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1   INTRODUCTION 

 
The core operation in most peer-to-peer systems is to locate the shared objects 

which are distributed among the nodes efficiently. In unstructured Peer-to-Peer Networks 
it is quite difficult to rout queries in an efficient way towards the node that holds the 
desired object. Therefore, in such systems the queries are flooded over the entire network 
till the node holding the object receives the query and responds. Obviously, this search 
approach is not scalable. Many different techniques were suggested to address this 
scalability problem with flooding search, nevertheless no one of them could provide an 
efficient model that characterizes the unstructured peer-to-peer networks in both accurate 
and applicable way. 
 
 
1.1 Motivation 

 
The motivation of this paper was to improve the scalability of flooding search used 

in unstructured peer-to-peer networks, such like Gnutella. 
 
 
 
1.2 Flooding Search 

 
In normal flooding search there is no hints about the right direction for the search, 

therefore the query is simply flooded overall the network till either the object is found or 
the TTL value expired. Here is a simple algorithm of flooding search: 

- a node looking for an object initiates a query,  
- it sets TTL value, 
- sends the query to all of its neighbors 
- each receiver of the query decrements TTL by one and, 
- forwards the query to all of its neighbors in turn 
- the search continues till the object is found or TTL = 0 
Due to this approach a particular node may receive the same query from different 

nodes. The first time a node receives a query this is not considered as overhead cost. The 
main source of overhead cost is duplicated queries. Another important reason for poor 
scalability is setting the TTL value regardless of the actual size  of (actual number of 
active nodes in) the Peer-to-peer network. 
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2   PROBABILISTIC FLOODING 
 

 
2.1  Introduction to Probabilistic flooding  

 
To address those problems it was suggested to replace the normal flooding search 

with a so-called probabilistic flooding search. In Probabilistic flooding search a node 
forwards the query into the link to one of its neighbors with probability p and drops this 
query with probability 1- p. The normal flooding search is an extreme case of 
probabilistic flooding with p =1 where the resulting overlaying network covers the whole 
of the underlying  peer-to-peer network with a numerous number of redundant paths 
between nodes, which represent duplicated queries.   
By decreasing p towards 0 the probabilistic flooding cuts many of the redundant paths 
(and probably some of the essential ones) in the overlaying network. 
Decreasing the value of p furthermore results in a large number of nodes being not 
covered at the end of this search, which in turn yields to low reachability, hence low 
efficiency. 
 

To find out the ideal case, in which all (or most) of the redundant paths are cut 
while full reachability is preserved, it is required to compute the optimal value of p that 
should be implemented in probabilistic flooding algorithm. Obviously, This goal cannot 
be achieved  without a formal and efficient modeling for the unstructured peer-to-peer 
networks.  
 
2.2 Complex Systems 
 

It was proposed in this paper to recognize the unstructured peer-to-peer networks as 
“Complex Systems” due to the common characteristics between both of them, and to 
exploit the statistical models applied effectively on Complex Systems to formally model 
and analyze peer-to-peer systems.  
 

Complex Systems are large-scale, dynamic, self-configure systems such like 
thermodynamic systems, biological systems, social networks and so on. In this sense, 
unstructured peer-to-peer networks can be considered as Complex Systems where they 
are built of a large number of nodes connected randomly and each node can join and 
leave the network freely without any restrictions. 
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3 CRITICALITY-BASED ANALYSIS 
 
3.1  Introduction  

 
Some of the global properties or behaviors of the Complex Systems change 

extremely at a certain point under certain conditions. This phenomenon is known as the 
phase transition phenomenon. Studying and finding out those critical points at which this 
phenomenon does appear is known as criticality-based analysis. In context of peer-to-
peer networks, it is intended to find out the critical optimal probability value  pc at which 
the probabilistic flooding search works effectively. 

 
 
3.2  Percolation Theory 
 

One of the most important theories applied on Complex 
Systems that can help to compute the critical value pc is 
“Percolation Theory”. To introduce the idea beyond this theory, 
we consider a 2-D lattice with many dots (known as sites) and 
lines (known as bonds) between them as shown in figure 1. 

  
Given that a bond between two sites is open with 

probability p and closed with probability (1 – p), depending on 
the particular value of p some clusters of connected sites appear 
on the lattice. The larger the p, the larger the size of these 
clusters is. Due to Percolation Theory, above a threshold all 
clusters are unified and a giant cluster spanning the whole lattice 
starts to appear figure 2. 
 

In terms of peer-to-peer networks, nodes and links between 
them can be thought as sites and bonds respectively. Thus, 
according to Percolation Theory there should be a threshold pc 
above which a giant cluster starts to appear spanning the entire 
network for first time with minimum number of redundant paths 
between nodes. It is required to compute this  pc. 
 

Figure 1

Figure 2 
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3.3  Analysis 
  

The formal analysis in the paper is based upon 
the following assumption: 
“percolation threshold takes place when each node i  
connected to a node j  in the  spanning cluster, is 
also connected to at least one other node. Otherwise 
the cluster is fragmented”. 
 
 i.e.  the spanning cluster appears for first time when all 
nodes in the network have an average degree  k of 2.  
 
This can be written as follows: 
 
 
 
where   ki   is the degree of node i, and the angular brackets denote the expected value 
which can be computed as follows: 
 
          (1) 
 
where    is the conditional probability for a node i having degree k given 
that it is connected to node j. 
 
due to Bayes rule, 

  
where,          
 
and  N is the total number of nodes. 
 
substituting in equation (1) yields that at criticality:    (2) 
 
which is the ratio between the second and first moment of k. 
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Given the connectivity distribution P(k) of the underlying network, the effective 
connectivity distribution after using probabilistic flooding Pe(k), i.e. of the spanning 
cluster, can be computed as follows: 
 
          (3) 
 
 
using equation (3), the ratio given in (2) can be computed as follows: 
 
 
 
 
 
 
 
 
 
 
 
          (4) 
 
 
and, 
 
 
 
 
 
 
 
 
          (5) 
 
 
from  (4) and (5) the ratio of the second to first moment is: 
 
          (6) 
 
 

is the ratio of the second to first moment of the actual graph, 
i.e. the underlying network.. 

)()1(    )( nPpp
k
n

kP knk

kn
e

−
∞

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∑ ∑
∞

=

∞

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=〉〈

0 kn

)()1(
k
n

      
k

knk
e nPppk k

∑ ∑
∞

= =

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0 0
1  

n

n

k

knk p)(p
k
n

k P(n) 

∑
∞

=

=
0

)(   
n

nnPp

〉〈= kp   

∑ ∑
∞

=

∞

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=〉〈

0 kn

22 )()1(
k
n

      
k

knk
e nPppk k

∑ ∑
∞

= =

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0 0

2 1  
n

n

k

knk p)(p
k
n

 kP(n) 

)  )1(  ( )(   22

0
pnpnpnP

n
+−= ∑

∞

=

〉〈−+〉〈= kppkp   )1(       22

1
1                    2    )1(        

22

−
=⇒=−+

〉〈
〉〈

=
〉〈
〉〈

αccc
e

e pp
k
kp

k
k

〉〈
〉〈

=
k
k 2

      where α



 8

Equation (6) shows that the larger α  the smaller the critical value of  p needed to be 
applied in probabilistic flooding, which in turn yields to better results. 
 
This indicates that for those real-world networks having their ratio α  less than or equal 2 
because of their actual connectivity distribution, it does not make sense to use 
probabilistic flooding search. Considering the completely unstructured large-scale peer-
to-peer networks this ratio is mostly larger than 2.  
  
For instance, the connectivity distribution of Gnutella follows the power-law distribution, 
 
 i.e. in the form :         (7)   
 
where C, τ, and v are constants and, 
 
C   :  a normalization factor  
 
 :  exponential cutoff factor required for real-world networks  
 
 
the ratio α  is computed from equation (7), 
 
 
 
 
          (8) 
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different times and v is in the range of 100 to 1000. 
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A plot of pc as a function of v as in figure 

4 shows that for Gnutella the value of  pc  is 
mostly below 0.1, which indicates that the 
communicating cost of probabilistic flooding 
search can be less than 1% of that with normal 
flooding without losing reachability, which in 
turn improves the scalability. 
 
 
 
 
 
 
 
 
4 TTL SELECTION POLICY 

 
One of the problems with normal flooding discussed earlier is the restriction of TTL 

value to the value set by the search originator node, which is normally fixed and chosen 
without taking in account the actual number of active nodes at the beginning of the 
search. This results in a not-scalable search. To solve this problem it was proposed by the 
authors of this paper to give each node the opportunity to estimate the appropriate value 
for TTL based on local information. This is accomplished by exploiting the results 
provided by Newman which gives a formal manner to estimate the typical length λ of the 
shortest path between two randomly chosen nodes on any random graph. 
This is given by the following equation: 
 
 
 
 
where,  
 
N  the average number of active nodes is not heavily variant in short time-intervals 
z1        number of neighbors which are one hop away  
z2        number of neighbors which are two hops away  
 
Each node can estimate the number of its (active) neighbors in the first and second level 
at the beginning of its query by sending some local packets with TTL=1 and TTL=2 
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respectively. These values can be used to compute the value of  λ  at the start of the 
search using the equation above. Thus each node can set the value of TTL based on λ. It 
is obvious that this proposed TTL selection policy improves the scalability of the normal 
flooding search. 
 
 
 
 
5 CONCLUSIONS 
 

It was shown in this paper that due to the similarities between Complex Systems and 
unstructured peer-to-peer networks, it is very useful and helpful to exploit the rich theory 
of criticality in Complex Systems for formal modeling and analyzing of peer-to-peer 
networks. Some proposed techniques were introduced to improve the scalability of 
normal flooding search used in unstructured peer-to-peer networks like Gnutella. 
Criticality based analysis was employed to compute the appropriate value of p for an 
effective probabilistic flooding. 
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