Load Awareness In FliX

Mohammad Alrifal
Supervisor: Dr. Ralf Schenkel

Overview

e What is FliX?

e Extended version of FliX

* Online Caching

e Load-aware Caching in FliX

What Is FliX?

Flexible Framework for Indexing complex collections of
XML documents

e N
O Build Phase / o
S “ . AR
&) | | ! | it N
5 O =R | :
= S Meta Document | | 5
0 2 NTRE Builder .
s W I AN
< ; g:;i | Index Builder |:i

Indexing Strategies

Types of queries

* Single-source query: s// T
— S iIs a single element
— Tis atag name
— Example: ElementByID(53) // book
— Result of query is the set R(q) = (s,b,d)
— b is a descendant element of s with tag name T and minimal distance d

o All-sources query: S//T
— Sis atag name
— Tis atag name
— Example: author // book
— Result of query is the set R(q) =(a,b,d)
— als an element with tag name S
— b is a descendant element with tag name T and minimal distance d

Query Evaluation in FliX

Stepl

Query Evaluation in FliX

A /C\“\b
¥
Stepl L

Step2

Query Evaluation in FliX

A /C\{b
'
Step1l ©

Step2

Step3

Query Load

e Query Load QL ={q,,...,dy}, N = query load size
— (¢ Is either of type (s // T) or (S//'T)
— R cR(q) IS the subset of query results that the client actually read
— We consider a fixed window of the query load of size W
— The absolute frequency of a query f(q;) = |{k:QL(k)=q,}|
— The relative frequency of a query rf(g) = f(a)
W

— Total cost of the query load QL: ¢(QL) :ic(qi)

= > f(a;)*c(q)

qeQL

Goal -> minimize the total cost of query load

Proposed solution - cache results of frequent queries

Extended version of FliX

Statistics
‘ e T e
1 O Build Phase
< < “— ©
S o S
o £ 2 G | | Meta Document
n 2 S NITRE Builder
= uw of O L4 >0
= R .
X 51 | Index Builder
B T

Indexing Strategies

Query Evaluation steps In FliX

Stepl

»ld
P

Step2

0 ~ a ’f‘\.

- Cache query results (green colored nodes)
- cache source nodes of next step (orange colored nodes)

- Keep meta information about each step (cost, # of results, max distance, etc)

Online Caching (background)

* Online vs. offline caching algorithms
— Offline: future requests are known
— Online: future requests can not be predicted

e Caching models:

— Bit Model: cost (object) = size (object)
— Fault Model: cost (object) =1, size (Object) =arbitrary
— Cost Model: cost (object) = arbitrary, size (object)=1

— General Model: both cost (object) , size (object) = arbitrary

Caching in FliX : online , general model

Online Caching (background)

e Caching problem
— Given a cache with a specified size k

[l [l
‘ AN _F &N A4S V= Ve W oW TV . W_.W.\ I\‘ 127N 1 1 ll\f\+f\ +I\ I\I’\lf\f\+n

Optimal replacement policy is needed! 5

* the total retrieval cost of all requests is minimized.

* the total size of objects in the cache is at most k.

Caching algorithm

« Some well-known algorithms (replacement policies) :
— FIFO (first cached is first replaced)
— LRU (least recently used is replaced)
— LandLord (frequency +cost + size)

Caching in FliX : Hybrid (LRU + frequency + cost + size)

replace query with minimum benefit , where:

rf (g).c(q)

benefit (q) = a(q).|R(q) |

-rf(q) : relative frequency of g

-c(g): cost (i.e. evaluation time) of g

-|R (q)|: # of result nodes of g

-a(qg): age (i.e. how far is the last occurrence) of g

Load—aware caching algorithm in FliX

no

In cache

ax d in cach
>d

\ 4 \ 4

Return results Get sources
up to d for next step

A 4

new max d
>d

* Execute one evaluation step

A

Return results up to d

nough space
in cache

Get min benefit of last

step of all queries in cache

yes > benefit

f this ste

Remove cached step

A

Cache new step

A

Cache structure

Cached queries

——

uery load .

Query : cost size results d sources
query | Distance Q2 1 500 [2300 [a|bfc|2
Q1 3 Q4
02 > 2 350 |[1200 |[d|e|f|4
Q3 6 3 780 |560 |d|s|k|5
Q4 5
Q2 3 4 1000 | 1200 |m|n|f|6
Q4 |4
Q1 6
02 . Q3 1 200 [2300 |g|hl|il2

2 150 | 900 y|lv|o|3

3 830 [480 |r|h|pl|4

