

Piazza: Data Management Infrastructure for

Semantic Web Applications

Alon Y. Halevy, Zachary G. Ives, Peter Mork, Igor Tatarinov

Twelfth World Wide Web Conference, May 2003.

Write-up by Chernov Sergey

International Max Planck Research School for Computer Science

Saarland University, Department of Computer Science

Saarbrücken, 14 December 2003

Content

1 INTRODUCTION.. 3

1.1 Semantic Web... 3

1.2 Knowledge Representation ... 3

1.3 Scalability ... 4

2 PIAZZA: SYSTEM OVERVIEW .. 5

2.1 Peer Data Management System Architecture............................. 5

2.2 Data Sharing and Mediation .. 6

2.3 System Application .. 8

3 IMPLEMENTATION DETAILS... 9

3.1 The Mapping Language .. 9

3.2 Query Answering Algorithm .. 13

3.2.1 Query Representation... 14

3.2.2 The Rewriting Algorithm ... 16

4 CONCLUSIONS AND FUTURE WORK 18

5 REFERENCES... 20

This write-up presents a paper “PIAZZA: Data Management Infrastructure for

Semantic Web Applications” and related work made by the database group at

the University of Washington. This review with corresponding presentation was

produced as part of the seminar „Peer-to-peer Information Systems“ given by

Prof. Dr.-Ing. Gerhard Weikum in Saarland University.

1 INTRODUCTION

The following section describes some important concepts of Semantic Web and Data
Integration field. It explains problems in this area and proposes a direction of
research that leads to design of PIAZZA system.

1.1 Semantic Web

The current Web can be characterized as the second Web generation: the first
generation Web started with handwritten HTML pages; the second generation made
the step to machine generated and often active HTML pages. These generations of
the Web were meant for direct human processing (reading, browsing, form-filling).
The third generation Web, which one could call the Semantic Web, aims at machine
processable information [7]. Web data lacks machine-understandable semantics, so it
is generally not possible to automatically extract concepts or relationships from this
data or to relate items from different sources. The Semantic Web aims to provide
data in a format that embeds semantic information, and then seeks to develop
sophisticated query tools to interpret and combine this information. It will bring
structure to the meaningful content of Web pages, creating an environment where
software agents roaming from page to page can readily carry out sophisticated tasks
for users [5]. Instead of posing queries that match text within documents, they could
ask questions that can only be answered via inference or aggregation; data could be
automatically translated into the same terminology; information could be easily
exchanged between different organizations.

1.2 Knowledge Representation

It is highly expectable that XML will be the methods of choice for representing all
kinds of documents across the Web and it makes opinion that XML will be a major
catalyst in constructing the Semantic Web. However, merely casting all documents
into XML format does not necessarily make a document’s semantics explicit and
more amenable for effective information searching. Rather, to fully leverage XML
on a global scale, significant progress is needed on the several issues. One of them is
extracting more semantics from existing document collections by constructing
structural and ontological skeletons that describe the data at a higher semantic level
[8]. The XML-Schema language allows to develop a standard set of XML mappings
(i.e. a particular XML schema), and to represent content using a common structure.
But sometimes a capability beyond that offered by XML-schema is needed if we
need to provide mapping capabilities between divergent schemas. For this reason, a
fundamental component of the Semantic Web is the Resource Description
Framework (RDF) [9]. It could be quite different opinions about most efficient
standard for semantic integration and even it could be old good relational database
schemas. But some could see that proposals aiming at semantic interoperability are
the results of recent W3C standardization efforts, notably XML/XML Schema and
RDF/RDF Schema as well as languages that build upon these data models:
DAML+OIL and OWL [7]. Hence, for the purpose of our discussion, we can
consider XML to be the standard representation of a wide variety of data sources.

 3

The current progress on developing ontologies and representation languages leaves
us with two significant problems. The first problem is that there is a wide disconnect
between the RDF world and most of today's data providers and applications. RDF
represents everything as a set of classes and properties, creating a graph of
relationships. As such, RDF is focused on identifying the domain structure. In
contrast, most existing data sources and applications export their data into XML,
which tends to focus less on domain structure and more around important objects or
entities. Instead of explicitly spelling out entities and relationships, they often nest
information about related entities directly within the descriptions of more important
objects, and in doing this they sometimes leave the relationship type unspecified. For
instance, an XML data source might serialize information about books and authors as
a list of book objects, each with an embedded author object. Although book and
author are logically two related objects with a particular association (e.g., in RDF,
author writes book), applications using this source may know that this document
structure implicitly represents the logical writes relationship.

1.3 Scalability

From the perspective of building semantic web applications, we need to be able to
map not only between different domain structures of two sources, but also between
their document structures. The second challenge we face concerns the scale of
ontology and schema mediation on the semantic web. Currently, it is widely believed
that there will not exist a single ontology for any particular domain, but rather that
there will be a few (possibly overlapping) ones. However, the prevailing culture, at
least in the data management industry, entails that the number of ontologies/schemas
we will need to mediate among is actually substantially higher. Suppliers of data are
not used to mapping their schemas to a select small set of ontologies (or schemas): it
is very hard to build a consensus about what terminologies and structures should be
used. Interoperability is typically attained in the real world by writing translators
among small sets of data sources that are closely related and serve similar needs, and
then gradually adding new translators to new sources as time progresses.

Hence, this practice suggests a practical model for how to develop a large-scale
system like the Semantic Web: we need an architecture that enables building a web
of data by allowing incremental addition of sources, where each new source maps to
whatever sources it deems most convenient, rather than requiring sources to map to a
slow-to-evolve and hard-to-manage standard schema. Of course, in the case of the
Semantic Web, the mappings between the sources should be specified declaratively.
To complement the mappings, we need efficient algorithms that can follow semantic
paths to obtain data from distant but related nodes on the web.

Database group from University of Washington presents the Piazza system that
provides an infrastructure for building Semantic Web applications, and addresses the
aforementioned problems.

 4

2 PIAZZA: SYSTEM OVERVIEW

This section provides an overview of the concepts underlying Piazza and the system
architecture.

2.1 Peer Data Management System Architecture

The ultimate goal with Piazza is to provide query answering and translation across
the full range of data, from RDF and its associated ontologies to XML that has a
substantially less expressive schema language. A Piazza application consists of many
nodes, each of which can serve either or both of two roles:

• supplying source data with its schema, or
• providing only a schema (or ontology).

In addition, nodes may supply
• computed data, i.e., cached answers to queries posed over other nodes.

The semantic glue in Piazza is provided by local mappings between small sets
(usually pairs) of nodes. When a query is posed over the schema of a node, the
system will utilize data from any node that is transitively connected by semantic
mappings, by chaining mappings. Piazza's architecture can accommodate both local
point-to-point mappings between data sources, as well as collaboration through select
mediated ontologies. Since the architecture is reminiscent of peer-to-peer
architectures Piazza is a peer data management system (PDMS). It provides an
infrastructure on which to build applications of the Semantic Web, which essentially
share the vision of large-scale data sharing systems on the Web. So there are several
common properties that could clarify PDMS nature:

• PDMS manages structured information like peer-to-peer overlay network
• Has no central logical mediated schema
• Scalable
• Has no central administration.

It is important to notice while a PDMS is based on a peer-to-peer architecture, it is
significantly different from a P2P file-sharing system. In particular, joining a PDMS
is inherently a more heavyweight operation than joining a P2P file-sharing system,
since some semantic relationships need to be specified. Its initial architecture focuses
on applications where peers are likely to stay available the majority of the time, but
in which peers should be able to join (or add new data) very easily. It could be a
spectrum of PDMS applications, ranging from more ad-hoc sharing scenarios to ones
in which the membership changes less frequently or is restricted due to security or
consistency requirements [4].

 5

2.2 Data Sharing and Mediation

There are some methods for specifying common terminology or common scheme for
data representation. The bulk of the data integration literature uses queries (views) as
its mechanism for describing mappings: views can relate disparate relational
structures, and can also impose restrictions on data values.

Mediated Schema There are two standard ways of using views
for specifying mappings in this context: data
sources can be described as views over the
mediated schema, this is referred to as local-
as-view or LAV (Fig.1a), or the mediated
schema can be described as a set of views
over the data sources, global-as-view or
GAV (Fig.1b). The direction of the mapping
matters a great deal: it affects both the kinds
of queries that can be answered and the
complexity of using the mapping to answer
the query. In the GAV approach, query
answering requires only relatively simple
techniques to “unfold” (basically,
macroexpand) the views into the query so it
refers to the underlying data sources. The
LAV approach requires more sophisticated
query reformulation algorithms, because we
need to use the views in the reverse
direction.

Site B Site A Site C

Fig.1a: Local-As-View

Mediated Schema

Site CSite A Site B

Fig.1b: Global-As-View

When we map between two sites, our mappings, like views, will be directional. Main
goal in Piazza is to leverage this work both LAV and GAV - from data integration,
but to extend it in two important directions:

• First, we must extend the basic techniques from the two-tier data integration
architecture to the peer data management system's heterogeneous, graph-
structured network of interconnected nodes.

• Second, to provide interoperability between data sources, we must map
between both their domain structures and their document structures.

Data management practitioners often prefer to exchange data through local point-to-
point data translations, rather than mapping to common mediated schemas or
ontologies. Piazza offers a language for mediating between data sources on the
Semantic Web, which maps both the domain structure and document structure.
Piazza also enables interoperation of XML data with RDF data. that is accompanied
by rich OWL ontologies. Mappings in Piazza are provided at a local scale between
small sets of nodes, and our query answering algorithm is able to chain sets
mappings together to obtain relevant data from across the Piazza network.

 6

The actual formalism for specifying mappings depends on the kinds of sites we are
mapping. There are three main cases, depending on whether we are mapping
between pairs of OWL/RDF nodes, between pairs of XML/XML schema nodes, or
between nodes of different types.

 Pairs of OWL/RDF nodes: OWL itself already provides the constructs
necessary for mapping between two OWLontologies.

 Pairs of XML/XML Schema nodes: This case is more challenging because

it does not make sense to simply assert that two structures should be
considered the same. See the following example (Fig.2).

Source (S2):

authors
 author*
 full-name
 publication*
 title
 pub-type

Target (S1):

pubs
 book*
 title
 author*
 name
 publisher*
 name

Suppose we want to map between two
sites. Suppose the target contains books
with nested authors; the source contains
authors with nested publications. On the
right is illustration of partial schemas for
these sources, using a format in which
indentation illustrates nesting and a *
suffix indicates “0 or more occurrences
of....”.
Translation of domain structure and terminology: In the simple case, we must be
able to perform simple renamings from one concept (XML tag label) to another. For
instance, we want to state that every occurrence of the full-name tag in S2 matches
the name tag in S1. On the other hand, if we create a mapping in the reverse
direction, name in S1 only corresponds to full-name in S2 when it appears within an
author tag. In some cases, the terminological translations involve additional
conditions. For instance, a title entry in site S2 is only equivalent to a book title in S1
if the pub-type is book.
Translation of document structure: We must be able to map between different
nesting structures. In order to do this, we must be able to coalesce groups of items
when they are associated with the same entity . every time we see a book with the
same name in S1, we should insert the book's title (within a publication element and
with a pub-type of book) into the same author element in S2.

Fig.2: XML/XML translation example
 XML-to-RDF mappings: There are two issues when mapping between

XML to RDF/OWL data:

 Expressive power. We cannot map all the concepts in an OWL ontology
into an XML schema and preserve their semantics. It is inevitable that we
will lose some information in such a mapping.

 Document structure. How to rebuild the appropriate document structure

when transferring data from the OWLontology into XML. In fact, the two
different structures of XML nodes could be mapped to the same RDF.

 7

2.3 System Application

To validate approach, a small semantic web application was implemented in Piazza.
Piazza system consists of two main components. The query reformulation engine
takes a query posed over a node, and it uses the query reformulation algorithm in
order to chain through the semantic mappings and output a set of queries over the
relevant nodes. Query evaluation engine is based on the Tukwila XML Query
Engine, and it has the important property that it yields answers as the data is
streaming in from the nodes on the network.

DB
Projects

MIT UW UCB
Stanford

Area(areaID, name, descr)
Project(projID, areaID, name)
Pub(pubID, title, venue, year)
PubAuthor(pubID, authorID)
PubProj(pubID, projID)
Member(memID, projID, name, pos)
Alumn(name, year, thesis)

Project(projID, name, descr)
Student(studID, name, status)
Faculty(facID, name, rank, office)
Advisor(facID, studID)
ProjMember(projID, memberID)
Paper(papID, title, forum, year)
Author(authorID, paperID)

Area(areaID, name, descr)
Project(projID, name, sponsor)
ProjArea(projID, areaID)
Pubs(pubID, projName, title, venue, year)
Author(pubID, author)
Member(projName, member) Projects(projID, name, startDate)

Members(memID, name)

ProjFaculty(projID, facID)
ProjStudents(projID, studID)
…

Direction(dirID, name)
Project(pID, dirID, name)
…

 Fig. 3: Fragment of the topology of the DB-Research Piazza application

Prototype relates 15 nodes (see fragment of topology Fig.3) concerning different
aspects of the database research field. All of the nodes of DB Research, with the
exception of DB-Projects, contribute data. DB-Projects is a schema-only node whose
goal is to map between other sources. DB Research nodes represent university
database groups (Berkeley, Stanford etc.). The node schemas were designed to
mirror the actual organization and terminology of the corresponding web sites. When
defining mappings, we tried to map as much information in the source schema into
the target schema as possible, but a complete schema mapping is not always possible
since the target schema may not have all of the attributes of the source schema.

 8

3 IMPLEMENTATION DETAILS

This section describes in details some features of PIAZZA system. It concerned on
mapping language and query answering algorithm. The best way to explain specific
abilities of proposed solutions is to illustrate them with examples.

3.1 The Mapping Language

Mappings play two roles:

 storage descriptions that specify which data is actually stored at a node. This
allows us to separate between the intended domain and the actual data stored
at the node. For example, we may specify that a particular node contains
publications whose topic is Computer Science and have at least one author
from the University of Washington;

 schema mappings, which describe how the terminology and structure of one

node correspond to those in a second node.

The language for storage mappings is a subset of the language for schema mappings,
hence our discussion focuses on the latter.

When we map between two sites, our mappings, like views, will be directional. In
general, when two sites organize their schemas differently, some semantic
relationships between them will be captured only by the mapping in one of the
directions, and this mapping cannot simply be inverted. Instead, these semantic
relationships will be exploited by algorithms that can reverse through mappings on a
per-query basis.

Following the data integration literature, which uses a standard relational query
language for both queries and mappings, we might elect to use XQuery for both our
query language and our language for specifying mappings. However, authors found
XQuery inappropriate as a mapping language for the following reasons:

 XQuery user thinks in terms of the input documents and the transformations
to be performed. The mental connection to a required schema for the output is
tenuous, whereas our setting requires thinking about relationships between
the input and output schemas.

 The user must define a mapping in its entirety before it can be used. There is

no simple way to define mappings incrementally for different parts of the
schemas, to collaborate with other experts on developing sub-regions of the
mapping, etc.

 XQuery is an extremely powerful query language and as a result some

aspects of the language make it difficult or even impossible to reason about.

 9

Current approach is to define a mapping language that borrows elements of XQuery,
but is more tractable to reason about and can be expressed in piecewise form.
Mappings in the language are defined as one or more mapping definitions, and they
are directional from a source to a target: we take a fragment of the target schema and
annotate it with XML query expressions that define what source data should be
mapped into that fragment.

Each mapping definition begins with an XML template that matches some path or
subtree of a legal instance of the target schema, i.e., a prefix of a legal string in the
target DTD's grammar. Elements in the template may be annotated with query
expressions (in a subset of XQuery) that bind variables to XML nodes in the source;
for each combination of bindings, an instance of the target element will be created.
Once a variable is bound, it can be referenced anywhere within its scope, which is
defined to be the enclosing tags of the template. Variable bindings can be output as
new target data, or they can be referenced by other query expressions to correlate
data in different areas of the mapping definition. The following is a basic example of
the language (Fig. 4) for the sites in previous example (Fig.2).

Fig.4: Mapping language basic example for sites
S1 and S2 from Fig.2

Where we make variable
references within braces
and delimit query
expression annotations by
colon. This mapping
definition will instantiate a
new book element in the
target for every occurrence
of variables $a, $t, and
$typ, which are bound to
the author, title, and
publication-type elements
in the source, respectively.
We construct a title and
author element for each
occurrence of the book.
The author name contains
a new query expression

annotation ($a/full-name), so this element will be created for each match to the
XPath expression (for this schema, there should only be one match). The example
mapping will create a new book element for each author-publication combination.
This is probably not the desired behavior, since a book with multiple authors will
appear as multiple book entries.

<pubs>
 <book>
 {: $a IN document(“source.xml”)\
 /authors/author
 $t IN $a/publication/title,
 $typ IN $a/publication/pub-type
 WHERE $typ = “book” : }
 <title> { $t }</title>
 <author>
 <name> {: $a/full-name :} </name>
 </author>
 </book>
</pubs>

To enable the desired behavior in situations like this, Piazza reserves a special
piazza:id attribute in the target schema for mapping multiple binding instances to the
same output: if two elements created in the target have the same tag name and ID
attribute, then they will be coalesced (Fig.5). All of their attributes and element
content will be combined.

 10

 The sole difference from the
previous example is the use
of the piazza:id attribute. We
have determined that book
titles in our collection are
unique, so every occurrence
of a title in the data source
refers to the same book.
Identical books will be given
the same piazza:id and
coalesced; likewise for their
title and author sub-elements
(but not author names).
Hence, in the target we will
see all authors nested under
each book entry.

<pubs>
 <book piazza:id={$t}>
 {: $a IN document(“source.xml”)\
 /authors/author
 $t IN $a/publication/title,
 $typ IN $a/publication/pub-type
 WHERE $typ = “book” : }
 <title piazza:id={$t}> { $t }</title>
 <author piazza:id={$t}>
 <name> {: $a/full-name :} </name>
 </author>
 </book>
</pubs>

B
d
t
m
t
a
t
y
w
m
k
p
p
a
t
r
i
(
b
a
w
r
s
e

T
t
t
n
s
c

Fig.5: Mapping language example with piazza:id
attribute for sites S1 and S2 from Fig.2

ut sometimes, we may have

etailed information about
he values of the data being
apped from the source to

he target. Perhaps in the
bove example, we know that
he mapping definition only
ields book titles starting
ith the letter “A“. Perhaps
ore interestingly, we may

now something about the
ossible values of an attribute
resent in the target but
bsent in the source - such as
he publisher. In Piazza, we
efer to this sort of meta-
nformation as properties
Fig.6). This information can
e used to help the query
nswering system determine
hether a mapping is

elevant to a particular query,
o it is very useful for
fficiency purposes.

<pubs>
 <book piazza:id={$t}>
 {: $a IN document(“source.xml”)\
 /authors/author
 $t IN $a/publication/title,
 $typ IN $a/publication/pub-type
 WHERE $typ = “book” : }
 PROPERTY $t >=’A’ AND $t < ‘B’
 : }
 [: <publisher>
 <name>
 {: PROPERTY $this IN
 {“PrintersInc”, “PubsInc”} :}
 </name>
 </publisher> :]
 </book>
</pubs>

he first PROPERTY definition spe
itles starting with “A”. The second d
he target. There is insufficient data
ame; but we can define a PROPER
pecial variable $this allows us to es
urrent location within the virtual sub
Fig.6: Mapping language example using
properties for sites S1 and S2 from Fig.2
cifies that we know this mapping includes only
efines a “virtual subtree” (delimited by [: :]) in
at the source to insert a value for the publisher
TY restriction on the values it might have. The
tablish a known invariant about the value at the
tree: in this case, it is known that the publisher

11

name must be one of the two values specified. In general, a query over the target
looking for books will make use of this mapping; a query looking for books
published by BooksInc will not. Moreover, a query looking for books published by
PubsInc cannot use this mapping, since Piazza cannot tell whether a book was
published by PubsInc or by PrintersInc.

To complete the discussion about relationship to data integration, let me briefly
discuss how the mapping language relates to the LAV and GAV formalisms. In
current language, we specify a mapping from the perspective of a particular target
schema – in essence, we define the target schema using a GAV-like definition
relative to the source schemas. However, two following important features of this
language would require LAV definition in the relational setting:

 It can map data sources to the target schema even if the data sources are
missing attributes or sub-elements required in the source schema. Hence, we
can support the situation where the source schema is a projection of the
target.

 Mapping language support the notion of data source properties, which

essentially describes scenarios in which the source schema is a selection on
the target schema. Hence, current mapping language combines the important
properties of LAV and GAV.

It is also interesting to note that although query answering in the XML context is
fundamentally harder than in the relational case, specifying mappings between XML
sources is more intuitive. The XML world is fundamentally semistructured, so it can
accommodate mappings from data sources that lack certain attributes – without
requiring null values.

In fact, during query answering we allow mappings to pass along elements from the
source that do not exist in the target schema – we would prefer not to discard these
data items during the transitive evaluation of mappings, or query results would
always be restricted by the lowest-common-denominator schemas along a given
mapping chain. For this reason, we do not validate the schema of answers before
returning them to the user.

 12

3.2 Query Answering Algorithm

Given a set of mappings, our goal is to be able to answer queries posed over any
peer's schema, making use of all relevant (mapped) data. We do this at runtime rather
than mapping the data once and later answering queries: this allows us to provide
“live” answers as source data changes, and we can sometimes exploit “partial”
mappings to answer certain queries, even if those mappings are insufficient to
entirely transform data from one schema to another.

From a high level, an algorithm proceeds along the following lines. Given a query Q
posed over the schema of node P, we first use the storage descriptions of data in P
(i.e., the mappings that describe which data is actually stored at P) to rewrite Q into a
query Q' over the data stored at P. Next, we consider the semantic neighbors of P,
i.e., all nodes that are related to elements of P’s schema by semantic mappings. We
use these mappings to expand the reformulation of query Q to a query Q'' over the
neighbors of P. In turn, we expand Q'' so it only refers to stored data in P and its
neighbors; then we union it with Q', eliminating any redundancies. We repeat this
process recursively, following all mappings between nodes' schemas, and the storage
mappings for each one, until there are no remaining useful paths. Since semantic
mappings in Piazza are directional from a source node S to a target node T, there are
two cases of the reformulation problem, depending on whether Q is posed over the
schema of S or over that of T:

 If the query is posed over T, then query reformulation amounts to query
composition: to use data at S, we compose the query Q with the query (or
queries) defining T in terms of S. This approach is well developed and
doesn’t introduce any difficulties.
Example Query QP1(x) :- DbResearcher(x);
Query Composition: DbResearcher(x)⊇Researcher(x),Area(x,DB)

 QP2(x)⊇Researcher(x),Area(x,DB)

 The second case is when query is posed over S and we wish to reformulate it
over T. Now both Q and T are defined as queries over S. In order to
reformulate Q, we need to somehow use the mapping in the reverse direction.
This problem is known as the problem of answering queries using views [1],
and is conceptually much more challenging.
Example QP1(x) :- DbResearcher(x);
Query Rewriting: DbResearcher(x),Office(x,DBLab)=DbLabMember(x)

 QP3(x)⊇DbLabMember(x)

The problem is well understood for the case of relational queries and views, and
authors describe an algorithm that applies to the XML setting. The key challenge of
XML is the nesting structure of the data (and hence of the query) – relational data is
flat.

 13

3.2.1 Query Representation

Current algorithm operates over a graph representation of queries and mappings.
Suppose for two sources S1 and S2 (Fig.7a) we are given the following XQuery for
all advisees of Ullman, posed over source S1 (Fig.7b). Note that the result element in
the query simply specifies the root element for the resulting document.

Source (S2):

people
 faculty*
 student
 name

advisor*

Target (S1):

people
 faculty*
 name
 advisee*

student*

The schemas differ in how they represent
advisor-advisee information. S1 puts
advisee names under the corresponding
faculty advisor whereas S2 does the
opposite by nesting advisor names data
under corresponding students.

Fig.7a: Query representation example. Data sources S1 and S2.

<result> {
 for $faculty in /S1/people/faculty,
 $name in $faculty/name/text(),
 $advisee in $faculty/advisee/text()
 where $name = “Ullman”
 return
 <student> {$advisee} </student>
}
</result>

<result>

name advisee
$name = “Ullman”

<student> {$advisee}

S1

people

faculty

Fig.7b: Query posed over S1.

Fig.7c: Query tree pattern.

We could also represent mapping both literally and graphically (Fig.8). Each box in
the figure corresponds to a query block, and indentation indicating the nesting
structure. With each block associated the following constructs that are manipulated
by algorithm:

A set of tree patterns: XQuery's FOR clause binds variables, e.g., $faculty in
/S1/people/faculty binds the variable $faculty to the nodes satisfying the XPath
expression. The bound variable can then be used to define new XPath expressions
such as $faculty/name and bind new variables. Algorithm consolidates XPath
expressions into logically equivalent tree patterns for use in reformulation4. For
example, the tree pattern for our example query is indicated by the thick forked line
(Fig.7c). For simplicity of presentation, we assume here that every node in a tree
pattern binds a single variable; the name of the variable is the same as the tag of the
corresponding tree pattern node. Hence, the node advisee of the tree pattern binds the
variable $advisee.

 14

A set of predicates: a predicate in a query specifies a condition on one or two of the
bound variables. Predicates are defined in the XQuery WHERE clause over the
variables bound in the tree patterns. The variables referred to in the predicate can be
bound by different tree patterns. In our example, there is a single predicate:
name="Ullman". If a predicate involves a comparison between two variables, then it
is called a join predicate, because it essentially enforces a relational join.

 faculty

name advisee
$advisee=$student

<advisor> {$name}

 S1
<people> people

 faculty

 name

<faculty> {$name}

student
<student>

<name> {$student}

<S2>

Fig.8a: Schema mapping between S1 and S2

<S2>

<people> {: $people=/S1/people :}

 <faculty> {: $name=$people/faculty/name/text():}
 { $name}
 </faculty>

<student>{: $student=$people/student/text():}
 <name> { $student } </name>
 <advisor> {: $faculty=$people/faculty,
 $name=$faculty/name/text(),
 $advisee=$faculty/advisee/text()
 where $advisee=$student :}
 { $name }
 <advisor>
 </student>
 </people>
</S2>

Fig.8b: Tree pattern for schema
mapping between S1 and S2

Output results: output, specified in the XQuery RETURN clause, consists of
element or attribute names and their content. An element tag name is usually
specified in the query as a string literal, but it can also be the value of a variable. It
enables transformations in which data from one source becomes schema information
in another. In our query graph (Fig.7c), an element tag is shown in angle brackets.
Hence, the element tag of the top-level block is result. The element tag of the inner
block is student. The contents of the returned element of a query block may be a
sequence of elements, attributes, string literals, or variables. In the figure, the
variable/value returned by a query block is enclosed in curly braces. Thus, the top
level block of our example query has empty returned contents, whereas the inner
block returns the value of the $advisee variable. We use the same representation for
mappings as for queries. In this case, the nesting mirrors the template of the target
schema. The Fig.8a and Fig.8b show the mapping between the following schemas
and its graph representation.

 15

3.2.2 The Rewriting Algorithm

Rewriting algorithm makes the following simplifying assumptions about the queries
and the mappings.

 The query over the target schema contains a single nontrivial block, i.e., a
block that includes tree patterns and/or predicates. The mapping, on the other
hand, is allowed to contain an arbitrary number of blocks.

 All “returned” variables are bound to atomic values, i.e., text() nodes, rather

than XML element trees (this particular limitation can easily be removed by
expanding the query based on the schema). The variable $people (Fig.8a) is
bound to an element; variables $name and $student are bound to values.

 Queries are evaluated under a set semantics. In other words, we assume that

duplicate results are eliminated in the original and rewritten query.

 Tree pattern uses the child axis of XPath only. It is possible to extend the
algorithm to work with queries that use the descendant axis.

 For purposes of exposition, we assume that the schema mapping does not

contain sibling blocks with the same element tag. Handling such a case
requires the algorithm to consider multiple possible satisfying paths (and/or
predicates) in the tree pattern.

Intuitively, the rewriting algorithm performs the following tasks. Given a query Q, it
begins by comparing the tree patterns of the mapping definition with the tree pattern
of Q – the goal is to find a corresponding node in the mapping definition's tree
pattern for every node in the Q’s tree pattern. Then the algorithm must restructure
Q’s tree pattern along the same lines as the mapping restructures its input tree
patterns (since Q must be rewritten to match against the target of the mapping rather
than its source). Finally, the algorithm must ensure that the predicates of Q can be
satisfied using the values output by the mapping. The steps performed by the
algorithm are:

Step 1: pattern matching. This step considers the tree patterns in the query, and
finds corresponding patterns in the target schema. Intuitively, given a tree pattern, t
in Q, our goal is to find a tree pattern t' on the target schema such that the mapping
guarantees that an instance of that pattern could only be created by following t in the
source. The algorithm first matches the tree patterns in the query to the expressions
in the mapping and records the corresponding nodes. The darker lines in the
representation of the schema mapping denote the tree pattern of the query (Fig.7c)
and its corresponding form in the mapping (Fig.8b). The algorithm then creates the
tree pattern over the target schema as follows: starting with the recorded nodes in the
mapping, it recursively marks all of their ancestor nodes in the output template. It
then builds the new tree pattern over the target schema by traversing the mapping for
all marked nodes. If no match is found, then the resulting rewriting will be empty
(i.e., the target data does not enable answering the query on the source).

 16

Step 2: Handling returned variables and predicates. In this step the algorithm
ensures that all the variables required in the query can be returned, and that all the
predicates in the query have been applied. Here, the nesting structure of XML data
introduces subtleties beyond the relational case. To illustrate the first potential
problem, recall that our example query returns advisee names, but the mapping does
not actually return the advisee, and hence the output of Step 1 does not return the
advisee. We must extend the tree pattern to reach a block that actually outputs the
$advisee element, but the <advisor> block where $advisee is bound does not have
any sub-blocks, so we cannot simply extend the tree pattern. Fortunately, the
<advisor> block enforces equality between $advisee and $student, which is output
by the <name> block. We can therefore rewrite the tree pattern as $student in
/S2/people/student, $advisor in $student/advisor, $name in $student/name. Of
course, it is not always possible to find such equalities, and in those cases there will
be no rewriting for that pattern.

Query predicates can be handled in one of three ways. First, a query predicate (or one
that subsumes it) might already be applied by the relevant portion of the mapping (or
might be a known property of the data being mapped). In this case, the algorithm can
consider the predicate to be satisfied. A second case is when the mapping does not
impose the predicate, but returns all nodes necessary for testing the predicate. Here,
the algorithm simply inserts the predicate into the rewritten query. The third
possibility is more XML-specific: the predicate is not applied by the portion of the
mapping used in the query rewriting, nor can the predicate be evaluated over the
mapping's output – but a different sub-block in the mapping may impose the
predicate. If this occurs, the algorithm can add a new path into the rewritten tree
pattern, traversing into the sub-block. Now the rewritten query will only return a
value if the sub-block (and hence the predicate) is satisfied.

In our case, the query predicate can
be reformulated in terms of the
variables bound by the replacement
tree pattern as follows:
$advisor="Ullman". The resulting
rewritten query in our example is
the following (Fig.9). More detailed
formalization of current algorithm is
available in [3, 10].

<result> {
 for $faculty in /S2/people/student,
 $advisor in $student/advisor/text(),
 $name in $student/name/text()
 where $advisor = “Ullman”
 return
 <student> { $name } </student>
}
</result>

Fig.9: Reformulated query

 17

4 CONCLUSIONS AND FUTURE WORK

Here is some experimental results on small number of 15 nodes (Table 1). The
second and third columns show the reformulation time for the test queries and the
number of reformulations obtained (i.e., number of queries that can be posed over the
nodes to obtain answers to the query). They observe that the reformulation times are
quite low, even though some of them required traversing paths of length 8 in the
network. Hence, sharing data by query reformulation along semantic paths appears to
be feasible.

Query Description Reformulation time # of reformulations

Q1 XML-related projects. 0.5 sec 12
Q2 Co-authors who reviewed each

other's work.
0.9 sec 25

Q3 PC members with a paper at
the same conference.

0.2 sec 3

Q4 PC chairs of recent
conferences + their projects.

0.5 sec 24

Q5 Conflicts-of-interest of PC
members.

0.7 sec 36

Table 1: The test queries and their respective running times.

Among major contributions authors mentioned:

 Mapping language for mapping between sets of XML source nodes with
different document structures

 Architecture that uses the transitive closure of mappings to answer queries
 Algorithm for query answering over this transitive closure of mappings,

which is able to follow mappings in both forward and reverse directions

And there are several directions of the future work:

 More efficient reformulation algorithm
 Semantic network analysis – eliminate redundant mappings and inconsistent

mappings
 Query caching to speed up query evaluation

At a more conceptual level Piazza paves the way for a fruitful combination of data
management and knowledge representation techniques in the construction of the
Semantic Web. Techniques offered in Piazza are not a replacement for rich
ontologies and languages for mapping between ontologies. Its goal is to provide the
missing link between data described using rich ontologies and the wealth of data that
is currently managed by a variety of tools. Finally, we note that Piazza is a
component of the larger Revere Project [2] that attempts to address the entire life-
cycle of content creation on the Semantic Web.
Just as older database systems suddenly became compatible by adopting a consistent
relational model, so unstructured web data, or XML-schema definitions can,

 18

essentially, also adopt a relational model, allowing significantly more power to
brought to bear on solving data-modeling problems.

There are still a lot of questions about efficiency if network is quite large, or how we
will manage cyclic and redundant paths for algorithm? Analysis of mapping
networks for information loss also required. It is also interesting to study Piazza's
utility in investigating strategies for caching and replicating data and mappings for
reliability and performance.

 19

5 REFERENCES

1. Alon Y. Halevy. Answering queries using views: A survey. VLDB Journal

10, 2001.

2. Alon Halevy, Oren Etzioni, AnHai Doan, Zachary Ives, Jayant Madhavan,

Luke McDowell, Igor Tatarinov. Crossing the Structure Chasm. In Proc. of
CIDR, 2003.

3. Alon Y. Halevy, Zachary G. Ives, Dan Suciu, Igor Tatarinov. Schema

Mediation for Large-Scale Semantic Data Sharing. To appear, VLDB Journal
2003.

4. Alon Y. Halevy, Zachary G. Ives, Dan Suciu, Igor Tatarinov. Schema

Mediation in Peer Data Management Systems. In Proc. of ICDE, March
2003.

5. Berners-Lee T., Hendler J., and Lassila O. The semantic web. Scientific

American, May 2001.

6. Boag S., Chamberlin D., Fernandez M. F., Florescu D., Robie J., Simeon J.

XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/, 12
November 2003. W3C working draft.

7. Decker S., van Harmelen F., Broekstra J., Erdmann M., Fensel D., Horrocks

I., Klein M., Melnik S. The Semantic Web - on the respective Roles of XML
and RDF. 2000.

8. Fuhr N., Weikum G. Classification and Intelligent Search on Information in

XML. In TCDE, March 2002 Vol. 25 No. 1.

9. Hendler J., Berners-Lee T., Miller E.: Integrating Applications on the
Semantic Web. Journal of the Institute of Electrical Engineers of Japan, Vol.
122(10), October, 2002.

10. Igor Tatarinov, Zachary Ives, Jayant Madhavan, Alon Halevy, Dan Suciu,

Nilesh Dalvi, Xin (Luna) Dong, Yana Kadiyska, Gerome Miklau, Peter
Mork. The Piazza Peer Data Management Project. SIGMOD Record, Vol. 32,
No. 3, September 2003.

11. Madhan Arumugam, Amit Sheth, and I. Budak Arpinar: Towards Peer-to-

Peer Semantic Web. A Distributed Environment for Sharing Semantic
Knowledge on the Web. http://lsdis.cs.uga.edu.

 20

