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HOPI

• index for XML document collection,
use Two-Hop Cover concept (Cohen et al.)
=> compressed storage of transitive closure (on element level)

Lout(u)∩Lin(v)              there is a connection from u to v

u w v

Lout(u) = {w, ...}
Lin(v) = {w, ...}

⇔∅≠

w center node



Computation of HOPI and goals

• compute HOPI using divide-and-conquer algorithm:
– Compute the partitioning for the document collection

– Compute the single partition covers

– Join the partition covers

• Our goals:
– reduce the size of the computed 2-hop cover
– reduce the time needs
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Partitioning process – example for frontier
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Minimize sum of edge weights
in between partitions!
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So far: 
Edge weight: count the number of links in between two documents C
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Variation of edge weights
New:
• #connections induced by two documents: A‘*D‘
• #elements connected by two documents: A‘+D‘

u vA D

dx dy

collection

D‘A‘
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CComputation of A‘, D‘: use skeleton graph [ICDE2005] Computation of A, D: easy (pre/post order)
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New connection based partitioner

• old approach counts number of elements in each partition
=> no uniform distribution of connections over partitions

• new approach creates transitive closure of partition‘s element graph
=> limit: size of transitive closure

• Two variants:
– optimistic approach: 

assume that candidate document fits into the current partition
(with possibility to do rollback)

– pessimistic approach: 
estimate the number of new connections
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Estimation
before candidate document is assigned to current partition:
• compute transitive closure for element graph of candidate document
• consider all links (v,w) from candidate document

to current partition and vice versa

∑=
w)(v,

(w)sdescendant(v)*#ancestors#sconnectionnew # TCTC

v

w

TC of current partition
v

w

P
TC of candidate document

Cconnect every ancestor of v with every descendant of w:
estimation=3*4=12 is correct.
But: we can also over- and underestimate! J



Optimistic partitioning with rollback
TC Log
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How do we connect the partition covers?

• for each cross partition link (u,v):  
• get known ancestors of u within 2-hop labeling
• get known descendants of v within 2-hop labeling

• choose v as center node for connecting the partition covers
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Connecting the partition covers

Join partition covers along cross-partition links in different orders:

Up to now:
• Order by (linktarget ID, linksource ID) ascending
New:
• Order by A‘*D‘ descending
• Order by A‘*D‘ ascending
• Order by A‘+ D‘ descending
• Order by A‘+ D‘ ascending
• Order by max {A‘, D‘} descending
• Order by min {A‘, D‘} ascending

u vA‘ D‘

collection

CP link

P

C

J



Experimental setup

• DBLP fragment with 6,210 documents
• 168,991 elements, 162,781 edges, 25,368 links
• Transitive closure: 344,992,370 connections
• CPU: Intel Pentium 4, 3 GHz 
• RAM: 1 GB
• HDD: 120 GB
• OS: Windows XP Professional
• VM: SUN Java 1.4.2
• DBS: Oracle 9.2



Comparing the old and new
partitioning approach

• old partitioning approach computes much faster
(3 min vs. 8 min - 30 min)

• new partitioning approach fills the partitions in a balanced way
=> better scalability when computing partition covers simultaneously

element based partitioning connection based partitioning
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Variation of cover join order

cover join order cover size time [sec]
(oid2, oid1) ascending 16,649,966 250,589

A‘*D‘ descending 13,843,540 120,959
A‘*D‘ ascending 21,802,078 229,417

max{A‘,D‘} descending 12,186,321 158,224
min{A‘,D‘} ascending 16,771,056 212,919

A‘+D‘ descending 12,186,889 107,121
A‘+D‘ ascending 22,446,682 207,797

cover join order cover size time [sec]
(oid2, oid1) ascending 16,750,820 193,390

Base line: element based partitioning approach, edge weight: #links

Connection based partitioning approach, edge weight: #links 
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Variation of edge weights

Base line: element based partitioning approach, cover join order: (oid2, oid1) asc. 

edge weight cover size time [sec]
#Links 16,750,820 193,390

Connection based partitioning approach, cover join order: max{A‘,D‘} desc.

edge weight cover size time [sec]
#Links 12,186,321 158,224
A‘+D‘ 10,186,488 91,528
A‘*D‘ 10,410,923 104,534
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Variation of transitive closure size

• cover size shrinks with increasing transitive closure size
• required time shrinks with increasing transitive closure size
(up to a certain amount of connections)

#conns/part. cover size time[sec]
1 Mio. 10,186,488 91,528
5 Mio. 9,606,602 76,649

10 Mio. (*) 9,444,487 77,478
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Summary experiments

best approach in our experiments:
• connection based partitioning, TCmax=10 Mio. connections,

edge weight: A‘+D‘, cover join order: max{A‘,D‘} descending
with respect to baseline:
• size of 2-hop cover decreased from 16,750,820 to 9,444,487 entries

representing 344,992,370 connections
=> savings ~44%
=> compression ratio of 36.5

• simultaneously time need decreased from 193,390 sec to 77,478 sec 
=> savings ~60%



Future work

• multithreaded connection based partitioner
• multithreaded computation of partition covers
• local improvement methods for existing valid partitionings
(Kernighan-Lin, Fiduccia-Mattheyses, Simulated Annealing, ...)
⇒ less cross partitioning links
• usage of 2-hop cover algorithm in general graph applications,

beyond usage of indexing xml document collections



Overestimation

u

v

w

TC of current partition

u w

v

TC of candidate document

evaluate (u, w): u has 2 ancestors, w has 4 descendants.
I.e. estimation=2*4=8 connections.
evaluate (v, w): v has 3 ancestors, w has 4 descendants.
I.e. estimation=3*4=12 connections.
Together with previous estimation: 20 connections.
Estimation too high: we only need 12 connections
Document fits into partition but is rejected => too small partitions



Underestimation
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TC of candidate document TC of current partition

evaluate (u, v): u has 2 ancestors, v has 2 descendants.
I.e. estimation=2*2=4 connections.
evaluate (w, x): w has 2 ancestors, x has 1 descendant.
I.e. estimation=2*1=2 connections.
Together with previous estimation: 6 connections.
Estimation too low: we need 7 connections - (u,x) not considered
=> partition gets too big



Computation of A‘ and D‘
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Skeleton graph
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We want to compute the number of ancestors A‘ 
and descendants D‘ in the whole collection
Cost for computation of transitive closure too high! 
=> Approximation by skeleton graph



Approximation of A‘ and D‘ (collectionwide)

• BFS starting with each node on skeleton graph
• Starting node gets descendants D of each visited node
• Visited node gets ancestors A of starting node
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D‘(1)=D(1)+D(2)+D(3)+D(4)=6 approximates too big, but always upper bound.
Correct value: D‘(1)=D(1)+D(2)+D(4)=5. 


