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1 Introduction

Peer-to-Peer(P2P) file-sharing systems organize users into an overlay network to
facilitate the exchange of data. However,P2P systems have democratic nature,
which means there is no central authority to mandate or coordinate the resource
that each peer contributes. Because of voluntary participation, the distributed
resources are highly variable and unpredictable. Recently research shows that
many users are simply consumers and do not contribute much to the system.
Most of users are “free riders” (In Gnutella [1], 25% users share nothing). Users’
sessions are relative short, 50% of sessions are shorter than 1 hour. Short session
means that a large portion of the data in the system might be unavailable for
large period of time. When the growing number of free riders, as the result, the
systems lose the sprite of peer to peer and becomes a traditional client server
system and various forms of abuse and attack have been observed in practice.

If the peer to peer system is to be a reliable platform for distributed resource
sharing, they must provide predictable level of service. So, in order to let peer
make contribution as much as possible, there are two economic methods that
can be used for incentives:

Monetary payment one pays to consume resources and paid to contribute
resource.

Differential service peers that contributes more get better quality of service.

Monetary payment needs a imaginary currency and requires an accounting
infrastructure to track various resource transaction and charges for them using
micro payments. But as written in [3], it is highly impractical because of network
pricing.

So the differential service is choosed to be an incentive model. Actually, some
currently P2P implementation have already used differential service model. For
example, KaZaA [2] file sharing system uses participation level

Participation level =
upload in MB

download in MB × 100

to model how active a peer contributes to the system. In general, system could
use reputation index and reputation reflects the overall contribution to the sys-
tem.

In general, players are strategy players because users compete for shared but
limited resources and at the same time they restrict others download from their
server by deny access or not contribute anything. Because all peers are strategic
and rational player, it is very intuitive to model the interaction of peers in game
theory. It is actually a non-cooperative game among peers: each player wants to
maximize his benefit and minimize this expense. In the jargon of Game Theory,
each peer wants to maximize his utility value. Section 3 will discuss how to
use Game Theory [4] to model P2P system. In section 2, a fraction of Game
Theory that is essential for understanding section 3 is introduced(especially:
Nash equilibrium and best response function).
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Figure 1: Two players’ game.

2 Bootstrapping Game Theory

2.1 Jargon of strategy game

We use the notion of strategic game from Game Theory [4] to model behavior
in which peers interact with each other. Precisely, a strategic game consists of

• a set of peers(players);

• for each peer(player), a set of actions (sometimes called strategies);

• for each peer(player), a utility function that gives the peer’s utility to each
list of the peers’ actions.

A list of actions, one for each player in the game, is called an action profile
(or, sometimes, a strategy profile).

For simplicity, we can represent a strategic game with two players in a table,
like figure 1. This table represents a strategic game in which player 1’s actions
are T and B and player 2’s actions are L and R. The first number in each box
is player 1’s utility to the pair of actions that define the box, while the second
number in each box is player 2’s utility to the pair of actions that define the
box. Thus, for example, if player 1 chooses the action B and player 2 chooses
the action L then player 1’s utility is 3 and player 2’s utility is 0.

2.2 Nash equilibrium

A peer(player) that is strategy or rational player if we can model the player
with following two assumptions:

• Each player chooses the action that is best for her, given her beliefs about
the other players’ actions.

• Every player’s belief about the other players’ actions is correct.

The notion of equilibrium that embodies these two principles is called Nash
equilibrium (after John Nash, who suggested it in the early 1950s). (The notion
is sometimes referred to as a “Cournot-Nash equilibrium”.) Precisely:

Definition 1 Nash equilibrium

A Nash equilibrium of a strategic game is an action profile (list of actions, one
for each player) with the property that no player can increase her utility by
choosing a different action, given the other players’ actions.
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So now the question is how to finding Nash equilibria. Conside the example
showed in figure 1. There are four action profiles ((T,L), (T,R), (B,L), and
(B,R)); we can examine each in turn to check whether it is a Nash equilibrium.

(T,L) By choosing B rather than T, player 1 obtains a utility of 3 rather than
2, given player 2’s action. Thus (T,L) is not a Nash equilibrium. Player 2
also can increase her utility (from 2 to 3) by choosing R rather than L.

(T,R) By choosing B rather than T, player 1 obtains a utility of 1 rather than
0, given player 2’s action. Thus (T,R) is not a Nash equilibrium.

(B,L) By choosing R rather than L, player 2 obtains a utility of 1 rather than
0, given player 1’s action. Thus (B,L) is not a Nash equilibrium.

(B,R) Neither player can increase her utility by choosing an action different
from her current one. Thus this action profile is a Nash equilibrium.

So this game has a unique Nash equilibrium, (B,R).

2.3 Finding Nash equilibria: best response functions

In a game in which each player has infinitely many possible actions, it is not
possible to find a Nash equilibrium by examining all action profiles in turn. To
develop an alternative method of finding Nash equilibria, we first reformulate
the definition of a Nash equilibrium for a two-player game.

Call the action of player 1 that maximizes her utility, given that player 2’s
action is a2, player 1’s best response to a2. Similarly, call the action of player
2 that maximizes her utility, given that player 1’s action is a1, player 2’s best
response to a1.

Given this definition of best responses, a pair (a1, a2) of actions is a Nash
equilibrium if and only if

• Player 1’s action a1 is a best response to player 2’s action a2;

• and player 2’s action a2 is a best response to player 1’s action a1.

So, in order to find a Nash equilibrium we need to find a pair (a1, a2) of
actions such that a1 is a best response to a2, and vice versa.

If we denote player 1’s best response to a2 by b1(a2) and player 2’s best
response to a1 by b2(a1) then we can write the condition for a Nash equilibrium
more compactly: the pair (a1, a2) of actions is a Nash equilibrium if and only if
a1 = b1(a2) and a2 = b2(a1).

Consider the example in figure 1 using the method of finding the players’
best response functions and then solving the two simultaneous equations.

Player 1’s best response to L is B, and her best response to R is also B.
Similarly, player 2’s best response to T is R and her best response to B is R.
Thus we have

b1(L) = B

b1(R) = B

b2(T ) = R
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b2(B) = R

We see that the only pair of actions (a1, a2) with the property that a1 = b1(a2)
and a2 = b2(a1) is (B,R): the Nash equilibrium that we found previously.

As we are armed with the basic principal of Game Theory, we can start to
discuss how to use Game Theory to model the interaction among peers.

3 Incentive model

3.1 Basic notion

We use N to denote the number of peers in the system. Using P1, P2, P3, · · · , PN

to denote peers. Utility function for Pi is Ui. Contribution of Pi is Di. D0 is
absolute measure of contribution. D0 could be set different in different imple-
mentation. For example, one could set D0 to 20MB per week. Then it is possible
to normalize the contribution and get dimensionless contribution:

di =
Di

D0

(1)

The unit cost is ci for each unit that peer contributes. So the total cost is:ciDi.

3.2 Benefit matrix

Each peer’s contribution to the system will potentially benefits all other peers,
but in different degree. In order to express this different degree, a N × N
benefit matrix B is introduced. In this matrix, each element Bij denotes how
much the contribution made by Pj is worth to Pi. Normally, Bij ≥ 0. If Pi is
not interested in Pj ’s contribution, then Bij would be 0. And Bii = 0 for all i,
because no peer will interest his own contribution.

After normalization, we get dimensionless equations:

bij =
Bij

ci

(2)

bi =
∑

j

bij (3)

bav =
1

N

∑

i

bi (4)

The bi is the total benefit that peer Pi can get from the system. bav is the
average benefit that all peers can get from the system.

3.3 Model differential service using probability

As said in the beginning, we use differential service model to incentive users’
contribution. In differential service model, a peer reward other peers in pro-
portion to their contribution. To implement this idea, we use probability: Pj

accepts a request for a file from peer Pi with probability p(di) and rejects it
with probability 1 − p(di).

So if Pi’s contribution to the system is very high, its request is more likely to
be accepted. Because the only property for the probability function p(di) is that
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Figure 2: p(d) plotted as a function of d for different value of α.

it is a monotonically increasing function of the contribution that peer made, it
is possible to choose any probability function that satisfy this requirement. The
function which used by the paper is the following:

p(d) =
dα

1 + dα
(5)

When a peer made 0 contribution, the probability would be 0. When a peer
made infinitive contribution, the probability would be approach to 1. Figure 2
plots the probability function that according to different value of α. To reduce
complexity, in the following discussion, α is set to 1. So the probability function
is

p(d) =
d

1 + d
(6)

3.4 Utility function

The utility is define to contain both of peer’s contribution and peer’s expense
to join the system:

Ui = −ciDi + p(di)
∑

j

BijDj , Bii = 0 (7)

After normalization with dimensionless parameter,

ui =
Ui

ciD0

(8)

The utility function is rewritten as

ui = −di + p(di)
∑

j

bijdj , bii = 0 (9)

The first term is Pi’s cost to join the system and it increases linearly as peer
contributes more disk/bandwidth to the system. Pi’s benefit depends on how
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Figure 3: Possible utility function for different levels of benefit bc.

much the other peers are contributing to the system (dj), how that contribution
is worth to him (bij), and the probability that he is able to download that content
(p(di)). Or in other words, whether the other would like to accept his request.

Because p(0) = 0 and p(∞) = 1, two limits of the utiliy function are:

lim
di→0

ui = 0, lim
di→∞

= −∞

Figure 3 shows possible utility function for different levels of benefit bc. It
shows that two dot-lines are below 0(peers will definitely not join the system).
And only when benefit larger than some threshold bc, utility value will be greater
than 0 and peers will join the system.

4 Find Nash equilibrium in Homogeneous sys-

tem

Every research starts with ideal phenomenon. This would give some insight
into the problem and keep away from unimportant issue. The same idea applies
to complex P2P reality, we simplify the system: each peers gets equal benefit
from everyone else, which is called homogeneous system. In mathematical form,
bij = b, j 6= i.

So the equation 9 becomes

u = −d + (N − 1)bdp(d) (10)

4.1 Two players game

We simplify the system again and due with only two player’s game. The utility
function of two players becomes:

u1 = −d1 + b12d2p(d1)

u2 = −d2 + b21d1p(d2) (11)

If α = 0, we can get the best response functions for two peers. This is done
by differentiating equation 11.
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Figure 4: Nash equilibrium contributions for the two peer system plotted as a
function of scaled benefit(b − bc)/bc. For b < bc, there are no equilibria.For all
b > bc there are two possible equilibria.

r1(d2) = d1 =
√

b12d2 − 1

r2(d1) = d2 =
√

b21d1 − 1 (12)

Nash equilibrium exists if and only there exists solutions (d∗
1
, d∗

2
) to the

equation 12, such that:

d∗
1

=
√

b12d∗2 − 1

d∗
2

=
√

b21d∗1 − 1 (13)

Because b12 = b21 = b for homogeneous system, the above equations are
easily to solve.

d∗ = (
b

2
− 1) ±

√

(
b

2
− 1)2 − 1 (14)

Now we can see that the solution exists if and only if b ≥ 4 ≡ bc. Thus,
bc = 4 is the critical value of benefit illustrated in Figure 4 below which it is
not profitable for a peer to join the system. For b = bc, the only solution is
d∗
1

= d∗
2

= 1. For b > bc, there are two solutions:

d∗
1

= d∗
2

= d∗low < 1

d∗
1

= d∗
2

= d∗high > 1 (15)

4.2 N players game

In analog to the equation 11 and 12, we can get best response function for N
peer as following:

d∗ =
√

b(N − 1)d∗ − 1 (16)

d∗ = (
b(N − 1)

2
− 1) ±

√

(
b(N − 1)

2
− 1)2 − 1 (17)

So replace b(N − 1) to b, this formula is exactly two peers game.
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Algorithms: iterative learning model

1. di = random contribution

2. While (converge == false){

3. new_di = computeContribution (d, b);

4. if (new_di == di) {

5. converge = true;

6. }

7. di = new_di;

8. }

Figure 5: Iterative learning algorithms.

Figure 6: Learning process near the vicinity of the two fixed points.

5 Find Nash equilibrium in Heterogeneous sys-

tem

Now we start to due with Heterogeneous system, we study Heterogeneous system
based on Homogeneous system we study before. We can get fix point equation
by analogy of homogeneous system of equation 13.

d∗i =

√

√

√

√

√





∑

j 6=i

bijd∗j



 − 1 (18)

It seems not easy to solve this equation. So we can use iterative learning
algorithms to solve this problem.

5.1 Iterative learning algorithms

Let us consider the interaction of peers of P2P system in reality. Any particular
peer Pi interacts only with a fraction of all possible peers. These are the peers
who have files that are interest to Pi. As it interacts with these peers, Pi learns
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of the contributions made by them and to maximize its utility adjusts its own
contribution. Obviously this contribution that Pi makes is not globally optimal
because it is based only on information from a limited set of peers. But after
Pi has set its own contributions, this information will be propagated to the
peers it interacts with and those peers will adjust their own contribution. In
this way the actions of any peer Pi will eventually reach all possible peers. The
reaction of the other peers to Pi will again affect Pi and Pi might change his
strategy(contribution) once more. In this way, every peer will go through an
iterative process of setting its contribution. If and when this process converges,
the resulting contributions will constitute a Nash equilibrium.

The iterative learning algorithm showed in figure 5 solves the equation 18.
At the beginning, all the peers have some random set of contributions(line 1).
In a single iteration of the algorithm, every peer Pi determines the optimal
value of di that it should contribute given the values of d for other peers and
the values of bij(line 3). At the end of the iteration the peers update their
contribution to their new optimal values(line 7). Since now the contributions di

are all different, the peers need to recompute their optimal values of di and a
new iteration starts. When this iterative process converges to a stable point(line
5), we reach a Nash equilibrium.

5.2 Stability of Nash equilibrium

The learning process and convergence is showed in Figure 6. Under this learning
process, either the peers will quit the game (zero utility) or they will converge
to the equilibrium d∗high.

For any starting value of d2 > d∗low(d∗low is the unstable fixed point), the
learning process converges to the stable fixed point. If the starting point is
too close to the origin, then the iteration moves away from the unstable fixed
point and eventually ends up to 0. The fixed point d∗high(d∗low) is locally sta-
ble(unstable), i.e. if the two peers start near the fixed point, under iteration of
the mappings, they will move closer to (away from) the fixed point.

5.3 Simulation results

Figure 7 shows the equilibrium average contribution by the peers as a function
of scaled benefit. The equilibrium contribution increases monotonically with
increasing benefit. For average benefit bav < bc, the iterative algorithm con-
verges to di = 0. From the figure we see that two sets of results for 500 and
1000 peers almost coincide with each other. The simulation results shows the
system’s behavior is independent of peers’ size.

Figure 8 shows convergence speed to Nash equilibrium by different scaled
benefit. The two data sets(two in top of the figure, another two in lower of the
figure) correspond to different values of average bav. Higher the average value of
bav, faster is the convergence to equilibrium. As the value of bav approach the
critical value bc, approach to equilibrium becomes slower and slower. It have
been observed that for a wide set of initial conditions for di, the process always
converges to a unique Nash equilibrium. For very small initial values of di, we
are close to the unstable Nash equilibrium and the iteration converges to zero,
i.e. the contribution by all peers vanish and the system collapses.
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Figure 7: Average contribution at Nash equilibrium.The solid line is the solution
from the homogeneous system.

Figure 8: Convergence speed to Nash equilibrium by different scaled benefit.
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Figure 9: The effect of some peers leaving the system.

Figure 9 shows the effect of some peers leaving the system. If some peers
leave the system, the benefit per peer would be reduced. The simulation result
confirm this intuition. As the fraction of active peers dwindle, the contribution
from each of the peers decrease and at some point, the benefits are too low for
the peers and the whole system collapses. The system can be pretty robust
for high benefits : for a benefit level of (bav − bc)/bc = 2.0, the system can
survive until 2/3 of the peers leave the system. This shows a big advantage for
P2P systems in contrast to traditional distributed systems. As the system grows
bigger and bigger, benefits for each peer increases and the system becomes more
robust.

6 Summary and Discussion

This paper proposed a differential service model based on Game Theory. P2P
system that implements this model can eliminate free riding and provide pre-
dictable level of service. Such predictable level of service is the following:

1. System that implements this model will eventually operate on Nash equi-
librium.

2. There existing a critical benefit value bc. When bi, which is the benefit that
a peer Pi can get from the system, is larger than bc, Pi would like to join
the system, then operate at the Nash equilibrium value of contribution. If
bi < bc, the peer is better leaving or not joining the system. When bi = bc,
the peer is indifferent between these two options.

Some current systems restrict download by only enforcing queues and max-
imum number of possible open connections. To implement the above described
incentive model, one can tag a probability p(di) for every request from peer Pi

as meta data. Whether the other peer will accept this request, depends on this
probability value p(di).
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In this report, we use the general term “contribution”. In real implementa-
tion, such “contribution” could be measured in terms of uptime and disk space.
New user can be given a default value of contribution for some limited point of
time so that they can immediately start to use the system at a reasonable level.

How the benefit matrix that described in section 3.2 could be implemented
in real P2P system is still an unresolved issue. One simple implementation could
measure the number of uploads or disk-space over time provided by peer. But
such simple implementation does not discriminate against low bandwidth peers
or peers which provide less popular files. Another unresolved issue is that the
above model is based on peers being rational and trustworthy. But trust is not
easy to enforce in reality. Malicious peers could contribute fake file or peers
could fake contribution for themselves. Such unresolved issues are left as open
questions for future research.
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