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Distributed Hash Tables
Hash table
- Data structure that uses hash function to map keys to hash values to 

determine where the data is stored
- Allows quick access to keys through lookup algorithm

Distributed hash table
- Hash table is distributed over all participating nodes
- Lookup algorithm determines the node responsible for a specific key

Requirements
- Find data
- High availability
- Balance load
- Fast moving of data

Problems
- Link capacity of nodes
- Physical distance of nodes
- Congestion of network and packet loss



Technical Background
DHash++
- Values are mapped to keys using SHA-1 hash function
- Stores key/value pairs (so-called blocks) on different nodes
- Uses Chord and Vivaldi

Chord
- Lookup protocol to find keys with runtime O(log N) 

Vivaldi
- Decentralized Network Coordinate System to compute and manage synthetic

coordinates which are used to predict inter-node latencies
- No additional traffic because synthetic coordinates can piggy-back on 

DHash++‘s communication patterns

Hardware
- Test-bed of 180 hosts which are connected via Internet2, DSL, cable or T1 

Additional testing
- Simulation with delay matrix filled with delays between 2048 DNS Servers



Low latency
Data layout

DHash++ is designed for read-heavy applications that demand
low-latency and high throughput. 

Examples
SFR (Semantic Free Referencing system)
- Designed to replace DNS (Domain Name System)
- Uses DHT to store small data records representing name bindings

UsenetDHT
- Distributed version of Usenet which splits large articles into small blocks to 

achieve load balancing

DHash++:
- Can be seen as a Network Storage System with shared global infrastructure
- Uses small blocks of 8kb length
- Uses random distribution of blocks via hash Function



Low latency
Recursive vs. iterative

Iterative lookup
- Send lookup query to each

successive node in lookup path
- Can detect node failure

But
- Must wait for response before

proceeding



Low latency
Recursive vs. iterative

Recursive lookup
- Direct query forwarding to 

next node
- Less queries -> less congestion

But
- Impossible to detect failed nodes



Low latency
Recursive vs. iterative

Left Figure: Simulation of 20,000 lookups with random hosts for random keys
- Recursive lookup takes 0.6 times as long as iterative 
Right Figure: 1,000 lookups in test-bed
- Result of simulation confirmed
Trade-off: DHash++ uses recursive routing but switches to iterative routing

after persistent link failures



Idea
- Chose nearby nodes to decrease latency

Realisation
- ID-Space range of ith finger table entry of node a:

- Every finger table entry points to first available ID in this range
- Get the latency of the the first x available nodes in this ID-Space

range from successor list
- Route lookups through node with lowest latency

What is a suitable value for x?

Low latency
Proximity neighbor selection
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Low latency
Proximity neighbor selection

Right Figure: Simulation of 20 000 lookups with random hosts for random keys
- 1 – 16 Samples: highly decreasing latency
- 16 – 2048 Samples: barely decreasing latency
Right figure: 1 000 lookups in test-bed
- Decreased lookup latency

DHash++ uses 16 Samples



Low latency
Erasure-coding vs. replication

Erasure-coding
- Data block split into l fragments
- m different fragments are necessary to reconstruct the block
- Redundant storage of data

Replication
- Node stores entire block
- Special case: m = 1 and l is number of replicas
- Redundant information spread over fewer nodes

Comparison of both methods
- r = l / m amount of redundancy
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Low latency
Erasure-coding vs. replication

Replication
- Only slightly lower latency than erasure-coding for same r if r is high
- Less congestion than erasure-coding because less files have to be distributed
Erasure-coding
- Higher availability of fragments
- More choice because of more fragments
DHash++ uses Erasure-coding with m = 7 and l = 14



Low latency
Integration

Remember proximity neighbor selection
- Little advantage in the last steps

Also remember last step in lookup procedure
- Originator contacts a key‘s direct predecessor to obtain successor list

- But full successor list not neccessarily needed

Why?
- List has length s
- l successors store fragments of the block
- m fragments are needed
- s-m predecessors of a key have lists with at least m nodes



Low latency
Integration

d: Number of successors in successor list with needed fragment

Trade-off between lookup time and fetch latency while choosing d
- Large d: more hops for lookup but more choice between nodes
- Small d: less hops but higher fetch latency

Optimum: d = l



High throughput
Overview

Requirements for a DHT
- Parallel sending and receiving of data
- Congestion control to avoid packet loss and re-transmissions 
- Recover from packet loss
- Difficulty: Data is spread over a large set of servers

Efficient transport protocol needed

First possibility: Use existing transport protocol

TCP (Transport Control Protocol)
- Provides congestion control, but
- Optimal congestion control and timeout estimation require some time
- Imposes start-up latency
- Number of simultaneous connections limited

Approach by DHash++
- Small number of TCP connections to neighbours
- Whole communication over these neighbours



High throughput
STP

Second Possibility: Design alternative transport protocol

STP (Striped Transport Protocol)
- Receiving and transmitting data directly to other nodes in single 

instance
- No per-destination states, decisions based on recent network

behavior and synthetic coordinates (Vivaldi)

Remote Procedure Call (RPC)
- Calls a procedure that is located at another host on the network
- Example: lookup calls procedure on host to retrieve finger table

entry

Round-trip-time (RTT)
- The time it takes to send a packet to a host and receive a response
- Used to measure delay on a network



High throughput
STP

Congestion Window Control
- w simultaneous RPCs
- New RPC only when old is finished
- Congestion: If RPC is answered w is increased by 1/w, 

otherwise w is decreased by w/2

Retransmit timers
- TCP predicts new RTT with deviation of old RTTs
- In general no repeated sending of RPCs to the same node

must predict RTT before sending, therefore uses Vivaldi

Retransmit policy
- No direct resending if timer expires
- Notifies application (DHash++)

On lookup: send to next-closest finger
On fetch: query successor that is next-closest in predicted latency



High throughput
TCP vs. STP

- Sequence of single random fetches of 24 nodes
- Median fetch time: 192 ms with STP, 447ms with TCP
- On average: 3 hops to complete lookup
But
- TCP fetch through 3 TCP connections consecutively
- STP fetch through 1 single STP connection



High throughput
TCP vs. STP

- Simultaneous fetches of different nodes
- Median throughput: 133 KB/s with TCP, 261 KB/s with STP
- Same reason for result as in previous slide



Summary

Different design decisions
- Recursive routing reducing number of sent packets
- Proximity neighbor selection searching nearby nodes
- Erasure-coding increasing availability of data
- Integration reducing number of hops for lookup
Result: 
Reduced the lookup and fetch latency up to a factor of 2

Alternative Transport Protocol STP
- Fitted to the needs of DHash++
- Direct connection between nodes

Higher throughput than TCP
Lower latency than TCP

Result: 
Further reduced latency and optimized throughput by factor 2
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