
Squirrel - A decentralized peer-to-peer web cache

Paper by Sitaram Iyer, Antony Rowstron, Peter Druschel

Write-up by Alexander Prohaska

Contents

1 Introduction 2

2 Background 3
2.1 Web caching . 3
2.2 Pastry . 3

3 Squirrel 6
3.1 Home-store model . 6
3.2 Directory model . 7
3.3 Node failure, departure and arrival 8
3.4 Comparing home-store and directory model 8

4 Evaluation 9
4.1 Trace characteristics . 9
4.2 External bandwidth . 9
4.3 Latency . 10
4.4 Load on single nodes . 11
4.5 Fault tolerance . 11

5 Related work 12
5.1 Dynamic content . 12
5.2 Changed access patterns . 12
5.3 Churn resistant decentralized caching 12

6 Conclusions 14

Bibliography 15

1

Chapter 1

Introduction

Squirrel[6] is a decentralized peer-to-peer web cache. It is scalable, self-organizing and
resilient to peer failures. Without the need for additional hardware or administration
it is able to achieve the functionality and the performance of a traditional centralized
web cache. It is proposed to run in a corporate LAN type environment, located e.g. in
a building, a single geographical region.

Squirrel is build up on Pastry[9], an object location and routing protocol for large-
scale peer-to-peer systems, which provides the mentioned features.

The goals and the motivation for web caching are decline of load on external web
servers, corporate routers and of course external traffic (traffic between the corporate
LAN and the internet) which is expensive, especially for large organizations.

Squirrel is a possibility to achieve these goals without the use of a centralized web
cache or even clusters of web caches.

2

Chapter 2

Background

2.1 Web caching

When a user wants to view an internet object (html page, picture or whatever) the
browser starts a request for this object. The browser first looks in the local browser
cache for the requested object. If it’s not there (cache miss) the browser forwards
the request towards the next step to the origin web server which hosts the object of
interest. If the object is in the cache the browser checks if it is fresh1. If it’s not fresh,
e.g. the time-to-live is passed by, the browser issues a conditional GET request (cGET)
towards the next level to the origin web server. If the object wasn’t changed since the
timestamp which is typically send with the cGET request (If-modified-Since request),
the web server2 answers with a Not-Modified message and the browser takes the still
actual copy of the requested object from the local cache. If the object was changed in
the meantime, the origin server directly answers the request with the modified object.
After receiving the new object, the browser stores a copy of it in the local browser
cache and shows it to the user. For the new cached object the caching policies will
apply again. If the policy is client sided then the browser may change the time-to-live
due to observations. If the origin web server doesn’t want the object to be cached
because it’s frequently changing, the time-to-live can be set to zero. That means that
the object is uncacheable.

2.2 Pastry

Every Pastry node is obviously identified by a 128 bit NodeId. The NodeIds are taken
from a circular NodeId space. The set of the NodeIds should evenly be distributed in
this space. The distribution of the NodeIds is task of the application, which builds up
on Pastry. E.g. it could be the cryptographic hash value of the public key of the node
or its IP-address. The objects get ObjectIds the same way, e.g. by hashing the URL
or the content to get the 128 bit identifier. Because Pastry exploits network localities
to reduce the network load, the distance between two nodes in the network must be

1The freshness of an object depends on the caching policy used by Squirrel. Typically the same caching
policy as the one used by web browsers will be taken. This can be a time-to-live (TTL) e.g. provided by
HTTP fields (MAX_AGE, EXPIRES) or a heuristic or whatever

2Or the next web cache towards the origin server, respectively

3

CHAPTER 2. BACKGROUND 4

measurable. This can e.g. be realised by counting the number of hops between the
nodes.

Figure 1: Pastry node state

Each Pastry node maintains 3 state sets, a leaf set, a neighbourhood set and a rout-
ing table (Figure 1). The leaf set contains L nodes, the nodes which are numerically
closest to the Pastry node, with respect to the NodeId. Half of these L nodes have a
NodeId smaller than and half of them have NodeIds bigger than this Pastry node. The
neighbourhood set contains the nearest nodes with respect to the network distance. The
routing table is realised with prefix routing and contains for each place in the NodeId
space one line. Line n e.g. contains a list of nodes which have the first n parts in com-
mon with the prefix of the current node, but not the n+1 part. If there are more nodes
which satisfy this condition then the nearest one is written into the routing table.

Figure 2: Pastry routing example

If there is a message that should be routed to a given NodeId, the node checks if
the ObjectId of the message is in its leaf set. If this is the case the massage will be
forwarded directly to the target node. Otherwise the message will be forwarded to the
node with NodeId closest to the ObjectId, step by step. This is done with the principle
of prefix routing, so the message will always forwarded to a node which has a prefix
at least one part longer in common with the message (Figure 2), with respect to the

CHAPTER 2. BACKGROUND 5

current node. If no node exists with this attribute the message will be forwarded to a
node with the same common prefix length than the current node and which’s NodeId is
numerically closer to the ObjectId.

Given a network consisting of N nodes, then Pastry can route a message within
log2b N steps3 to the numerically closest node in the network, where b is a configuration
parameter with the typical value of 4.

As long as there are not L/2 neighbouring nodes that fail simultaneously it is guar-
anteed that the message will arrive at the destination. L was the size of the leaf set.
Because this algorithm minimizes the distance in the network and lookups can be exe-
cuted very efficient, this system scales very good, compared to unstructured networks.

3This is valid for the “normal case”

Chapter 3

Squirrel

Squirrel uses Pastry[9] as a location and routing protocol. When a client1 requests an
object it first sends a request to the Squirrel proxy running on the client’s machine. If
the object is uncacheable2 then the proxy forwards the request directly to the origin
Web server. Otherwise it checks the local cache. If a fresh copy of the object is not
found in this cache, then Squirrel tries to locate one on some other node. To do so, it
uses the distributed hash-table and the routing functionalities provided by Pastry. First,
the URL of the object is hashed to give a 128-bit ObjectId from a circular list. Then the
routing procedure of Pastry forwards the request to the node with the NodeId (assigned
randomly by Pastry to a participating node) numerically closest to the ObjectId. This
node then becomes the home node for this object. Squirrel then proposes two schemes
from this point on: home-store and directory schemes.

3.1 Home-store model

In the home-store model the requested objects are also stored at the home nodes. If a
node in the network requests an object and doesn’t have a fresh copy in the local cache,
it sends a request. This request is send to the home node of the object. The home node
can be found by simply mapping the object to its ObjectId using the hash function and
forwarding the request towards the closest live node to this ObjectId. The node that
can’t forward the request to another node which’s NodeId is closer to the ObjectId than
its own NodeId will finally notice that it is the home node for this object. The home
node checks if it has a fresh copy of the requested object already in its local cache.

Given the case it has a fresh copy in its cache. The home node will then send the
object directly to the node which issued the request or it sends the client a not-modified
message depending on which action is appropriate. This node saves the retrieved object
in its cache and returns it to the user.

The other case where the home node doesn’t have a copy of the requested object
has a stale copy in its local cache is different. The home node issues a GET or cGET
request, respectively, to the origin web server hosting the internet object. Then the
home node either receives a cacheable fresh copy of the object or a not-modified mes-
sage. Afterwards the home-node takes the appropriate action with respect to the client,

1The terms “node” and “client” will be used interchangeably
2An object can be considered uncacheable if, for example, its URL contains “cgi-bin”, or if its freshness

lifetime is zero (see e.g. [3] for details)

6

CHAPTER 3. SQUIRREL 7

sending a copy of the object or a not-modified message to the requesting client.
Figure 3 shows a simplified version of the home-store scheme.

Figure 3: Home-store model

3.2 Directory model

In the directory scheme the home-node for an object maintains a small directory of
pointers to nodes that have recently accessed the object. Subsequent requests for this
object are redirected to a randomly chosen node of this directory (called the delegate),
expecting that they have a locally cached copy of the object.

The home node does not store the objects for which it’s responsible for locally,
it only keeps metadata like the fetch time, last modified time or explicit time-to-live.
With this metadata the home node is able to apply the expiration policies of the web
browsers without storing the object itself. Therefore, the home node is able to invalidate
all nodes with a cached copy from the directory, if the object has changed, at once.

Since the home node does not send requests to the origin web server, it receives
the metadata for the object from the delegates which requested the object. A delegate
that receives a forwarded request from the home node has to check the freshness of
its cached copy before it sends the object to the requesting client. If the object has
changed then the delegate informs the home node to update the directory of the object.

Figure 4 is an example for the directory scheme.

Figure 4: Directory model

CHAPTER 3. SQUIRREL 8

3.3 Node failure, departure and arrival

Like in any peer-to-peer system, in a Squirrel network, clients arrive and depart the sys-
tem at random times. There are two different failures of nodes, abrupt and announced
failures. Each failure has a different impact on Squirrel’s performance. An abrupt fail-
ure will result in a loss of objects. To see this, assume that node N is the home-node
for object O and it has a fresh copy of O in its cache. If node N fails, Pastry will route
the next request for object O to a new home node N*. This request will result in a
miss if N* has no fresh copy of O, which is likely the case. So the failure of node N
will decrease performance since node N* will have to contact the origin server to get
a new copy of object O. If a node is able to announce its departure and to transfer its
content to its immediate neighbors[9] before leaving Squirrel (announced failure), then
no cached content is lost when the node leaves.

When a node joins Squirrel then it automatically becomes the home node for some
objects but does not store those objects yet. In case a request for one of those objects
is issued, then its two neighbors in the NodeId space transfer a copy of the object3, if
any. Therefore, we can consider that there is no decrease of performance in Squirrel
due to a node arrival, since the transfer time between two Squirrel nodes is supposed
to be at least one order of magnitude smaller than the transfer time between any given
node and the origin server.

3.4 Comparing home-store and directory model

The main differences between the two proposed schemes are shown in the Table 1.

Home-store model Directory model

Store object in local cache yes yes
Store object at home node yes no

Home node fetches file yes no
Client fetches file no yes

Table 1: Differences between the two schemes

The two approaches represent two extremes. There are also attempts to combine
the two approaches and take the advantages from both to eliminate the disadvantages.
The resulting hybrid schemes achieve better results in term of hit ratio and node load
(see e.g. [10]). In return to the attained improvement the implementation of these
hybrids are more complicated to realise.

3This is easy because each Pastry node keeps track of its immediate neighbors

Chapter 4

Evaluation

4.1 Trace characteristics

The two traces chosen by the authors of the Squirrel paper are quite different from
each other. One with 105 nodes (Microsoft Cambridge) and one with 36782 nodes
(Microsoft Research Redmond Campus). The scale of these traces is what the authors
wanted to show for Squirrel, that it’s applicable for corporate networks with between
100 and 100.000 nodes. Both traces have in common that approximately the half of
the requested objects were cacheable. This is a nice fraction, since more and more
personalized and dynamic web pages are not cacheable (more to this in section 5.1).
To get comparable results with this two different traces, the small one (Cambridge) was
collected over 31 days whereas Redmond was collected over 1 single day (because it
has quite more nodes).

4.2 External bandwidth

The external bandwidth is defined as the number of transferred bytes between the cor-
porate LAN and the internet. The evaluation in the paper shows that the home-store
approach makes more effective use of the available cache storage than the directory
approach, despite the fact that the home-store model duplicates the objects requested
by the clients in the home node cache.

9

CHAPTER 4. EVALUATION 10

Both schemes have in common that they perform better the more amount of disk
space each Squirrel node provides for the decentralized cache. With only little space
per node the directory scheme is slightly better than the case where no web cache is
used at all while the home-store scheme performs already obviously better. That’s
reasonable because in the directory scheme only active nodes which request internet
objects cache them. If the available cache size is small, old objects will be deleted
to store new objects. When another client now requests an already deleted object, the
pointer in the object’s directory will be invalid and the object must be fetched from the
origin server again. This doesn’t happen in the directory scheme that quickly because
the objects are not only distributed among the active nodes like in the directory model,
but they are spread equally among all nodes (due to the hash function).

With e.g. 100 MB cache size per client both schemes perform comparable to a
centralized web cache with enough storage.

Figure 5: External bandwith for Redmond (left) and Cambridge (right)

4.3 Latency

Because Squirrel acts within a corporate LAN located in a single geographic region,
the communication latencies in it are a few milliseconds long and at least an order
of magnitude smaller than the external latency. The processing time for a request is
considered to be only a few milliseconds, too. For large objects the higher inner LAN
bandwidth reduces the overall latency.

A request to a centralized web cache always takes two LAN hops, one to the cache
and one back again. Squirrel needs a few hops more. This depends on how many
hops Pastry needs to find the home node. For the home-store model we need log2b N
hops to the home node and one back. The directory model needs one additional hop
to forward the request to a delegate, in case that there is already a directory for the
requested object. The resulting average hop values are presented in Table 2.

Home-store model Directory model

Redmond 4,11 4,56
Cambridge 1,8 2,0

Table 2: Average number of LAN hops

The latency induces by Squirrel is small (at most 15ms) when the object is found
in the cache and not noticeable when the object must be fetched from the origin web
server.

CHAPTER 4. EVALUATION 11

4.4 Load on single nodes

The quintessence of the analysis of the load on each Squirrel node over the whole
trace is that the home-store approach is superior to the directory approach. Because
the home-store model balances load better there is never a single node that has to serve
more than 10 requests per second. This holds for both traces, which speaks for the
scalability of the system. With the directory scheme, single nodes sometimes have to
serve more than 50 requests per second (Figure 6).

Figure 6: Load distribution for Redmond (left) and Cambridge (right)

When looking at the average load during any second it stands out that the load is
extremely low on each node, 0,31 objects per minute and node for both schemes in
Redmond. This indicates that Squirrel runs with a negligible fraction of total system
resources.

4.5 Fault tolerance

In case of link failures that split the network into two sets Squirrel will reorganize into
two separate networks whereas the centralized web cache will only be able to serve the
requests of the clients in its own subset of the original network. This indicates that the
decentralized web cache is more tolerant to failures than the centralized one. In the
worst case of a centralized web cache with a single machine, its failure would result in
the loss of all cached content. Squirrel nodes, usually desktop machines, are expected
to fail or be switched off often. Unannounced node failures result in a partial loss of
cached content. This loss is 3,5% of Squirrel’s cached content for the home-store model
at worst, the directory model on the other hand can lose up to 20% for the Redmond
trace. So the directory model is to some extent more vulnerable to node failures than
the home-store scheme. After the Farsite study[2], 15% of the machines are switched
off every night and/or weekend. This doesn’t mean that about this fraction of cached
content gets lost, because gracefully shut down machines can transfer popular objects
to their neighbors (the new home nodes for the objects).

Chapter 5

Related work

5.1 Dynamic content

In the last five years a fast growth of dynamic and personalized web content was
observed[5, 11]. Under the conventional URL-based caching point of view, like Squir-
rel’s, this trend will reduce the cacheability significantly. So there is need to have an-
other caching concept, not URL-based but content-based. Recent studies[7, 14] have
shown that dynamic objects have large portions of data in common. E.g. the study[13]
has provided several methods to cache dynamic web contents.

This data provides an opportunity to improve the cacheability by content-based
caching algorithms. One example for such an algorithm is Tuxedo[12].

5.2 Changed access patterns

The rapid increase in the numbers and types of web servers and clients’ diverse inter-
ests results in the need for enlarging the cache. For example, Barford et al.[1] give a
comprehensive study of the changes in web client access patterns based on the traces
collected from the same computing facility with a similar nature of the user population
separated by three years. Their experiments show that, compared with the data three
years ago, the hit ratios are reduced and the most popular documents are less popular in
the transfer data set. This implies that accesses to different types of web servers have
become more evenly distributed.

5.3 Churn resistant decentralized caching

Churn arises from continued and rapid arrival and failure (or departure) of a large
number of participants in a peer-to-peer system. This will increase host loads and block
a large fraction of normal insert and lookup operations in the system. The paper from
Linga et al.[8] focuses on this problem and studies a cooperative web caching system
that is resistant to churn attacks. Based on the Kelips peer-to-peer routing substrate[4],
which consists of virtual subgroups and runs a low-cost background communication
mechanism, it imposes a constant load on participants and is able to reorganize itself
continuously under churn. Peer pointers are automatically established among more
available participants to ensure high cache hit rates even when the system is stressed

12

CHAPTER 5. RELATED WORK 13

under churn. The system also improves on the network locality of cache accesses in
previous web caching schemes.

Chapter 6

Conclusions

It is possible to decentralize web caching in a corporate LAN. Moreover it’s cheaper
with respect to dedicated hardware and administration because Squirrel is highly scal-
able and self-organizing. The home-store scheme is the one to be used in reality and
approaches the performance of a centralized web cache with infinite storage while us-
ing e.g. 100 MB cache size per node. This is achieved with little overhead in the
network, on average. There are a few points where future work should bring up new
ideas, e.g. to be able to cache dynamic or personalized content.

14

Bibliography

[1] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes in
web client access patterns: Characteristics and caching implications. World Wide
Web, 2(1-2):15–28, 1999.

[2] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibility
of a serverless distributed file system deployed on an existing set of desktop pcs.
In SIGMETRICS ’00: Proceedings of the 2000 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems, pages 34–43.
ACM Press, 2000.

[3] Edith Cohen and Haim Kaplan. The age penalty and its effect on cache perfor-
mance. pages 73–84.

[4] Indranil Gupta, Kenneth P. Birman, Prakash Linga, Alan J. Demers, and Robbert
van Renesse. Kelips: Building an efficient and stable p2p dht through increased
memory and background overhead. In IPTPS, pages 160–169, 2003.

[5] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University
Press, 1986.

[6] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: a decentralized
peer-to-peer web cache. In PODC ’02: Proceedings of the twenty-first annual
symposium on Principles of distributed computing, pages 213–222. ACM Press,
2002.

[7] Terence Kelly and Jeffrey Mogul. Aliasing on the world wide web: prevalence
and performance implications. In WWW ’02: Proceedings of the eleventh inter-
national conference on World Wide Web, pages 281–292. ACM Press, 2002.

[8] Prakash Linga, Indranil Gupta, and Ken Birman. A churn-resistant peer-to-peer
web caching system. In SSRS ’03: Proceedings of the 2003 ACM workshop on
Survivable and self-regenerative systems, pages 1–10. ACM Press, 2003.

[9] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware 2001:
Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, pages 329–350. Springer-Verlag, 2001.

[10] Bo Sheng and Farokh B. Bastani. Secure and reliable decentralized peer-to-peer
web cache. In IPDPS, 2004.

[11] W. Shi, E. Collins, and V. Karamcheti. Modeling object characteristics of dy-
namic web content. J. Parallel Distrib. Comput., 63(10):963–980, 2003.

15

BIBLIOGRAPHY 16

[12] Weisong Shi, Kandarp Shah, Yonggen Mao, and Vipin Chaudhary. Tuxedo: A
peer-to-peer caching system. In PDPTA, pages 981–987, 2003.

[13] Huican Zhu and Tao Yang. Class-based cache management for dynamic web
content. In INFOCOM, pages 1215–1224, 2001.

[14] Zhaoming Zhu, Yonggen Mao, and Weisong Shi. Workload characterization of
uncacheable http content. In ICWE, pages 391–395, 2004.

