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Topic IV: Tensors

1. Whatis a ... tensor?
2. Basic Operations

3. Tensor Decompositions and Rank

3.1. CP Decomposition
3.2. Tensor Rank
3.3. Tucker Decomposition

Kolda & Bader 2009
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I admire the elegance of your method of computation, it must
be nice to ride through these fields upon the horse of true
mathematics while the like of us have to make our way
laboriously on foot

Albert Einstein
in a letter to Tullio Levi-Civita



What 1s a ... tensor?

* A tensor 1s a multi-way extension of a matrix
— A multi-dimensional array

— A multi-linear map

* In particular, the following
are all tensors:
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Why Tensors?

* Tensors can be used when matrices are not enough
* A matrix can represent a binary relation

— A tensor can represent an n-ary relation
* E.g. subject—predicate—object data
— A tensor can represent a set of binary relations

e Or other matrices

* A matrix can represent a matrix

— A tensor can represent a series/set of matrices

— But using tensors for time series should be approached with
care



Terminology

* We say a tensor 1s N-way array

—E.g. a matrix 1s a 2-way array

e Other sources use:

— N-dimensional

 But 1s a 3-dimensional vector a 1-dimensional tensor?
—rank-N

 But we have a different use for the word rank

* A 3-way tensor can be N-by-M-by-K dimensional
* A 3-way tensor has three modes

— Columns, rows, and tubes



Fibres and Slices

(a) Mode-1 (column) fibers: x.;; (b) Mode-2 (row) fibers: x; .
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(c) Mode-3 (tube) fibers: x;;.

(c) Frontal slices: X.., (or Xg)

Kolda & Bader 2009



Basic Operations

* Tensors require extensions to the standard linear
algebra operations for matrices

* A multi-way vector outer product is a tensor where
each element 1s the product of corresponding
elements in vectors: X =aoboc, (X);jx =aibjck

* A tensor inner product of two same-sized tensors 1s
the sum of the element-wise products of their values:

(X, ) =Xi Yy - Yoy XijezYijeoz



Tensor Matricization

* Tensor matricization unfolds an N-way tensor into a
matrix

— Mode-n matricization arranges the mode-» fibers as
columns of a matrix

* Denoted X
— As many rows as 1s the dimensionality of the nth mode

— As many columns as 1s the product of the dimensions of the
other modes
e [f X'1s an N-way tensor of size [1 x> X... X1y, then X

maps element Xi| ir.....ixy 1NtO (in, j) Where
k—1

]—I—I—Z k—l Jk[k% ]With]k— Hlm[m%n]
m=1



Matricization Example
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Matricization Example
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Matricization Example



Another matricization example
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Tensor Multiplication

* Let X be an N-way tensor of size [1 x> X... X1y, and let
U be a matrix of size J X/,

— The n-mode matrix product of X with U, X x, U is of
SIZG [1 X]ZX .« o X]n—l XJX[rH-]X .« e X[N
In
— (X XnU)il“’in—ljin—l—l“’iN — Zinzlxi1i2"°iNujin
* Each mode-n fibre 1s multiplied by the matrix U
—In terms of untold tensors: " = X X, U <= Y,) = UX(,

* The n-mode vector product is denoted X X, v

— The result 1s of order N—1
— (.X>_<nV) — Zln V,‘n

i1 ip—1ipg1IN = Lui,—1Ni1ip-in
* [Inner product between mode-n fibres and vector v



Kronecker Matrix Product

* Element-per-matrix product
* n-by-m and j-by-k matrices give nj-by-mk matrix

(11le ClLQB A (11ij

ax1B ax2B - ayqB
ARXB =

an,lB an,QB an,mB



Khatri—Rao Matrix Product

* Element-per-column product

— Number of columns must match

* n-by-m and k-by-m matrices give nk-by-m matrix

/(11,1b1 (11,2b2 e al,mbm\
C12,1b1 (12,2b2 e a2,mbm
AO®B=

\an,lbl an,2b2 an,mbm)



Hadamard Matrix Product

* The element-wise matrix product

* Two matrices of size n-by-m, resulting matrix of size
n-by-m

/a&JtHJ_ a;2bia - G&qnban\

az1b24 azzbzg e aQﬂanJn
AxB =

\an,lbn,l an,2bn,2 e an,mbn,m/



Some 1dentities

(A®B)(C®D)=AC®BD
(A®B) =AT®B'
AOGBOC=(AGB)®C=A0(B®C)
(AB) (A®B)=A"A«B'B
(A®B)" = ((ATA) % (B'B)) " (A®B)”

A" is the Moore—Penrose pseudo-inverse



Tensor Decompositions and Rank

* A matrix decomposition represents the given matrix
as a product of two (or more) factor matrices

* The rank of a matrix M 1s the
— Number of linearly independent rows (row rank)

— Number of linearly independent columns (column rank)

— Number of rank-1 matrices needed to be summed to get M
(Schein rank)

e Rank-1 matrix 1s an outer product of two vectors

—They all are equivalent
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Rank-1 Tensors
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The CP Tensor Decomposition

Cq Co
// //

X ||~ by by ...
a] a2




More on CP

 The size of the CP factorization 1s the number of
rank-1 tensors involved

* The factorization can also be written using N factor
matrix (for order-N tensor)

— All column vectors are collected 1n one matrix, all row
vectors 1n other, all tube vectors 1n third, etc.

— These matrices are typically called A, B, and C for 3rd
order tensors



CANDECOM, PARAFAC, ...

Name Proposed by

Polyadic Form of a Tensor Hitchcock, 1927 [105]
PARAFAC (Parallel Factors) Harshman, 1970 [90]
CANDECOMP or CAND (Canonical decomposition)  Carroll and Chang, 1970 [38]
Topographic Components Model Mocks, 1988 [166]

CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

Table 3.1: Some of the many names for the CP decomposition.

Kolda & Bader 2009



Another View on the CP

* Using matricization, we can re-write the CP
decomposition

— One equation per mode



Solving CP: The ALS Approach

1.Fix B and C and solve A
2.S50lve B and C similarly
3.Repeat until convergence
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Solving CP: The ALS Approach

1.Fix B and C and solve A
2.S50lve B and C similarly
3.Repeat until convergence

min || X 1) —A(CoB) |

A=Xy((CoB)T)

A=X(CoB)(C'C+«B'B)



Solving CP: The ALS Approach

1.Fix B and C and solve A
2.S50lve B and C similarly
3.Repeat until convergence

min || X 1) —A(CoB) |

A=Xy((CoB)T)

A = X(l) (C ® B) T * BTiBJr

R-by-R matrix



Tensor Rank

* The rank of a tensor 1s the minimum number of
rank-1 tensors needed to represent the tensor exactly

—The CP decomposition of size R
— Generalizes the matrix Schein rank




Tensor Rank Oddities #1

* The rank of a (real-valued) tensor 1s different over
reals and over complex numbers.

— With reals, the rank can be larger than the largest dimension
* rank(X) <min{lJ, IK, JK} for I-by-J-by-K tensor
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Tensor Rank Oddities #2

* There are tensors of rank R that can be approximated

arbitrarily well with tensors of rank R’ for some R’ <
R.

— That 1s, there are no best low-rank approximation for such
tensors.

— Eckart—Young-theorem shows this 1s impossible with
matrices.

— The smallest such R’ is called the border rank of the
tensor.



Tensor Rank Oddities #3

* The rank-R CP decomposition of a rank-R tensor 1s
essentially unique under mild conditions.

— Essentially unique = only scaling and permuting are
allowed.

— Does not contradict #2, as this 1s the rank decomposition,
not low-rank decomposition.

— Again, not true for matrices (unless orthogonality etc. 1s
required).



The Tucker Tensor Decomposition
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Tucker Decomposition

* Many degrees of freedom: often A, B, and C are
required to be orthogonal

* [t P=Q=R and core tensor G 1s hyper-diagonal, then
Tucker decomposition reduces to CP decomposition
* ALS-style methods are typically used

— The matricized forms are
X(l) = AG(l) (C X B)T

X(z) = BG(Q) (C X A)T
X(3) = CG(g) (B X A)T



Higher-Order SVD (HOSVD)

* One method to compute the Tucker decomposition
— Set A as the leading P left singular vectors of X(1)
—Set B as the leading Q left singular vectors of X(2)
— Set C as the leading R left singular vectors of X3)

—Set tensor G as X x1 Al x, B! x3C!



Wrap-up
* Tensors generalize matrices
* Many matrix concepts generalize as well

— But some don’t

— And some behave very differently

* Compared to matrix decomposition methods, tensor
algorithms are 1n their youth

— Notwithstanding that Tucker did his work 1n 60’s



Suggested Reading

* Skillikorn, Ch. 9

» Kolda, T.G. & Bader, B.W., 2009. Tensor
decompositions and applications. SIAM Review,
51(3), pp. 455-500.

— Great survey article on different tensor decompositions and
on their use 1n data analysis
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