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Tucker’s many decompositions

Recall: Tucker3 decomposition decomposes a 3-way tensor X into
three factor matrices A, B, and C, and to smaller core tensor G
Tucker2 decomposition decomposes a 3-way tensor into core and
two factor matrices

I Equivalently, the third factor matrix is an identity matrix
I If the original tensor was N-by-M-by-K , the core is I -by-J-by-K or

I -by-M-by-J or N-by-I -by-J

X
G

A
B

⇡
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Tucker2 sliced and matricezed

Tucker2 can be presented slice-wise:

Xk = AGkB
T for each k

I Xk is the kth (frontal) slice of X
I Gk is the kth (frontal) slice of the core G
I A and B are the factor matrices

We can also use the normal matricized forms with C replaced with
identity matrix I

X(1) = AG(1)(I⊗ B)T et cetera

To compute Tucker2:
I update A and B using the matricized forms
I update each frontal slice of G separately
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Why Tucker2?

Use Tucker2 if you don’t want to factorize one of your modes
I Too small dimension (e.g. 500-by-300-by-3)
I Want to handle this mode separately

F For example, if third mode is time, we might first do Tucker2 and then
time series analysis on Gks

Tucker2 is slightly simpler than Tucker3
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The INDSCAL decomposition

Recall: CP decomposition decomposes a 3-way tensor X into three
factor matrices A, B, and C

I Element-wise: xijk =
∑R

r=1 airbjrckr

The INDSCAL decomposition decomposes a 3-way tensor X into
two factor matrices A and C

I Element-wise: xijk =
∑R

r=1 airajrckr

X is expected to be symmetric on first two modes
I Being symmetric is not absolutely necessary, but first and second mode

must have the same dimensions

Common way to compute INDSCAL is to compute normal CP and
hope that A and B merge

I Last step is to force A and B equal and to update C for the final
INDSCAL decomposition
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Why INDSCAL?

If we know two modes are symmetric, INDSCAL won’t destroy this
structure

INDSCAL stands for Individual Differences in Scaling
I Assume K subjects ranked the similarity of N objects
I Assume the same latent factors explain the similarity decisions by each

subject, but different subjects weight different factors differently
I INDSCAL tries to recover this kind of situation: A contains the factors

explaining the similarities, C gives the individual scaling of the factors
by subjects

I More on this later. . .
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The RESCAL decomposition

The RESCAL decomposition merges Tucker2 and INDSCAL

Given an N-by-N-by-K tensor X and rank R, find an N-by-R factor
matrix A and R-by-R-by-K core tensor R such that they minimize

K∑
k=1

‖Xk − ARkA
T‖2F .

Tensor X does not have to be symmetric in first two modes

We can also add regularization

1

2

K∑
k=1

‖Xk − ARkA
T‖2F +

λ

2

(
‖A‖2F +

K∑
k=1

‖Rk‖2F

)
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RESCAL in picture
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Figure 1: Graphical representations of RESCAL. (a) Illustration of data representation and factorization in RESCAL. (b)
Graphical model of the RESCAL factorization in plate notation. Observed variables are shaded gray.

3.1 Modeling Semantic Web Data
Let a relational domain consist of n entities and m dyadic

relation types. Using RESCAL, such data is modeled as a
three-way tensor X of size n× n×m, where the entries on
two modes of the tensor correspond to the combined enti-
ties of the domain of discourse and the third mode holds the
m different types of relations. A tensor entry Xijk = 1 de-
notes the fact that the relation k-th Relation(i-th entity, j-th
entity) exists. Otherwise, for non-existing or unknown rela-
tions, Xijk is set to zero. This way, RESCAL approaches the
problem of learning from positive examples only, by assum-
ing that missing triples are very likely not true, an approach
that makes sense in a high-dimensional but sparse domain.
Figure 1a shows an illustration of this modeling method.
Each frontal slice Xk = X:,:,k of X can be interpreted as the
adjacency matrix of the relational graph for the respective
relation k.

Creating such a tensor representation for RDF(S) data
is straightforward. The entities are given by the set of
all resources, classes and blank nodes in the data, while
the set of relations consists of all predicates that include
entity-entity relationships. For each existing triple (i-th

entity, k-th predicate, j-th entity), the correspond-
ing entry Xijk is set to one, otherwise it is set to zero. Since
the original RESCAL model assumes that two of the three
modes are defined by entities, this procedure is constrained
to resources. However, much of the information in the LOD
cloud is given as literal values. For this reason, we present
an efficient extension to RESCAL in Section 3.5, such that
attributes of entities, i.e. literal values, can be included in
the factorization.

It is also important to note that in this modeling of RDF(S)
data, we do not draw a distinction between ontological knowl-
edge (i.e. RDFS in the T -Box) and instance data (the A-
Box). Instead, for a given domain, classes and instances of
these classes are modeled equally as entities in the tensor X .
Furthermore, all predicates from the T -Box and the A-Box
form the slices Xk of X . This way, ontological knowledge is
represented similarly to instance data by an appropriate en-
try Xijk = 1, such that facts about instances as well as data
from ontologies are integrated simultaneously in one tensor
representation. In doing so, ontologies are handled like soft
constraints, meaning that the additional information present
in an ontology guides the factorization to semantically more

reasonable results, but doesn’t impose hard constraints on
the model. Consequently, our modeling has aspects of both
a pure data-centric and an ontology-driven Semantic Web
approach.

3.2 Factorizing Semantic Web Data
Given a tensor X of size n × n × m that has been con-

structed as described in Section 3.1, RESCAL computes a
factorization of X , such that each frontal slice Xk of X is
factorized into the matrix product

Xk ≈ ARkAT , for k = 1, . . . , m

where A is a n × r matrix, Rk is a full, asymmetric r × r
matrix and r is a user-given parameter that specifies the
number of latent components or factors. The factor-matrices
A and Rk are computed by solving the optimization problem

min
A,R

floss(A, R) + freg(A, R) (1)

where

floss(A, R) =
1

2

(∑

k

‖Xk −ARkAT ‖2F
)

(2)

and freg is the regularization term

freg(A, R) = λA‖A‖2F + λR

∑

k

‖Rk‖2F (3)

which is included to prevent overfitting of the model.
RESCAL can be regarded as a latent-variable model for

multi-relational data. Let ai denote the i-th row of A. Then,
(1) explains observed variables, i.e. Xijk, through latent fea-
ture vectors ai, aj and Rk. Figure 1b illustrates this in-
terpretation as a graphical model in plate notation. In this
model, ai and aj are representations of the i-th and j-th en-
tity by latent components, i.e. the columns of A, which have
been derived by the factorization to explain the observed
variables.3 Furthermore, an additional interpretation of A
is as an embedding of the entities into a latent-component

3For instance, in the US presidents example, a latent-
variable model could try to explain observed data such as
party membership via the latent components conservative
politician, liberal politician, conservative party, liberal party
etc. Unfortunately, in many cases, including RESCAL, the
invented latent components are not easily interpretable.

WWW 2012 – Session: Creating and Using Links between Data Objects April 16–20, 2012, Lyon, France
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Computing RESCAL (1)

Recall that the mode-1 matricization for Tucker2 is
X(1) = AR(1)(I⊗ B)T

I In RESCAL, this turns into X(1) = AR(1)(I⊗ AT )
I This is a hard problem, because A appears on left and right-hand side
I To simplify, we place slice pairs (Xk ,X

T
k ) side-by-side and consider the

right-hand side A fixed
F The XT

k s guide the updated A to fit well as the right-hand side

For RESCAL, the minimization problem becomes
‖Y − AH(I2K ⊗ AT )‖

I Y = [X1 XT
1 · · · XK XT

K ]
I H = [R1 RT

1 · · · RK RT
K ]

Taking AT fixed, the update rule for A is

A←
(

K∑
k=1

XkAR
T
k + XT

k AGk

)(
K∑

k=1

Bk + Ck

)−1

I Bk = RkA
TART

k and Ck = RT
k A

TARk
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Computing RESCAL (2)

Each slice Rk can be updated separately when minimizing∑K
k=1‖Xk − ARkA

T‖2F
Writing Xk and Rk as vectors, we get

min‖vec(Xk)− (A⊗ A)vec(Rk)‖

I Just linear regression, we can solve by setting
vec(Rk) = (A⊗ A)†vec(Xk)

F But (A⊗ A) is N2-by-R2

We can compute the skinny QR decomposition of A, A = QU
I Q ∈ RN×R is column-orthogonal and U ∈ RR×R is upper-triangular

With QR decomposition, we can re-write the minimization for slice k
to
‖Xk − ARkA

T‖2F = ‖Xk −QURkU
TQT‖2F = ‖QTXkQ−URkU

T‖
I The update rule now has (U⊗U) which is only R2-by-R2
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Why RESCAL?

No factorization of third mode:

Too small dimension

Unsuitable for decomposition

We want to handle that mode separately

Only one factor matrix:

Models cases where the two modes correspond to same entities
I sender–receiver–topic
I subject–object–predicate

“Information flow”
I Elements that are similar in one mode are forced similar in the other

Both:

One global factorization of the first two modes

Each frontal slice has separate “mixing matrix” for the interactions
between the factors
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The DEDICOM decomposition

The DEDICOM decomposition is a matrix decomposition for an
asymmetric relation between entities

I What is the value of export from country i to country j?
I How many emails person i sent to person j?

X = ARAT

I A factors the entities
I R explains the asymmetric relation between the factors

The three-way DEDICOM adds weights for each factor’s participation
in each position in the third mode

I E.g. if the third mode is time, we set how much country factor r acts
as a seller or buyer at time k

I Xk = ADkRDkA
T

F A and R as above, and D is an R-by-R-by-K tensor such that each
frontal slice Dk is diagonal

F (Dk)rr is the weight for factor r
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DEDICOM in picture
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Fig. 5.2: Three-way DEDICOM model.

to di↵erent benefits of interpreting the results [95]. Second, the matrix A can be
transformed with any nonsingular matrix T with no loss of fit to the data because
ARAT = (AT)(T�1RT�T)(AT)T. Thus, the solution obtained in A is not unique
[95]. Nevertheless, it is standard practice to apply some accepted rotation to “fix” A.
A common choice is to adopt VARIMAX rotation [112] such that the variance across
columns of A is maximized.

A further practice in some problems is to ignore the diagonal entries of X in
the residual calculation [93]. For many cases, this makes sense because one wishes
to ignore self-loops (e.g., a country does not export to itself). This is commonly
handled by estimating the diagonal values from the current approximation ARAT

and including them in X.
Three-way DEDICOM [93] is a higher-order extension of the DEDICOM model

that incorporates a third mode of the data. As with CP, adding a third dimension
gives this decomposition stronger uniqueness properties [100]. Here we assume X 2
RI⇥I⇥K . In our previous example of trade among nations, the third mode may
correspond to time. For instance, k = 1 corresponds to trade in 1995, k = 2 to 1996,
and so on. The decomposition is then

Xk ⇡ ADkRDkA
T for k = 1, . . . ,K. (5.8)

Here A and R are as in (5.7), except that A is not necessarily orthogonal. The
matrices Dk 2 RR⇥R are diagonal, and entry (Dk)rr indicates the participation of
the rth latent component at time k. We can assemble the matrices Dk into a tensor
D 2 RR⇥R⇥K . Unfortunately, we are constrained to slab notation (i.e., slice-by-slice)
for expressing the model because DEDICOM cannot be expressed easily using more
general notation. Three-way DEDICOM is illustrated in Figure 5.2.

For many applications, it is reasonable to impose nonnegativity constraints on
D [92]. Dual-domain DEDICOM is a variation where the scaling array D and/or
matrix A may be di↵erent on the left and right of R. This form is encapsulated by
PARATUCK2 (see §5.5).

5.4.1. Computing three-way DEDICOM. There are a number of algorithms for
computing the two-way DEDICOM model, e.g., [128], and for variations such as
constrained DEDICOM [125, 187]. For three-way DEDICOM, see Kiers [116, 118]
and Bader, Harshman, and Kolda [15]. Because A and D appear on both the left
and right, fitting three-way DEDICOM is a di�cult nonlinear optimization problem
with many local minima.

Kiers [118] presents an alternating least squares (ALS) algorithm that is e�cient
on small tensors. Each column of A is updated with its own least-squares solution
while holding the others fixed. Each subproblem to compute one column of A in-
volves a full eigendecomposition of a dense I ⇥ I matrix, which makes this procedure

Preprint of article to appear in SIAM Review (June 10, 2008).                                     
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Computing DEDICOM: ASALSAN (1)

To compute DEDICOM, we want to minimize∑K
k=1‖Xk − ADkRDkA

T‖
I This is hard because A and Dk are in left and right-hand side

The ASALSAN (Alternating Simultaneous Approximation, Least
Squares, and Newton) is one way to solve DEDICOM

I To update A, ASALSAN stacks pairs (Xk ,X
T
k ) next to each other to

obtain Y = [X1 X
T
1 X2 X

T
2 · · · Xk XT

k ]
I This gives ‖Y − AH(I2K ⊗ AT )‖2F with

H = [D1RD1 D1R
TD1 · · · DKRDK DKR

TDK ]

To compute A, ASALSAN considers left and right A different, fixes
the right and updates the left

I A←
(∑K

k=1(XkADkR
TDk + XT

k ADkRDk)
)(∑K

k=1(Bk + Ck)
)−1

I Here Bk = DkRDk(ATA)DkR
TDk and Ck = DkR

TDk(ATA)DkRDk
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Computing DEDICOM: ASALSAN (2)

To update R, we can cast the problem into vector setting

min
R

∥∥∥∥∥∥∥
Vec(X1)

...
Vec(XK )

−
 AD1 ⊗ AD1

...
ADK ⊗ ADK

Vec(R)

∥∥∥∥∥∥∥
I This is standard regression

To update D, ASALSAN uses Newton’s method for each slice Dk
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DEDICOM vs. RESCAL vs. INDSCAL vs. Tucker2

RESCAL is a relaxed version of DEDICOM
I The mixing matrix R is different for every slice
I It is easier to compute as it doesn’t have the tensor D

F The algorithm is similar to ASALSAN, just simpler

RESCAL is the Tucker2 version of INDSCAL
I Shares INDSCAL’s equal factor
I Uses Tucker2’s core
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Non-negative decompositions

Simplest way to obtain non-negative CP is to replace the
least-squares solver in the matricized equations with a non-negative
least-squares solver

I minA∈RN×R
+
‖X(1) − A(C� B)T‖

We can also use multiplicative updates as in NMF

I air ← air
(X(1)Z)ir
(AZTZ)ir

with Z = (C� B)

Other method for non-negative CP exist

Non-negative Tucker can be done using multiplicative update rules as
well

Non-negative variation of ASALSAN yields non-negative DEDICOM
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Psychology

Carroll and Chang (1970) proposed the use of tensor decompositions
to analyse psychological data

I Using PCA to find the principal components of person-by-measurement
data has long history in psychology

I But PCA cannot model a matrix of stimuli
I Example: tones are played to 20 people who rate their similarity, giving

tone-by-tone-by-person tensor
I Another example: country-by-country-by-person

F Carroll and Chang presented the INDSCAL decomposition for this kind
of data

F In the same paper, they also proposed CANDECOMP

Before Carroll and Chang, the proposed methods were rather more
involved
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The one-two plane of the group stimulus space for 12 nations (data due to Wish). 
Dimensions one and two were interpreted by Wish as political alignment (communist- 
noncommunist) and economic development (economically developed-underdeveloped) 
respectively. 

different in philosophy from the approach discussed here. Kruskal has two 
approaches. The first assumes each subject to have a different monotone 
function (relating distances to similarity or dissimilarity judgments) but 
constrains them to have identically the same configuration (no degrees of 
freedom for weighting of dimensions or the like are allowed). The second 
assumes all subjects to have the same monotone function, but allows each 
his own idiosyncratic configuration. These two represent two extremes of a 
continuum (or, perhaps, of two continua) of which there are, of course, many 
intermediate points. McGee's approach covers at least some of these inter- 
mediate points. McGee allows for either the case in which each subject has 
his own monotone function, or all are constrained to have the same. He then 
introduces a parameter that monitors the degree to which the configurations 
for different subjects are constrained to be similar. At one extreme, these 
configurations must be identical; at the other there is no constraint at all 
on how similar they must be. At intermediate values of this parameter, they 
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must be "intermediately" similar. ]VIcGee's approach, however, says nothing 
explicitly about how these configurations may depart from identity (the 
criterion of departure is simply a "sum of squared coordiante differences" 
criterion, which monitors degree, but not direction of departure from identity). 

The Tucker-Messick procedure, which has already been touched on, 
also makes no explicit assumption about communality of dimensions among 
different subjects. We shall discuss this in more detail at a later point. For 
the moment, let us consider the work of two other investigators, both of 
whom have dealt with essentially the same model as the present authors. 

Horan [1969] is the first author to publicly propose the model we have 
assumed here. Horan devised a method to solve for what we call the "group 
stimulus space" (he calls it the "normal attribute space") under the assump- 
tions of our model. Horan's method is based on the observation that, if the 
model stated in our equation (2) is correct then, 

(12) r,a(,~12 L~ik  J = ?J)~t X i t  ~ X,k,) 2 
i=1 i=1 

so that the root mean square of the distances (over individuals) will be ordinary 
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The one-three plane of the group stimulus space for the Wish d a t a  o n  12 nations. 

Wish interpreted dimension three as a geography dimension (East-West). 
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for  "dove", "hawk" and "moderate" (as determined by subjects' self report) vis ~ vis 
attitudes on Vietnam war. 45 degree line divides "doves" from "hawks", with "moderates" 
on both sides. 

Euclidean distances in a space with coordinates y~ given by 
y .  , /~  (13) 

where 

(14) w., = m ,-1 

Thus, Horan shows, if the data are sufficiently strong to estimate ratio 
scaled distances, averaging the data via root mean squares will produce 
distances between points in a space which includes all the requisite dimen- 
sions. The individual spaces will then be related to this "common space" 
by at most a linear transformation. 

The problem with this, from our point of view, is that there is nothing 
in Horan's averaging procedure to guarantee that  the "common space" 
as derived from it wiU be described in terms of the correct orientation of 
axes. Since his procedure reduces al] the distances to a common set of Euclid- 
ean distances, and then applies a scaling procedure to produce a space from 
these distances, the rotationally invariant property of Euclidean distances 
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Fluorescence excitation-emission analysis

Fluorescence spectroscopy is a method to analyse (typically) organic
compounds

I A beam of (typically UV) light excites electrons in certain compounds’
molecules

I Later the exited electrons release a photon (light), which can be
measured

I A fluorescence landscape of a compound is a rank-1 matrix that maps
the exciter’s wavelength to the emitted photon’s wavelength

I The compounds can be identified by the shape of their fluorescence
landscape

We can build a tensor of samples–by–excitation
wavelengths–by–emission wavelengths and compute the CP
decomposition

I Matrix bicTi gives the fluorescence landscape for the ith component
I Vector ai explains how much this landscape appears in each sample
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Example fluorescence spectoscopy data

at each channel, and the signal from a single channel is
represented in both time and frequency domains. Then, the
wavelet-transformed data are arranged as a three-way array
with modes time samples ! frequency ! channels and
analyzed using a PARAFAC model. This study demon-
strates that factors in the first, second, and third component
matrices represent the temporal, spectral, and spatial
signatures of the EEG data, respectively. PARAFAC models
with nonnegativity constraints have later been used in
another study on ERP to find the underlying structure of
brain dynamics [66]. A toolbox called ERPWAVELAB [67]
running under Matlab has been released for multichannel
time-frequency analysis of brain activity using EEG and
MEG data. Estienne et al. [5] use another multiway model,
i.e., Tucker3, to study the effect of a new drug on brain
activities. In addition to these studies on EEG/ERP analysis,
multiway methods have also been used in the analysis of
fMRI data [68] and in extracting the connection between
EEG and fMRI [69].

These studies have motivated the application of multi-
way models for understanding the structure of epileptic
seizures [21], [22], [70]. Similar to the three-way array
constructed in [3], multichannel ictal EEG data are arranged
as a third-order tensor with modes time samples !
frequency ! channels using the power of wavelet coeffi-
cients in [70] and [21] and using pure wavelet coefficients in
[22]. Components extracted by multiway models are used to
explore the signatures of a seizure in the frequency and time
domains as well as localize the seizure origin. Artifacts can
also be identified using the extracted signatures by a
PARAFAC model, and Acar et al. [21] propose to remove
these artifacts by multilinear subspace analysis. In Fig. 8, we
illustrate how a PARAFAC model can be used to extract
artifacts and localize epileptic seizures (an example taken
from [21]). We rearrange multichannel ictal EEG data as a
third-order tensor X with modes: time samples, frequency,
and channels and then model the tensor using a two-
component PARAFAC model; in other words, we decom-
pose the tensor as a sum of two rank-one tensors. The first

rank-one tensor captures the characteristics of an eye-
artifact. a1, b1, and c1 correspond to the temporal, spectral,
and spatial signatures of an eye artifact, respectively. On the
other hand, the second rank-one tensor has different
characteristics such as continuous activity during the ictal
period, high-frequency content, and localization around
electrodes T4 and T6. The activity with these signatures in
time, frequency, and electrode domains indeed corresponds
to a seizure, and the component in the channel mode ðc2Þ
can be used to localize the seizure.

4.3 Social Network Analysis/Text Mining

Multiway data analysis has also often been employed in
extracting relationships in social networks. The aim of
social network analysis is to study and discover hidden
structures in social networks, for instance, extracting
communication patterns among people or within organiza-
tions. In [4], chatroom communications data have been
arranged as a three-way array with modes: users !
keywords ! time windows and the performance of multi-
way models in capturing the underlying user group
structure has been compared with that of two-way models.
Another recent study [71] assesses the performance of
collective and centralized tensor analysis approaches again
on chatroom communications data. Not only chatroom but
also email communications have been analyzed using
multiway models [72].

In the context of web link analysis, Kolda et al. [60] and
[73] combine hyperlink and anchor text information and
rearrange web graph data as a sparse third-order tensor with
modes: webpages ! webpages ! anchor text. Web graph is
then analyzed using an algorithm improved to fit a
PARAFAC model to large and sparse data sets efficiently
in order to capture the groupings of webpages and identify
the main topics. Furthermore, with a goal of improving
personalized web searches, click-through data have also
been analyzed using a multiway analysis method called
CubeSVD [50], which is indeed the same as HOSVD. In this
study, click-through data are arranged as a three-way array

ACAR AND YENER: UNSUPERVISED MULTIWAY DATA ANALYSIS: A LITERATURE SURVEY 15

Fig. 7. Modeling of a fluorescence data set using a three-component PARAFAC model. ai, bi, and ci correspond to the ith component in samples,
emission, and excitation modes. We also illustrate the vector outer product of bi and ci, which shows the fluorescence landscape of each analyte
used in the preparation of the samples.
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RESCAL and subject–object–predicate data

RESCAL decomposition can be applied to subject–object–predicate
data that doesn’t have too many predicates

I The YAGO knowledge base has < 100 relations but millions of entities
I Also DEDICOM could be applied, but it does not scale as well and the

global R’s interpretation is not necessarily obvious

RESCAL’s factor matrix can be used to find similar entities
I To find entities similar to e in all relations, just order the rows of A

based on their similarity to row e of A

RESCAL does not help to find similar relations; that would require
different tensor decomposition
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Mining the ’net: TOPHITS

We can build a three-way tensor of
web pages–by–web pages–by–anchor text to study the link structure
and link topics of web pages

I Build three-way tensor C such that cijk is the number of times page i
links to page j using term k

I The non-zero values in C are scaled to 1 + log(cijk)

The CP decomposition of this tensor behaves akin to HITS
I In rank-1 CP, a gives the hub scores and b the authority scores for web

pages, while c gives the weights for the terms
I Rank-r CP divides the data in multiple topics, each with its own hubs,

authorities, and terms

Per-topic hubs and authorities can be used for more fine-grained
answers
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Detecting faces

NMF and PCA (eigenfaces) are commonly used to decompose (and
reconstruct) matrices that correspond to pictures of human faces

I The PCA of the matrix can be used to classify new pictures as
face/non-face by projecting it to the space spanned by the eigenvectors
and computing the difference between the projected image and original
image

But matrix-based methods are not good at capturing more than one
variation

I But often we get variable lightning, expressions, poses, etc.

If we have a complete set of pictures of people under different
conditions, we can instead form a tensor and decompose it

I TensorFaces does HOSVD on tensor that contains pictures of people
under different conditions

I The HOSVD decomposition captures the variation in the conditions
better
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TensorFaces example

Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3
illumination setups performing 3 different expressions

I 28× 5× 3× 3× 7943 tensor (10M elements)

Multilinear Analysis of Image Ensembles: TensorFaces 453

2. Solve for the core tensor as follows

Z = D ×1 UT
1 ×2 UT

2 . . . ×n UT
n . . . ×N UT

N . (15)

5 TensorFaces: Multilinear Analysis of Facial Images

As we stated earlier, image formation depends on scene geometry, viewpoint, and il-
lumination conditions. Multilinear algebra offers a natural approach to the analysis of
the multifactor structure of image ensembles and to addressing the difficult problem of
disentangling the constituent factors or modes.

(a)

(b)

Fig. 3. The facial image database (28 subjects × 45 images per subject). (a) The 28 subjects shown
in expression 2 (smile), viewpoint 3 (frontal), and illumination 2 (frontal). (b) The full image set
for subject 1. Left to right, the three panels show images captured in illuminations 1, 2, and 3.
Within each panel, images of expressions 1, 2, and 3 are shown horizontally while images from
viewpoints 1, 2, 3, 4, and 5 are shown vertically. The image of subject 1 in (a) is the image situated
at the center of (b).

All images of one subject
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TensorFaces example

Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3
illumination setups performing 3 different expressions

I 28× 5× 3× 3× 7943 tensor (10M elements)
Multilinear Analysis of Image Ensembles: TensorFaces 455

(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a
5-mode, 28 × 5 × 3 × 3 × 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrix Upixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

U5 contains the normal eigenfaces (as it is just the SVD of
picture-by-pixels matrix)
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TensorFaces example

Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3
illumination setups performing 3 different expressions

I 28× 5× 3× 3× 7943 tensor (10M elements)

Multilinear Analysis of Image Ensembles: TensorFaces 455

(a)

people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(b) (c) (d)

Fig. 4. Some of the basis vectors resulting from the multilinear analysis of the facial image data
tensor D. (a) The first 10 PCA eigenvectors (eigenfaces), which are contained in the mode matrix
Upixels, and are the principal axes of variation across all images. (b,c,d) A partial visualization of
the product Z ×5 Upixels, in which the core tensor Z transforms the eigenvectors Upixels to yield a
5-mode, 28 × 5 × 3 × 3 × 7943 tensor of eigenmodes which capture the variability across modes
(rather than images). Some of the first few eigenmodes are shown in the three arrays. The labels at
the top of each array indicate the names of the horizontal and vertical modes depicted in that array.
Note that the basis vector at the top left of each panel is the average over all people, viewpoints,
illuminations, and expressions (the first column of eigenmodes (people mode) is shared by the
three arrays).

The advantage of multilinear analysis is that the core tensor Z can transform the
eigenimages present in the matrix Upixels into eigenmodes, which represent the principal
axes of variation across the various modes (people, viewpoints, illuminations, expres-
sions) and represents how the various factors interact with each other to create an image.
This is accomplished by simply forming the product Z ×5 Upixels. By contrast, PCA ba-
sis vectors or eigenimages represent only the principal axes of variation across images.
To demonstrate, Fig. 4 illustrates in part the results of the multilinear analysis of the
facial image tensor D. Fig. 4(a) shows the first 10 PCA eigenimages contained in Upixels.

Some visualizations of G ×5 U5 showing the variability across the modes
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TensorFaces example

Data: 7943-pixel B&W photographs of 28 people in 5 poses under 3
illumination setups performing 3 different expressions

I 28× 5× 3× 3× 7943 tensor (10M elements)458 M.A.O. Vasilescu and D. Terzopoulos

expres. 1 & illum. 2 expres. 1 & view 3 illum. 2 & view 3
people↓ viewpoints→ people↓ illuminations→ people↓ expressions→

...
...

...

(a) (b) (c)

Fig. 7. This 28 × 5 × 3 × 3 × 7943 tensor Z ×2 Uviews ×3 Uillums ×4 Uexpres ×5 Upixels defines 45
different basis for each combination of viewpoints, illumination and expressions. These basis have
28 eigenvectors which span the people space. The topmost row across the three panels depicts
the average person, while the eigenvectors in the remaining rows capture the variability across
people in the various viewpoint, illumination, and expression combinations. (a) The first column
is the basis spanning the people space in viewpoint 1, illumination 2 and expression 1, the second
column is the basis spanning the people space in viewpoint 2, illumination 2 and expression 1,
etc. (b) The first column is the basis spanning the people space in viewpoint 1, illumination 1 and
expression 1, the second column is the basis spanning the people space in viewpoint 1, illumination
2 and expression 1, etc. (c) The first column is the basis spanning the people space in viewpoint
3, illumination 2 and expression 1, the second column is the basis spanning the people space in
viewpoint 3, illumination 2 and expression 2, etc.

Similarly, we can define a person specific set of eigenvectors that span all the images.
Fig. 6(a–c) illustrates the effect of multiplying the eigenvectors of Fig. 4(b–d) by Upeople

to obtain the 5 × 3 × 3 × 7943 tensor of eigenvectors Z ×1 Upeople ×5 Upixels. These new
eigenvectors are now person-specific. The figure shows all of the eigenvectors for slice 1
of the tensor, associated with subject 1 in Fig. 3(a). The eigenvectors shown capture the
variations across the distribution of images of this particular subject over all viewpoints,
expressions, and illuminations. Fig. 6(d–e) shows portions of slices 2 and 3 through the
tensor (the upper 3×3 portions of arrays analogous to that in (a) of the figure are shown),
showing some of the eigenvectors specific to subject 2 and to subject 3, respectively.

An important advantage of multilinear analysis is that it maps all images of a person,
regardless of viewpoint, illumination and expression, to the same coefficient vector,

Some visualizations of G ×2 U2 ×3 U3 ×4 U4 ×5 U5. The rows are for
different people and the columns are for different viewpoints, illuminations,

and expressions (with other two modes fixed as indicated).
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Lessons learned

There are many, many tensor decompositions related to CP and
Tucker
→ it’s the user’s responsibility to select the one that’s best suited for
the task at hand
→ consider also the complexity of computing the decomposition

Tensor decompositions are used in many different fields of science
→ sometimes the wheel gets re-invented multiple times

Most tensor problems are dense
→ much less algorithms for finding sparse decompositions of sparse
tensors
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Suggested reading

Kolda & Bader Tensor Decompositions and Applications, SIAM Rew.
51(3), 2009

I A great survey on tensor decompositions, includes many variations and
applications

Acar & Yener Unsupervised Multiway Data Analysis: A Literature
Survey, IEEE Trans. Knowl. Data Eng. 21(1), 2009

I Another survey, shorter and more focused on applications

All the papers linked at the bottom parts of the slides
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