) on k Boolean variables. Let Θ be the set
of all assignments of values to X1, . . . ,Xk . Set

wθ = lnφ(X1[θ], . . . ,Xk [θ]) (constants)

fθ(X1, . . . ,Xk) =

{
1 if X1 = X1[θ], . . . ,Xk = Xk [θ]

0 otherwise
(indicator features)

lnφ(X1, . . . ,Xk) =
∑
θ∈Θ wθfθ(X1, . . . ,Xk) (decomposition)
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From factors to features (example)

Example

Consider three friends with similiar interests and let A, B, C be Boolean
variables that indicate whether each of the friends likes football.

A

φ

B C

φ
X1 X2 X3 φ w
F F F 10 2.3
F F T 1 0
...

...
...

...
...

T F T 1 0
T T F 1 0
T T T 10 2.3

We have

lnφ(A,B,C ) =
∑
θ

wθfθ(A,B,C ) = 2.3 · fFFF (A,B,C ) + 2.3 · fTTT (A,B,C ).

Even more compact: lnφ(A,B,C ) = 2.3 · IABC∨¬A¬B¬C
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From Gibbs distribution to log-linear models

Theorem

Every positive Gibbs distribution P over H on Boolean variables X1, . . . ,Xn

has a log-linear model over H with only indicator features and vice versa.

Proof.

P (X1, . . . ,Xn ) =
1

Z

m∏
i=1

φi (Di )

=
1

Z
exp

[
m∑
i=1

lnφi (Di )

]

=
1

Z
exp

 m∑
i=1

∑
θ∈ΘDi

wθfθ(Di )

 .
Markov logic networks are “templates” for constructing log-
linear models. Any positive Gibbs distribution with finite-
domain variables can be modeled.
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Inference in probabilistic graphical models

Recall the queries of interest
1 Conditional probability query
2 MAP query
3 Marginal MAP query

Definition

Let PΦ be a Gibbs distribution over variables {X ,X1, . . . ,Xn }.
1 The PΦ-decision problem asks whether PΦ (X = x ) > 0,

2 The PΦ-probability computation problem asks for PΦ (X = x ).
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Complexity of inference in probabilistic graphical models

Theorem
The PΦ-decision problem is NP-complete, PΦ-probability computation is #P-hard.

Proof (by reduction from 3-SAT and #3-SAT).

Take a 3-SAT formula Ψ = C1 ∧ C2 ∧ . . . ∧ Cm over variables X = {X1,X2, . . . ,Xn }.
Consider the following Gibbs distribution PΦ over Boolean variables:

X1 X2 X3 X4 · · · Xn

C1 C2 C3 · · · Cm−1 Cm

A1 A2 · · · Am−2 X

∨1 ∨2 ∨3 ∨m−1 ∨m

∧
∧ ∧ ∧

Here, ∨i (Ci ,Xi ) = 1 if for assignment Xi the truth value of clause Ci equals variable Ci ,
else ∨i (Ci ,Xi ) = 0; similarly for ∧-factors. PΦ can be computed in polynomial time in
the size of Ψ. Assertion 1 follows since PΦ (X = TRUE ) > 0 if and only if Ψ is
satisfiable. PΦ (X = TRUE ) = P ( Ψ ) where P (Xi = TRUE ) = 1/2 and the {Xi } are
i.i.d. Assertion 2 follows since #Ψ = 2n P ( Ψ ) = 2n PΦ (X = TRUE ).
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Queries in Markov logic

Standard PGM queries, e.g.,
P ( Smokes(B),Cancer(B) | Smokes(A) ∧ Friends(A,B) ∧ . . . )
→ #P-hard
More general queries of form “What is the probability that formula F1

holds given that formula F2 holds?”, e.g.,
P ( ∃x .Cancer(x) | ∀x .Smokes(x) )
Let L be an MLN and C be a set of constants

P (F1 | F2, L,C ) = P (F1 | F2,ML,C )

=
P (F1 ∧ F2 | ML,C )

P (F2 | ML,C )

=

∑
x∈XF1

∩XF2
P (X = x | ML,C )∑

x∈XF2
P (X = x | ML,C )

,

where XF is the set of worlds in which F holds

We focus on standard PGM queries.
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Naive approach

A

D B

C

A B φ1

a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

B C φ2

b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

C D φ3

c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

D A φ4

d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A B C D P̃ P
a0 b0 c0 d0 300,000 0.04
a0 b0 c0 d1 300,000 0.04
a0 b0 c1 d0 300,000 0.04
a0 b0 c1 d1 30 4.1 · 10−6

a0 b1 c0 d0 500 6.9 · 10−5

a0 b1 c0 d1 500 6.9 · 10−5

a0 b1 c1 d0 5,000,000 0.69
a0 b1 c1 d1 500 6.9 · 10−5

a1 b0 c0 d0 100 1.4 · 10−5

a1 b0 c0 d1 1,000,000 0.14
a1 b0 c1 d0 100 1.4 · 10−5

a1 b0 c1 d1 100 1.4 · 10−5

a1 b1 c0 d0 10 1.4 · 10−6

a1 b1 c0 d1 100,000 0.014
a1 b1 c1 d0 100,000 0.014
a1 b1 c1 d1 100,000 0.014

Z = 7,201,840 60 / 78

Exponential in number of variables!



Grounding with evidence (1)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z +
∑

(f ,w)∈M1

wf (Ef )

︸ ︷︷ ︸
Constant

+
∑

(f ,w)∈M2

wf (Wf , Ef ) +
∑

(f ,w)∈M3

wf (Wf )

Example
Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

Cancer(A) Cancer(B)Friends(B,A)

φ11 φ12

φ23 φ24

φ25 φ26

φ21

φ22

φ27

φ28

M1 = {φ11, φ21, φ22 }
M2 = {φ23, φ24, φ25, φ26, φ27, φ28 }

M3 = {φ12 }
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Grounding with evidence (2)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z ′ +
∑

(f ,w)∈M2

wf (Wf , Ef )

︸ ︷︷ ︸
Replace observed variables by their values

+
∑

(f ,w)∈M3

wf (Wf )

Example
Friends(A,B)

Smokes(A) Smokes(B) Friends(B,B)

Cancer(B)Friends(B,A)

φ12

φ23 φ24

φ25 φ26

φ27

φ28

M2 = {φ23, φ24, φ25, φ26, φ27, φ28 }

M3 = {φ12 }
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Grounding with evidence (3)

Denote by M the weighted ground clauses in a ground Markov logic
network ML,C . Given evidence E, we can partition M into:

1 Clauses M1 that involve only observed variables
2 Clauses M2 that involve both observed and latent variables
3 Clauses M3 that involve only latent variables

log P ( W | E ) = − log Z +
∑

φ=(f ,w)∈M

wf (Wf , Ef )

= − log Z ′ +
∑

(f ,w)∈M′
2

wf (Wf ) +
∑

(f ,w)∈M3

wf (Wf )

= − log Z ′ +
∑

(f ,w)∈M′
wf (Wf )

Example

Smokes(B)

Cancer(B)

φ12

φ′23
φ′24

φ′25 φ′26

φ′27

φ′28

M′
2 =

{
φ′

23, φ
′
24, φ

′
25, φ

′
26, φ

′
27, φ

′
28

}
M3 = {φ12 }
M ′ = M ′2 ∪M3

φ24 = ¬F (A,B) ∨ ¬S(A) ∨ S(B)

φ′24 = FALSE ∨ FALSE ∨ S(B)

= S(B)
63 / 78
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MAP inference for MLNs (1)

Example

What is the most likely world for a given Markov logic network?

Friends(A,B)

Smokes(A) Smokes(B)Friends(A,A) Friends(B,B)

Cancer(A) Cancer(B)Friends(B,A)

φ11 φ12

φ23 φ24

φ25 φ26

φ21

φ22

φ27

φ28

Corresponds to weighted CNF formula:
Ψ = f11 ∧ f12 ∧ f23 ∧ f24 ∧ f25 ∧ f26 ∧ f27 ∧ f28
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MAP inference for MLNs (2)

Definition

Consider a CNF formula F over variables X , in which each of the clauses
f1, . . . , fm is associated with a corresponding weight w1, . . . ,wm. The
Weighted MAX-SAT problem is to find an assignment x∗ ∈ XF that
maximizes the sum of the weights of satisfied clauses, i.e.,
x∗ = argmaxx

∑
i wi fi .

Consider the following transformation:

argmax
x

P ( x ) = argmax
x

[ 1

Z
exp

∑
(f ,w)∈ML,C

wf (x)
]

= argmax
x

∑
(f ,w)∈ML,C︸ ︷︷ ︸

F

w︸︷︷︸
wi

f (x)︸︷︷︸
fi

= x∗

There are many algorithms and solvers for Weighted MAX-SAT, both
exact and approximate. Specialized algorithms for MLNs do exist;
they try to reduce grounding by computing ML,C only partially.
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MAP inference for MLNs (3)

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

MAP world character-
izes distribution well

MAP world not dis-
tinguished from other
words

MAP world(s) charac-
terize only a part of
the distribution

MAP estimates provide the “most consistent” world, i.e., the
world that satisfies most of the rules. This world may or may
not characterize the entire distribution well.
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Variable elimination (idea)

Goal: Eliminate non-query variables from the graph.
A

D B

C

φ1

φ2φ3

φ4

φ1

A B φ
a0 b0 30
a0 b1 5
a1 b0 1
a1 b1 10

φ2

B C φ
b0 c0 100
b0 c1 1
b1 c0 1
b1 c1 100

φ3

C D φ
c0 d0 1
c0 d1 100
c1 d0 100
c1 d1 1

φ4

D A φ
d0 a0 100
d0 a1 1
d1 a0 1
d1 a1 100

A

D φ12

C

φ3

φ4

φ1 × φ2

A B C φ
a0 b0 c0 3000
a0 b0 c1 30
a0 b1 c0 5
a0 b1 c1 500
a1 b0 c0 100
a1 b0 c1 1
a1 b1 c0 10
a1 b1 c1 1000

φ12

A C φ
a0 c0 3005
a0 c1 530
a1 c0 110
a1 c1 1001
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B has been eliminated (“margin-
alized out”). The resulting factor
graph represents P (A,C ,D ).



Variable elimination (why it works)

Recall that

P (A,B,C ,D ) =
1

Z
φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A)

and thus

P (A,C ,D ) = P
(
A, b0,C ,D

)
+ P

(
A, b1,C ,D

)
=

1

Z
[φ1(A, b0)× φ2(b0,C )× φ3(C ,D)× φ4(D,A)

+ φ1(A, b1)× φ2(b1,C )× φ3(C ,D)× φ4(D,A)]

=
1

Z

{ ∑
b∈{ b0,b1 }

φ1(A, b)× φ2(b,C )
}
× φ3(C ,D)× φ4(D,A)


=

1

Z
[φ12(A,C )× φ3(C ,D)× φ4(D,A)]
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Variable elimination (remarks)

Also called sum-product variable elimination

Whenever we eliminate a variable B
I We remove all factors connected to B
I We introduce a single factor that is connected to the neighbors of B
I If B has k neighbors, the new factor has 2k rows
→ Potentially exponential blow-up

Computational cost
I Dominated by sizes of intermediate factors
I Depends strongly on elimination ordering
I NP-hard to find optimal ordering
I Lots of useful heuristics exist
I “Conditioning” can be used to avoid large factors for increased

processing time

Similar observations give rise to other important algorithms, e.g.,
“message passing” in “clique trees”

69 / 78



Outline

1 Introduction to Markov Logic Networks

2 Probabilistic Graphical Models
Introduction
Preliminaries

3 Markov Networks

4 Markov Logic Networks
Grounding Markov logic networks
Log-Linear Models

5 Inference in MLNs
Basics
Exact Inference
Approximate Inference

6 Summary

70 / 78



Sampling methods

Also called particle-based approximate inference

Idea: Obtain samples from the distribution underlying the graphical
model

If samples were independent, we could count how often each variables
is true/false and apply the sampling theorem
Sampling is much more difficult in Markov networks → samples are
generally dependent

I Goal is to minimize the dependencies
I More samples needed than “implied” by the sampling theorem
I If dependencies vanish between far-apart samples → correctness and

convergence
Many techniques

I Forward sampling (for directed models)
I Likelihood weighting
I Importance sampling
I Gibbs sampling
I Other Markov Chain Monte Carlo (MCMC) methods
I Collapsed particles
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P (X ,Y ). It is used
when it is hard to sample from P (X ,Y ), but easy to sample from
P (X | Y ) and P (Y | X ).

1 Pick an initial point (x0, y0)
2 For n = 1, 2, . . .

1 Generate xn ∼ P (X | Y = yn−1 )

x

y
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Gibbs sampling (idea)

Gibbs sampling is a simple algorithm to sample from P (X ,Y ). It is used
when it is hard to sample from P (X ,Y ), but easy to sample from
P (X | Y ) and P (Y | X ).

21 Pick an initial point (x0, y0)
2 For n = 1, 2, . . .

1 Generate xn ∼ P (X | Y = yn−1 )
2 Generate yn ∼ P (Y | X = xn )

x

y
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Gibbs sampling for Markov networks

Recall that

P (A,B,C ,D ) =
1

Z
φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A).

Sampling from P (A,B,C ,D ) is hard but sampling from

P (A | B,C ,D ) =
P (A,B,C ,D )

P (B,C ,D )

=
1
Z [φ1(A,B)× φ2(B,C )× φ3(C ,D)× φ4(D,A)]

1
Z

∑
a∈{ a0,a1 }[φ1(a,B)× φ2(B,C )× φ3(C ,D)× φ4(D, a)]

=
φ1(A,B)× φ4(D,A)∑

a∈{ a0,a1 } φ1(a,B)× φ4(D, a)

is easy. Only the factors connected to A remain.

When resampling a variable A, we only have to look at the
factors connected to A, and thus only the subset of variables
connected to A. These variables are called the Markov blan-
ket of A.
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Gibbs sampling for Markov networks (remarks)

Variables are picked according to a schedule
→ sequential, random, . . .
An instance of the more general class of MCMC methods

I Markov chains describe how the sampling process moves through the
set of worlds

I Irreducible if all worlds can be reached from all other worlds
I Convergence speed depends on how fast the sampling process moves

(mixing time)

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

World

P
ro

ba
bi

lit
y

Gibbs sampling works
well (fast mixing)

Gibbs sampling works
reasonable (slow mixing)

Gibbs sampling does not
work (not irreducible)

MCMC methods can perform “bigger” steps than Gibbs sampling;
they change multiple variables simultaneously 75 / 78
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Lessons learned

Probabilistic databases and graphical models focus on different
aspects of probabilistic reasoning
Probabilistic graphical models

I Describe and reason about probability distributions and independencies
I Exploit locality structure (conditional independence)
I Main components: representation, inference, learning

Markov logic
I Combines first-order logic and probability theory
I Set of formulas with weights
I Template for generating undirected graphical models

Inference
I #P-hard in general
I MAP inference on MLNs corresponds to Weighted MAX-SAT
I Exact methods for probability computation (e.g., variable elimination)

may work when graph has no dense regions
I Approximate methods often based on MCMC sampling
I Gibbs sampling is the simplest MCMC method; it changes one variable

at a time
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Suggested reading

Daphne Koller, Nir Friedman
Probabilistic Graphical Models: Principles and Techniques
The MIT Press, 2009

Matthew Richardson and Pedro Domingos
Markov Logic Networks
Machine Learning, 62(1-2), pp. 107–136, 2006

Michael Mitzenmacher, Eli Upfal
Probability and Computing: Randomized Algorithms and Probabilistic
Analysis
Cambridge University Press, 2005
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