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Recommender systems

@ Problem

> Set of users

Set of items (movies, books, jokes, products, stories, ...)
Feedback (ratings, purchase, click-through, tags, ...)
Sometimes: metadata (user profiles, item properties, ...)

v vy

@ Goal: Predict preferences of users for items

@ Ultimate goal: Create item recommendations for each user

@ Example
Avatar The Matrix Up
Alice 7 4 2
Bob 3 2 7

Charlie 5 ? 3

N
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Outline

@ Collaborative Filtering
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Collaborative filtering

@ Key idea: Make use of past user behavior

No domain knowledge required

No expensive data collection needed

Allows discovery of complex and unexpected patterns
Widely adopted: Amazon, TiVo, Netflix, Microsoft

Key techniques: neighborhood models, latent factor models

e 6 6 o o

Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

Leverage past behavior of other users and/or on other items.
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A simple baseline

@ m users, n items, m X n rating matrix D
@ Revealed entries Q = { (/,/) | rating Dj; is revealed }, N = |Q]
e Baseline predictor: b,; = p1 + bj + b;

> 1= 7 > (i jjea Di is the overall average rating

» b; is a user bias (user’s tendency to rate low/high)

> bj is an item bias (item'’s tendency to be rated low/high)

o Least squares estimates: argmin,, > (; 5cq(Dj — 1 — bi — b;)?

D Avatar  Matrix Up m=3
(1.01) (0.34) (—1.32) n=3
A/ice ? 4 2 Q: {(172)7(173)7(271)7}
(0.32) | (45) (38) (21) N =6
=3.17
Bob 3 2 ? p
(—1.34) | (2.8) (2.2) (0.5) bzgy =3.174+0.99+ 0.34 =45
Charlie 5 ? 3 Baseline does not account for
(0.99) (5.2) (4.5) (2.8) personal tastes.




When does a user like an item?

e Neighborhood models (kNN): When he likes similar items

» Find the top-k most similar items the user has rated
» Combine the ratings of these items (e.g., average)
» Requires a similarity measure (e.g., Pearson correlation coefficient)

is similar to

Unrated by Bob Bob rated 4
— predict 4

e Latent factor models (LFM): When similar users like similar items

Serous

» More holistic approach

> Users and items are placed in the
same “latent factor space”

» Position of a user and an item m— &
related to preference (via dot products) =

The Color Purple]

scpist 6
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Intuition behind latent factor models (1)
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Intuition behind latent factor models (2)

@ Does user u like item v?
@ Quality: measured via direction from origin (cos Z(u,v))
» Same direction — attraction: cos Z(u,v) =~ 1
» Opposite direction — repulsion: cos Z(u,v) ~ —1
» Orthogonal direction — oblivious: cos Z(u,v) ~ 0
e Strength: measured via distance from origin (||ull|v]|)
» Far from origin — strong relationship: |ju|||v|| large
» Close to origin — weak relationship: ||u||lv| small
@ Overall preference: measured via dot product (u - v)

uv = [Juf ] T = [lulll[v[ cos £(u, v)

» Same direction, far out — strong attraction: u - v large positive
» Opposite direction, far out — strong repulsion: u - v large negative
» Orthogonal direction, any distance — oblivious: : u-v ~0

But how to select dimensions and where to place items and users?
Key idea: Pick dimensions that explain the known data well.




SVD and missing values
Input data Rank-10 truncated SVD

10% of input data Rank-10 truncated SVD

SVD treats missing entries as 0.




Latent factor models and missing values
Input data Rank-10 LFM

10% of input data Rank-10 LFM

LFMs “ignore” missing entries.
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Latent factor models (simple form)

@ Given rank r, find m x r matrix L and r x n matrix R such that

D; ~ [LR]; for (i,j) € Q
@ Least squares formulation
m|n Z — [LR];)?
bR (hea
e Example (r =1)
R
Avatar  The Matrix Up
(2.24) (1.92) (1.18)
Alice ? 4 2
(1.98) (4.4) (3.8) (2.3)
L Bob 3 2 ?
(1.21) (2.7) (2.3) (1.4)
Charlie 5 ? 3
(2.30) (5.2) (4.4) (2.7)
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Example

Koren et al
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Latent factor models (summation form) R

@ Least squares formulation prone to overfitting

@ More general summation form:

L= )" Ij(Lis,Ry) + R(L,R), L—11-
(i) 1

L is global loss
L;. and R,; are user and item parameters, resp. D
lj is local loss, e.g., l; = (D; — [LR];)?

R is regularization term, e.g., R = A(||IL||%2 + ||R]|2)

vV vy VvVYyy

@ Loss function can be more sophisticated

Improved predictors (e.g., include user and item bias)

Additional feedback data (e.g., time, implicit feedback)

Regularization terms (e.g., weighted depending on amount of feedback)
Available metadata (e.g., demographics, genre of a movie)

\4

vV vy
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Example: Netflix prize data

RMSE

Koren et al., 2009
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Millions of parameters
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Outline

© Matrix Completion
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The matrix completion problem

Complete these matrices!

11111 11111
11111 1 7?2 7 77
11711 17 72 77
11111 1 72 7 77
11111 1 7?2 7 77

Matrix completion is impossible without additional assumptions! ‘

Let’s assume that underlying full matrix is “simple” (here: rank 1).

11111 11111
11111 1 1111
11111 1 1111
11111 11111
11111 1 1111

When/how can we recover a low-rank matrix from a sample of its entries?
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Rank minimization

Definition (rank minimization problem)

Given an n x n data matrix D and an index set Q of revealed entries. The
rank minimization problem is

minimize  rank(X)
subject to Djj = X; (i,j) € Q
X G Ran'

@ Seeks for “simplest explanation” fitting the data

e If unique and sufficient samples, recovers D (i.e., X = D)
@ NP-hard

Time complexity of existing rank minimization algorithms dou-
ble exponential in n (and also slow in practice).
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Nuclear norm minimization

o Rank: rank(D) = {ox(D) >0:1< k <n}[ =3} o, (D)>0
e Nuclear norm: |D|, =>_;_; ok(D)

Definition (nuclear norm minimization)

Given an n X n data matrix D and an index set Q of revealed entries. The

nuclear minimization problem is

minimize || X||«
subject to  Dj; = Xj; (i,j) € Q
X e R™".

@ A heuristic for rank minimization

@ Nuclear norm is convex function (thus local optimum is global opt.)

Can be optimized (more) efficiently via semidefinite programming.
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Why nuclear norm minimization?

Figure 1. Unit ball of the | norm for ric 2 x 2 matrices.
The red line depicts a random one-dimensional affine space. Such a

subspace will generically intersect a sufficiently large nuclear norm
ball at a rank one matrix.

Candeés and Recht, 2012

Consider SVD of D = UXV'T

Unit nuclear norm ball =
convex combination (o) of
rank-1 matrices of unit
Frobenius (U,,V],)

Extreme points have low rank
(in figure: rank-1 matrices of
unit Frobenius norm)

Nuclear norm minimization:
inflate unit ball as little as
possible to reach Dj; = Xj;

Solution lies at extreme point
of inflated ball — (hopefully)
low rank

19/35


http://research.yahoo.com/pub/2859

Relationship to LFMs
@ Recall regularized LFM (L is m x r, Ris r x n):
min > (Dy — [LR]3)? + A ([LIIF + IRIIZ)
bR (iJ)en
e View as matrix completion problem by enforcing D;; = [LR];:

minimize 3 (LI + [R|2)
subject to Dj; = Xj; (i,j) e Q
LR = X.

@ One can show: for r chosen larger than rank of nuclear norm
optimum, equivalent to nuclear norm minimization

e For some intuition, suppose X = UXV ' at optimum L and R:

L(LIZ+IRIE) < 3 (JUT2) + 22V 2)
=3 Er:izl > k=1(Uiok + Viok)
= k=10k = [IX]l
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When can we hope to recover D? (1)

Assume D is the 5 x 5 all-ones matrix (rank 1).

1
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‘ Sampling strategy and sample size matter. ‘
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When can we hope to recover D? (2)

Consider the following rank-1 matrices and assume few revealed entries.
11111 20 20 22 20 20

11111 20 20 22 20 20

11111 22 22 24 22 22

11111 20 20 22 20 20

11111 20 20 22 20 20
Ok (“incoherent™) Ok (“incoherent™)

11111 1 0000

0 00O0O 0 00O0O

0 00O0O 0 00O0O

0 00O0O 0 00O0O

0 00O0O 0 00O0O
Bad (“coherent”) Bad (“coherent”)
— first row required — (1, 1)-entry required

‘ Properties of D matter. ‘




When can we hope to recover D? (3)
Exact conditions under which matrix completion “works” is active research
area:

@ Which sampling schemes? (e.g., random, WR/WOR, active)

@ Which sample size?

@ Which matrices? (e.g., “incoherent” matrices)

o Noise (e.g., independent, normally distributed noise)

Theorem (Candés and Recht, 2009)
Let D =UXV'. If D is incoherent in that

max U? < 1e and max V2 < 1

UU_FI uu_n

for some g = O(1), and if rank(D) < pg'n'/®, then O(n%>rlog n)
random samples without replacement suffice to recover D exactly with
high probability.

Candeés and Recht, 2009 23 /35
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Outline

© Algorithms
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Overview

Latent factor models in practice
@ Millions of users and items
@ Billions of ratings

@ Sometimes quite complex models

Many algorithms have been applied to large-scale problems
@ Gradient descent and quasi-Newton methods
@ Coordinate-wise gradient descent
@ Stochastic gradient descent

@ Alternating least squares
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Continuous gradient descent

Find minimum 6* of function L

Pick a starting point 6

Walk downhill o

°
°
e Compute gradient L'(6)
°
o Differential equation

() ) '
o —L'(6(1))

with boundary cond. 6(0) = 6y o <05 00 05 o

@ Under certain conditions

o(t) — 0"

q]

folt) -
0.0 02 04 06 08 1.0

0.0 0.2 0.4 0.6 0.8 1.0
t 26 /35



Discrete gradient descent

Find minimum 6* of function L
Pick a starting point 6
Compute gradient L'(6p)

Jump downhill =]

Difference equation

Opi1 = On — enl’(61) |

@ Under certain conditions, .
approximates CGD in that

T T T T T
-1.0 -0.5 0.0 0.5 1.0

stepfun(px, py)

0"(t) = 6, + “steps of size t"

q

satisfies the ODE as n — oo

folt) -
00 02 04 06 08 L0

|

0.0 0.2 0.4 0.6 0.8 1.0
t 27 /35



Gradient descent for LFMs

@ Set § = (L,R) and write R
R.j
L(0) = Z Li(Li., R.j)

o -
VL0 = > Vilj(Li.Ry) B
ISVARES SIS

@ GD epoch

@ Compute gradient D

* Initialize zero matrices LY and RY
* For each entry (i,j) € Q, update gradients

LY « LY + Vi, Ly(Lic, Ryj)
RY < RY, + Ve, Lj(Lis, Ryj)
@ Update parameters
LeL—elLY
R+~ R—¢,RY
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Computing the gradient (example) R

Simplest form (unregularized) R
Lij(Lir,Ry) = (Dj — LikR,;)? o
L L;. :: ij
Gradient computation
D
0 if " #£ i

v , L L*’R* =
L: k U( ! J) {_2Rkj(DU - I—/*R*j) If il = I

Local gradient of entry (/,) € Q nonzero only on row L;, and
column R,;.
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Stochastic gradient descent

@ Find minimum 6* of function L
@ Pick a starting point 6y

o Approximate gradient [/(6p)
@ Jump “approximately” downhill =
@ Stochastic difference equation

Oni1 =0, — enl'(0,) '

Under certain conditions, .
asymptotically approximates
(continuous) gradient descent

T T T T T
-10 -0.5 0.0 0.5 1.0

stepfun(px, py)

lat) - o
1 1 1

00 02 04 06 08 10

t 30/35



Stochastic gradient descent for LFMs

@ Set § = (L,R) and use

= > Lj(Lis,Ry)

(i.j)eQ
L'@)= > Lj(Li,Ry)
(i,j)eq
[/(9’2) NL; ; (Liz*7R*jz)’

izjz

where N = |Q| and z = (iz,j,) € Q

@ SGD epoch
@ Pick a random entry z € .
@ Compute approximate gradient L/(6, z)
© Update parameters
Ons1 = O0p — €al’ (0, 2)

© Repeat N times

SGD step affects only
current row and column.
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SGD in practice

Step size sequence { €, } needs to be chosen carefully
e Pick initial step size based on sample (of some rows and columns)
@ Reduce step size gradually
@ Bold driver heuristic: After every epoch

» Increase step size slightly when loss decreased (by, say, 5%)

» Decrease step size sharply when loss increased (by, say, 50%)

Mean Loss
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Outline

@ Summary
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Lessons learned

@ Collaborative filtering methods learn from past user behavior

Latent factor models are best-performing single approach for
collaborative filtering

» But often combined with other methods

@ Users and items are represented in common latent factor space

» Holistic matrix-factorization approach
» Similar users/item placed at similar positions
» Low-rank assumption = few “factors” influence user preferences

@ Close relationship to matrix completion problem
» Reconstruct a partially observed low-rank matrix

@ SGD is simple and practical algorithm to solve LFMs in summation
form
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Suggested reading

@ Y. Koren, R. Bell, C. Volinsky
Matrix factorization techniques for recommender systems
IEEE Computer, 42(8), p. 30-37, 2009
http://research.yahoo.com/pub/2859

o E. Candes, B. Recht
Exact matrix completion via convex optimization
Communications of the ACM, 55(6), p. 111-119, 2012
http://doi.acm.org/10.1145/2184319.2184343

@ And references in the above articles
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