Incentives for Sharing in P2P Networks

P. Golle, K. Leyton-Brown I. Mironov, M. Lillibridge

Speaker: Georgiana Ifrim Advisor: Jens Graupmann

- Introduction
- A game theoretic model
- Payment schemes
- Experiments
- Conclusions

Introduction

- The *free-rider* problem
 - taking advantage of the network without contributing to it
 - Napster: 60% peers share only 20% files
 - Gnutella: 70% do not share any

Motivation

- Providing incentives for peers to make active contributions to the network
- If the individual components are selfish can we somehow get good aggregate behavior?
- A need and an opportunity to improve the P2P file sharing systems

- The model proposed addresses file sharing systems that make use of centralized servers
 - maintain a database of the files currently available on the network
 - connect dowload requests with available clients

Defining a 'Game' for P2P Sharing

- non-cooperative game among rational and strategic players
- n 'agents' (peers): $a_1,...,a_n$
- each agent has a number of possible 'strategies'
 - agent a has strategy $S = (\sigma, \delta)$; 2 'actions':
 - σ = sharing
 - $\delta = downloading$
- the strategies chosen determine the 'outcome'
- associated with each outcome is a collection of 'payoffs', one to each agent

Game Setup

- Sharing : Agents select what proportion of files to share in three levels: σ_0 (none), σ_1 (moderate) and σ_2 (heavy)
- **Downloading** : Each agent determines how much to download from the network in three levels: δ_0 (none), δ_1 (moderate) and δ_2 (heavy)
- Agent Utility : Agents' utility functions describe their preferences for outcomes.

- Factors :
 - Positive: Amount Downloaded (AD), Network Variety (NV), Altruism (AL)
 - Negative: Disk Space Used (DS), Bandwidth Used (BW)
 - Financial Transfer (FT)

Game Setup

- Agent ai's utility function :
- $U_i = [f_i^{AD}(AD) + f_i^{NV}(NV) + f_i^{AL}(AL)] [f_i^{DS}(DS) + f_i^{BW}(BW)] FT$
- f-functions
 - associated with:
 - an agent
 - a particular variable
 - describe that agent's preference for different values of the variable, in money

Game Setup

- Assumptions:
 - agents' relative preferences for outcomes:
 - $f^{AD}(\mathbf{k}) > \mathbf{k}^* \beta$
 - the utility agents gain from downloading k files is more than what they pay; $\beta = \text{cost}$ per file
 - $f^{DS}(\mathbf{k})+f^{BW}(\mathbf{k}) < \mathbf{k}^*\beta$
 - the cost to agents of sharing and uploading k files is less than what they are paid; β = reward per file

Equilibria

- Assumptions:
 - agents
 - have the same type (same f-functions)
 - it is enough to analyze the choice made by a single agent
 - economically rational
 - act to maximize expected utility w.r.t knowledge about other agents' actions and their own payoffs

Equilibria

- Weak Equilibrium
 - No agent can 'gain' by changing his strategy
- Strict Equilibrium
 - Every agent is strictly worst off if he changes strategy
- **Dominant Strategy** (of an agent)
 - the agent's best action does not depend on the action of any other agent

- Scheme:
 - charge downloads, reward uploads
 - central server tracks the number (per user)
 - d = downloads
 - u = uploads (downloads by other agents)
 - for a given period of time
 - after each period, users are charged
 - C = g(d u)
 - · linear with coefficient β (cost/reward per file)

- In a time period, let
 - σ^{-i} = total number of files shared by others
 - δ^{-i} = total number downloaded by others
 - agent a_i chooses (σ_s, δ_d); s = # units shared; d = # units downloaded; n agents; β = cost per unit downloaded
- a's expected payment to the system

$$E[FT] = \beta * \left(d - \delta^{-i} * \frac{s}{\frac{n-2}{n-1} * \sigma^{-i} + s} \right)$$

 server matches downloaders uniformly at random with shared units; no agent will download from himself

- Analysis $E[FT] = \beta * \left(d \delta^{-i} * \frac{s}{\frac{n-2}{n-1} * \sigma^{-i} + s} \right)$ ٠
 - $f^{AD}(1) > \beta$

- $f^{DS}(1) + f^{BW}(1) < \beta$
 - cost incurred from sharing and uploading less than the gain (incentive for sharing)
- Results in strict and unique equilibria ٠

•
$$\Sigma = ((\sigma_2, \delta_2), \dots, (\sigma_2, \delta_2))$$

- Advantages:
 - unique strict equilibrium:
 - share and download maximally
- Disadvantages:
 - equilibrium doesn't hold for risk averse agents
 - users can make a profit
 - users dislike micro-payments

Quantized Micro-Payment Mechanism

- Scheme:
 - charge a fixed price for each block of *b* files downloaded
 - reward uploads as before
 - round up number of files downloaded after each period to next multiple of b
- Advantages:
 - may be preferable to users (flat pricing)
 - unique strict equilibrium as before

Quantized Micro-Payment Mechanism

- Disadvantages:
 - users can redirect their zero-marginal cost download to credit their friends with uploads
 - Proposals:
 - hide identities of users
 - reply to searches with random subsets

Points-Based Mechanism

- Scheme:
 - 'points' currency: points can be bought (with money or contribution), but not sold
 - penalize downloads, pay agents for size of material shared

- Agents' payment for sharing $\int M(t) dt$
 - M(t) the amount of data in megabytes available for download at time t
- Downloading a file costs c*m points
 - m = file's size in megabytes
 - c = system constant
 - How long a new file must be shared to waive its download cost

- Analysis
 - Assume each file is exactly 1MB
 - Each agent shares for 1 period
 - Each level of sharing earns 1 point per period
 - e.g. $\sigma_2=2$ points
 - Each level of downloading costs 1 point (c=1); one point costs β
 - Downloaders are matched uniformly at random with shared units; no agent may download from himself

- Analysis ۲
 - expected number of uploads: $E[u] = \delta^{-i} * \frac{s}{\frac{n-1}{n-2} * \sigma^{-i} + s}$
 - n-1 agents play S=(σ_2 , δ_2)

- agent a's strategy:
 - $f^{AD}(k) > k^*\beta$
 - δ_2 , dominates $\delta 1$ and $\delta 0$
 - $f^{DS}(k) + f^{BW}(k) < k^*\beta$
 - agents prefer to share and upload at level k, than to pay the system for k points

- Advantages
 - no agent makes a profit
 - maximal sharing, downloading is a strict equilibrium
- Disadvantages
 - no sharing, maximal downloading is also a strict equilibrium
 - agents don't want their shared files to be downloaded (BW – negative utility)

- share at off-peek time, share unpopular files
 - solution:

 $\int M(t)\lambda(t)dt$

* $\lambda(t)$ scaling factor proportional to expected demand

Experiments

- Validate and enrich the theoretic model
 - levels of risk-aversion
 - different utility functions (characterize agents)
 - different types of files
- Experimental results
 - strategy convergence in this richer setting
 - interesting effects

Experimental Setup

- Types of agents
 - Altruism
 - Uniformly random from [AL_{min}, AL_{max}]
 - Disk space
 - Uniformly random from $[DS_{min}, DS_{max}]$
 - File type preference
 - Weighted combination of file types
 - Other parameters: fixed and equal for all agents

Experimental Setup

- Simulation:
 - multi-agent reinforcement learning model
 - TD Q-learning algorithm
 - agents learn the expected utilities of (state, action)-pairs
 - strategy convergence corresponds to a Nash equilibrium

Strategy Convergence

Points: Effect of Altruism on Sharing

proportion of altruistic agents.

Conclusions

- Model:
 - a game-theoretic model for centralized P2P file sharing systems
- Theory:
 - three payment schemes that give rise to equilibria in which free-riding does not occur, pros & cons
- Experiments:
 - showed convergence to the same equilibria in an enriched model; also some non-trivial behaviors

Thank you!

Questions?