
Advanced Divide-and-Conquer Algorithms
for Computing Two-Hop Covers

for Large Collections of XML Documents

Oberseminar AG 5, WS ´04/´05
Andreas Broschart

Supervisor: Dr.-Ing. Ralf Schenkel

HOPI

• index for XML document collection,
use Two-Hop Cover concept (Cohen et al.)
=> compressed storage of transitive closure (on element level)

Lout(u)∩Lin(v) there is a connection from u to v

u w v

Lout(u) = {w, ...}
Lin(v) = {w, ...}

⇔∅≠

w center node

Computation of HOPI and goals

• compute HOPI using divide-and-conquer algorithm:
– Compute the partitioning for the document collection

– Compute the single partition covers

– Join the partition covers

• Our goals:
– reduce the size of the computed 2-hop cover
– reduce the time needs

P

C

J

Partitioning process – example for frontier

d3 d6

d2 d4

d1

10

3 5

9

current partition

frontier

Minimize sum of edge weights
in between partitions!

P
So far:
Edge weight: count the number of links in between two documents C

J

Variation of edge weights
New:
• #connections induced by two documents: A‘*D‘
• #elements connected by two documents: A‘+D‘

u vA D

dx dy

collection

D‘A‘

P

CComputation of A‘, D‘: use skeleton graph [ICDE2005] Computation of A, D: easy (pre/post order)

J

New connection based partitioner

• old approach counts number of elements in each partition
=> no uniform distribution of connections over partitions

• new approach creates transitive closure of partition‘s element graph
=> limit: size of transitive closure

• Two variants:
– optimistic approach:

assume that candidate document fits into the current partition
(with possibility to do rollback)

– pessimistic approach:
estimate the number of new connections

P

C

J

Estimation
before candidate document is assigned to current partition:
• compute transitive closure for element graph of candidate document
• consider all links (v,w) from candidate document

to current partition and vice versa

∑=
w)(v,

(w)sdescendant(v)*#ancestors#sconnectionnew # TCTC

v

w

TC of current partition
v

w

P
TC of candidate document

Cconnect every ancestor of v with every descendant of w:
estimation=3*4=12 is correct.
But: we can also over- and underestimate! J

Optimistic partitioning with rollback
TC Log

1

2

3

4

current partition

5

current document

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)
(3,3,0)
(3,4,1)
(4,4,0)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)

(3,4,1)
(3,3,0)

(4,4,0)
(5,5,0)

new (5,5,0)(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)

(3,4,1)
(3,3,0)

(4,4,0)
(5,5,0)

new (5,5,0)new (5,5,0)
new (1,5,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)

(2,2,0)
(2,3,1)
(2,4,2)
(3,3,0)
(3,4,1)
(4,4,0)
(5,5,0)

(1,5,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)

(3,3,0)
(3,4,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)

(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,5,0)

(3,3,0)
(3,4,1)

(1,5,1)

new (5,5,0)
new (1,5,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(1,4,2)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,4,1)
(5,5,0)

(3,3,0)
(3,4,1)

new (5,5,0)
new (1,5,1)
new (5,4,1)
update (1,4,3)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,2)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,4,1)
(5,5,0)

(3,3,0)
(3,4,1)

new (5,5,0)
new (1,5,1)
new (5,4,1)
update (1,4,3)

new (5,5,0)
new (1,5,1)
new (5,4,1)
update (1,4,3)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,2)

R
ollback!

(1,4,3)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,4,1)
(5,5,0)

(3,3,0)
(3,4,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,4,1)
(5,5,0)

(3,3,0)
(3,4,1)

new (5,5,0)
new (1,5,1)
new (5,4,1)

new (5,5,0)
new (1,5,1)
new (5,4,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,4,1)
(5,5,0)

(3,3,0)
(3,4,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,5,0)

(3,3,0)
(3,4,1)

new (5,5,0)
new (1,5,1)
new (5,5,0)
new (1,5,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(1,5,1)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,5,0)

(3,3,0)
(3,4,1)

(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,5,0)

(3,3,0)
(3,4,1)

new (5,5,0)new (5,5,0)(1,1,0)
(1,2,1)
(1,3,2)
(1,4,3)
(2,2,0)
(2,3,1)
(2,4,2)

(4,4,0)
(5,5,0)

(3,3,0)
(3,4,1)

Rollback finished!

P

C

J

How do we connect the partition covers?

• for each cross partition link (u,v):
• get known ancestors of u within 2-hop labeling
• get known descendants of v within 2-hop labeling

• choose v as center node for connecting the partition covers

u v

v1

v2

v3

u1

u2

CP link P

C

J

Connecting the partition covers

Join partition covers along cross-partition links in different orders:

Up to now:
• Order by (linktarget ID, linksource ID) ascending
New:
• Order by A‘*D‘ descending
• Order by A‘*D‘ ascending
• Order by A‘+ D‘ descending
• Order by A‘+ D‘ ascending
• Order by max {A‘, D‘} descending
• Order by min {A‘, D‘} ascending

u vA‘ D‘

collection

CP link

P

C

J

Experimental setup

• DBLP fragment with 6,210 documents
• 168,991 elements, 162,781 edges, 25,368 links
• Transitive closure: 344,992,370 connections
• CPU: Intel Pentium 4, 3 GHz
• RAM: 1 GB
• HDD: 120 GB
• OS: Windows XP Professional
• VM: SUN Java 1.4.2
• DBS: Oracle 9.2

Comparing the old and new
partitioning approach

• old partitioning approach computes much faster
(3 min vs. 8 min - 30 min)

• new partitioning approach fills the partitions in a balanced way
=> better scalability when computing partition covers simultaneously

element based partitioning connection based partitioning

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

Sp
ee

du
p

1 2 3 4 5 6 7

number of CPUs

0

1

2

3

4

5

6

7

Sp
ee

du
p

1 2 3 4 5 6 7 8 9

number of CPUs

P

C

J

Variation of cover join order

cover join order cover size time [sec]
(oid2, oid1) ascending 16,649,966 250,589

A‘*D‘ descending 13,843,540 120,959
A‘*D‘ ascending 21,802,078 229,417

max{A‘,D‘} descending 12,186,321 158,224
min{A‘,D‘} ascending 16,771,056 212,919

A‘+D‘ descending 12,186,889 107,121
A‘+D‘ ascending 22,446,682 207,797

cover join order cover size time [sec]
(oid2, oid1) ascending 16,750,820 193,390

Base line: element based partitioning approach, edge weight: #links

Connection based partitioning approach, edge weight: #links

P

C

J

Variation of edge weights

Base line: element based partitioning approach, cover join order: (oid2, oid1) asc.

edge weight cover size time [sec]
#Links 16,750,820 193,390

Connection based partitioning approach, cover join order: max{A‘,D‘} desc.

edge weight cover size time [sec]
#Links 12,186,321 158,224
A‘+D‘ 10,186,488 91,528
A‘*D‘ 10,410,923 104,534

P

C

J

Variation of transitive closure size

• cover size shrinks with increasing transitive closure size
• required time shrinks with increasing transitive closure size
(up to a certain amount of connections)

#conns/part. cover size time[sec]
1 Mio. 10,186,488 91,528
5 Mio. 9,606,602 76,649

10 Mio. (*) 9,444,487 77,478

P

C
(*): computation on server due to large memory needs during partitioning

J

Summary experiments

best approach in our experiments:
• connection based partitioning, TCmax=10 Mio. connections,

edge weight: A‘+D‘, cover join order: max{A‘,D‘} descending
with respect to baseline:
• size of 2-hop cover decreased from 16,750,820 to 9,444,487 entries

representing 344,992,370 connections
=> savings ~44%
=> compression ratio of 36.5

• simultaneously time need decreased from 193,390 sec to 77,478 sec
=> savings ~60%

Future work

• multithreaded connection based partitioner
• multithreaded computation of partition covers
• local improvement methods for existing valid partitionings
(Kernighan-Lin, Fiduccia-Mattheyses, Simulated Annealing, ...)
⇒ less cross partitioning links
• usage of 2-hop cover algorithm in general graph applications,

beyond usage of indexing xml document collections

Overestimation

u

v

w

TC of current partition

u w

v

TC of candidate document

evaluate (u, w): u has 2 ancestors, w has 4 descendants.
I.e. estimation=2*4=8 connections.
evaluate (v, w): v has 3 ancestors, w has 4 descendants.
I.e. estimation=3*4=12 connections.
Together with previous estimation: 20 connections.
Estimation too high: we only need 12 connections
Document fits into partition but is rejected => too small partitions

Underestimation

u

x

v

w

u
v

w
x

TC of candidate document TC of current partition

evaluate (u, v): u has 2 ancestors, v has 2 descendants.
I.e. estimation=2*2=4 connections.
evaluate (w, x): w has 2 ancestors, x has 1 descendant.
I.e. estimation=2*1=2 connections.
Together with previous estimation: 6 connections.
Estimation too low: we need 7 connections - (u,x) not considered
=> partition gets too big

Computation of A‘ and D‘

14

2

3

(3,1,2) (3,1,2)

(2,3,1)

(4,1,3)
(A, D, depth) per document,
derived from pre-/post-order

Skeleton graph

1 2

34

We want to compute the number of ancestors A‘
and descendants D‘ in the whole collection
Cost for computation of transitive closure too high!
=> Approximation by skeleton graph

Approximation of A‘ and D‘ (collectionwide)

• BFS starting with each node on skeleton graph
• Starting node gets descendants D of each visited node
• Visited node gets ancestors A of starting node

1131D
3423A
4321node

1 2

34

1

A‘=3
D‘=1
A‘=3
D‘=1

A‘=2
D‘=3

A‘=4
D‘=1

A‘=3
D‘=1

+3
A‘=2+3A‘=5
D‘=3

A‘=3
D‘=4 D‘=3

A‘=4+3A‘=7
D‘=1

A‘=3
D‘=4+1
A‘=3
D‘=5

D‘=1

A‘=3
D‘=5+1

A‘=3+3A‘=6
D‘=1

A‘=3
D‘=6

D‘=1

D‘(1)=D(1)+D(2)+D(3)+D(4)=6 approximates too big, but always upper bound.
Correct value: D‘(1)=D(1)+D(2)+D(4)=5.

