
Chord: A Scalable Peer-to-peer
Lookup Protocol
for Internet Applications

Speaker: Cathrin Weiß
11/23/2004
Proseminar

Peer-to-Peer Information Systems

2

Overview

I. Introduction

II. The Chord Protocol and how it works

III. Disadvantages and Improvements

IV. Applications using Chord

V. Summary

3

I. Introduction

Problem:
Decentralized network with several peers (clients)
How to find specific peer that hosts desired data within this network?

N5

N3

N2

N1

N4

Looks for data

Networkhas matching data

N9

N6

N7

N8

4

I. Introduction

Solution:
Routing queries along the network via known peers.
(Example: quite inefficient!)

N5

N3

N2

N1

N4

Looks for data

Network

has matching data

Is able to respond!

N6 N7

N8

N9

N10
1

1

1

1

2

2

2

3

4

5

Overview

I. Introduction

II. The Chord Protocol and how it works

III. Disadvantages and Improvements

IV. Applications using Chord

V. Summary

6

II. The Chord Protocol and how it works

What is Chord?

Efficient
Simple
Provable Performant
Provable Correct
Scalable
Supporting only one operation: mapping a given key onto a node

lookup protocol

7

II. The Chord Protocol and how it works

Consistent Hashing:

Using SHA1 (secure hash standard) Chord assigns each node and key a
m-bit identifier
Node (-> hashing IP Address)

N2

N10

N20

N40

N50

N60
k7

k11

k16

k25k39

k46

k58

N63

Keys(->hashing key itself)

Assign each key to its successor

ID Space: 0 to 2m-1

Here: m = 6

=> ID Range 0… 63

8

II. The Chord Protocol and how it works

Predecessor: pointer to the previous node
on the id circle

Successor: pointer to the succeeding node
on the id circle

ask node n to find the
successor of id

If id between n and it successor
return successor

Else forward query to n´s
successor and so on

A first simple (but slow!) lookup algorithm

=>#messages linear in #nodes

9

II. The Chord Protocol and how it works

Protocol Improvements

Introduce a routing table
m: number of bits in the key/node identifiers
n: ID of a node
ith entry: the closest node that succeeds node N with ID n by at

least 2i-1 mod 2m

⇒ Finger table could contain up to m entries

Each node has a successor list of its r successing nodes

10

II. The Chord Protocol and how it works

Finger Table for scalable node localisation: not enough information to find node
directly but nodes in direct neighbourhood

11

II. The Chord Protocol and how it works

//ask node n to find the successor
//of id
n.find_successor(id)
if (id in (n,successor])
return successor

else
n‘ = closest_preceding_node(id);
return n‘.find_successor(id);

More efficient algorithm using finger tables

//search the local table for the
//highest predecessor of id
n.closest_preceding_node(id)

for i=m downto 1 do
if (finger[i] in (n,id))

return finger[i];
return n;

12

II. The Chord Protocol and how it works

⇒#messages = log(#nodes) !!

Fig. 2.4

13

II. The Chord Protocol and how it works

Node joins and stabilization process

Lookups are expected to be correct (though the set of participating
nodes can change!)

⇒ Important: Any node´s successor pointer is always up to date.

⇒ Stabilization protocol running periodically in the background and
updating Chord´s finger tables and successor pointers

14

II. The Chord Protocol and how it works

Stabilize()
if n is not its successor´s
predecessor it changes its successor

Nypredecessor

…successor

Nx

Nz

…predecessor

Nzsuccessor

Ny
Am I your predecessor?

…predecessor

Nysuccessor

-> No it´s Ny

15

II. The Chord Protocol and how it works

Notify()

NILpredecessor

…successor

Nx

Nz

Ny
Might be my predecessor!

Nxpredecessor

…successor

Nypredecessor

…successorFix_fingers()
updates finger tables

Nz changes predecessor to Ny because Ny between Nx and Nz.

Nz changes predecessor to Nx because predecessor = nil

16

II. The Chord Protocol and how it works

Illustration (Joining node)

a)

b) c)

a) Initial state

b) node 26 enters the system & finds its successor

c) Stabilize procedure updates successor of n21 to n26

17

II. The Chord Protocol and how it works

Node failures

It is provable that even if half of the nodes in the network fail, lookups
are executed correctly!

18

Overview

I. Introduction

II. The Chord Protocol and how it works

III. Disadvantages and Improvements

IV. Applications using Chord

V. Summary

19

III. Disadvantages and Improvements

Why is Chord itself no search engine?

Protocols are NO applications
Upper layers have to coordinate purposes
Chord only supports “exact match“, cannot handle queries similar to
one or more keys

Suitability for use in search engines
Chord basically not suitable because specific information about desired
data is needed to be able to compute the query key´s hashvalue

There exist several proposals for modifications to be able to find what is
wanted without prior knowledge (meta data search extension)

20

III. Disadvantages and Improvements

Chord´s disadvantages
asymmetric lookup => lookup from node n to node p could take
a different number of hops than vice versa

=> In huge Chord Rings lookup to one of near preceding nodes
routed clockwise over almost complete ring.

Approach for Improvement: S-Chord (->in-place notification of entry
changes)
Symmetric Structure:
- routing entry symmetry – „if p points to n then n points to p“
- routing cost symmetrie – lookup paths between to nodes very
likely are equal though they are not the same! (=>no routing
symmetry)
- finger table symmetry

21

Overview

I. Introduction

II. The Chord Protocol and how it works

III. Disadvantages and Improvements

IV. Applications using Chord

V. Summary

22

IV. Applications using Chord

DNS with Chord

Host names hashed to keys, corresponding IP addresses are values
Decentralized (no use for servers)
Routing information and host changes can be updated dynamically

Cooperative mirroring

Multiple providers of the same content
Load is spread evenly over all hosts by mapping data blocks onto hosts

23

Overview

I. Introduction

II. The Chord Protocol and how it works

III. Disadvantages and Improvements

IV. Applications using Chord

V. Summary

24

V. Summary

Simple, scalable, provable correct and performant

Any lookup requires O(log N) messages in a N node network

Even in unstable systems lookups are correct

Arbitrary implementation provided for developers
=> extendable in applications

25

Thank you

Thank you for your attention!

