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Data is Not Static
• Data is not static 

• New transactions, new friends, stop 
following somebody in Twitter, … 

• But most data mining algorithms assume 
static data 

• Even a minor change requires a full-blown 
re-computation



Types of Changing Data

1. New observations are added 

• New items are bought, new movies are rated 

• The existing data doesn’t change 

2. Only part of the data is seen at once 

3. Old observations are altered 

• Changes in friendship relations



Types of Changing-Data 
Algorithms

• On-line algorithms get new data during their execution 

• Good answer at any given point 

• Usually old data is not altered 

• Streaming algorithms can only see a part of the data at 
once 

• Single-pass (or limited number of passes), limited memory 

• Dynamic algorithms’ data is changed constantly 

• More, less, or altered



Measures of Goodness
• Competitive ratio is the ratio of the (non-static) 

answer to the optimal off-line answer 

• Problem can be NP-hard in off-line 

• What’s the cost of uncertainty 

• Insertion and deletion times measure the time it 
takes to update a solution 

• Space complexity tells how much space the 
algorithm needs



Concept Drift
• Over time, users’ opinions and preferences 

change 

• This is called concept drift  

• Mining algorithms need to counter it 

• Typically data observed earlier weights less 
when computing the fit



On-Line vs. Streaming

On-line 

• Must give good answers at 
all times 

• Can go back to already-
seen data 

• Assumes all data fits to 
memory

Streaming 

• Can wait until the end of 
the stream 

• Cannot go back to already-
seen data 

• Assumes data is too big to 
fit to memory



On-Line vs. Dynamic
On-line 

• Already-seen data doesn’t 
change 

• More focused on 
competitive ratio 

• Cannot change already-
made decisions

Dynamic 

• Data is changed all the 
time 

• More focused on efficient 
addition and deletion 

• Can revert already-made 
decisions



Example: Matrix 
Factorization

• On-line matrix factorization: new rows/columns are 
added and the factorization needs to be updated 
accordingly 

• Streaming matrix factorization: factors need to be 
build by seeing only a small fraction of the matrix at a 
time 

• Dynamic matrix factorization: matrix’s values are 
changed (or added/removed) and the factorization 
needs to be updated accordingly



On-Line Examples

• Operating systems’ cache algorithms 

• Ski rental problem 

• Updating matrix factorizations with new rows 

• I.e. LSI/pLSI with new documents



Streaming Examples

• How many distinct elements we’ve seen? 

• What are the most frequent items we’ve 
seen? 

• Keep up the cluster centroids over a stream



Dynamic Examples

• After insertion and deletion of edges of a 
graph, maintain its parameters: 

• Connectivity, diameter, max. degree, 
shortest paths, … 

• Maintain clustering with insertions and 
deletion



Streaming



Sliding Windows

• Streaming algorithms work either per 
element or with sliding windows  

• Window = last k items seen 

• Window size = memory consumption 

• “What is X in the current window?”



Example Algorithm: The 
0th Moment

• Problem: How many distinct elements are in the 
stream? 

• Too many that we could store them all, must 
estimate 

• Idea: store a value that lets us estimate the 
number of distinct elements 

• Store many of the values for improved estimate



The Flajolet–Martin 
Algorithm

• Hash element a with hash function h and let R 
be the number of trailing zeros in h(a) 

• Assume h has large-enough range (e.g. 64 
bits) 

• The estimate for # of distinct elements is 2R  

• Clearly space-efficient 

• Need to store only one integer, R 
Flajolet, P., & Nigel Martin, G. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209. doi:

10.1016/0022-0000(85)90041-8

http://dx.doi.org/10.1016/0022-0000(85)90041-8


Does Flajolet–Martin 
Work?

• Assume the stream elements come u.a.r. 

• Let trail(h(a)) be the number of trailing 0s  

• Pr[trail(h(a)) ≥ r] = 2–r  

• If stream has m distinct elements, Pr[“For all distinct 
elements, trail(h(a)) ≤ r”] = (1 – 2–r)m 

• Approximately exp(–m2–r) for large-enough r  

• Hence: Pr[“We have seen a s.t. trail(h(a)) ≥ r”]  

• approaches 1 if m ≫ 2r and approaches 0 if m ≪ 2r  



Many Hash Functions
• Take average? 

• A single r that’s too high at least doubles the estimate  
⇒ the expected value is infinite 

• Take median? 

• Doesn’t suffer from outliers 

• But it’s always a power of two 
⇒ adding hash functions won’t get us closer than that 

• Solution: group hash functions in small groups, take their average 
and the median of the averages 

• Group size preferably ≈ log m 



Example Dynamic 
Algorithm



Users and Tweets

• Users follow tweets 

• A bipartite graph 

• We want to know 
(approximate) bicliques 
of users who follow 
similar tweeters 
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Factorizations
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Fully Dynamic Setup

• Can handle both addition and deletion of 
vertices and edges 

• Deletion is harder to handle 

• Can adjust the number of bicliques 

• Based on the MDL principle

Miettinen, P. (2012). Dynamic Boolean Matrix Factorizations (pp. 519–528). Presented at the 12th IEEE International Conference on Data Mining. doi:10.1109/ICDM.2012.118!
Miettinen, P. (2013). Fully dynamic quasi-biclique edge covers via Boolean matrix factorizations (pp. 17–24). Presented at the 2013 Workshop on Dynamic Networks Management and Mining, 

ACM. doi:10.1145/2489247.2489250

http://dx.doi.org/10.1109/ICDM.2012.118
http://dx.doi.org/10.1145/2489247.2489250


This Ain’t Prediction

• The goal is not to predict new edges, but to 
adapt to the changes 

• The quality is computed on observed edges 

• Being good at predicting helps adapting, 
though



First Attempt

• Re-compute the factorization after every 
addition 

• Too slow 

• Too much effort given the minimal change



Example
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One Factor Too Many?
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Adjusting the rank
• Use the MDL principle: Best rank is the one that 

lets us encode the data with least number of bits 

• Encode the data matrix using the factors and the 
residual (error) matrix 

• Remove a factor if doing so reduces the overall 
encoding length 

• Adding a factor is harder: need to have a new 
candidate factor to add



Adding a new factor
• Checking if we should remove a factor is easy 

• But how to decide should we add a factor? 

• We need to decide what kind of a factor to 
add 

• Simple heuristic: build candidates based on 
not-yet covered 1s and select the one with 
largest area



Making global updates
• The basic algorithm makes only somewhat local 

updates 

• Fro global updates, we iteratively update B and C  

• Fix B, update C; fix C, update B; etc. 

• The problem is (still) NP-hard – we use a 
heuristic 

• Computationally expensive
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Empirical Competitiviness 
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Running Times

Delicious LastFM Movielens

Offline 43 200 4,21

Dynamic 4 213 4,452

w/ iterations 585 1,504 11,295



Rank Over Time
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Figure 3: The ranks of dynamic and o✏ine factorizations for
the Delicious data computed after every 100 changes.
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Figure 4: Description lengths of the dynamic and o✏ine
factorizations of the Delicious data.

4.3.4 Adjusting the Rank

For the last results, we study the behaviour of the DRBMF
algorithm. We computed the results using the Delicious

data, and testing the change in the description length after
every 100 changes. If the description length had increased
by more than 0.1%, the procedure to update the rank was
initiated. We also computed the o✏ine rank and description
lengths, taking the matrix after every 100 changes and com-
puting the MDL-optimal factorization using the algorithm
from [12]. The ranks of the factorizations can be seen in
Figure 3.
The two algorithms do not constantly agree with each

other. Over time, the dynamic algorithm reduces the rank
while the o✏ine algorithm changes it more often. That the
dynamic algorithm behaves more smoothly is to be expected,
as it cannot compute the factorization from the scratch.
After about 2 000 edits, the o✏ine algorithm agrees with the
dynamic algorithm that the data has Boolean rank 1, and
the two agree almost until the end.

The data then has extremely low rank. Why is that? Look-
ing at the factorization it seems obvious that the algorithms
(both online and o✏ine) consider the data having only very
little structure. Such low ranks are not universal, though.
The MDL-optimal rank of the LastFM data, for example, is
over 300.

The ranks alone do not tell the whole story, however. Per
the MDL principle, the factorization of the data that obtains
the smaller description length is the optimal. The description
lengths for the algorithms are presented in Figure 4.
From Figure 4 we see that while the o✏ine algorithm

starts with much lower encoding length, it quickly increases

to the same level as the dynamic algorithm, with the dynamic
algorithm typically being slightly better. This is again an
interesting behaviour. The o✏ine algorithm from [12] is a
heuristic, so it is not guaranteed to give optimal results. Yet,
as it can compute its factorization from the scratch, it should
be able to obtain at least as good results as the dynamic
method. In this light, the dynamic method’s performance
seems very strong.
In experiments done with the other data sets (results

omitted), the algorithm mostly kept the rank untouched.

4.3.5 Conclusions

Overall, the results with real-world data are very good. The
absolute reconstruction errors might look high, but compared
to the error caused by the o✏ine method – the only reasonable
comparison point – they are very competitive. That an
online method is better than the comparable o✏ine method
is rather surprising, but as we have seen, with the heuristics
involved here, it sometimes is the case.6 The algorithm also
behaves very well when the it is allowed to adjust the rank.
Furthermore, its running time is essentially equivalent to that
of the o✏ine algorithm for a single factorization. Given that
the initial factors clearly do not work well, this means that
using the dynamic algorithm is the fastest (and sometimes
the most accurate) method for having constantly a good
factorization.

5. RELATED WORK
Boolean matrix factorizations have gained interest in data

mining community during the past few years. The use of
Boolean matrix factorizations in data mining was proposed
in [10], although related concepts, such as tiles and formal
concepts, were studied much earlier. Tiling a database [6]
refers to the task of covering all 1s of a binary matrix using
few7 itemsets. The Boolean matrix factorization can be seen
as a generalization of this task, each rank-1 binary matrix
defining a ‘tile’. The di↵erence is that tiling does not allow
any 0s to be represented as 1s, whereas the Boolean matrix
factorization allows this type of errors. Before that, Boolean
matrix factorizations were mostly studied by combinatorics;
see [13] and references therein. For some applications and
variations of Boolean matrix factorizations, see [7].

Boolean matrix factorization is not the only type of ma-
trix factorization dealing with binary matrices. Methods
using normal algebra [18] or probabilistic modeling [2, 17],
for example, have been proposed. The characteristics and
behaviour of such methods are very di↵erent to Boolean
matrix factorization, though.

Extending a matrix factorization is a common problem in
Information Retrieval (IR) when latent factor models, such
as Latent Semantic Indexing [3], are used. These models
represent the given corpus as a (non-negative) matrix, and
apply a factorization on it. When a new document arrives to
the corpus, it has to be fold in. The folding-in is performed

6Obviously, we can use the online algorithm in o✏ine setting
to obtain better o✏ine algorithm. But as the online algorithm
requires the initial factorization, it’s benefits are less obvious
in purely o✏ine situation.
7When the goal is to cover all 1s and minimize the number
of tiles, it is equivalent to computing the Boolean rank [8];
when the number of tiles is given and the goal is to minimize
the number of uncovered 1s, the problem is more akin to
standard Boolean matrix factorization.
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4.3.4 Adjusting the Rank

For the last results, we study the behaviour of the DRBMF
algorithm. We computed the results using the Delicious

data, and testing the change in the description length after
every 100 changes. If the description length had increased
by more than 0.1%, the procedure to update the rank was
initiated. We also computed the o✏ine rank and description
lengths, taking the matrix after every 100 changes and com-
puting the MDL-optimal factorization using the algorithm
from [12]. The ranks of the factorizations can be seen in
Figure 3.
The two algorithms do not constantly agree with each

other. Over time, the dynamic algorithm reduces the rank
while the o✏ine algorithm changes it more often. That the
dynamic algorithm behaves more smoothly is to be expected,
as it cannot compute the factorization from the scratch.
After about 2 000 edits, the o✏ine algorithm agrees with the
dynamic algorithm that the data has Boolean rank 1, and
the two agree almost until the end.

The data then has extremely low rank. Why is that? Look-
ing at the factorization it seems obvious that the algorithms
(both online and o✏ine) consider the data having only very
little structure. Such low ranks are not universal, though.
The MDL-optimal rank of the LastFM data, for example, is
over 300.

The ranks alone do not tell the whole story, however. Per
the MDL principle, the factorization of the data that obtains
the smaller description length is the optimal. The description
lengths for the algorithms are presented in Figure 4.
From Figure 4 we see that while the o✏ine algorithm

starts with much lower encoding length, it quickly increases

to the same level as the dynamic algorithm, with the dynamic
algorithm typically being slightly better. This is again an
interesting behaviour. The o✏ine algorithm from [12] is a
heuristic, so it is not guaranteed to give optimal results. Yet,
as it can compute its factorization from the scratch, it should
be able to obtain at least as good results as the dynamic
method. In this light, the dynamic method’s performance
seems very strong.
In experiments done with the other data sets (results

omitted), the algorithm mostly kept the rank untouched.

4.3.5 Conclusions

Overall, the results with real-world data are very good. The
absolute reconstruction errors might look high, but compared
to the error caused by the o✏ine method – the only reasonable
comparison point – they are very competitive. That an
online method is better than the comparable o✏ine method
is rather surprising, but as we have seen, with the heuristics
involved here, it sometimes is the case.6 The algorithm also
behaves very well when the it is allowed to adjust the rank.
Furthermore, its running time is essentially equivalent to that
of the o✏ine algorithm for a single factorization. Given that
the initial factors clearly do not work well, this means that
using the dynamic algorithm is the fastest (and sometimes
the most accurate) method for having constantly a good
factorization.

5. RELATED WORK
Boolean matrix factorizations have gained interest in data

mining community during the past few years. The use of
Boolean matrix factorizations in data mining was proposed
in [10], although related concepts, such as tiles and formal
concepts, were studied much earlier. Tiling a database [6]
refers to the task of covering all 1s of a binary matrix using
few7 itemsets. The Boolean matrix factorization can be seen
as a generalization of this task, each rank-1 binary matrix
defining a ‘tile’. The di↵erence is that tiling does not allow
any 0s to be represented as 1s, whereas the Boolean matrix
factorization allows this type of errors. Before that, Boolean
matrix factorizations were mostly studied by combinatorics;
see [13] and references therein. For some applications and
variations of Boolean matrix factorizations, see [7].

Boolean matrix factorization is not the only type of ma-
trix factorization dealing with binary matrices. Methods
using normal algebra [18] or probabilistic modeling [2, 17],
for example, have been proposed. The characteristics and
behaviour of such methods are very di↵erent to Boolean
matrix factorization, though.

Extending a matrix factorization is a common problem in
Information Retrieval (IR) when latent factor models, such
as Latent Semantic Indexing [3], are used. These models
represent the given corpus as a (non-negative) matrix, and
apply a factorization on it. When a new document arrives to
the corpus, it has to be fold in. The folding-in is performed

6Obviously, we can use the online algorithm in o✏ine setting
to obtain better o✏ine algorithm. But as the online algorithm
requires the initial factorization, it’s benefits are less obvious
in purely o✏ine situation.
7When the goal is to cover all 1s and minimize the number
of tiles, it is equivalent to computing the Boolean rank [8];
when the number of tiles is given and the goal is to minimize
the number of uncovered 1s, the problem is more akin to
standard Boolean matrix factorization.



Conclusions
• Not all data is available when you need it 

• On-line and dynamic methods try to adapt 
the results to the new data 

• Not all data fits into memory 

• Streaming methods try to address that 

• Doing data mining in dynamic or streaming 
environments is even harder than usual
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