Mining Data that Changes

17 July 2014

Data is Not Static

- Data is not static
 - New transactions, new friends, stop following somebody in Twitter, ...
- But most data mining algorithms assume static data
 - Even a minor change requires a full-blown re-computation

Types of Changing Data

- 1. New observations are added
 - New items are bought, new movies are rated
 - The existing data doesn't change
- 2. Only part of the data is seen at once
- 3. Old observations are altered
 - Changes in friendship relations

Types of Changing-Data Algorithms

- **On-line** algorithms get new data during their execution
 - Good answer at any given point
 - Usually old data is not altered
- Streaming algorithms can only see a part of the data at once
 - Single-pass (or limited number of passes), limited memory
- **Dynamic** algorithms' data is changed constantly
 - More, less, or altered

Measures of Goodness

- Competitive ratio is the ratio of the (non-static) answer to the optimal off-line answer
 - Problem can be NP-hard in off-line
 - What's the cost of uncertainty
- Insertion and deletion times measure the time it takes to update a solution
- Space complexity tells how much space the algorithm needs

Concept Drift

- Over time, users' opinions and preferences change
 - This is called concept drift
- Mining algorithms need to counter it
 - Typically data observed earlier weights less when computing the fit

On-Line vs. Streaming

On-line

Streaming

- Must give good answers at all times
- Can go back to alreadyseen data
- Assumes all data fits to memory

- Can wait until the end of the stream
- Cannot go back to alreadyseen data
- Assumes data is too big to fit to memory

On-Line vs. Dynamic

On-line

Dynamic

- Already-seen data doesn't change
- More focused on competitive ratio
- Cannot change alreadymade decisions

- Data is changed all the time
- More focused on efficient addition and deletion
- Can revert already-made decisions

Example: Matrix Factorization

- On-line matrix factorization: new rows/columns are added and the factorization needs to be updated accordingly
- Streaming matrix factorization: factors need to be build by seeing only a small fraction of the matrix at a time
- Dynamic matrix factorization: matrix's values are changed (or added/removed) and the factorization needs to be updated accordingly

On-Line Examples

- Operating systems' cache algorithms
- Ski rental problem
- Updating matrix factorizations with new rows
 - I.e. LSI/pLSI with new documents

Streaming Examples

- How many distinct elements we've seen?
- What are the most frequent items we've seen?
- Keep up the cluster centroids over a stream

Dynamic Examples

- After insertion and deletion of edges of a graph, maintain its parameters:
 - Connectivity, diameter, max. degree, shortest paths, ...
- Maintain clustering with insertions and deletion

Sliding Windows

- Streaming algorithms work either per element or with sliding windows
 - Window = last k items seen
 - Window size = memory consumption
 - "What is X in the current window?"

Example Algorithm: The Oth Moment

- **Problem:** How many distinct elements are in the stream?
 - Too many that we could store them all, must estimate
- Idea: store a value that lets us estimate the number of distinct elements
 - Store many of the values for improved estimate

The Flajolet-Martin Algorithm

- Hash element a with hash function h and let R be the number of trailing zeros in h(a)
 - Assume h has large-enough range (e.g. 64 bits)
 - The estimate for # of distinct elements is 2^R
- Clearly space-efficient
 - Need to store only one integer, R

Does Flajolet-Martin Work?

- Assume the stream elements come u.a.r.
- Let *trail*(*h*(*a*)) be the number of trailing 0s
- $\Pr[trail(h(a)) \ge r] = 2^{-r}$
- If stream has *m* distinct elements, $Pr["For all distinct elements, <math>trail(h(a)) \le r"] = (1 2^{-r})^m$
 - Approximately $exp(-m2^{-r})$ for large-enough r
 - Hence: $Pr["We have seen a s.t. trail(h(a)) \ge r"]$
 - approaches 1 if $m \gg 2^r$ and approaches 0 if $m \ll 2^r$

Many Hash Functions

- Take average?
 - A single *r* that's too high at least doubles the estimate
 ⇒ the expected value is infinite
- Take median?
 - Doesn't suffer from outliers
 - But it's always a power of two
 - ⇒ adding hash functions won't get us closer than that
- Solution: group hash functions in small groups, take their average and the median of the averages
 - Group size preferably $\approx \log m$

Example Dynamic Algorithm

Users and Tweets

- Users follow tweets
 - A bipartite graph
- We want to know

 (approximate) bicliques
 of users who follow
 similar tweeters

Boolean Matrix

Boolean Matrix Factorizations

Fully Dynamic Setup

- Can handle both addition and deletion of vertices and edges
 - Deletion is harder to handle
- Can adjust the number of bicliques
 - Based on the MDL principle

Miettinen, P. (2012). Dynamic Boolean Matrix Factorizations (pp. 519–528). Presented at the 12th IEEE International Conference on Data Mining. doi:10.1109/ICDM.2012.118 Miettinen, P. (2013). Fully dynamic quasi-biclique edge covers via Boolean matrix factorizations (pp. 17–24). Presented at the 2013 Workshop on Dynamic Networks Management and Mining, ACM. doi:10.1145/2489247.2489250

This Ain't Prediction

- The goal is not to predict new edges, but to adapt to the changes
 - The quality is computed on observed edges
 - Being good at predicting helps adapting, though

First Attempt

- Re-compute the factorization after every addition
- Too slow
- Too much effort given the minimal change

One Factor Too Many? l L L l I I $\mathbf{0}$ I ()l L I L

Adjusting the rank

- Use the MDL principle: Best rank is the one that lets us encode the data with least number of bits
 - Encode the data matrix using the factors and the residual (error) matrix
- Remove a factor if doing so reduces the overall encoding length
- Adding a factor is harder: need to have a new candidate factor to add

Adding a new factor

- Checking if we should remove a factor is easy
- But how to decide should we add a factor?
 - We need to decide what kind of a factor to add
- Simple heuristic: build candidates based on not-yet covered 1s and select the one with largest area

Making global updates

- The basic algorithm makes only somewhat local updates
- Fro global updates, we iteratively update B and C
 - Fix **B**, update **C**; fix **C**, update **B**; etc.
 - The problem is (still) NP-hard we use a heuristic
 - Computationally expensive

Error Over Time

Empirical Competitiviness

Running Times

	Delicious	LastFM	Movielens
Offline	43	200	4,21
Dynamic	4	213	4,452
w/ iterations	585	1,504	11,295

Rank Over Time

Description Length Over Time

Conclusions

- Not all data is available when you need it
 - On-line and dynamic methods try to adapt the results to the new data
- Not all data fits into memory
 - Streaming methods try to address that
- Doing data mining in dynamic or streaming environments is even harder than usual

Suggested Reading

- Rajaraman, A., Leskovec, J., & Ullman, J. D. (2013).
 Mining of Massive Datasets. Cambridge University Press.
 - Textbook, available on-line
- Guha, S., *et al.* (2000). Clustering data streams (pp. 359– 366). In FOCS '00.
- Sun, J., Tao, D., & Faloutsos, C. (2006). Beyond Streams and Graphs: Dynamic Tensor Analysis (pp. 374–383). In KDD '06.