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This write-up presents a paper “PIAZZA: Data Management Infrastructure for 

Semantic Web Applications” and related work made by the database group at 

the University of Washington. This review with corresponding presentation was 

produced as part of the seminar „Peer-to-peer Information Systems“ given by 

Prof. Dr.-Ing. Gerhard Weikum in Saarland University.  



1 INTRODUCTION 
 
The following section describes some important concepts of Semantic Web and Data 
Integration field. It explains problems in this area and proposes a direction of 
research that leads to design of PIAZZA system.  
 
1.1 Semantic Web 

 
The current Web can be characterized as the second Web generation: the first 
generation Web started with handwritten HTML pages; the second generation made 
the step to machine generated and often active HTML pages. These generations of 
the Web were meant for direct human processing (reading, browsing, form-filling). 
The third generation Web, which one could call the Semantic Web, aims at machine 
processable information [7]. Web data lacks machine-understandable semantics, so it 
is generally not possible to automatically extract concepts or relationships from this 
data or to relate items from different sources. The Semantic Web aims to provide 
data in a format that embeds semantic information, and then seeks to develop 
sophisticated query tools to interpret and combine this information. It will bring 
structure to the meaningful content of Web pages, creating an environment where 
software agents roaming from page to page can readily carry out sophisticated tasks 
for users [5]. Instead of posing queries that match text within documents, they could 
ask questions that can only be answered via inference or aggregation; data could be 
automatically translated into the same terminology; information could be easily 
exchanged between different organizations. 
  
1.2 Knowledge Representation 
 
It is highly expectable that XML will be the methods of choice for representing all 
kinds of documents across the Web and it makes opinion that XML will be a major 
catalyst in constructing the Semantic Web. However, merely casting all documents 
into XML format does not necessarily make a document’s semantics explicit and 
more amenable for effective information searching. Rather, to fully leverage XML 
on a global scale, significant progress is needed on the several issues. One of them is 
extracting more semantics from existing document collections by constructing 
structural and ontological skeletons that describe the data at a higher semantic level 
[8]. The XML-Schema language allows to develop a standard set of XML mappings 
(i.e. a particular XML schema), and to represent content using a common structure. 
But sometimes a capability beyond that offered by XML-schema is needed if we 
need to provide mapping capabilities between divergent schemas. For this reason, a 
fundamental component of the Semantic Web is the Resource Description 
Framework (RDF) [9]. It could be quite different opinions about most efficient 
standard for semantic integration and even it could be old good relational database 
schemas. But some could see that proposals aiming at semantic interoperability are 
the results of recent W3C standardization efforts, notably XML/XML Schema and 
RDF/RDF Schema as well as languages that build upon these data models: 
DAML+OIL and OWL [7]. Hence, for the purpose of our discussion, we can 
consider XML to be the standard representation of a wide variety of data sources. 
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The current progress on developing ontologies and representation languages leaves 
us with two significant problems. The first problem is that there is a wide disconnect 
between the RDF world and most of today's data providers and applications. RDF 
represents everything as a set of classes and properties, creating a graph of 
relationships. As such, RDF is focused on identifying the domain structure. In 
contrast, most existing data sources and applications export their data into XML, 
which tends to focus less on domain structure and more around important objects or 
entities. Instead of explicitly spelling out entities and relationships, they often nest 
information about related entities directly within the descriptions of more important 
objects, and in doing this they sometimes leave the relationship type unspecified. For 
instance, an XML data source might serialize information about books and authors as 
a list of book objects, each with an embedded author object. Although book and 
author are logically two related objects with a particular association (e.g., in RDF, 
author writes book), applications using this source may know that this document 
structure implicitly represents the logical writes relationship. 
 
1.3 Scalability 
 
From the perspective of building semantic web applications, we need to be able to 
map not only between different domain structures of two sources, but also between 
their document structures. The second challenge we face concerns the scale of 
ontology and schema mediation on the semantic web. Currently, it is widely believed 
that there will not exist a single ontology for any particular domain, but rather that 
there will be a few (possibly overlapping) ones. However, the prevailing culture, at 
least in the data management industry, entails that the number of ontologies/schemas 
we will need to mediate among is actually substantially higher. Suppliers of data are 
not used to mapping their schemas to a select small set of ontologies (or schemas): it 
is very hard to build a consensus about what terminologies and structures should be 
used. Interoperability is typically attained in the real world by writing translators 
among small sets of data sources that are closely related and serve similar needs, and 
then gradually adding new translators to new sources as time progresses.  
 
Hence, this practice suggests a practical model for how to develop a large-scale 
system like the Semantic Web: we need an architecture that enables building a web 
of data by allowing incremental addition of sources, where each new source maps to 
whatever sources it deems most convenient, rather than requiring sources to map to a 
slow-to-evolve and hard-to-manage standard schema. Of course, in the case of the 
Semantic Web, the mappings between the sources should be specified declaratively. 
To complement the mappings, we need efficient algorithms that can follow semantic 
paths to obtain data from distant but related nodes on the web.  
 
Database group from University of Washington presents the Piazza system that 
provides an infrastructure for building Semantic Web applications, and addresses the 
aforementioned problems. 
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2 PIAZZA: SYSTEM OVERVIEW 
 
This section provides an overview of the concepts underlying Piazza and the system 
architecture.  
 
2.1 Peer Data Management System Architecture 
 
The ultimate goal with Piazza is to provide query answering and translation across 
the full range of data, from RDF and its associated ontologies to XML that has a 
substantially less expressive schema language. A Piazza application consists of many 
nodes, each of which can serve either or both of two roles: 
 

• supplying source data with its schema, or  
• providing only a schema (or ontology). 

In addition, nodes may supply  
• computed data, i.e., cached answers to queries posed over other nodes.  

 
The semantic glue in Piazza is provided by local mappings between small sets 
(usually pairs) of nodes. When a query is posed over the schema of a node, the 
system will utilize data from any node that is transitively connected by semantic 
mappings, by chaining mappings. Piazza's architecture can accommodate both local 
point-to-point mappings between data sources, as well as collaboration through select 
mediated ontologies. Since the architecture is reminiscent of peer-to-peer 
architectures Piazza is a peer data management system (PDMS). It provides an 
infrastructure on which to build applications of the Semantic Web, which essentially 
share the vision of large-scale data sharing systems on the Web. So there are several 
common properties that could clarify PDMS nature:  
 

• PDMS manages  structured information like peer-to-peer overlay network 
• Has no central logical mediated schema 
• Scalable  
• Has no central administration. 

 
It is important to notice while a PDMS is based on a peer-to-peer architecture, it is 
significantly different from a P2P file-sharing system. In particular, joining a PDMS 
is inherently a more heavyweight operation than joining a P2P file-sharing system, 
since some semantic relationships need to be specified. Its initial architecture focuses 
on applications where peers are likely to stay available the majority of the time, but 
in which peers should be able to join (or add new data) very easily. It could be a 
spectrum of PDMS applications, ranging from more ad-hoc sharing scenarios to ones 
in which the membership changes less frequently or is restricted due to security or 
consistency requirements [4].  
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2.2 Data Sharing and Mediation 
 

There are some methods for specifying common terminology or common scheme for 
data representation. The bulk of the data integration literature uses queries (views) as 
its mechanism for describing mappings: views can relate disparate relational 
structures, and can also impose restrictions on data values.  
 

Mediated Schema There are two standard ways of using views 
for specifying mappings in this context: data 
sources can be described as views over the 
mediated schema, this is referred to as local-
as-view or LAV (Fig.1a), or the mediated 
schema can be described as a set of views 
over the data sources, global-as-view or 
GAV (Fig.1b). The direction of the mapping 
matters a great deal: it affects both the kinds 
of queries that can be answered and the 
complexity of using the mapping to answer 
the query. In the GAV approach, query 
answering requires only relatively simple 
techniques to “unfold” (basically, 
macroexpand) the views into the query so it 
refers to the underlying data sources. The 
LAV approach requires more sophisticated 
query reformulation algorithms, because we 
need to use the views in the reverse 
direction.  

Site B Site A Site C

Fig.1a: Local-As-View 

Mediated Schema 

Site CSite A Site B 

Fig.1b: Global-As-View 

 
When we map between two sites, our mappings, like views, will be directional. Main 
goal in Piazza is to leverage this work both LAV and GAV - from data integration, 
but to extend it in two important directions: 
  

• First, we must extend the basic techniques from the two-tier data integration 
architecture to the peer data management system's heterogeneous, graph-
structured network of interconnected nodes.  

• Second, to provide interoperability between data sources, we must map 
between both their domain structures and their document structures.  

 
Data management practitioners often prefer to exchange data through local point-to-
point data translations, rather than mapping to common mediated schemas or 
ontologies.  Piazza offers a language for mediating between data sources on the 
Semantic Web, which maps both the domain structure and document structure. 
Piazza also enables interoperation of XML data with RDF data. that is accompanied 
by rich OWL ontologies. Mappings in Piazza are provided at a local scale between 
small sets of nodes, and our query answering algorithm is able to chain sets 
mappings together to obtain relevant data from across the Piazza network. 
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The actual formalism for specifying mappings depends on the kinds of sites we are 
mapping. There are three main cases, depending on whether we are mapping 
between pairs of OWL/RDF nodes, between pairs of XML/XML schema nodes, or 
between nodes of different types. 
 

 Pairs of OWL/RDF nodes: OWL itself already provides the constructs 
necessary for mapping between two OWLontologies.  

 
 Pairs of XML/XML Schema nodes: This case is more challenging because 

it does not make sense to simply assert that two structures should be 
considered the same. See the following example (Fig.2). 

Source (S2): 
 
authors 
   author* 
        full-name 
        publication* 
           title 
           pub-type 

Target (S1): 
 
pubs 
    book* 
        title  
        author* 
            name 
        publisher* 
            name 

Suppose we want to map between two 
sites. Suppose the target contains books 
with nested authors; the source contains 
authors with nested publications. On the 
right is illustration of partial schemas for 
these sources, using a format in which 
indentation illustrates nesting and a * 
suffix indicates “0 or more occurrences 
of....”.  
Translation of domain structure and terminology: In the simple case, we must be 
able to perform simple renamings from one concept (XML tag label) to another. For 
instance, we want to state that every occurrence of the full-name tag in S2 matches 
the name tag in S1. On the other hand, if we create a mapping in the reverse 
direction, name in S1 only corresponds to full-name in S2 when it appears within an 
author tag. In some cases, the terminological translations involve additional 
conditions. For instance, a title entry in site S2 is only equivalent to a book title in S1 
if the pub-type is book. 
Translation of document structure: We must be able to map between different 
nesting structures. In order to do this, we must be able to coalesce groups of items 
when they are associated with the same entity . every time we see a book with the 
same name in S1, we should insert the book's title (within a publication element and 
with a pub-type of book) into the same author element in S2. 
 

Fig.2: XML/XML translation example  
 XML-to-RDF mappings: There are two issues when mapping between 

XML to RDF/OWL data:  
 

 Expressive power. We cannot map all the concepts in an OWL ontology 
into an XML schema and preserve their semantics. It is inevitable that we 
will lose some information in such a mapping.  

 
 Document structure. How to rebuild the appropriate document structure 

when transferring data from the OWLontology into XML. In fact, the two 
different structures of XML nodes could be mapped to the same RDF. 
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2.3 System Application 
 
To validate approach, a small semantic web application was implemented in Piazza. 
Piazza system consists of two main components. The query reformulation engine 
takes a query posed over a node, and it uses the query reformulation algorithm in 
order to chain through the semantic mappings and output a set of queries over the 
relevant nodes. Query evaluation engine is based on the Tukwila XML Query 
Engine, and it has the important property that it yields answers as the data is 
streaming in from the nodes on the network.  

DB 
Projects 

MIT UW UCB 
Stanford 

Area(areaID, name, descr) 
Project(projID, areaID, name) 
Pub(pubID, title, venue, year) 
PubAuthor(pubID, authorID) 
PubProj(pubID, projID) 
Member(memID, projID, name, pos)
Alumn(name, year, thesis) 

Project(projID, name, descr) 
Student(studID, name, status) 
Faculty(facID, name, rank, office) 
Advisor(facID, studID) 
ProjMember(projID, memberID) 
Paper(papID, title, forum, year) 
Author(authorID, paperID) 

Area(areaID, name, descr) 
Project(projID, name, sponsor) 
ProjArea(projID, areaID) 
Pubs(pubID, projName, title, venue, year) 
Author(pubID, author) 
Member(projName, member) Projects(projID, name, startDate) 

Members(memID, name) 

ProjFaculty(projID, facID) 
ProjStudents(projID, studID) 
…

Direction(dirID, name) 
Project(pID, dirID, name) 
… 

 Fig. 3: Fragment of the topology of the DB-Research Piazza application 
 
 
Prototype relates 15 nodes (see fragment of topology Fig.3) concerning different 
aspects of the database research field. All of the nodes of DB Research, with the 
exception of DB-Projects, contribute data. DB-Projects is a schema-only node whose 
goal is to map between other sources. DB Research nodes represent university 
database groups (Berkeley, Stanford etc.). The node schemas were designed to 
mirror the actual organization and terminology of the corresponding web sites. When 
defining mappings, we tried to map as much information in the source schema into 
the target schema as possible, but a complete schema mapping is not always possible 
since the target schema may not have all of the attributes of the source schema.   
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3 IMPLEMENTATION DETAILS 
 
This section describes in details some features of PIAZZA system. It concerned on 
mapping language and query answering algorithm. The best way to explain specific 
abilities of proposed solutions is to illustrate them with examples. 
 
3.1 The Mapping Language 
 
Mappings play two roles: 
 

 storage descriptions that specify which data is actually stored at a node. This 
allows us to separate between the intended domain and the actual data stored 
at the node. For example, we may specify that a particular node contains 
publications whose topic is Computer Science and have at least one author 
from the University of Washington;  

 
 schema mappings, which describe how the terminology and structure of one 

node correspond to those in a second node.  
 
The language for storage mappings is a subset of the language for schema mappings, 
hence our discussion focuses on the latter. 
 
When we map between two sites, our mappings, like views, will be directional. In 
general, when two sites organize their schemas differently, some semantic 
relationships between them will be captured only by the mapping in one of the 
directions, and this mapping cannot simply be inverted. Instead, these semantic 
relationships will be exploited by algorithms that can reverse through mappings on a 
per-query basis. 
 
Following the data integration literature, which uses a standard relational query 
language for both queries and mappings, we might elect to use XQuery for both our 
query language and our language for specifying mappings. However, authors found 
XQuery inappropriate as a mapping language for the following reasons: 
 

 XQuery user thinks in terms of the input documents and the transformations 
to be performed. The mental connection to a required schema for the output is 
tenuous, whereas our setting requires thinking about relationships between 
the input and output schemas.   

 
 The user must define a mapping in its entirety before it can be used. There is 

no simple way to define mappings incrementally for different parts of the 
schemas, to collaborate with other experts on developing sub-regions of the 
mapping, etc. 

 
 XQuery is an extremely powerful query language and as a result some 

aspects of the language make it difficult or even impossible to reason about. 
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Current approach is to define a mapping language that borrows elements of XQuery, 
but is more tractable to reason about and can be expressed in piecewise form. 
Mappings in the language are defined as one or more mapping definitions, and they 
are directional from a source to a target: we take a fragment of the target schema and 
annotate it with XML query expressions that define what source data should be 
mapped into that fragment. 
 
Each mapping definition begins with an XML template that matches some path or 
subtree of a legal instance of the target schema, i.e., a prefix of a legal string in the 
target DTD's grammar. Elements in the template may be annotated with query 
expressions (in a subset of XQuery) that bind variables to XML nodes in the source; 
for each combination of bindings, an instance of the target element will be created. 
Once a variable is bound, it can be referenced anywhere within its scope, which is 
defined to be the enclosing tags of the template. Variable bindings can be output as 
new target data, or they can be referenced by other query expressions to correlate 
data in different areas of the mapping definition. The following is a basic example of 
the language (Fig. 4) for the sites in previous example (Fig.2). 

Fig.4: Mapping language basic example for sites 
S1 and S2 from Fig.2 

Where we make variable 
references within  braces 
and delimit query 
expression annotations by 
colon. This mapping 
definition will instantiate a 
new book element in the 
target for every occurrence 
of variables $a, $t, and 
$typ, which are bound to 
the author, title, and 
publication-type elements 
in the source, respectively. 
We construct a title and 
author element for each 
occurrence of the book. 
The author name contains 
a new query expression 

annotation ($a/full-name), so this element will be created for each match to the 
XPath expression (for this schema, there should only be one match). The example 
mapping will create a new book element for each author-publication combination. 
This is probably not the desired behavior, since a book with multiple authors will 
appear as multiple book entries. 

<pubs> 
    <book> 
            {: $a IN document(“source.xml”)\ 
        /authors/author 
  $t IN $a/publication/title, 
  $typ IN $a/publication/pub-type 
  WHERE $typ = “book” : } 
           <title> { $t }</title> 
           <author> 
    <name> {: $a/full-name :} </name> 
           </author> 
    </book> 
</pubs> 

 
To enable the desired behavior in situations like this, Piazza reserves a special 
piazza:id attribute in the target schema for mapping multiple binding instances to the 
same output: if two elements created in the target have the same tag name and ID 
attribute, then they will be coalesced (Fig.5). All of their attributes and element 
content will be combined. 
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 The sole difference from the 
previous example is the use 
of the piazza:id attribute. We 
have determined that book 
titles in our collection are 
unique, so every occurrence 
of a title in the data source 
refers to the same book. 
Identical books will be given 
the same piazza:id and 
coalesced; likewise for their 
title and author sub-elements 
(but not author names). 
Hence, in the target we will 
see all authors nested under 
each book entry.  

<pubs> 
    <book piazza:id={$t}> 
            {: $a IN document(“source.xml”)\ 
        /authors/author 
  $t IN $a/publication/title, 
  $typ IN $a/publication/pub-type 
  WHERE $typ = “book” : } 
           <title piazza:id={$t}> { $t }</title> 
           <author piazza:id={$t}> 
    <name> {: $a/full-name :} </name> 
           </author> 
    </book> 
</pubs> 

 

B
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Fig.5: Mapping language example with piazza:id
attribute for sites S1 and S2 from Fig.2 

ut sometimes, we may have 

etailed information about 
he values of the data being 
apped from the source to 

he target. Perhaps in the 
bove example, we know that 
he mapping definition only 
ields book titles starting 
ith the letter “A“. Perhaps 
ore interestingly, we may 

now something about the 
ossible values of an attribute 
resent in the target but 
bsent in the source - such as 
he publisher. In Piazza, we 
efer to this sort of meta-
nformation as properties 
Fig.6). This information can 
e used to help the query 
nswering system determine 
hether a mapping is 

elevant to a particular query, 
o it is very useful for 
fficiency purposes. 

<pubs> 
    <book piazza:id={$t}> 
            {: $a IN document(“source.xml”)\ 
        /authors/author 
  $t IN $a/publication/title, 
  $typ IN $a/publication/pub-type 
  WHERE $typ = “book” : } 
           PROPERTY $t >=’A’ AND $t < ‘B’  
           : } 
           [: <publisher> 
      <name> 
     {: PROPERTY $this IN 
       {“PrintersInc”, “PubsInc”}  :} 
      </name> 
           </publisher> :] 
    </book> 
</pubs> 

 

he first PROPERTY definition spe
itles starting with “A”. The second d
he target. There is insufficient data 
ame; but we can define a PROPER
pecial variable $this allows us to es
urrent location within the virtual sub
Fig.6: Mapping language example using 
properties for sites S1 and S2 from Fig.2
cifies that we know this mapping includes only 
efines a “virtual subtree” (delimited by [: :]) in 
at the source to insert a value for the publisher 
TY restriction on the values it might have. The 
tablish a known invariant about the value at the 
tree: in this case, it is known that the publisher 
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name must be one of the two values specified. In general, a query over the target 
looking for books will make use of this mapping; a query looking for books 
published by BooksInc will not. Moreover, a query looking for books published by 
PubsInc cannot use this mapping, since Piazza cannot tell whether a book was 
published by PubsInc or by PrintersInc. 
 
To complete the discussion about relationship to data integration, let me briefly 
discuss how the mapping language relates to the LAV and GAV formalisms. In 
current language, we specify a mapping from the perspective of a particular target 
schema – in essence, we define the target schema using a GAV-like definition 
relative to the source schemas. However, two following important features of this 
language would require LAV definition in the relational setting:  
 

 It can map data sources to the target schema even if the data sources are 
missing attributes or sub-elements required in the source schema. Hence, we 
can support the situation where the source schema is a projection of the 
target.  

 
 Mapping language support the notion of data source properties, which 

essentially describes scenarios in which the source schema is a selection on 
the target schema. Hence, current mapping language combines the important 
properties of LAV and GAV.  

 
It is also interesting to note that although query answering in the XML context is 
fundamentally harder than in the relational case, specifying mappings between XML 
sources is more intuitive. The XML world is fundamentally semistructured, so it can 
accommodate mappings from data sources that lack certain attributes – without 
requiring null values.  
 
In fact, during query answering we allow mappings to pass along elements from the 
source that do not exist in the target schema – we would prefer not to discard these 
data items during the transitive evaluation of mappings, or query results would 
always be restricted by the lowest-common-denominator schemas along a given 
mapping chain. For this reason, we do not validate the schema of answers before 
returning them to the user. 
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3.2 Query Answering Algorithm 
 
Given a set of mappings, our goal is to be able to answer queries posed over any 
peer's schema, making use of all relevant (mapped) data. We do this at runtime rather 
than mapping the data once and later answering queries: this allows us to provide 
“live” answers as source data changes, and we can sometimes exploit “partial” 
mappings to answer certain queries, even if those mappings are insufficient to 
entirely transform data from one schema to another.  
 
From a high level, an algorithm proceeds along the following lines. Given a query Q 
posed over the schema of node P, we first use the storage descriptions of data in P 
(i.e., the mappings that describe which data is actually stored at P) to rewrite Q into a 
query Q' over the data stored at P. Next, we consider the semantic neighbors of P, 
i.e., all nodes that are related to elements of P’s schema by semantic mappings. We 
use these mappings to expand the reformulation of query Q to a query Q'' over the 
neighbors of P. In turn, we expand Q'' so it only refers to stored data in P and its 
neighbors; then we union it with Q', eliminating any redundancies. We repeat this 
process recursively, following all mappings between nodes' schemas, and the storage 
mappings for each one, until there are no remaining useful paths. Since semantic 
mappings in Piazza are directional from a source node S  to a target node T, there are 
two cases of the reformulation problem, depending on whether Q is posed over the 
schema of S  or over that of T: 
 

 If the query is posed over T, then query reformulation amounts to query 
composition: to use data at S, we compose the query Q with the query (or 
queries) defining T in terms of S. This approach is well developed and 
doesn’t introduce any difficulties.  
Example Query QP1(x) :- DbResearcher(x);  
Query Composition:         DbResearcher(x)⊇Researcher(x),Area(x,DB) 

         QP2(x)⊇Researcher(x),Area(x,DB)  
 

 The second case is when query is posed over S and we wish to reformulate it 
over T. Now both Q and T are defined as queries over S. In order to 
reformulate Q, we need to somehow use the mapping in the reverse direction. 
This problem is known as the problem of answering queries using views [1], 
and is conceptually much more challenging.  
Example QP1(x) :- DbResearcher(x);  
Query Rewriting:  DbResearcher(x),Office(x,DBLab)=DbLabMember(x) 

                      QP3(x)⊇DbLabMember(x) 
 
The problem is well understood for the case of relational queries and views, and 
authors describe an algorithm that applies to the XML setting. The key challenge of 
XML is the nesting structure of the data (and hence of the query) – relational data is 
flat. 
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3.2.1 Query Representation 
 
Current algorithm operates over a graph representation of queries and mappings. 
Suppose for two sources S1 and S2  (Fig.7a) we are given the following XQuery for 
all advisees of Ullman, posed over source S1 (Fig.7b). Note that the result element in 
the query simply specifies the root element for the resulting document. 

Source (S2): 
 
people 
    faculty* 
    student 
        name  

advisor*

Target (S1): 
 
people 
    faculty* 
        name  
        advisee* 

student*

The schemas differ in how they represent 
advisor-advisee information. S1 puts 
advisee names under the corresponding 
faculty advisor whereas S2 does the 
opposite by nesting advisor names data 
under corresponding students. 

Fig.7a: Query representation example. Data sources S1 and S2. 

<result> {  
   for $faculty in  /S1/people/faculty, 
         $name in $faculty/name/text(), 
         $advisee in $faculty/advisee/text() 
    where $name = “Ullman” 
    return 
           <student> {$advisee} </student> 
} 
</result>

<result> 

name  advisee 
$name = “Ullman” 

<student>   {$advisee} 

S1 
 
people 
 
faculty 

Fig.7b: Query posed over S1. 

Fig.7c: Query tree pattern. 

We could also represent mapping both literally and graphically (Fig.8). Each box in 
the figure corresponds to a query block, and indentation indicating the nesting 
structure. With each block associated the following constructs that are manipulated 
by algorithm: 
 
A set of tree patterns: XQuery's FOR clause binds variables, e.g., $faculty in 
/S1/people/faculty binds the variable $faculty to the nodes satisfying the XPath 
expression. The bound variable can then be used to define new XPath expressions 
such as $faculty/name and bind new variables. Algorithm consolidates XPath 
expressions into logically equivalent tree patterns for use in reformulation4. For 
example, the tree pattern for our example query is indicated by the thick forked line 
(Fig.7c). For simplicity of presentation, we assume here that every node in a tree 
pattern binds a single variable; the name of the variable is the same as the tag of the 
corresponding tree pattern node. Hence, the node advisee of the tree pattern binds the 
variable $advisee. 
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A set of predicates: a predicate in a query specifies a condition on one or two of the 
bound variables. Predicates are defined in the XQuery WHERE clause over the 
variables bound in the tree patterns. The variables referred to in the predicate can be 
bound by different tree patterns. In our example, there is a single predicate: 
name="Ullman". If a predicate involves a comparison between two variables, then it 
is called a join predicate, because it essentially enforces a relational join. 
 

                   faculty 
 
 

name  advisee 
$advisee=$student 

<advisor> {$name}

                        S1 
<people>             people 

               faculty 

                  name 

<faculty> {$name}

student
<student>

<name>     {$student}

<S2> 

Fig.8a: Schema mapping between S1 and S2 

<S2>  
   
  
<people> {:  $people=/S1/people :} 
      
 
 <faculty> {: $name=$people/faculty/name/text():} 
         { $name} 
 </faculty> 
  
 
<student>{: $student=$people/student/text():} 
         <name> { $student } </name> 
         <advisor> {: $faculty=$people/faculty, 
             $name=$faculty/name/text(), 
                              $advisee=$faculty/advisee/text() 
            where   $advisee=$student :} 
            { $name } 
         <advisor> 
      </student> 
   </people>  
</S2> 

Fig.8b: Tree pattern for schema 
mapping between S1 and S2 

Output results: output, specified in the XQuery RETURN clause, consists of 
element or attribute names and their content. An element tag name is usually 
specified in the query as a string literal, but it can also be the value of a variable. It 
enables transformations in which data from one source becomes schema information 
in another. In our query graph (Fig.7c), an element tag is shown in angle brackets. 
Hence, the element tag of the top-level block is result. The element tag of the inner 
block is student. The contents of the returned element of a query block may be a 
sequence of elements, attributes, string literals, or variables. In the figure, the 
variable/value returned by a query block is enclosed in curly braces. Thus, the top 
level block of our example query has empty returned contents, whereas the inner 
block returns the value of the $advisee variable. We use the same representation for 
mappings as for queries. In this case, the nesting mirrors the template of the target 
schema. The Fig.8a and Fig.8b show the mapping between the following schemas 
and its graph representation. 
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3.2.2 The Rewriting Algorithm 
 
Rewriting algorithm makes the following simplifying assumptions about the queries 
and the mappings.  
 

 The query over the target schema contains a single nontrivial block, i.e., a 
block that includes tree patterns and/or predicates. The mapping, on the other 
hand, is allowed to contain an arbitrary number of blocks.  

 
 All “returned” variables are bound to atomic values, i.e., text() nodes, rather 

than XML element trees (this particular limitation can easily be removed by 
expanding the query based on the schema). The variable $people (Fig.8a) is 
bound to an element; variables $name and $student are bound to values.  

 
 Queries are evaluated under a set semantics. In other words, we assume that 

duplicate results are eliminated in the original and rewritten query. 
 

 Tree pattern uses the child axis of XPath only. It is possible to extend the 
algorithm to work with queries that use the descendant axis.  

 
 For purposes of exposition, we assume that the schema mapping does not 

contain sibling blocks with the same element tag. Handling such a case 
requires the algorithm to consider multiple possible satisfying paths (and/or 
predicates) in the tree pattern. 

 
Intuitively, the rewriting algorithm performs the following tasks. Given a query Q, it 
begins by comparing the tree patterns of the mapping definition with the tree pattern 
of Q – the goal is to find a corresponding node in the mapping definition's tree 
pattern for every node in the Q’s tree pattern. Then the algorithm must restructure 
Q’s tree pattern along the same lines as the mapping restructures its input tree 
patterns (since Q must be rewritten to match against the target of the mapping rather 
than its source). Finally, the algorithm must ensure that the predicates of Q can be 
satisfied using the values output by the mapping. The steps performed by the 
algorithm are: 
 
Step 1: pattern matching. This step considers the tree patterns in the query, and 
finds corresponding patterns in the target schema. Intuitively, given a tree pattern, t 
in Q, our goal is to find a tree pattern t' on the target schema such that the mapping 
guarantees that an instance of that pattern could only be created by following t in the 
source. The algorithm first matches the tree patterns in the query to the expressions 
in the mapping and records the corresponding nodes. The darker lines in the 
representation of the schema mapping denote the tree pattern of the query (Fig.7c) 
and its corresponding form in the mapping (Fig.8b). The algorithm then creates the 
tree pattern over the target schema as follows: starting with the recorded nodes in the 
mapping, it recursively marks all of their ancestor nodes in the output template. It 
then builds the new tree pattern over the target schema by traversing the mapping for 
all marked nodes. If no match is found, then the resulting rewriting will be empty 
(i.e., the target data does not enable answering the query on the source). 
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Step 2: Handling returned variables and predicates. In this step the algorithm 
ensures that all the variables required in the query can be returned, and that all the 
predicates in the query have been applied. Here, the nesting structure of XML data 
introduces subtleties beyond the relational case. To illustrate the first potential 
problem, recall that our example query returns advisee names, but the mapping does 
not actually return the advisee, and hence the output of Step 1 does not return the 
advisee. We must extend the tree pattern to reach a block that actually outputs the 
$advisee element, but the <advisor> block where $advisee is bound does not have 
any sub-blocks, so we cannot simply extend the tree pattern. Fortunately, the 
<advisor> block enforces equality between $advisee and $student, which is output 
by the <name> block. We can therefore rewrite the tree pattern as $student in 
/S2/people/student, $advisor in $student/advisor, $name in $student/name. Of 
course, it is not always possible to find such equalities, and in those cases there will 
be no rewriting for that pattern.  
 
Query predicates can be handled in one of three ways. First, a query predicate (or one 
that subsumes it) might already be applied by the relevant portion of the mapping (or 
might be a known property of the data being mapped). In this case, the algorithm can 
consider the predicate to be satisfied. A second case is when the mapping does not 
impose the predicate, but returns all nodes necessary for testing the predicate. Here, 
the algorithm simply inserts the predicate into the rewritten query. The third 
possibility is more XML-specific: the predicate is not applied by the portion of the 
mapping used in the query rewriting, nor can the predicate be evaluated over the 
mapping's output – but a different sub-block in the mapping may impose the 
predicate. If this occurs, the algorithm can add a new path into the rewritten tree 
pattern, traversing into the sub-block. Now the rewritten query will only return a 
value if the sub-block (and hence the predicate) is satisfied. 
 

In our case, the query predicate can 
be reformulated in terms of the 
variables bound by the replacement 
tree pattern as follows: 
$advisor="Ullman". The resulting 
rewritten query in our example is 
the following (Fig.9). More detailed 
formalization of current algorithm is 
available in [3, 10]. 

<result> {  
   for $faculty in  /S2/people/student, 
         $advisor in $student/advisor/text(),
         $name in $student/name/text() 
    where $advisor = “Ullman” 
    return 
           <student> { $name } </student> 
} 
</result> 

  

Fig.9: Reformulated query 
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4 CONCLUSIONS AND FUTURE WORK 
 
Here is some experimental results on small number of 15 nodes (Table 1). The 
second and third columns show the reformulation time for the test queries and the 
number of reformulations obtained (i.e., number of queries that can be posed over the 
nodes to obtain answers to the query). They observe that the reformulation times are 
quite low, even though some of them required traversing paths of length 8 in the 
network. Hence, sharing data by query reformulation along semantic paths appears to 
be feasible.  
  
Query Description Reformulation time # of reformulations 

Q1 XML-related projects. 0.5 sec 12 
Q2 Co-authors who reviewed each 

other's work. 
0.9 sec 25 

Q3 PC members with a paper at 
the same conference. 

0.2 sec 3 

Q4 PC chairs of recent 
conferences + their projects. 

0.5 sec 24 

Q5 Conflicts-of-interest of PC 
members. 

0.7 sec 36 

Table 1: The test queries and their respective running times. 
 
Among major contributions authors mentioned: 
 

 Mapping language for mapping between sets of XML source nodes with 
different document structures 

 Architecture that uses the transitive closure of mappings to answer queries 
 Algorithm for query answering over this transitive closure of mappings, 

which is able to follow mappings in both forward and reverse directions 
 
And there are several directions of the future work: 

 
 More efficient reformulation algorithm 
 Semantic network analysis – eliminate redundant mappings and inconsistent 

mappings 
 Query caching to speed up query evaluation 

 
At a more conceptual level Piazza paves the way for a fruitful combination of data 
management and knowledge representation techniques in the construction of the 
Semantic Web. Techniques offered in Piazza are not a replacement for rich 
ontologies and languages for mapping between ontologies. Its goal is to provide the 
missing link between data described using rich ontologies and the wealth of data that 
is currently managed by a variety of tools. Finally, we note that Piazza is a 
component of the larger Revere Project [2] that attempts to address the entire life-
cycle of content creation on the Semantic Web. 
Just as older database systems suddenly became compatible by adopting a consistent 
relational model, so unstructured web data, or XML-schema definitions can, 
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essentially, also adopt a relational model, allowing significantly more power to 
brought to bear on solving data-modeling problems. 
 
There are still a lot of questions about efficiency if network is quite large, or how we 
will manage cyclic and redundant paths for algorithm?  Analysis of mapping 
networks for information loss also required. It is also interesting to study Piazza's 
utility in investigating strategies for caching and replicating data and mappings for 
reliability and performance. 
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