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Special Topics in Tensors

1. CP-APR: Fitting Poisson Distribution 
2. Boolean Tensor Factorizations



CP-APR: Motivation
• Least-squares error has the (implicit) assumption 

that the noise is Gaussian 
• But this doesn’t always make much sense 

• Some data is counting 
• How many mails were sent from i to j using 

containing term t? 
• How many packages were sent from IP i to IP j, 

port p? 
• Data like this is better explained using the 

Poisson distribution 
Chi, E.C. & Kolda, T.G., 2012. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on Matrix Analysis and Applications, 33(4), pp.1272–1299.

http://epubs.siam.org/doi/abs/10.1137/110859063


The Poisson Distribution

• The probability of number of events occurring 
in fixed interval if they occur on known 
average rate (and independently) 

• One parameter λ > 0, the rate 
• f(k; λ) = λke–λ/k!  
• If X ∼ Poisson(λ), then E[X] = Var[X] = λ 



The Effects of λ
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Modeling the Data
• We assume the values in the elements xĳk of the data 

tensor X are i.i.d. Poisson distributed 
• We assume the parameters of the distribution have 

low-rank non-negative CP decomposition 
• Exist non-negative A, B, C s.t. xĳk ∼ Poisson(∑r airbjrckr) 

• The error is measured using the log-likelihood of the 
observations  
• The log-likelihood of xĳk is xĳk·ln(λĳk) – λĳk – ln(xĳk!) 

• λĳk = ∑r airbjrckr = parameter 
• We minimize ∑i,j,k λĳk – xĳk·log(λĳk)



Some Comments on 
Negative Log-Likelihood

• The function we minimize is the KL 
divergence 

• We assume that 0·log(y) = 0 for all y ≥ 0 
• If λĳk = 0 but xĳk > 0, then xĳk·log(λĳk) = –∞ 

• Arbitrarily bad fit: we have observed 
something we model as impossible 

• We require this never happens: λĳk > 0 for 
all i, j, and k with xĳk > 0



Interpreting CP-APR
• Data: non-negative integer tensor X  
• Model: non-negative CP decomposition Y s.t. X has high 

likelihood to be drawn from element-wise Poisson(Y) 
• Normalize columns of A, B, and C s.t. they sum to 1 (values 

from [0,1]) 
• Store the normalization values for each rank-1 tensor 

separately 
• Interpretation: the higher the weight, the larger values the 

rank-1 tensor explains 
• The rank-1 tensor gives the (weighted) pattern for the weight 
• Individual factor matrices give the patterns for different 

modes



Solving CP-APR

• Let Π = (C ⊙ B)T and 1 be all-1s vector 
• Using matricization, we can solve A from  
 

• Similarly for B and C  
• We repeat this until we have converged

A = �rgmin
A�0

1T
�
A� � X(1) � log(A�

�
1



Solving CP-APR: The 
Subproblem

• Solving for A is non-trivial 
 

• But we can repeatedly update A as  

• ⊘ is element-wise division  
• If we update A only once, this is Lee and 

Seung’s NMF algorithm for KL divergence

A = �rgmin
A�0

1T
�
A� � X(1) � log(A�

�
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A = A�
�
X(1) ↵ (A�)
�
�T



Boolean Tensor 
Decompositions

• The Poisson decomposition is still additive  
• The expected value of xĳk is the sum of the 

values in the rank-1 tensors 
• The Boolean decomposition is idempotent  

• The data is binary 
• The factor matrices and tensors are binary 
• The algebra is Boolean 

• 1+1 = 1, i.e. logical or 
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Boolean Tucker3 
Decomposition
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Why Boolean Tensor 
Decompositions?

• Interpretability: binary in, binary out 
• Relations, sets, graphs etc. keep their 

interpretation 
• Non-additivity: Finds different types of 

structures 
• Overlapping patterns don’t have added 

effect 
• Sparsity/space-efficiency: it’s only bits 

• Sparse tensors have sparse factors



Boolean Tensor Rank
• Is the smallest R for which we have R rank-1 

binary matrices whose Boolean sum is the tensor 
• Rank-1 binary tensor is the outer product of 

binary vectors ⇒ factor matrices in CP are binary 
• Can be bigger than the smallest (or largest) 

dimension 
• But still no bigger than min{Ĳ, IK, JK} 

• There’s no Boolean border rank 
• The essential uniqueness of CP doesn’t (probably) 

hold



Solving the Boolean CP
• The matricized equations stay almost the same 

• E.g. X(1) = A⊠(C ⊙ B)T  
• ⊠ is the Boolean matrix product 

• But there isn’t any Boolean equivalent of the 
pseudo-inverse 
• In fact, the problem is computationally very 

hard 
• The optimization tends to stuck in local 

optima



Boolean CP: Walk’n’Merge

• Idea: For exact decomposition, each rank-1 
tensor should correspond to an all-1s 
subtensor 
• Knowing these, we ”only” need to know 

how to use them 
• For approximate decompositions, we need 

dense rank-1 subtensors 
• ∑ĳk xĳk[ai=1][bj=1][ck=1] ≈ ||a||2·||b||2·||c||2

Erdős, D., & Miettinen, P. (2013). Walk’n’Merge: A Scalable Algorithm for Boolean Tensor Factorization (pp. 1037–1042). Presented at the 13th IEEE International Conference on Data Mining. 
doi:10.1109/ICDM.2013.141

http://dx.doi.org/10.1109/ICDM.2013.141


Finding Dense Subtensors: 
Graph POW

• Think the binary tensor X as a graph G 
• Every xĳk=1 is a vertex 
• There’s an edge between xĳk and xαβγ iff xĳk 

and xαβγ are on the same slice 
• i=α and j=β; or  
• i=α and k=γ; or  
• j=β and k=γ 
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Dense Subtensors in 
Graphs

• Let S1, S2, and S3 be sets of integers s.t.  
xĳk = 1 for all (i,j,k) ∈ S1×S2×S3  
• All-1s subtensor 

• If (i,j,k), (α,β,γ) ∈ S1×S2×S3, then xĳk is at 
most three steps from xαβγ in the graph 
⇒ Dense subtensors = small-diameter 
subgraphs 
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Finding Small-Diameter 
Subgraphs

• Small-diameter subgraphs can be found using 
random walks with re-starts  
1. Do a short random walk from a random 

node 
2. Do a new walk from a node you have visited 
3. Repeat 2 many times 
4. Take the smallest rank-1 binary subtensor 

containing all often-visited nodes and check 
if it is dense w.r.t. user-specified threshold



Post-Processing Dense 
Subtensors

• We might have found highly overlapping 
subtensors 
• Try merging overlapping subtensors if the 

result is dense enough 
• We can also add all very small all-1s 

subtensors 
• E.g. 2-by-2-by-2 
• Hard to find using random walks



Final Steps
• To obtain a CP decomposition, select the best 

rank-1 components 
• Actually a complicated problem 

• To obtain a Tucker3 decomposition: 
• Start with hyperdiagonal core 
• If two columns in a factor matrix are very similar, 

merge them, and correct the core accordingly 
• Remove a dimension 
• Add 1 off-hyperdiagonal



Boolean Tucker3 
Application: Fact Discovery

• Input: noun phrase—verbal phrase—noun 
phrase triples 
• JFK—was shot in—Dallas 
• John F. Kennedy—was assasinated in—

Dallas, TX 
• Goal: find the entities, relations, and facts 

(entity—relation—entity triples)

Erdős, D., & Miettinen, P. (2013). Discovering Facts with Boolean Tensor Tucker Decomposition (pp. 1569–1572). Presented at the 2013 ACM International Conference on Information and 
Knowledge Management. doi:10.1145/2505515.2507846

http://dx.doi.org/10.1145/2505515.2507846


Facts and Boolean Tucker3
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Example Result
Subject: claude de lorimier, de lorimier, louis, jean-baptiste 
Relation: was born, [[det]] born in 
Object: borough of lachine, villa st. pierre, lachine quebec

39,500-by-8,000-by-21,000 tensor  
with 804 000 non-zeros



Summary

• Not every tensor decomposition needs to use 
multi-linear algebra 
• The correct model depends on the data and 

what one wants to find 
• Usually non-linear models are even harder to 

optimize



Suggested Reading

• All from the previous lectures 
• Bottom-of-the-slides links 
• Miettinen, P. (2011). Boolean Tensor 

Factorizations (pp. 447–456). Presented at 
the 11th IEEE International Conference on 
Data Mining. 
• Basics of Boolean tensor factorizations


