
P-Grid : A Self-Organizing Access Structure for
P2P-Informationsystems

Xiaoli Zhang

11th December 2004

Wintersemester 2004/05
Proseminar : P2P Informationsystems

Professor : Prof. Weikum
Tutor : Josiane Parreira

1

Contents

I P-Grid : A Next-generation P2P Informationsystem 3

1 Introduction 3
1.1 What is P-Grid ? . 3
1.2 What is so special about it? . 3

2 P-Grid Distributed Search Structure 3
2.1 Example for P-Grid . 4
2.2 First Little Conclusion . 6
2.3 The P-Grid Search Algorithm . 6

3 Important Applications of P-Grid 7
3.1 Updates in P-Grid . 7
3.2 Handling Dynamic Addresses and Identify the Peers 8

4 P-Grid Construction 8
4.1 What Happens if two Peers meet? 9

5 Simulation 10

6 Conclusions 11

II Literature 12

2

Part I

P-Grid : A Next-generation P2P
Informationsystem
1 Introduction

1.1 What is P-Grid ?
Peer-To-Peer (P2P) systems are driving a major paradigm shift in the era of
genuinely distributed computing. But the limitations of client-server-based
systems become evident in an Internet-scale distributed environment. Resources
are concentrated on a small number of nodes, which must apply sophisticated
load-balancing and fault-tolerance algorithms to provide continuous and reliable
access.

1.2 What is so special about it?
Peer-to-peer systems offer an alternative to traditional client-server systems for
some application domains. In P2P systems, every node (peer) of the system acts
as both client and server and provides part of the overall information available
from the system. The P2P approach circumvents many problems of client-server
systems but results in considerably more complex searching, node organization,
security, and so on.

In this article we present Peer-Grid (P-Grid) , which draws on research in
distributed and cooperative information systems to provide a decentralized,
scalable data access structure. And P- Grid is a next generation peer-to-peer
platform for distributed information management file-sharing.

2 P-Grid Distributed Search Structure
P-Grid’s search structure exhibits the following properties:

• it is completely decentralized

• all peers serves as entry points for search

• interaction are strictly local

• it uses randomized algorithms for access and search

• probabilistic estimates of the success of a search request can be given

• the search is robust against failures

• it scales gracefully in the total number of nodes and data items

P-Grid can be imagined as a virtual binary search tree . It distributes replication
over a community of peers. Also it supports a search which is very effective -
which means, search time and number of generated messages grow in the ”running
time” O(log(2n)) with the number of data items n in the network. Unlike peers in
other approaches that construct scalable, tree-based, distributed indexing
structures; in an unreliable environment, 2-4 peers (like 2-4-trees) in P-Grid
perform construction and operations, like a search or an update, without any

3

central control or global knowledge.

As a resource allocation problem, the load balancing is critical to support
availability, accessibility, high scalability and throughput. If the load balancing
would be poor, it may in fact gradually transform a P2P system into a
backbone-based system as it was observed for Gnutella . For systems supporting
equality-based lookup of data only, a solution of the problem of non-uniform
workloads may be to apply hash functions to the data keys, thus uniformly
distributing workload, both for storage and query answering.

In combination with using balanced search structures, i.e., balanced distributed
search trees, this approach leads to uniform load distribution among the
participating peers. However, it is limited if further semantics of the data keys is
exploited, for example, in the simplest case when the ordering of data keys is used
to support prefix or range queries. This is critical for DB-oriented applications.

In P-Grid, each peer holds only part of the overall tree , which comes into
existence only through the cooperation of individual peers. Every participating
peer’s position is determined by its path, that is, the binary bit string representing
the subset of the tree’s overall information that the peer is responsible for.

2.1 Example for P-Grid

Figure 1 : Example P-Grid: Each peer is responsible for part of the overall tree.
When a peer receives a query it cannot answer, it refers to its routing table to find
the appropriate peer to forward the request to.

For example, the path of Peer 4 in Figure 1 is 10, so it stores all data items whose
key begins with 10. The paths implicitly partitions the search space and define the
structure of the virtual binary search tree. As Figure 1 illustrates, multiple peers

4

can be responsible for the same path.

Peer 1 and Peer 6, for example, both store keys beginning with 00. Such
replication improves the P-Grid’s robustness and responsiveness because we
assume that peers are not always online, but rather with a certain, possibly low,
probability. P-Grid’s routing approach is simple but efficient:

For each bit in its path, a peer stores the address of at least one other peer that is
responsible for the other side of the binary tree at that level. Thus, if a peer
receives a binary query string it cannot satisfy, it must forward the query to a
peer that is ”closer” to the result.

In the example P-Grid: Peer 1 forwards queries starting with 1 to Peer 3, which is
in Peer 1’s routing table and whose path starts with 1. Peer 3 can either satisfy
the query or forward it to another peer, depending on the next bits of the query.
If Peer 1 gets a query starting with 0, and the next bit of the query is also 0, it is
responsible for the query. If the next bit is 1, however, Peer 1 will check its
routing table and forward the query to Peer 2, whose path starts with 01.

The P-Grid construction algorithm (described later) guarantees that peer routing
tables always provide at least one path from any peer receiving a request to one of
the peers holding a replica so that any query can be satisfied regardless of the peer
queried.

Figure 2 : Example P-Grid network. Peer routing tables provide at least one path
from any peer receiving a request to one of the peers holding a replica so that any
query can be satisfied regardless of the peer queried.

Figure 2 illustrates this property for the P-Grid in Figure 1. In the P-Grid
network shown, no path between Peer 3 and Peer 1 exists, but there is a path
from Peer 3 to Peer 6, which holds the same data as Peer 1. Search requests in
P-Grid are sent to arbitrary peers.

In Figure 1, a query for 100 is sent to Peer 6. Because Peer 6 is responsible for
keys starting with 00, it checks its routing table for the longest common prefix,
which is 1, and forwards the query to Peer 5. In a real setup, multiple peers would
be listed for each prefix in the routing table, and the peer receiving the query

5

would forward it to a peer randomly selected from this set.

Without constraining general applicability, we assume in this simple example that
each prefix is serviced by one peer entry in the routing table. Upon receiving the
query, Peer 5 does the same checks as Peer 6 and forwards the query to Peer 4,
which has the longest common prefix in its routing table. Because Peer 4 has no
longer common prefix in its routing table, it searches its local data store for data
with the key 100. If the key exists, Peer 4 returns a reference to the associated
data to the original requester, Peer 6, which can then request the data.
Thus, the search order is equivalent to a binary tree search regardless of the
query’s entry point.

In contrast, we use an adaptive, self organizing mechanism to globally balance
data replication. Different to storage load, peers cannot locally detect non-uniform
replication of data in the entire network . We employ a sampling-based method to
detect imbalance and to dynamically adapt replication. Thus data will be
dynamically replicated while peers aim at using their storage capacity optimally.
An important aspect is the mutual dependency among storage load balancing and
uniform replication.

When peers attempt to locally balance their storage load they may compromise
globally uniform replication. By simulation we show for our approach that the
system converges to a state where both load balancing goals are achieved in
combination. This reactive load balancing of replication factor in a self-organized
manner is possible in P-Grid without affecting the structural properties of the
system because of the independence of peer identifier and data (keys) associated
with the peer.

2.2 First Little Conclusion
We have swn with P-Grid that self organization principles can also be applied to
structured P2P systems. Instead of the situation of unstructured systems, where
search algorithms are designed in order to take advantage of the emergent overlay
network structures, we are going to design the self-organization process to gather
to an overlay network such that demonstrably efficient search algorithms can be
applied and at the same time load balancing goals are achieved.

2.3 The P-Grid Search Algorithm

Figure 3 : P-Grid search algorithm. The algorithm compares the common prefix of
the peer’s path to the query submitted to find the "closest" peer.

6

Figure 3 shows P-Grid’s search algorithm. The parameter peer indicates the
address of the peer to send the query to, query is the search string, and index
indicates search progress - that is, how many bits of the query have already been
processed. Initially, index is 0. Functions used in the algorithm are:

• sub_path(string, from, to) : returns the substring of string that
starts at position from and ends at position to

• common_prefix_of(str1, str2) : returns the common prefix of strings
str1 and str2

• get_refs(index) : returns the list of addresses in the routing table for a
prefix of length index

• random_select(refs) : returns an address from the address list and
removes it from refs

• online(ref): returns true if the referenced peer is online

The algorithm first compares the common prefix of the peer’s path to the query
submitted. Because the first index bits have already been truncated from the
query string, the algorithm must also adapt the peer’s path.

This is an optimization because at level index of the virtual search tree, the
equality of the first index bits is guaranteed. Only the subsequent bits are relevant
(line 3 in Figure 3) and must be compared to the query to find their common
prefix (line 4).

If the common path (compath) is as long as the query or the remaining path, the
peer responsible for this query is found (line 5). Otherwise the query must be
forwarded. This is only possible if the peer is sufficiently specialized (line 8). If so,
it strips the common prefix off the query (line 9), queries the routing table for the
list of peers to forward the query to (line 10), and forwards the remaining
new_query recursively to a random.

3 Important Applications of P-Grid

3.1 Updates in P-Grid
P2P systems were, until recently, primarily used for sharing static, read-only files.
Therefore most P2P systems didn’t provide update mechanisms that would work
in the presence of replication. For example, centralized (or hierarchical) P2P
systems, such as Napster or Fast Track, maintain a centralized index of data
items, which are available at online peers. If an update of a data item occurs this
means that the peer that holds the item changes it. Subsequent requests would
get the new version.

However, updates are not propagated to other peers which replicate the item. As
a result, multiple versions may coexist under the same identifier. The same holds
true for most decentralized systems such as Gnutella.

Some systems partially make updates, what, for example, exists in Freenet . An
update here, is routed ”downstream” based on a key-closeness relation. Since the
network may change during the perform of this action and no precautions are
taken to notify peers that come online after an update has occurred, consistency
guarantees are limited.

7

3.2 Handling Dynamic Addresses and Identify the Peers
As IP addresses have become a scarce resource, most computers on the Internet
no longer have permanent ip-addresses. For client computers this is usually not a
big problem but with the advent of P2P systems, where every computer acts both
as a client and as a server, this has become problem, which increases.

In advanced P2P systems ad-hoc connections to peers have to be established,
which can only be done if the receiving peer has a permanent IP address. To solve
this case we have designed a service based on P-Grid, which is a completely
decentralized, self-maintaining, lightweight, and sufficiently secure peer
identification service. This service allows us to consistently map unique peer
identifiers, in particular the logical identity of peers used for routing in P-Grid,
onto dynamic IP addresses. It is designed to operate in environments with low
availability of the peers.

The basic idea is to store the mappings in P-Grid itself: Peers store their current
id/IP mapping in P-Grid and update it if the IP address changes (for example, if
they come online again). For routing search requests while searching id/IP
mappings using P-Grid’s routing infrastructure, peers use cached id/IP mappings.
If these cached entries are stale, they are updated by recursively querying the
P-Grid again.

This may look as an unsolvable, recursive ”hen-egg problem”, but we demonstrate
that not only most of the original queries will be answered successfully, but also,
that the recursions triggered by failures will lead to a partial ”self-healing” (a
different form of self organization) of the whole system by updating the caches.

On the part of the security, we apply a combination of PGP like public key
distribution and a quorum-based query scheme. These public keys themselves are
stored in P-Grid, and replication can provide guarantees that are probabilistically
analogous to PGP’s web of trust. The approach can easily be adapted to other
application domains, i.e., be used for other name services, because we don’t
impose any constraints on the type of mappings.

Motivated by the problem of handling peer identity in a setting where peers’
physical addresses change because of network dynamics we thus achieved a
self-contained and self-maintaining directory service for P-Grid.

4 P-Grid Construction
There is no global control, only by local interactions, and the peers meet randomly.
Initially, all peers are responsible for all the search keys.

When two peers meet, they decide to split the search space into two parts and
take over responsibility for one half each, also store the reference to other peer.
The same happens whenever two peers meet, that are responsible for the same
interval at the same level.

However, as soon as the P-Grid develops, also other cases occur. Namely, peers
will meet:

1. their keys share a common prefix

8

2. their keys are in a prefix relationship

These considerations give rise to the following algorithm that two peers a1 and a2
execute when they meet.

4.1 What Happens if two Peers meet?
exchange(a1, a2, r)
{
commonpath = common_prefix_of(path(a1), path(a2));
lc = length(commonpath);
IF lc > 0
(* exchange references at the level where the paths agree *)
commonrefs = union(refs(lc, a1), refs(lc, a2));
refs(lc, a1) = random_select(refmax, commonrefs);
refs(lc, a2) = random_select(refmax, commonrefs);
l1 = length(sub_path(path(a1), lc + 1, length(path(a1)));
l2 = length(sub_path(path(a2), lc + 1, length(path(a2)));
(* Case 1: if both remaining paths are empty introduce a new level
*)
CASE l1 = 0 AND l2 = 0 AND length(commonpath) < maxlength
path(a1) = append(path(a1), 0);
path(a2) = append(path(a2), 1);
refs(lc + 1, a1) = a2;
refs(lc + 1, a2) = a1;
(* Case 2: if one remaining path is empty split the shorter path *)
CASE l1 = 0 AND l2 > 0 AND length(commonpath) < maxlength
path(a1) = append(path(a1), value(lc+1, path(a2))ˆ -;
refs(lc + 1, a1) = a2; refs(lc + 1, a2) = random_select(refmax,
union(a1, refs(lc+1, a2));
(* Case 3: analogous to case 2 *)
CASE l1 > 0 AND l2 = 0 AND length(commonpath) < maxlength
5
path(a2) = append(path(a2), value(lc+1, path(a1))ˆ -;
refs(lc + 1, a2) = a1;
refs(lc + 1, a1) = random_select(refmax, union(a2, refs(lc+1, a1));
(* Case 4: recursively perform exchange with referenced peers *)
CASE l1 > 0 AND l2 > 0 AND r < recmax,
refs1 = refs(lc+1, a1) a2;
refs2 = refs(lc+1, a2) a1;
FOR r1 IN refs1 DO
IF online(peer(r1)) THEN exchange(a2, peer(r1), r+1);
FOR r2 IN refs2 DO
IF online(peer(r2)) THEN exchange(a1, peer(r2), r+1);
/* Comment: random_select(k, refs) returns a set with k random
elements from refs
append(p1...pn, p) = p1...pn p
value(k, p1...pn) = pk
pˆ - = 1+p MOD 2 */
}

9

5 Simulation
The implementation is in Mathematica1

There are three questions to answer:

1. How many communications in terms of executing the exchange algorithm are
required for building a P-Grid?

Answer: The results indicate that a linear relationship exists between the
number of peers (N) and the total number of communications (e) needed in
building the P-Grid.

2. How balanced the P-Grid is with respect to the distribution of keys?

Answer: The average number of replication for a peer is 19.46 .

3. How reliably updates can be performed?
Different strategies are possible:

1http://www.wolfram.com/

10

http://www.wolfram.com/

• Randomly performing depth first searches for peers responsible for the
key multiple times and propagating the update to them

• Performing breadth first searches for peers responsible for the key once
and propagating the update to them

• Creating a list of buddies for each peer, i.e. other peers that share the
same key, and propagate the update to all buddies.

Using breadth first searches is by far superior:

6 Conclusions
It takes advantage of the resulting emergent properties for improving various
services including routing, updates and identity management. One may also
benefit from self-organizing principles when dealing with higher-level abstractions
such as trust or global semantic inter operability .

What started as a purely decentralized index structure is gradually evolving into a
general purpose distributed infrastructure. We have implemented P-Grid in Java
and are currently in the final test phase. More information about P-Grid may be
found on the project’s web page at P-Grid2

2http://www.pgrid.org

11

http://www.pgrid.org

Part II

Literature
Aberer01 Karl Aberer, Zoran Despotovic. Managing Trust in a Peer-2-Peer

Information System. To appear in the Proceedings of the Ninth International
Conference on Information and Knowledge Management (CIKM 2001) 2001.

Vingralek 98 Radek Vingralek, Yuri Breitbart, Gerhard Weikum: Snowball: Scalable
Storage on Networks of Workstations with Balanced Load. Distributed and
Parallel Databases 6(2): 117-156 (1998)

Stonebraker 96 Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah,
Jeff Sidell, Carl Staelin, Andrew Yu: Mariposa: A Wide-Area Distributed
Database System. VLDB Journal 5(1): 48-63 (1996)

Clarke 00 Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval
System. Designing Privacy Enhancing Technologies: International Workshop
on Design Issues in Anonymity and Unobservability. LLNCS 2009. Springer
Verlag 2001.

Ratnasamy01 Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott
Shenker. A Scalable Content-Addressable Network. Proceedings of the ACM
SIGCOMM, 2001.

12

	I P-Grid : A Next-generation P2P Informationsystem
	Introduction
	What is P-Grid ?
	What is so special about it?

	P-Grid Distributed Search Structure
	Example for P-Grid
	First Little Conclusion
	The P-Grid Search Algorithm

	Important Applications of P-Grid
	Updates in P-Grid
	Handling Dynamic Addresses and Identify the Peers

	P-Grid Construction
	What Happens if two Peers meet?

	Simulation
	Conclusions

	II Literature

