# Special Topics in Tensors

22 May 2014



#### Special Topics in Tensors

- 1. CP-APR: Fitting Poisson Distribution
- 2. Boolean Tensor Factorizations

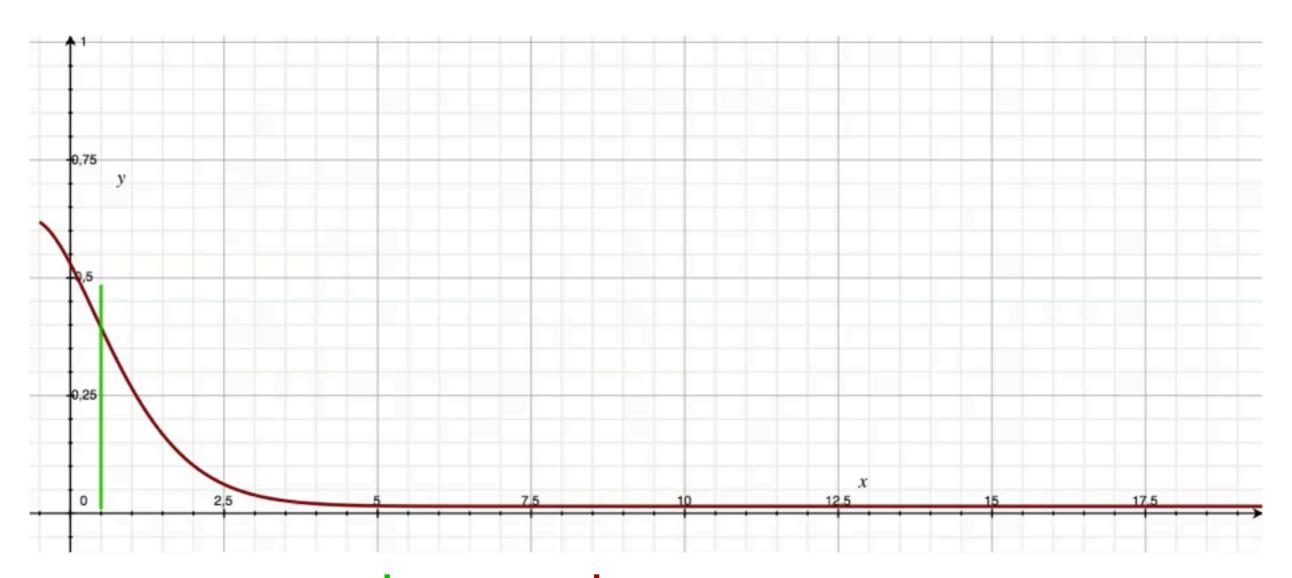
#### **CP-APR: Motivation**

- Least-squares error has the (implicit) assumption that the noise is Gaussian
  - But this doesn't always make much sense
- Some data is counting
  - How many mails were sent from i to j using containing term t?
  - How many packages were sent from IP i to IP j, port p?
- Data like this is better explained using the Poisson distribution

#### The Poisson Distribution

- The probability of number of events occurring in fixed interval if they occur on known average rate (and independently)
- One parameter  $\lambda > 0$ , the rate
- $f(k; \lambda) = \lambda^k e^{-\lambda}/k!$
- If  $X \sim \text{Poisson}(\lambda)$ , then  $E[X] = \text{Var}[X] = \lambda$

#### The Effects of $\lambda$



$$= \lambda \qquad \qquad = \frac{\lambda^k e^{-\lambda}}{k!}$$

### Modeling the Data

- We assume the values in the elements  $x_{ijk}$  of the data tensor x are i.i.d. Poisson distributed
- We assume the parameters of the distribution have low-rank non-negative CP decomposition
  - Exist non-negative **A**, **B**, **C** s.t.  $x_{ijk} \sim \text{Poisson}(\sum_r a_{ir}b_{jr}c_{kr})$
- The error is measured using the log-likelihood of the observations
  - The log-likelihood of  $x_{ijk}$  is  $x_{ijk}$   $\ln(\lambda_{ijk}) \lambda_{ijk} \ln(x_{ijk}!)$ 
    - $\lambda_{ijk} = \sum_{r} a_{ir} b_{jr} c_{kr} = \text{parameter}$
    - We minimize  $\sum_{i,j,k} \lambda_{ijk} x_{ijk} \cdot \log(\lambda_{ijk})$

## Some Comments on Negative Log-Likelihood

- The function we minimize is the KL divergence
- We assume that  $0 \cdot \log(y) = 0$  for all  $y \ge 0$
- If  $\lambda_{ijk} = 0$  but  $x_{ijk} > 0$ , then  $x_{ijk} \cdot \log(\lambda_{ijk}) = -\infty$ 
  - Arbitrarily bad fit: we have observed something we model as impossible
  - We require this never happens:  $\lambda_{ijk} > 0$  for all i, j, and k with  $x_{ijk} > 0$

### Interpreting CP-APR

- Data: non-negative integer tensor  $\chi$
- Model: non-negative CP decomposition  $\Upsilon$  s.t. X has high likelihood to be drawn from element-wise Poisson( $\Upsilon$ )
  - Normalize columns of A, B, and C s.t. they sum to 1 (values from [0,1])
    - Store the normalization values for each rank-1 tensor separately
- Interpretation: the higher the weight, the larger values the rank-1 tensor explains
  - The rank-1 tensor gives the (weighted) pattern for the weight
  - Individual factor matrices give the patterns for different modes

### Solving CP-APR

- Let  $\Pi = (C \odot B)^T$  and  $\mathbf{1}$  be all-1s vector
- Using matricization, we can solve  $\mathbf{A}$  from  $\mathbf{A} = \arg\min_{\mathbf{A}>0} \mathbf{1}^T (\mathbf{A}\mathbf{\Pi} \mathbf{X}_{(1)} * \log(\mathbf{A}\mathbf{\Pi}) \mathbf{1}$ 
  - Similarly for B and C
- We repeat this until we have converged

## Solving CP-APR: The Subproblem

Solving for A is non-trivial

$$\mathbf{A} = \underset{\mathbf{A} \geq 0}{\operatorname{arg min}} \mathbf{1}^{T} (\mathbf{A} \mathbf{\Pi} - \mathbf{X}_{(1)} * \log(\mathbf{A} \mathbf{\Pi}) \mathbf{1}$$

But we can repeatedly update A as

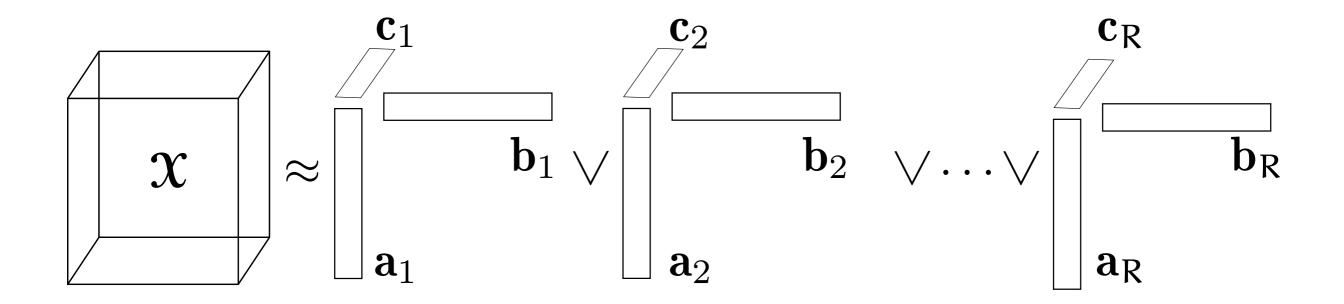
$$\mathbf{A} = \mathbf{A} * (\mathbf{X}_{(1)} \oslash (\mathbf{A}\mathbf{\Pi}))\mathbf{\Pi}^{\mathsf{T}}$$

- ∅ is element-wise division
- If we update A only once, this is Lee and Seung's NMF algorithm for KL divergence

## Boolean Tensor Decompositions

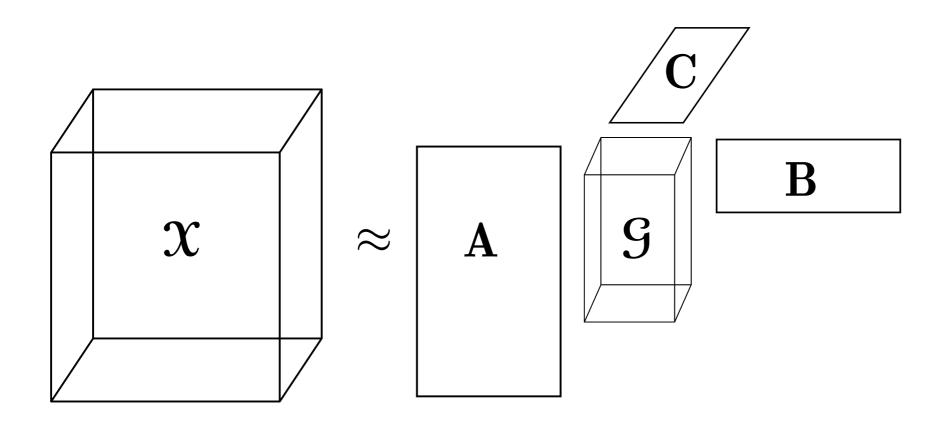
- The Poisson decomposition is still additive
  - The expected value of  $x_{ijk}$  is the sum of the values in the rank-1 tensors
- The Boolean decomposition is idempotent
  - The data is binary
  - The factor matrices and tensors are binary
  - The algebra is Boolean
    - 1+1 = 1, i.e. logical *or*

#### **Boolean CP Decomposition**



$$x_{ijk} = \bigvee_{r=1}^{R} \alpha_{ir} b_{jr} c_{kr}$$

## Boolean Tucker3 Decomposition



$$x_{ijk} \approx \bigvee_{p=1}^{P} \bigvee_{q=1}^{Q} \bigvee_{r=1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr}$$

## Why Boolean Tensor Decompositions?

- Interpretability: binary in, binary out
  - Relations, sets, graphs etc. keep their interpretation
- Non-additivity: Finds different types of structures
  - Overlapping patterns don't have added effect
- Sparsity/space-efficiency: it's only bits
  - Sparse tensors have sparse factors

#### Boolean Tensor Rank

- Is the smallest R for which we have R rank-1 binary matrices whose Boolean sum is the tensor
  - Rank-1 binary tensor is the outer product of binary vectors ⇒ factor matrices in CP are binary
- Can be bigger than the smallest (or largest) dimension
  - But still no bigger than min{*IJ*, *IK*, *JK*}
- There's no Boolean border rank
- The essential uniqueness of CP doesn't (probably) hold

#### Solving the Boolean CP

- The matricized equations stay almost the same
  - E.g.  $\boldsymbol{X}_{(1)} = \boldsymbol{A} \boxtimes (\boldsymbol{C} \odot \boldsymbol{B})^T$ 
    - ■ is the Boolean matrix product
- But there isn't any Boolean equivalent of the pseudo-inverse
  - In fact, the problem is computationally very hard
  - The optimization tends to stuck in local optima

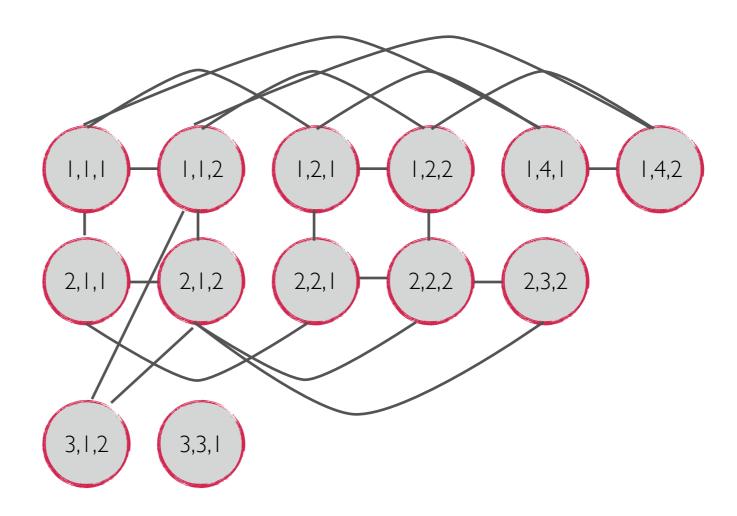
#### Boolean CP: Walk'n'Merge

- Idea: For exact decomposition, each rank-1 tensor should correspond to an all-1s subtensor
  - Knowing these, we "only" need to know how to use them
- For approximate decompositions, we need dense rank-1 subtensors
  - $\sum_{ijk} x_{ijk}[a_i=1][b_j=1][c_k=1] \approx ||\mathbf{a}||^2 \cdot ||\mathbf{b}||^2 \cdot ||\mathbf{c}||^2$

## Finding Dense Subtensors: Graph POW

- Think the binary tensor X as a graph G
  - Every  $x_{ijk}=1$  is a vertex
  - There's an edge between  $x_{ijk}$  and  $x_{\alpha\beta\gamma}$  iff  $x_{ijk}$  and  $x_{\alpha\beta\gamma}$  are on the same slice
    - $i=\alpha$  and  $j=\beta$ ; or
    - $i=\alpha$  and  $k=\gamma$ ; or
    - $j=\beta$  and  $k=\gamma$

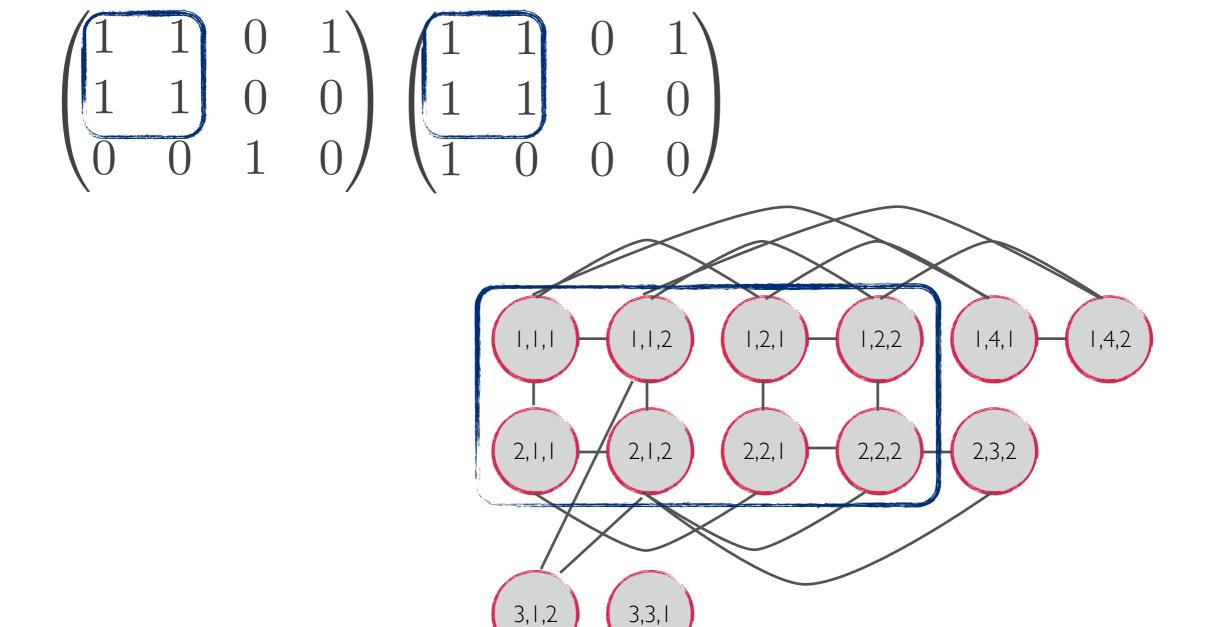
### Graph Example



### Dense Subtensors in Graphs

- Let  $S_1$ ,  $S_2$ , and  $S_3$  be sets of integers s.t.  $x_{ijk} = 1$  for all  $(i,j,k) \in S_1 \times S_2 \times S_3$ 
  - All-1s subtensor
- If (i,j,k),  $(\alpha,\beta,\gamma) \in S_1 \times S_2 \times S_3$ , then  $x_{ijk}$  is at most three steps from  $x_{\alpha\beta\gamma}$  in the graph  $\Rightarrow$  Dense subtensors = small-diameter
  - subgraphs

### Graph Example



## Finding Small-Diameter Subgraphs

- Small-diameter subgraphs can be found using random walks with re-starts
  - Do a short random walk from a random node
  - 2. Do a new walk from a node you have visited
  - 3. Repeat 2 many times
  - 4. Take the smallest rank-1 binary subtensor containing all often-visited nodes and check if it is dense w.r.t. user-specified threshold

### Post-Processing Dense Subtensors

- We might have found highly overlapping subtensors
  - Try merging overlapping subtensors if the result is dense enough
- We can also add all very small all-1s subtensors
  - E.g. 2-by-2-by-2
  - Hard to find using random walks

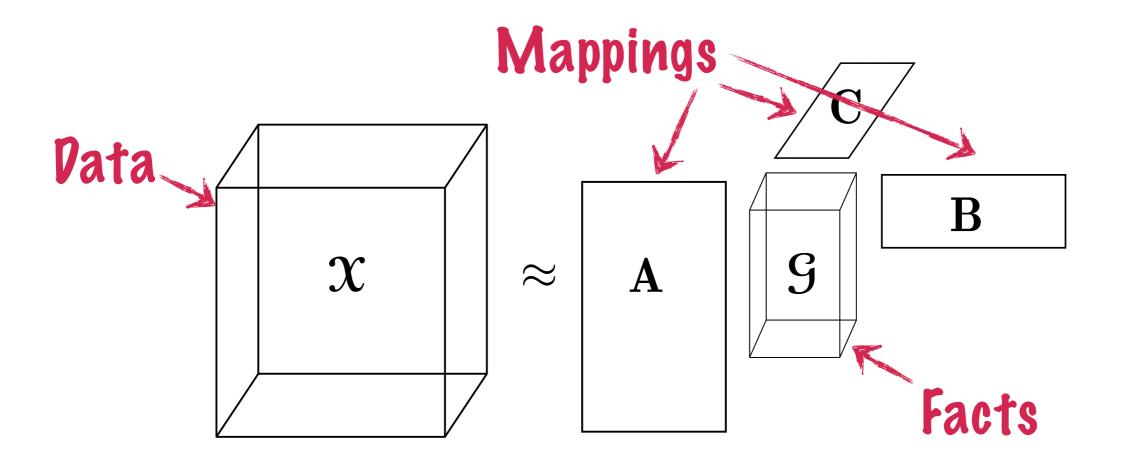
### Final Steps

- To obtain a CP decomposition, select the best rank-1 components
  - Actually a complicated problem
- To obtain a Tucker3 decomposition:
  - Start with hyperdiagonal core
  - If two columns in a factor matrix are very similar, merge them, and correct the core accordingly
    - Remove a dimension
    - Add 1 off-hyperdiagonal

## Boolean Tucker3 Application: Fact Discovery

- Input: noun phrase—verbal phrase—noun phrase triples
  - JFK—was shot in—Dallas
  - John F. Kennedy—was assasinated in— Dallas, TX
- Goal: find the entities, relations, and facts (entity—relation—entity triples)

#### Facts and Boolean Tucker3



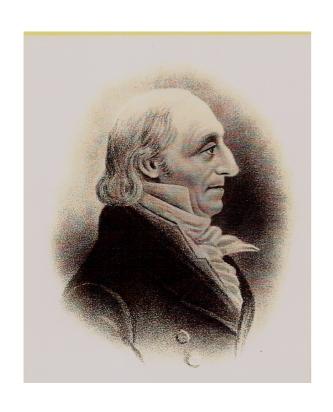
$$x_{ijk} \approx \bigvee_{p=1}^{P} \bigvee_{q=1}^{Q} \bigvee_{r=1}^{R} g_{pqr} a_{ip} b_{jq} c_{kr}$$

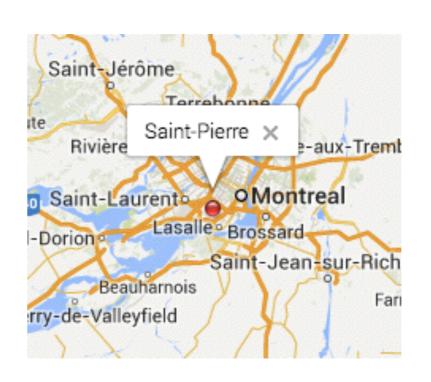
#### Example Result

Subject: claude de lorimier, de lorimier, louis, jean-baptiste

Relation: was born, [[det]] born in

**Object**: borough of lachine, villa st. pierre, lachine quebec





39,500-by-8,000-by-21,000 tensor with 804 000 non-zeros

### Summary

- Not every tensor decomposition needs to use multi-linear algebra
  - The correct model depends on the data and what one wants to find
- Usually non-linear models are even harder to optimize

### Suggested Reading

- All from the previous lectures
- Bottom-of-the-slides links
- Miettinen, P. (2011). Boolean Tensor Factorizations (pp. 447–456). Presented at the 11th IEEE International Conference on Data Mining.
  - Basics of Boolean tensor factorizations