
Massive-Scale Graph
Analysis

Vinay Setty Siaram Gurajada Mohamed Yahya

[vsetty, gurajada, myahya, sseufert]@mpi-inf.mpg.de

Stephan Seufert

http://mpi-inf.mpg.de

Agenda

• Introduction

• Topics

• Seminar rules and requirements

• Registration

Overview

• Fridays 10:00 - 11:30 in E 1.4 / R 021

• Today (24th April 2015) kickoff meeting

• 8th May 2015 to 10th July 2015 your seminars

• No holidays on seminar days!

Graphs Are Sexy!

Social Graphs
Protein to Protein
Interactions (PPI) Knowledge Graphs

circle indicates a segmented region. Here, the radius, the
color and the center of circle correspond to the node at-
tributes such as size, color and location, respectively. In
addition, the lines in Figure 1 (c) represent the spatial edge
attributes, i.e. spatial distance and orientation between two
adjacent nodes.

2.2 Spatio-Temporal Region Graph
A RAG is generated from each frame. A node represent-

ing a region can span across multiple frames. In other words,
the corresponding nodes in the consecutive frames need to
be connected to represent its temporal characteristic. The
temporally connected RAGs are called Spatio-Temporal Re-
gion Graph (STRG). The STRG can handle both temporal
and spatial characteristics of video data. It is defined as
follows:

Definition 2. Given a video segment S, a Spatio-
Temporal Region Graph, Gst(S), is a six-tuple Gst(S) =
{V, ES , ET , ∫, ª, ø}, where

• V is a finite set of nodes for segmented regions from S,

• ES µ V £V is a finite set of spatial edges between adjacent

nodes in S,

• ET µ V £ V is a finite set of temporal edges between tem-

porally consecutive nodes in S,

• ∫ : V ! AV is a set of functions generating node at-

tributes,

• ª : ES ! AES
is a set of functions generating spatial edge

attributes,

• ø : ET ! AET
is a set of functions generating temporal

edge attributes.

In an STRG, a temporal edge (eT 2 ET) represents the
relationships between two corresponding nodes (regions) in
two consecutive frames, such as velocity (how much their
centroids are changed) and moving direction. Figure 2 shows
a part of STRG for frames #104 ° #106 in a sample video.
The horizontal lines between the frames indicate the tem-
poral edges.

Frame #104 Frame #105 Frame #106

Figure 2: Visualization of STRG for frame #104 °
#106

An STRG is an extension of RAGs by adding a set of tem-
poral edges (ET) to them. ET represents temporal relation-
ships between the corresponding nodes in two consecutive
RAGs. Constructing ET is similar to the problem of object
tracking in video sequence.

Although there are numerous eÆorts [10, 13] for object
tracking, it is still an open problem. The main reason is

that most of the tracking algorithms use low-level features
such as color, location and texture, but complicated mov-
ing patterns of objects cannot be interpreted easily by the
low-level features. In order to overcome this problem, we
propose a new graph-based tracking method, which consid-
ers not only low-level features but also relationships among
regions. To describe our graph-based tracking algorithm, we
first define subgraph isomorphism as follows (see Definitions
3, 4 and 5).

Definition 3. Given a graph Gr = {V, ES , ∫, ª}, a sub-
graph of Gr is a graph Gr0 = {V 0, E0

S , ∫0, ª0} such that

• V 0 µ V and E0
S = ES \ (V 0 £ V 0),

• ∫0 and ª0 are the restrictions of ∫ and ª to V and ES ,

respectively, i.e.

∫0(v) =

Ω
∫(v) if v 2 V 0,
undefined otherwise.

ª0(eS) =

Ω
ª(eS) if eS 2 E0

S ,
undefined otherwise.

The notation Gr0 µ Gr is used to indicate that Gr0 is a
subgraph of Gr.

Definition 4. Two graphs Gr = {V, ES , ∫, ª} and Gr00 =
{V 00, E00

S , ∫00, ª00} are isomorphic, denoted by Gr ª= Gr00, if
there is a bijective function f : V ! V 00 such that,

• ∫(v) = ∫00(f(v)) 8v 2 V ,

• For any edge eS = (v1, v2) 2 ES there exists an edge e00S =
(f(v1), f(v2)) 2 E00

S such that ª(e00S) = ª(eS), and

for any edge e00S = (v001 , v002) 2 E00
S there exists an edge eS =

(f°1(v001), f°1(v002)) 2 ES such that ª(e00S) = ª(eS).

Definition 5. A graph Gr is subgraph isomorphic to a
graph Gr00, if there exist an injective function f : V ! V 00

and a subgraph G0 µ G00 such that Gr and Gr0 are isomor-
phic (i.e., Gr ª= Gr0 µ Gr00).

Now, the tracking problem can be converted to find the
most common subgraph from two consecutive frames since
each frame is represented by a graph. We define the most
common subgraph between two given graphs in Definition
6.

Definition 6. GC is the most common subgraph of two
graphs Gr and Gr0, where GC µ Gr and GC µ Gr0, if and
only if 8G0

C : G0
C µ Gr ^ G0

C µ Gr0) |G0
C | ∑ |GC |, where

|G| denotes the number of nodes of G.

The graph-based tracking method starts with defining the
neighborhood graph GN (v) in Definition 7.

Definition 7. GN (v) is the neighborhood graph of a given
node v in a RAG, if for any nodes u 2 GN (v), u is the ad-
jacent node of v and has one edge such that eS = (v, u).

GN is a subgraph of a RAG. Let Gm
N and Gm+1

N be sets
of the neighborhood graphs in mth and (m + 1)th frames
respectively. For each node v in mth frame, the goal is to
find the corresponding node v0 in (m+1)th frame. To decide
whether two nodes are corresponding, we use the neighbor-
hood graphs in Definition 7. Therefore, to find the corre-
sponding two nodes v and v0 is converted to find the cor-
responding two neighborhood graphs, GN (v) in Gm

N , and
GN (v0) in Gm+1

N , in which GN (v0) is isomorphic or most

Video Scenes [Lee SIGMOD’05]Co-author, Citation Graphs

Massive-Scale Graphs
• Web Graphs: trillions of nodes and edges

• Clue web: 4.7 billion web pages and 8 billion links

• Social Graphs

• Facebook: 1.25 billion monthly active users with hundreds of billions of
relationships (as of March 31, 2015)

• Twitter: 288 million monthly active users

• Knowledge Graphs

• Google knowledge graph: 570 million nodes 18 billion facts

• Freebase: 1.9 billion triples

Graph Algorithms
• Page Rank

• Shortest paths

• Connected components (strongly and weakly connected
components)

• Traversal (BFS, DFS)

• Enumerating triangles (for computing clustering
coefficient)

• Graph matching

Topic 1: Map/Reduce for
Graphs

• 08/05/2015

• Cohen: Graph twiddling in a MapReduce world, Computing in Science & Engineering 2009

• Lin and Schatz: Design patterns for efficient graph algorithms in MapReduce, Workshop on
Mining and Learning with Graphs 2010

• Additional Reference (to introduce Map/Reduce) Lin et al.: Data-intensive text processing with
MapReduce, 2010

• Preferred background: Databases, Knowledge of Map/Reduce, fundamental graph algorithms

• What is expected:

• Present the Map/Reduce paradigm

• Clearly explain all the the graph algorithms and their implementations using Map/Reduce
paradigm

• Must cover both papers in detail

• Tutor: Sairam Gurajada

Topic 2: Graph Analysis
Using Map/Reduce

• 15/05/2015

• Kang et al.: Pegasus: A peta-scale graph mining system implementation and observations,
ICDM 2009

• Kang et al.: PEGASUS: mining peta-scale graphs, Knowledge and Information Systems 2011

• Preferred background: Databases, Knowledge of Map/Reduce, fundamental graph algorithms,
matrix operations

• What is expected:

• Build on and relate to previous topic

• Focus on second paper (first paper is a subset of the second paper)

• Clearly explain the matrix multiplication implementation and graph algorithms in Pegasus

• Discuss evaluations

• Tutor: Sairam Gurajada

Topic 3: Pregel
• 22/05/2015

• Malewicz et al.: Pregel: a system for large-scale graph processing, SIGMOD 2010

• Salihoglu and Widom: Optimizing Graph Algorithms on Pregel-like System, VLDB 2014

• Additional Reference: McCune et al.: Thinking Like a Vertex: a Survey of Vertex-Centric Frameworks for
Large-Scale Distributed Graph Processing., ACM Computing Surveys 2015

• Preferred background: Databases, Distributed Systems, Message Passing model, Bulk Synchronous Parallel
(BSP) model

• What is expected:

• Introduce BSP, contrast it to Map/Reduce model (Refer to Thinking Like a Vertex by McCune et. al. for
explanation of BSP and other communication models)

• Explain Pregel architecture

• Explain Pregel applications : graph algorithm implementations on Pregel in detail from second paper

• Discuss evaluations

• Tutor: Sairam Gurajada

Topic 4: GraphLab
• 22/05/2015

• Gonzalez et al.: PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs, OSDI 2012,
[Paper]

• Low et al.: Distributed GraphLab: A Framework for Machine Learning and Data Mining in the Cloud,
VLDB 2012, [Paper]

• Preferred background: Databases, Distributed Systems, Message Passing model, Map/Reduce, Pregel,
fundamental graph algorithms

• What is expected:

• Introduce GraphLab (second paper has better introduction)

• Compare and contrast Pregel, GraphLab, PowerGraph, Hadoop

• Explain distributed GraphLab applications (Netflix recommendation challenge, video co-segmentation,
Named entity recognition)

• Discuss evaluations

• Tutor: Stephan Seufert

Topic 5: Graph Partitioning
• 05/06/2015

• Stanton and Kliot: Streaming Graph Partitioning for Large Distributed Graphs, KDD 2012, [Paper]

• Tsourakakis et al.: FENNEL: streaming graph partitioning for massive scale graphs, WSDM 2014,
[Paper]

• Preferred background: Databases, Algorithms and Datastructures

• What is expected:

• Introduce the problem of balanced graph partitioning

• Explain the heuristics from the first paper (including METIS)

• Introduce formalization of the graph partitioning problem (from FENNEL paper) if time permits

• Explain the streaming algorithm

• Discuss evaluations

• Tutor: Mohamed Yahya

Topic 6: Large-Scale Graph
Engines

• 12/06/2015

• Kyrola et al.: GraphChi: Large-Scale Graph Computation on Just a PC, OSDI 2012

• Shao et al.: Trinity: A Distributed Graph Engine on a Memory Cloud., SIGMOD 2013,

• Preferred background: Databases, Distributed Systems, Operating Systems

• What is expected:

• Present either GraphChi or Trinity in detail

• If you want to present Trinity introduce GraphChi briefly

• Explain the challenges of graph algorithms for evolving graphs and explain how they are
handled in GraphChi or Trinity

• Discuss experiments

• Tutor: Vinay Setty

Topic 7: Comparison of
Approaches

• 19/06/2015

• Lu et al.: Large-Scale Distributed Graph Computing Frameworks: An Experimental Evaluation,
VLDB 2014

• McCune et al.: Thinking Like a Vertex: a Survey of Vertex-Centric Frameworks for Large-
Scale Distributed Graph Processing., ACM Computing Surveys 2015

• Preferred background: Databases, Distributed Systems, Operating Systems

• What is expected:

• Summarize all the presented approaches Pregel, GraphLab, GraphChi

• Compare and contrast these approaches

• Discuss experiments in detail

• Use second paper (survey) mostly as additional reference to get more information

• Tutor: Vinay Setty

Topic 8: RDF Graph
Processing

• 26/06/2015

• Neumann et al.: RDF-3X: a RISC-style engine for RDF, VLDB 2008,

• Huang et al.: Scalable SPARQL Querying of Large RDF Graphs, VLDB 2011

• Preferred background: Databases

• What is expected:

• Introduce RDF and SPARQL briefly

• Introduce RDF-3X discuss limitations

• Explain the parallel SPARQL engine from second paper

• Discuss experiments

• Tutor: Mohamed Yahya

Topic 9: Graph Streams
• 03/07/2015

• Aggarwal et al.: On dense pattern mining in graph streams., VLDB 2010

• Chen et al.: Continuous Subgraph Pattern Search over Certain and Uncertain Graph
Streams, TKDE 2010

• Preferred background: Databases, Algorithms and Data structures

• What is expected:

• Introduce graph stream processing

• Explain (sub)graph isomorphism problem, approximate graph search and dense patterns

• Briefly explain the approaches from both papers

• Discuss evaluation

• Tutor: Vinay Setty

Topic 10: Graph Algorithms: Dense
Subgraphs and Graph Sketches

• 10/07/2015

• Angel et al.: Dense subgraph maintenance under streaming edge weight
updates for real-time story identification, VLDB 2014, [Paper]

• Ahn et al.: Graph sketches: sparsification, spanners, and subgraphs, PODS
2012, [Paper]

• Preferred background: Databases, Algorithms and Data structures

• What is expected:

• Pick one of the papers and present in detail

• Someone comfortable with presenting theoretical analysis is preferred

• Tutor: Mohamed Yahya

Presentation
• 45 minutes talk in English

• Around 30 minutes of Q&A

• Talk to your tutor at least 2 weeks before your talk

• If you get the first topic you have to start now! (it is an easier
topic)

• Prepare your own slides (keynote, power point or latex code must
be sent to your tutor)

• You must send your slides to and discuss them with your tutor by
the Monday before your talk (by 16:00) at the latest, otherwise
your talk will be canceled (this is a hard deadline)

Guidelines for Presenting
• It is important to clearly introduce the problem and the idea presented in the papers

• In the papers look for:

• Contributions of the paper

• Improvements to the state-of-the-art

• Main results

• Conclusions and future work

• Discuss the insights that are provided in the papers

• Identify strengths and weaknesses, question the assumptions, criticize the bad
decisions in the papers

• Refer to https://web.stanford.edu/~jacksonm/present.pdf

https://web.stanford.edu/~jacksonm/present.pdf

Report
• Up to 8 pages using the template in the course web page

• Maximum of 4 weeks after your talk

• Contents of the report:

• include the basic idea presented in the papers

• summarize the papers

• include the points raised in the seminar by the opponents (collaborate with
the opponents if necessary)

• include the important results and conclusions

• bonus points if you include the content from the papers outside of your
assigned papers (such as any follow up works, new results etc)

Opponents
• Two opponents per talk

• One of the opponents introduces the speaker

• Other opponent moderates the Q&A session

• Both opponents must read the papers thoroughly

• prepare questions

• challenge the ideas and results in the papers (if
there are any weaknesses)

Participation
• Participation in all the talks is mandatory (not just

your own)

• If you are sick please let us know in advance

• If you miss more than two seminars you need to
provide a note from the doctor

• Active participation is required (we will monitor on
who is active and who is not)

What counts for grade?

• Your presentation 50%

• Report 25%

• Your performance as an opponent 15%

• Active participation in the seminars 10%

Registration
• Send an email to vsetty@mpi-inf.mpg.de

• Your name, student number and semester

• Your background: mention the relevant lectures you have taken,
any seminars you have taken

• Three topics in the order of the their preference and a brief
explanation to show if you have any relevant background for that
topic

• Maximum 10 participants

• You will know the topic assignment by Monday, 27th April (may be
earlier)

mailto:vsetty@mpi-inf.mpg.de

