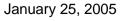
Exchange-based Incentive Mechanisms

for Peer-to-Peer File Sharing

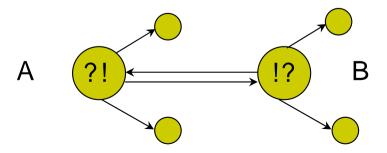
Kostas G. Anagnostakis, Michael B. Greenwald


J. Marc Roth jmroth@mpi-sb.mpg.de

Peer-to-Peer Information Systems January 2005

Overview

- Introduction to Incentive Mechanisms
- Exchange Mechanisms
 Exchange Transfers
 Preventing Cheating
- Simulation & Results
- Measurements, Discussion & Related Work
- Summary & Conclusion

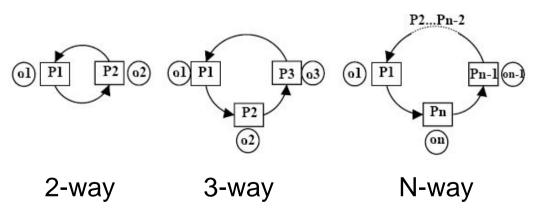

Introduction

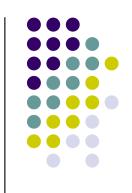
- powerful infrastructure
- performance depends on level of cooperation
- non-cooperation may have severe impacts
- solution: incentive mechanisms

= stimulate cooperation

(reward people who contribute to the system)

Exchange-based Incentive Mechanisms in Peer-to-Peer File Sharing

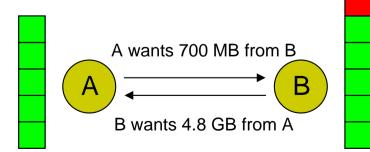

Incentive Mechanisms


- participation level (e.g. KaZaA)
- credit system (monetary economy) centralized vs. decentralized

• proposal:

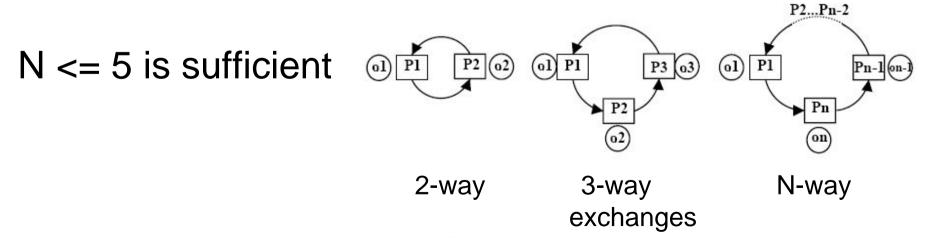
exchange system (barter economy)

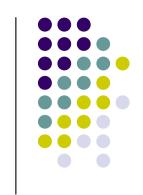
- users trade resources between themselves
- high priority for contributing users
- not only 2-way but N-way exchanges



Exchange Mechanisms (I) Basics

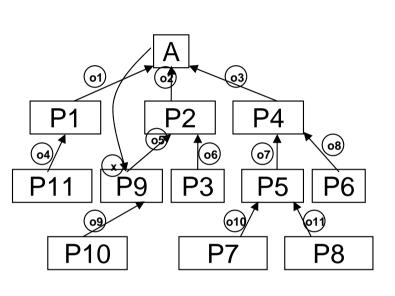
- fixed upload and download capacity
- partial transfers
- we ignore the object lookup ③
- each peer has an IRQ (incoming request queue) = upload queue


Exchange Mechanisms (II) Rules


- transfer is initiated if
 - 1. local peer has free upload capacity (slot)
 - 2. transfer is an exchange transfer (ET) OR no ETs in IRQ (incoming request queue)
- upload slots are preemptively reclaimed by ETs!
- fixed-size block transfers
- termination of transfer if:
 - a peer disconnects
 - source deletes object
 - 1st transfer completed

Exchange Transfers (I)

- identify feasible exchanges by looking at IRQ
- 2-way exchanges are simple but frequently do not resolve into convenient pairs
- compute feasible N-way exchanges
 e.g. cycles in (potentially enormous) graph
 G = (nodes, edges) = (peers, requests)



8/26

Exchange Transfers (II)

- each peer maintains request tree (RT)
 - empty IRQ → empty RT
 - non-empty IRQ → includes other peer's RTs in their incoming requests
- each peer
 - provides object to predecessor
 - gets object from successor
- A inspects RT
 - before transmitting
 - after receiving any request

P9 has object x available for A. The entire request tree is shown. The cycle for the 3-way exchange that A tries to initiate is shown in red.

Exchange Transfers (III)

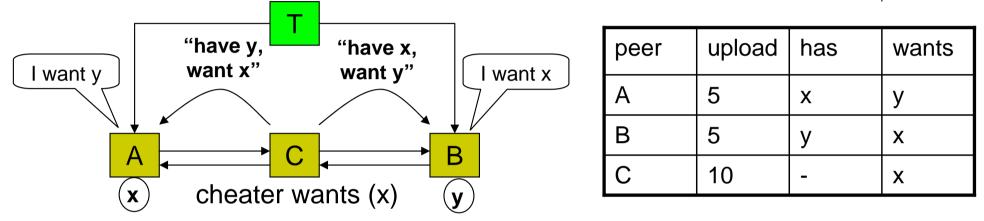
in practice

- circulate token
- invalidation of the ring if
 - peers offline or crashed
 - member peers have created own rings
- token negotiates transfer rate
- least transfer rate is used and excess capacity is transferred to other exchanges

Exchange Transfers (IV)

how to choose

- larger rings 👎
 - more peers are served
 - high probability for loss of peer
- smaller rings 🕹
 - lower search cost
 - higher expected exchange volume
- peers usually care less about global performance than about their own benefit



Preventing Cheating (I)

- claim to be exchange but serve junk
 - local blacklists (bad)
 - cooperative blacklists (medium)
- cheap pseudonyms
- limiting the damage:
 - exchange blocks synchronously with checksum
 - bad performance: b_{exchange} / t_{rtt} bytes/sec
 - use window protocol
 - increase window size if good peer
 - \rightarrow positive effect

Preventing Cheating (II)

- man-in-the-middle attack
- C gets high-priority service but does not contribute to the system ⁽³⁾
- bidirectional encryption of transfer using secret key
- trusted peer is mediator and verifies data

Preventing Cheating (III)

- self-interest vs. maliciousness
 - solution with better performance at a lower cost
 - useful for system
 - respects desire not to participate

peer	upload	has	wants
А	10	-	х
В	5	x	у
С	10	У	x
D	10	У	x

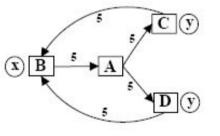


Figure 3. Example middleman scenario resulting in non-ring exchange

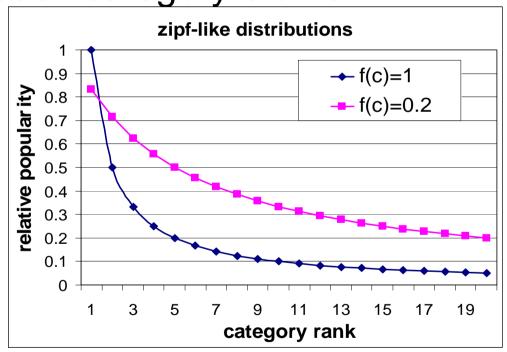
• generalization to non-ring topologies: not here!

Simulation

- 200 node file sharing system
- 50% freeriders (freeloaders)
- fixed + asymmetric down-/upload capacity
- neglect delay and loss ☺

Simulation

Object Popularity Model



- uniformly assign subset *m* of total categories to each peer
- (global) popularity rank for each category c of rank i

$$F_{c}^{i} = \frac{1}{1 + i \cdot f_{c}}, i \in \{0, \dots, m-1\}$$

probability of request for object in category *c*

$$p_c^i = \frac{F_c^i}{\sum\limits_{k=0}^{m-1} F_c^k}$$

- distribute objects in categories like categories at peers
- uniformly random local preference for each category (independent of its global popularity)

Simulation

Setup

- maximum number of pending requests
- request rate is reached and held
- maximum # of objects + cleanup

number of peers	200
download capacity	800 kbit/s
upload capacity	80 kbit/s
ul/dl slot size	10 kbit/s
content categories	300
objects per category	uniform(1,300)
categories/peer	uniform(1,8)
category popularity	f=0.2
object popularity	f=0.2
object size	20 MB (all objects)
storage capacity per peer (nr. of objects)	uniform(5,40)
queue for incoming requests	1000
max pending objects	6
fraction of freeloaders in system	50%

Simulation Results (I) key metric = download time!

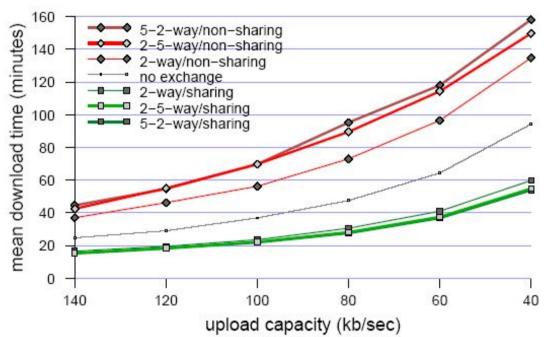
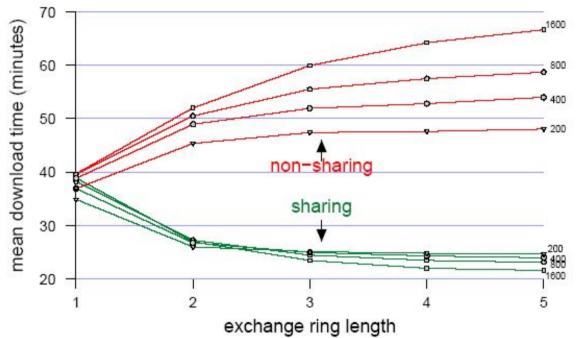



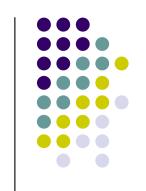
Figure 4. Mean download time vs. upload capacity and exchange policy.

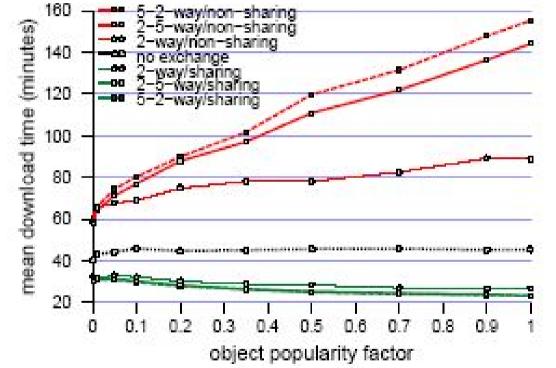
- reduced upload capacity → longer download time
- time to completion increases faster for non-sharing users because exchanges are prioritized
- good incentive to deploy the proposed exchange mechanism

Simulation Results (II)

higher order rings + network size

• N=5 better than N=2


 as the network grows, difference in performance increases (sharers vs. non-sharers)


Figure 5. Mean download times vs. maximum exchange size and the number of peers in the network.

N>5: no real improvement

N = exchange ring length

Simulation Results (III) object popularity distribution and performance

- difference increases as f approaches 1 (zipf)
- 2-5 way slightly better than 5-2 way because performance for non-sharers is reduced (longer lived on average)

Simulation Results (IV) mean download time vs. (non-)sharing peers

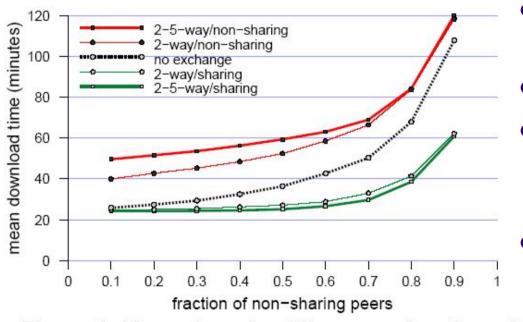
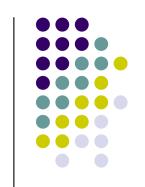
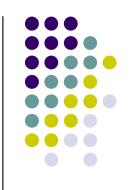
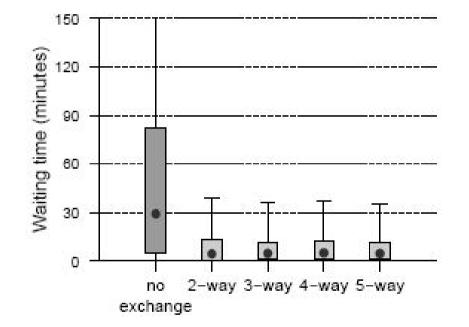



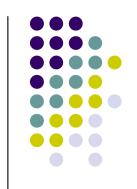
Figure 9. Mean download times vs. fraction of non-sharing peers.




- until now: 50% freeriders
- do the incentives to share always persist?

• yes!

- non-sharers get a large penalty when almost everyone is sharing
- non-sharers tend towards "no-exchange" when no one is sharing
- infrequent sharers get big reward


Simulation Results (V) waiting time

 absolute priority for exchanges = key reason for performance

Real-Life Measurements The eMule network

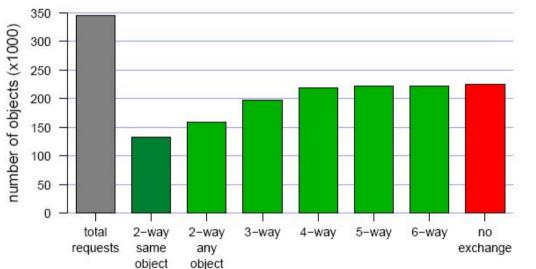


Figure 10. Fraction of requests that can be served in an exchange ring with other nodes in the dataset

- 75% of peers share more than 7 (complete) files
 - many users refuse uploads even though data is available
- most peers however had outgoing requests, i.e. were participating in exchanges

Discussion

- simplistic simulation scenario
- limitations & improvements
- real exchanges do serve chunks of incomplete objects
 → probability for exchanges increases
- heterogeneity of real-world systems
- complexity issues with RT communications
- effect on peer behavior (replication of popular objects = \$\$\$ in exchange economy)

Related Work

- MojoNation (centralized payment-based)
- karma (distributed cash-based system)
 - bank-set located via DHT lookup
 - auction mechanism, limitation of new identities
 - simulates full-fledged economic system
- better performance? (no "double coincidence of wants")
- limitations
 - high cost in terms of user attention
 - cash ⇔ CPU cycles
- lightweight 2-way credit system: eMule
- closely related to this proposal: BitTorrent

Summary & Conclusion

- exchange-based approach provides incentives
- decentralized
- simpler than credit or cash
- higher service priority to peers providing simultaneous and symmetric service in return
- N-way exchanges
- methods for regulating transfers
- protection against malicious users
- simulations show significant performance advantage to cooperating users, especially in a loaded system
- higher-order exchanges offer improvement, if used together with 2-way exchanges

Thank you for your attention!

Any questions?