Chapter 2. Basics from Probability Theory
and Statistics

2.1 Probability Theory

Events, Probabilities, Random Variables, Distributions, Moments
Generating Functions, Deviation Bounds, Limit Theorems
Basics from Information Theory

2.2 Statistical Inference: Sampling and Estimation
Moment Estimation, Confidence Intervals
Parameter Estimation, Maximum Likelihood, EM Iteration

2.3 Statistical Inference: Hypothesis Testing and Regression
Statistical Tests, p-Values, Chi-Square Test
Linear and L ogistic Regression

mostly following L. Wasserman Chapters 1-5, with additions from other textbooks on stochastics
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2.1 Basic Probability Theory

A probability spaceisatriple (Q, E, P) with

» aset Q of elementary events (sample space),

« afamily E of subsets of Q with QLIE which is closed under
n, U, and — with a countable number of operands
(with finite Q usually E=2%), and

e aprobability measure P: E - [0,1] with P[Q]=1 and
P[], A;] = 2 P[A;] for countably many, pairwise digoint A

Properties of P

P[A] + P[—l A] =1

P[A O B] = P[A] + P[B] — P[A n B]
P[] = O (null/impossible event)

P[Q | = 1 (true/certain event)
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| ndependence and Conditional Probabilities

Two events A, B of aprob. space are independent
If P[A n B] = P[A] F[B].

A finite set of events A={ A, ..., A} Isindependent
If for every subset S UA theequation P (| A/ ]= M FA]
holds. AiOS A0S

The conditional probability P[A | B] of A under the
condition (hypothesis) B is defined as: PA|B] = P[;:[ ;]B]

Event A is conditionally independent of B given C
If P[A | BC] = P[A | C].
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Total Probability and Bayes Theorem

Total probability theorem:
For apartitioning of Q into eventsB,, ..., B,

P[A] =3 P[A|B]P[B]

=1
Bayes' theorem: P[A|B] = PB] A]_
P[B.
P[A|B] is called posterior probability R OB ABILITY
P[A] iscalled prior probability 0F
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Random Variables

A random variable (RV) X on the prob. space (Q2, E, P) isafunction

X:Q 5 MwithM ORst {e]| X(e) <x} UEforal x LM
(X Is measurable).

Fo: M - [0,1] with F(x) = P[X <X]isthe

(cumulative) distribution function (cdf) of X.

With countable set M the functionf,: M - [0,1] with f,(x) = P[X =X]
IS called the (probability) density function (pdf) of X;

In general f, (x) ISF y(X).

For arandom variable X with distribution function F, the inverse function
F1(g) :=inf{x | F(x) > g} for q O [0,1] is called quantile function of X.
(0.5 quantile (50t percentile) is called median)

Random variables with countable M are called discrete,
otherwise they are called continuous.

For discrete random variables the density function is also
referred to as the probability mass function.
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|mportant Discrete Distributions
« Bernoulli distribution with parameter p: P[ X = x] = pX(1- p)* ¥

. o for x(1{0,1}
e Uniform distribution over {1, 2, ..., m}:

P[X =K] = fx(k):% fori<k<m

e Binomial distribution (coin toss n times repeated; X: #heads):
PIX =K] = fx (k):@pk(l— p)"
 Poisson distribution (with rate A):
- /]k

PIX =k] = fx ()=

e Geometric distribution (#coin tosses until first head):
P[X =K] = fx ()= (1~ p)* p
e 2-Poisson mixture (with a,+a,=1):

K
P[ X =k] = fy (k)= ale_’h% vaef2 A2
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|mportant Continuous Distributions
e Uniform distribution in the interval [a,b]

fx(x):bi for a< x<b (0 otherwise)

« Exponential distribution (z.B. time until next event of a
Poisson process) with rate A = lim,,_, (# eventsin At) / At :

fy (X)=Ae ™™ for x=0 (0 otherwise)
« Hyper exponential distribution:fx (x)= ph e X +(1- p)A, e 2

a+l
e Pareto distribution: fyx (x) — %(gj for x>Db, O otherwise

Example of a, heavy-tailed” distribution with Tx (X) - ;ﬂ

1 X

1+e *

e logistic distribution: Fy (X) =
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Normal Distribution (Gaussian Distribution)

e Normal distribution N(,0?) (Gauss distribution;
approximates sums of independent, !
identically distributed random variables): Tx (X)= Jor?

(x—p)?

e 20'2

e Distribution function of N(0,1):

5 DAGZTI6BTUD | S
X

Y4
d(z)= | e 2 dx

—00

sﬁ\

Theorem: et
Let X be normal distributed with

expectation L and variance o-2.

Then Y = M
Y
Is normal distributed with expectation O and variance 1.
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Multidimensional (Multivariate) Distributions
Let X4, ..., X, berandom variables over the same prob. space
with domains dom(X,), ..., dom(X,,).
Thejoint distribution of X4, ..., X, has adensity function

with Y o Yy (geeXy) =1
xtdom( X1)  XmUdom( Xm)
or j J le _____ Xm( Xl,...,Xm) de...dX]_ =1

dom( X;) dom( X,,)

The marginal distribution of X; in the joint distribution
of Xy, ..., X, has the density function

I _[ I _[ fxl ..... Xm(Xl,...,Xm) de ...dXi_|_1 dXi_l...dX]_
X1 Xi-1 Xji+1 Xm

IRDM WS 2005 2-9



| mportant Multivariate Distributions

multinomial distribution (n trials with m-sided dice):

P[ Xl — kl DDXm — km] — le,...,Xm(kl’""km):(

. n Nl
with =
(kl...km] kl! ...km!

multidimensional normal distribution:

1, . - ~1,- -
. 1 -E(X-N)TZ L(x-p)

NEORE

kl...km] PL - Pm

Bivariate Mormal

with covariance matrix 2 with 2;; := Cov(X;,X;)
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Moments

For a discrete random variable X with density f

E[X]=kDZNlI< fx (k) isthe expectation value (mean) of X

E[x'1= sk fyx (k) isthei-th moment of X
k(M

V[X]=E[(X - E[X])?]=E[X?]-E[X]? isthevariance of X

For a continuous random variable X with density f

+00

E[X]= [xfx (x)dx Isthe expectation value of X

—00

E[xi]= | ¥ fx(xdx isthei-th moment of X

(00

V[X]=E[(X -E[X])%]=E[X?]-E[X]? isthevariance of X

Theorem: Expectation values are additive E[ X +Y] =E[ X] +E[ Y]
(distributions are not)
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Properties of Expectation and Variance

E[aX+b] = aE[ X]+b for constants a, b

E[X+X,+..+X ] = E[X ] + E[X,] + ... + E[X]
(1.e. expectation values are generally additive, but distributions are not!)

E[X+X,+...+X] = E[N] E[X]
If X, X, ..., Xy @re independent and identically distributed (1id RV'S)
with mean E[X] and N Is a stopping-time RV

Var[aX+b] = & Var[X] for constants a, b

Var[ X +X,+..+X ] = Va[X,] + Var[X,] +... + Var[X ]
If X, X, ..., X, areindependent RV's

Var[X +X,+..+X] = E[N] Var[X] + E[X]? Var[N]
If X, X, ..., Xy are 1id RVswith mean E[ X] and variance Var[X]
and N is a stopping-time RV
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Corrdation of Random Variables

Covariance of random variables Xi and Xj::
Cov(Xi, X)) = E[(Xi—E[Xi]) (X] —E[ X]]

)]

Var( Xi )= Cov( Xi,Xi) = E[ X?] - E[

Correlation coefficient of Xi and X

o Cov(Xi, X))
p(XI,XJ)-—JVar(xiNVar(Xj)

Conditional expectation of X given Y =y:

E[X|Y =y] =
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(ZXfXW (x|y) discrete case

| j X fX|Y (X|y)dx  continuouscase
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Transformations of Random Variables

Consider expressions r(X,Y) over RVssuch as X+Y, max(X,Y), etc.

1. Foreachzfind A, ={(Xx,y) | r(x,y)<z}

2. Findedf F,(2) =Prxy) <2 = [ [ o fy v (X,y)dxdy
3. Find pdf f,(z) = F ,(2)

|mportant case: sum of independent RVs (non-negative)
Z = X+Y

F,(2) = Plr(x.y) < 2] = J I cry<z Tx (Fy (y) dx dy

:,yo o (fy (y) dxdy
:.X:Of (X)R, (z—x) dx

or in discrete case:

|:Z (Z) = Z Z X+y<z 1:X (X)fY (y)
Xy
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Generating Functions and Transforms

X, Y, .... continuous random variables A, B, ... discrete random variables with
with non-negative real values non-negative integer values
My (s)=[e> fy(x)dx =E[€™ ]: GA(2) =37 fA(I)=E[Z"]:
0 1=0
moment-generating function of X generating function of A

®  _o . (ztransiorm)
fry (s)=[e fy(x)dx=E[e ™ ]

0
Laplace-Stieltjestransform (LST) of X
fa(=S) = MA(S) =Gp(€°)

Examples: exponential: Erlang-k: Poi sson:
_ _ak(ak)<t _, k
f(x) =ae ™ KOI=Z T k) =e
* —_ a * —_ ka k _.
f X(S) - f X(S)—(ka_l_sj GA(Z):ea’(Z 1)
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Properties of Transforms

SE[ X?]  S’E[ X°] _ 1 d"G,(2)
2 3 faln) = n! dA” (0)

N d"M
~ E[X"] = dsxn(s)(O) e A1 = (2 )

My (s)=1+SE[ X] +

f (X)=ag(x)+bh(x) = f*(s)=ag* (s)+bh*(s)
fx(X)=9(x) = 1*(s)=sg*(s)-g(0")

fx(X)=fg(t)dt — f*(s)= 9*&58)

Convoluti on of independent random variables:
FX+Y(z)—ij(x)FY(z X) dx Frg(k)= Z fA(1)R (k=1)
0

F*xay ()=T1*x (s) f*v (9)

My (S)=My (S)My(s) Gpae(2)=GA(2)G(2)
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|nequalities and Tail Bounds
Markov ineguality: P[X 2t] < E[X]/t fort> 0and non-neg. RV X

Chebyshev inequality: P[ [ X-E[X]|=1] < Var[X] / t?
for t > 0 and non-neg. RV X

Chernoff-Hoeffding bound: P[ X 2t] < inf{e_gt My (6)] ezo}

2 for Bernoulli(p) iid. RVs

Corollary: :P EZXi —p|=t|<2e™
Il X11 nany Xn and anyt>0

2 e—t2/2
for N(O,1) distr. RV Z
m ot andt>0

Cauchy-Schwarz inequality: E[XY] < \/F:XZ] E[Y 4]

Jensen‘sinequality: E[g(X)] = g(E[X]) for convex function g
E[g(X)] < g(E[X]) for concave function g
(gisconvex If for all clJ[0,1] and X,, X,: g(cx, + (1-C)X,) < cg(X,) + (1-c)g(X,))
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Conver gence of Random Variables

Let X,, X,, ...be asequence of RVswith cdf'sF,, F,, ...,

and let X be another RV with cdf F.

e X, convergesto X in probability, X,, - X, If for every € >0
PIX,—X|>¢] - Oasn - o

e X,,convergesto X in distribution, X, - X, If
lim . F,(X) = F(x) at al x for which F is continuous

* X, convergesto X in quadratic mean, X, — o X, If
E[(X,—X)?] - 0asn - o

e X,,convergesto X almost surely, X,, - X, If P[X, - X] =1

weak law of large numbers (for X, =Y., ,X;/n)

if X1, Xg, ooy Xpy - @€ iid RVswith mean E[X], then X, - p E[X]
that is; lim,_ F[| X, —E[X]|>€] =0

strong law of large numbers: B

if w1, X5 oory Xy - @reiid RVswith mean E[X], then X, - 5 E[X]
thatis: P[lim,__ | X, —E[X]|>€] =0
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Poisson Approximates Binomial

Theorem:

Let X be arandom variable with binomial distribution with

parameters n and p := a/n with large n and small constant a << 1.

k
Then lim, o, fx(k):e_a%
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Central Limit Theorem

Theorem:
Let X4, ..., X,, be independent, identically distributed random variables

with expectation p and variance o2.
The distribution function Fn of the random variable Z, := X, + ... + X,

converges to anormal distribution N(nu, no?)
with expectation nu and variance no?:

lim, ., P[as Zn MK _ b] = d(b)-d(a)
NoO

Corollary:

X = —_lei converges to anormal distribution N(u, o2/n)
|=
with expectation p and variance a4/n .
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Elementary Information Theory

Let f(X) be the probability (or relative frequency) of the x-th symbol .
In some text d. The entropy of the text _

(or the underlying prob. distribution f) is: H(d) % f(x)log; f(x)
H(d) isalower bound for the bits per symbol

needed with optimal coding (compression).

For two prob. distributions f(x) and g(x) the
relative entropy (Kullback-Lelbler divergence) of ftogis

f(x
D(f|g):=X f(x)log (x)
X g(x)
Relative entropy is a measure for the (dis-)similarity of
two probability or frequency distributions.
It corresponds to the average number of additional bits
needed for coding information (events) with distribution f
when using an optimal code for distribution g.

The cross entropy of f(x) to g(x) Is:
H(f,g):=H(f)+D(f|g)=-X f(x)log g(x)
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Compression

 Text Is sequence of symbols (with specific frequencies)
e Symbols can be

e |etters or other characters from some alphabet >

» strings of fixed length (e.g. trigrams)

 Or words, bits, syllables, phrases, etc.

Limits of compression:
Let p; be the probability (or relative frequency)
of the i-th symbol in text d 1
Then the entropy of the text: H(d) = IZ pi log; H
Isalower bound for the average number of bits per symbol
In any compression (e.g. Huffman codes)

Note:

compression schemes such as Ziv-Lempel (used in zip)

are better because they consider context beyond single symboals;
with appropriately generalized notions of entropy

the lower-bound theorem does still hold
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