Probabilistic Scheduling for Top-k Index Processing

Anna Moleda

Max Planck Institute for Computer Science International Max Planck Research School

supervised by: Martin Theobald and Gerhard Weikum

Oberseminar, 23th of March 2005

Inverted Index Threshold Algorithm

Example Query

- natural language query: What is the history of the Phoenix symbol?
- query in terms: history phoenix symbol
- get index lists for query terms

・ロット (雪) (目) (日) (日)

Inverted Index Threshold Algorithm

How to process index lists?

random access

sorted access

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

Candidates

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $0.6 \leq d_4 \leq 2.6$

Candidates

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $1.5 \leq d_4 \leq 2.5$

Candidates

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3 d₄ = 1.7

Candidates

Anna Moleda Probabilistic Scheduling for Top-k Index Processing

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $0.5 \le d_2 \le 1.6$

Candidates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $0.5 \le d_2 \le 1.6$ $0.9 \le d_7 \le 1.6$

Candidates

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $0.7 \le d_2 \le 1.6$ $0.9 \le d_7 \le 1.6$

Candidates

<ロ> <部> <部> <=> <=> <=> <=</p>

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $0.7 \le d_2 \le 1.6$ $0.9 \le d_7 \le 1.5$

Candidates

 $0.4 \leq d_9 \leq 1.5$

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $0.7 \le d_2 \le 1.4$ $0.9 \le d_7 \le 1.5$

Candidates

 $1.1 \leq d_9 \leq 1.3$

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $1.1 \le d_9 \le 1.3$ $0.9 \le d_7 \le 1.5$

Candidates

 $0.7 \leq d_2 \leq 1.4$

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $1.1 \le d_9 \le 1.3$ $1.1 \le d_7 \le 1.3$

Candidates

 $0.7 \leq d_2 \leq 1.4$

(ロ) (部) (E) (E) (E)

Inverted Index Threshold Algorithm

Algorithm for Sorted Accesses

Top-3

 $d_4 = 1.7$ $1.1 \le d_9 \le 1.3$ $1.1 \le d_7 \le 1.3$

Candidates

 $0.7 \leq d_2 \leq 1.4$

phoenix	history	symbol
d ₄ (0.6)	d ₄ (0.9)	d ₄ (0.2)
d ₂ (0.5)	d ₇ (0.9)	d ₂ (0.2)
d _o (0.4)	d _o (0.7)	d ₇ (0.2)

(ロ) (部) (E) (E) (E)

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

The Variety of Lists

list length

score domain [1.0, 0.0]

Anna Moleda Probabilistic Scheduling for Top-k Index Processing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

The Variety of Lists

list length

- long lists > 200 000 items
- short lists < 5000 items
- score domain [1.0, 0.0]

<ロ> <同> <同> <同> <同> <同> <三</p>

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

The Variety of Lists

- list length
 - long lists > 200 000 items
 - short lists < 5000 items
- score domain [1.0, 0.0]
 - lists with high scores will give us good candidates
 - lists with low scores will reduce candidates' best scores

	Motivations Approaches Results	Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous	
Schedules			

- round-robin
- predicting score decrease
- candidates pruning

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Anna Moleda

Probabilistic Scheduling for Top-k Index Processing

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Anna Moleda

Probabilistic Scheduling for Top-k Index Processing

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Predicting Score Decrease

Anna Moleda

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Candidates Pruning

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t7	t ₈	t,	t ₁₀
document ₅₄	•	•	•		•	•	•		•	
$document_1$		•	•	•	•	•		•	•	
document ₁₆		•		•		•		•		
document ₁₂		•	•	•	•	•		•		
document 21			•			•	•		•	
document 7	•	•		•	•	•		•	•	
document ₄			•		•		•			

Anna Moleda Probabilistic Scheduling for Top-k Index Processing

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Candidates Pruning

	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆	t ₇	t ₈	t,	t ₁₀
document ₅₄		•	•		•	•			•	
document ₁		•	•	•	•	•		•	•	
document ₁₆		•		•		•		•		
document ₁₂		•	•	•	•	•		•		
document 21			•			•	•		•	
document 7		•		•	•	•		•	•	
document ₄	NJ.		•		•					

Anna Moleda Probabilistic Scheduling for Top-k Index Processing

Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous

Random Accesses

- conjunctive queries
- negation
- small number of candidates left
- very bad score distribution and long lists

	Motivations Approaches Results	Predicting Score Decrease Candidates Pruning Random Accesses Miscellaneous	
Miscellaneous			

- dynamic threshold
- scanning in phases
- dynamic number of threads

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Results for Sorted Access Only

.GOV collection, 50 queries

Anna Moleda Probabilistic Scheduling for Top-k Index Processing

<ロ> <部> <部> <=> <=> <=> <=</p>

Results for Sorted Access Only

.GOV collection, 50 queries

▶ prediction of score decrease - 0% :-(

Results for Sorted Access Only

.GOV collection, 50 queries

- ▶ prediction of score decrease 0% :-(
- candidates pruning 7 14%