
 1

“PlanetP: Using Gossiping to Build Content Addressable
Peer-to-Peer Information Sharing Communities”

F. M. Cuenca-Acuna, C. Peery,
 R. P. Martin, and T. D. Nguyen

Write-up by Sergey Lugin
Saarland University, Department of Computer Science

2003

 2

Content

1. Motivation…………………………………………………………………………….. 3

2. Introduction to PlanetP……………………………………………………………… 3

3. Architecture…………………………………………………………………………... 4

3.1 Local and global index ……………………………………………………… 4

3.2 Gossiping algorithm ………………………………………………………… 5

3.3 Content search and ranking ………………………………………………... 7

4. Performance …………………………………………………………….................. 10

 4.1 Content search and ranking………………………………………………... 10

4.2 Gossiping algorithm…………………………………………………………. 12

5. Group extension …………………………………………………………………….. 14

6. Related works……………………………………………………………….............. 14

7. Summary …………………………………………………………………………….. 15

8. References…………………………………………………………………………… 15

 3

1. Motivation

Peer-to-peer (P2P) systems have gained a world-wide popularity at the present days.
In general, the P2P network unites the users, who want to have an opportunity of
data exchange. Each user runs P2P software with equivalent functionality sharing
some files in order to get an access to files shared by other users. The P2P systems
are attractive due to:

1. the ability to leave shared, but distributed, data at their origin, rather than
incurring the cost, privacy and safety concerns of collecting and
maintaining them in a centralized repository,

2. ease of incremental scalability,

3. the possibility of scaling to extremely large sizes.

P2P systems can be divided into two common groups according to their architecture:

1. Centralized systems (e.g. Napster).
A central server maintains an index of all files published in the network. All
peer queries are directed to the server and it informs peers where they can
download the data they are looking for.

2. Decentralized systems (e.g. Gnutella, Freenet).
Peers use a point-to-point message exchange (message flooding) to locate
the data they are looking for.

While decentralized systems have been tremendously successful and popular for
music and video sharing communities, their search capabilities have been
frustratingly limited. On the opposite side, the success of Internet search engines
(e.g. Google, Yahoo) demonstrated that content based search and ranking is a
powerful model for locating information across data collections exhibiting a wide
range of sizes and content. One attempt to extend search capabilities for
decentralized P2P systems using Internet search engine fundamentals was realized
in a prototype system called PlanetP [1]. This paper describes fundamental principles
of the architecture developed for PlanetP.

2. Introduction to PlanetP

PlanetP is a content addressable publish/subscribe service for unstructured P2P
communities [1]. It is the first approach to provide content search and ranking for
unstructured P2P networks. PlanetP is simple because each peer must only agree to
perform a periodic, randomized, point-to-point message exchange with other peers
and is powerful for two reasons:

 it can propagate information in bounded time in spite of the uncoordinated
communal behaviour,

 it maintains a globally content-ranked data collection without depending on
centralized resources or the on-line presence of specific peers.

 4

The service has the following advantages:

1. The service provides content search and ranking.
This system allows peers across the entire community to locate specific
documents based on their content.

2. The service does not require central management.

3. The service provides resilience to rapid membership changes.

 4. The service scales easily to several thousands peers.

3. Architecture

3.1 Local and global indexes

PlanetP is a typical peer-to-peer service. Peers share files that will be available
eventually to all peers in the community. The main feature of the developed service is
content search and ranking. In order to support it, PlanentP uses two data structures:

• local index, it describes only the precise content of documents published
locally by a peer,

• global index, it describes all peers in a compact structure and is replicated
everywhere in the community.

Let us consider these data structures in details:

Local index:

Peers publish documents (video, music) in PlanetP by providing XML snippets
containing pointers to the appropriate files (if text documents have to be published
then these documents should be used instead of XML snippets). A set of published
snippets constitutes a peer local index.

PlanetP leaves the shared files in place but runs a simple web server to support
retrieval of these files.

Global index:

PlanetP uses the global index to describe all peers and their shared information in
the community. The index is replicated everywhere. To reduce the bandwidth usage,
each peer summarizes the set of terms in its local index in a Bloom filter [2].

The Bloom filter is a bit-array that allows to quickly test a membership in a large term
set using hash functions. The filter is computed by using n different hash functions to
compute n indices for each term and setting the bit at each index to 1. Given a Bloom
filter, we can ask, if some term t is a member of the set by computing the n indices for
t and checking whether those bits are 1.

 5

The global index is a table in which each row corresponds to a single peer in the
community (see the table 2.1).

Table 2.1 The global index structure.
A peer has:

 nickname,
 peer status (“ON-LINE” or “OFF-LINE”, the field allows to reduce

bandwidth usage),
 IP address,
 Bloom filter.

The global index is replicated everywhere in the community by gossiping.

3.2 Gossiping algorithm

PlanetP uses gossiping to replicate the global index across peers of the P2P
community. All members agree to continually gossip about changes to keep the
shared data structure updated and loosely consistent. Gossiping was chosen
because it provides:

• robustness to the dynamic joining and leaving of peers,

• independence from any particular subset of peers being on-line.

PlanetP’s gossiping algorithm is a novel combination of an algorithm previously
introduced by Demers [3] and partial anti-entropy algorithm. The Demers’s algorithm
consists of a rumoring and anti-entropy algorithm.

Rumoring algorithm:

Purpose: The algorithm provides spreading of new information across a P2P
community.

If a peer has a change of its data structure (for example: publishing of new files), the
algorithm operates as follows:

 every Tg seconds, a peer Px pushes this change (called a rumor) to a peer

Py chosen randomly from the global index,

 if the rumor is new information for the peer Py, then it starts to push this

rumor just like Px,

BF[…….]10.25.125.11ON-LINETan
BF[…….]125.37.167.15ON-LINEJuri
BF[…….]45.23.78.115ON-LINEFred

…………
BF[…….]10.67.12.101OFF-LINEGera
BF[…….]10.25.125.10ON-LINEBob

Bloom FilterIPStatusNickname

BF[…….]10.25.125.11ON-LINETan
BF[…….]125.37.167.15ON-LINEJuri
BF[…….]45.23.78.115ON-LINEFred

…………
BF[…….]10.67.12.101OFF-LINEGera
BF[…….]10.25.125.10ON-LINEBob

Bloom FilterIPStatusNickname

 6

 this process is repeated for following peers,

 the peer Px stops pushing the rumor after it has contacted n consecutive

peers that already heard the rumor.

Anti-entropy algorithm:

Purpose: The algorithm allows to avoid the possibility of rumors dying out before
reaching everyone.

All peers perform the algorithm independently:

 every Tr seconds, a peer Px attempts to pull information from a peer Py

chosen randomly from the global index,

 the peer Py returns the summary of its version of the global index,

 then Px can ask Py for any new information that it does not have.

Partial anti-entropy algorithm:

Purpose: The algorithm allows to reduce the time for spreading new information.

The algorithm extends each push operation:

 when a peer Px pushes a rumor to a peer Py, the peer Py piggybacks the
identifiers of a small number of the most recent rumors,

 then Px can pull any recent rumor that did not reach it.

The process requires only one extra message exchange in the case that Py knows
something that Px does not.

To complete the gossiping description, it is necessary to make some remarks about
membership changes. There are three possible situations:

 Joining of new peers

PlanetP uses gossiping to inform all peers about an appearance of new peer
and its shared files.

 Leaving of present peers:

This case involves two possible situations: temporal and permanent leaving.
A peer discovers that another peer is OFF-LINE when an attempt to
communicate with it fails. It corresponds to temporal peer leaving. The peer
status is marked as “OFF-LINE” and information in the global index is not
dropped. If a peer has been marked as “OFF-LINE” continuously for time

 7

TDead , it is assumed that the peer has left the community permanently. In
this case all information about the peer is dropped from the global index.

 Rejoining of peers

This situation corresponds to temporal peer leaving when the peer status
was marked as “OFF-LINE”. To spread information about rejoining, the
service uses gossiping (the peer status is marked as “ON-LINE”
everywhere).

3.3 Content search and ranking

PlanetP implements a content ranking algorithm that uses the vector space ranking
model [4]. In this model, each document and query is abstractly represented as a
vector, where each dimension is associated with a distinct term. The value of each
component of a vector is a weight representing the importance of that term to the
corresponding document or query. The relevance of each document for some query
is calculated as the cosine of the angle between the two vectors using the following
equation:

DQ

ww
)D,Q(Sim

t,DQt t,Q

×

×
=
∑ ∈ (2.1)

where: Q is a query, D is a document, D,Q are the number of terms in Q and D,
wQ,t is the weight of the term t for the query Q, wD,t is the weight of the term t for the
document D.

A similarity of 0 means that the document does not have any term in the query while
a 1 means that the document contains every term in the query.

There are some methods for term weight assignments. TFxIDF is the most popular
method from them. The method combines:

1. Term Frequency - (fD,t)
 This metric refers to “how often the term t appears in the document D”.

2. Inverse Document Frequency - (IDFt)
 It is “the inverse of how often the term t appears in the entire collection”.

This technique allows to balance:

 the fact that terms frequently used in a document are likely important to
describe its meaning

 terms that appear in many documents in a collection are not useful for
differentiating between these documents

Using these metrics the weights are calculated as:

)flog(w t,Dt,D += 1 tt,Q IDFw = (2.2)

 8

There are some problems to compute TFxIDF for P2P community. Documents are
distributed across a P2P community and the network bandwidth is restricted to use.
To overcome these problems, PlanetP approximates TFxIDF by breaking them into
two sub-problems:

1. Ranking peers according to their likelihood of having relevant documents

2. Deciding on the number of peers to contact and ranking the identified
documents

PlanetP’s content search consists of two steps:

1. Ranking peers.
The query that can contain one or more terms is evaluated for all peers in the
community. For this purpose the Bloom filter is used. If a peer Px has larger
number of query terms than another peer Py then the peer Px has a larger rank
value. After ranking the peer list is sorted.

2. Querying the most relevant peers.

In this step, PlanetP queries the most relevant peers (from top to bottom of the
ranking). Each peer returns a set of document URLs together with their ranks.
PlanetP sorts received URLs and presents them for the user.

The figure 2.1 shows the PlanetP’s content search schematically.

Figure 2.1 The PlanetP’s content search.

Let us consider all steps in details:

Ranking peers Querying the most relevant peers

 9

Ranking peers:

PlanetP introduces a new measure similar IDF - Inverse Peer Frequency (IPF). The
idea is that a term that is present in the index of every peer is not useful for
differentiating between the peers for a particular query. For a term t, IPFt is computed
as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

t
t N

NlogIPF 1 (2.3)

where N is number of peers in the community, Nt is the number of peers that have
one or more documents with term t.

Using this measure the peer rank is computed as:

∑

∈∩∈

=
iBFtQt

ti IPF)Q(R (2.4)

where
Q is the query, Ri is the relevance of peer i to Q, BFi is the Bloom filter of peer i.

The equation assigns the rank for each peer according to the number and relevance
of query terms that it contains.

Querying the most relevant peers:

The community can have a large number of peers that contain at least one term of
the input query. In this case, it becomes infeasible to contact a large number of peers
for each query. To solve this problem, the user has to specify a limit K on the number
of potential documents that should be presented.

Planet executes following sub-steps:

 the service contacts peers from top to bottom of the ranking,

 each contacted peer returns a set of document URLs together with their
relevance calculated by following equation:

D

))flog((IPF
)D,Q(Sim Qt t,Dt∑ ∈

+×
=

1
 (2.5)

It is necessary to note that there are only two main discrepancies from the
TFxIDF equation. IPF is used instead of IDF and the number of query
terms is not used because it is a constant value.

 the service stops to contact peers when the documents identified by p
consecutive peers fail to contribute to the top K ranked documents.

Simulation results indicate that p should be a function of the community size N and
the number of document requested K as follows:

⎣ ⎦ ⎣ ⎦KCNCCp 210 ++= (2.6)

 10

where: C0,C1,C2 are constant values. The simulations results showed that the tuple
(C0,C1,C2)=(2,1/300,1/2.5) is a good initial values for equation 2.6.

This metric was called as “a stopping heuristic”.

4. Performance

The performance study involves evaluations of an efficacy for the content search and
time/bandwidth usage for the gossiping algorithm. It is necessary also to notice that
the performance study was based on a developed simulator. The simulator was
validated against measurements taken from a prototype (up to several hundred
peers).

4.1 Content search and ranking algorithm

To evaluate the efficacy of the content search and ranking, two accepted information
retrieval metrics were used, Recall (R) and Precision (P):

collection_in_.docs_relevant_.no_total
user_the_to_presented_.docs_relevant_.no)Q(R = (3.1)

user_the_to_presented_.docs_.no_total
user_the_to_presented_.docs_relevant_.no)Q(P = (3.2)

R(Q) captures the fraction of relevant documents that the algorithm is able to identify
and present to the user, P(Q) describes how much irrelevant material the user may
have to look throughout to find the relevant material.

Text documents extracted from Associated Press (AP89) [5] were placed at two
different document-to-peer distributions:

• Uniform
 It is the worst case for a distributed search.

• Weibull
 This distribution is caused by fact that 7% of the users in the Gnutella

community share more files than all the rest together.

The simulated results for PlanteP’s search engine at two different document-to-peer
distribution and the centralized implementation TFxIDF are shown on the figure 3.1.

Following abbreviations were used:

T.W is a search engine using TFxIDF (centralized implementation),

P.W is the PlanteP’s search engine (Weibull distribution of documents),

P.U is the PlanteP’s search engine (Uniform distribution of documents).

 11

(a) (b)
Figure 3.1 Average recall and precision for the AP89 collection when distributed

across 400 peers.

It is interesting to note that PlanetP tracks the performance of the centralized
implementation TFxIDF closely.

(a) (b)
Figure 3.2 (a) Average number of peers contacted in community of 400 peers vs.

number of documents requested, (b) Average recall as a function of community size.

The figure 3.2 (a) shows the average number of peers contacted in a community of
400 peers vs. the number of documents requested at two different document-to-peer
distributions (Weibull and Uniform). The figure shows that the developed stopping
heuristic allows PlanetP to search more widely among peers when documents are
more widely distributed preserving recall and precision independent of document
distribution. It is obvious, that for uniform document distribution the number of peers
contacted is larger than for Weibull distribution.

The figure 3.2 (b) shows the average recall as a function of community size. We
observe from it that PlanetP’s recall would degrade with community size if the
stopping heuristic were not a function of community size. The developed stopping
heuristic allows to maintain recall close to a constant value independently of
community size.

T.W
P.W
P.U

Pr
ec

is
io

n

No. documents requested

T.W
P.W
P.U

Pr
ec

is
io

n

No. documents requested

T.W

P.U
P.W

R
ec

al
l

No. documents requested

T.W

P.U
P.W

R
ec

al
l

No. documents requested

N
o.

 p
ee

rs
 c

on
ta

ct
ed

No. documents requested

N
o.

 p
ee

rs
 c

on
ta

ct
ed

No. documents requested

R
ec

al
l

Number of peers

stopping heuristic
R

ec
al

l

Number of peers

stopping heuristic

 12

The presented results yield three important observations:

1. PlanetP tracks the performance of the centralized implementation closely.

a) Performance is independent of how the shared documents are
distributed.

b) PlanetP’s recall and precision is within 11% of TFxIDF’s

implementation.

2. PlanetP scales well for communities of up to 1000 peers, maintaining

relatively constant recall and precision.

3. PlanetP’s stopping heuristic allows to maintain the close recall and precision

independently of how documents are distributed.

4.2 Gossiping algorithm

Firstly, to study the gossiping algorithm, we measure the time required to propagate a
single Bloom filter throughout stable communities. Measuring propagation time is
important because it represents the window of time where peer’s directories are
inconsistent, so that some peers may not be able to find new documents.

The figure 3.3 shows the propagation time for two scenarios. In both cases peers are
connected by 45 Mbps links and the Bloom filter contains 1000 terms (3000 bytes).
Following abbreviations were used:

LAN-AE: Peers use only push anti-entropy: each peer periodically push a
summary of its data structure. The target requests all new information from this
summary. The algorithm has been successfully used to synchronize
communities.

LAN: Peers use PlanetP’s gossiping algorithm. Some parameters used in the
simulation are shown on the table 3.1

Table 3.1 Constants used in simulations of PlanetP’s gossiping algorithm.

3000 bytes 1000 terms BF

6 bytesBF summary

48 bytes Peer summary

3 bytes Message header size

30sec Base gossiping interval

ValueParameter

3000 bytes 1000 terms BF

6 bytesBF summary

48 bytes Peer summary

3 bytes Message header size

30sec Base gossiping interval

ValueParameter

 13

Figure 3.3 Time required to propagate a single Bloom filter containing 1000 terms
everywhere vs. community size.

We observe from the figure 3.3 that the developed gossiping algorithm significantly
outperforms the ones that use only push anti-entropy. Using rumoring enables
PlanetP to reduce the amount of information exchanged between nodes while the
mixture of pull (anti-entropy) and push (rumors) rounds reduces convergence time.

The figure 3.4 shows the propagation time and bandwidth usage for different
gossiping intervals: 10 sec (DSL-10), 30 sec (DSL-30), 60 sec (DSL-60). In this case,
peers were connected by 512 Mbps links.

(a) (b)
Figure 3.4 (a) Time and (b) average per-peer bandwidth required to propagate a

single Bloom filter containing 1000 terms everywhere vs. community size.

It is interesting to notice that it is possible to trade off propagation time by increasing
or decreasing the gossiping interval.

Ti
m

e
(s

ec
)

No. peers

LAN-AE

LAN (PlanetP)

Ti
m

e
(s

ec
)

No. peers

LAN-AE

LAN (PlanetP)

DSL- 60

DSL- 30

DSL- 10

Ti
m

e
(s

ec
)

No. peers

DSL- 60

DSL- 30

DSL- 10

Ti
m

e
(s

ec
)

No. peers No. peers

A
ve

ra
ge

 B
an

dw
id

th

(B
yt

es
/s

)

DSL- 60

DSL- 30

DSL- 10

No. peers

A
ve

ra
ge

 B
an

dw
id

th

(B
yt

es
/s

)

DSL- 60

DSL- 30

DSL- 10

 14

The presented results yield four important observations:

1. The algorithm significantly outperforms ones that use only push anti-entropy
for both propagation time and network volume.

2. Propagation time is a logarithmic function of community size.

3. Total number of bytes sent is very modest, implying that gossiping is very

scalable.

4. We can easily trade off propagation time against gossiping bandwidth by

increasing or decreasing the gossiping interval.

5. Group extension

PlanetP has one significant limitation. The community can contain up to several
thousands of peers maintaining recall and precision comparable with centralized
implementation. One possible approach to overcome this limitation was also
proposed by the authors of [1]. It is necessary to emphasize that it is only proposed
approach and it does not have a real implementation.

Community:

The community with large number of peers have to be divided into a
number of groups. Peers within the same group operate as described
above. Peers from different groups will gossip an attenuated Bloom
filter that is a summary of the global index for their groups. Using the
single filter for entire group allows to compress amount of information
that is necessary to exchange. Peers mostly gossip within their groups
but, occasionally, will gossip to peers of other groups.

 Search:

If a peer Pa (group A) tries to find documents that are relevant to a
query Q and, for example, the Bloom filter of the group C contains
relevant terms to a query Q, then the peer Pa would query a random
peer Pci from the group C. The peer Pci would return a ranked list of
peers in the group C. After that, the peer Pa can query peers of the
ranked list and receive sets of document URLs with ranks as described
before.

6. Related works

Numerous research efforts (Tapestry, Pastry, Chord and CAN) have produced highly
scalable distributed hash tables (DHT) over P2P communities. In general DHTs
spread (key,value) pairs across the community and provide retrieval mechanisms
based on the key. This architecture makes it difficult to implement the content search.
The problem is caused by the high cost of publishing thousands of keys per file.

 15

Cori and Closs address the problems of database selection and ranking fusion on
distributed collections. Both systems use servers to keep a reduced index of the
content stored by other servers. The developed architecture yields two problems:

 The need for centralized resources.

 The possibility of a single point failure.
 If a centralized resource is crashed, then the community is not able to

operate.

7. Summary

PlanetP is a content addressable publish/ subscribe service for unstructured P2P
communities. It is the first work that supports content ranking for this kind of P2P
communities. PlanetP tracks the performance of the centralized implementation
TFxIDF by providing two features:

1. A gossiping algorithm that provides propagation of shared information
everywhere and adds robustness to the dynamic peer behaviour.

2. Content search and ranking algorithm that provides the search capabilities

comparable with centralized resources and operates independently of how
documents are distributed throughout the community.

8. References

1. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using

Gossiping to Build Content Addressable Peer-to-Peer Information Sharing
Communities. 12th IEEE International Symposium on High Performance
Distributed Computing, 2003.

2. B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.

Communications of the ACM, 13(7):422–426, 1970.

3. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D.

Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database
Maintenance. In Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, pages 1–12, 1987.

4. I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kaufmann, San Francisco, second
edition, 1999.

5. D. Harman. Overview of the first TREC conference. In Proceedings of the 16th

Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 1993.

