Chapter 2: Basics from Probability Theory and Statistics

2.1 Probability Theory

Events, Probabilities, Random Variables, Distributions, Moments Generating Functions, Deviation Bounds, Limit Theorems Basics from Information Theory

2.2 Statistical Inference: Sampling and Estimation

Moment Estimation, Confidence Intervals Parameter Estimation, Maximum Likelihood, EM Iteration

2.3 Statistical Inference: Hypothesis Testing and Regression Statistical Tests, p-Values, Chi-Square Test Linear and Logistic Regression

mostly following L. Wasserman Chapters 1-5, with additions from other textbooks on stochastics

2.1 Basic Probability Theory

A **probability space** is a triple (Ω , E, P) with

- a set Ω of elementary events (sample space),
- a family E of subsets of Ω with Ω∈ E which is closed under
 ∩, ∪, and with a countable number of operands
 (with finite Ω usually E=2^Ω), and
- a **probability measure P:** $\mathbf{E} \to [0,1]$ with P[Ω]=1 and P[$\cup_i A_i$] = $\sum_i P[A_i]$ for countably many, pairwise disjoint A_i

```
Properties of P:

P[A] + P[\neg A] = 1

P[A \cup B] = P[A] + P[B] - P[A \cap B]

P[\emptyset] = 0 (null/impossible event)

P[\Omega] = 1 (true/certain event)
```

Independence and Conditional Probabilities

Two events A, B of a prob. space are **independent** if $P[A \cap B] = P[A] P[B]$.

A finite set of events $A = \{A_1, ..., A_n\}$ is **independent** if for every subset $S \subseteq A$ the equation $P[\bigcap_{A_i \in S} A_i] = \prod_{A_i \in S} P[A_i]$ holds.

The **conditional probability** P[A | B] of A under the condition (hypothesis) B is defined as: $P[A | B] = \frac{P[A \cap B]}{P[B]}$

Event A is **conditionally independent** of B given C if P[A | BC] = P[A | C].

Total Probability and Bayes' Theorem

Total probability theorem:

For a partitioning of Ω into events $B_1, ..., B_n$:

$$P[A] = \sum_{i=1}^{n} P[A/B_i] P[B_i]$$

Bayes' theorem:
$$P[A | B] = \frac{P[B | A]P[A]}{P[B]}$$

P[A|B] is called *posterior probability* P[A] is called *prior probability*

Random Variables

A random variable (RV) X on the prob. space (Ω , E, P) is a function X: $\Omega \rightarrow M$ with $M \subseteq R$ s.t. {e | X(e) $\leq x$ } $\in E$ for all $x \in M$ (X is measurable).

 $F_X: M \to [0,1]$ with $F_X(x) = P[X \le x]$ is the *(cumulative) distribution function (cdf)* of X. With countable set M the function $f_X: M \to [0,1]$ with $f_X(x) = P[X = x]$ is called the *(probability) density function (pdf)* of X; in general $f_X(x)$ is $F'_X(x)$.

For a random variable X with distribution function F, the inverse function $F^{-1}(q) := \inf\{x \mid F(x) > q\}$ for $q \in [0,1]$ is called *quantile function* of X. (0.5 quantile (50th percentile) is called median)

Random variables with countable M are called *discrete*, otherwise they are called *continuous*.For discrete random variables the density function is also referred to as the *probability mass function*.

Important Discrete Distributions

- **Bernoulli** distribution with parameter p: $P[X = x] = p^{x}(1-p)^{1-x}$ for $x \in \{0,1\}$
- Uniform distribution over {1, 2, ..., m}: $P[X = k] = f_X(k) = \frac{1}{m} \quad for 1 \le k \le m$
- **Binomial** distribution (coin toss n times repeated; X: #heads): $P[X = k] = f_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$
- **Poisson** distribution (with rate λ):

$$P[X=k] = f_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

• **Geometric** distribution (#coin tosses until first head):

$$P[X = k] = f_X(k) = (1 - p)^k p$$

• **2-Poisson mixture** (with $a_1+a_2=1$):

$$P[X = k] = f_X(k) = a_1 e^{-\lambda_1} \frac{\lambda_1^k}{k!} + a_2 e^{-\lambda_2} \frac{\lambda_2^k}{k!}$$

IRDM WS 2005

Important Continuous Distributions

• **Uniform** distribution in the interval [a,b]

$$f_X(x) = \frac{1}{b-a}$$
 for $a \le x \le b$ (0 otherwise)

- Exponential distribution (z.B. time until next event of a Poisson process) with rate $\lambda = \lim_{\Delta t \to 0} (\# \text{ events in } \Delta t) / \Delta t$: $f_X(x) = \lambda e^{-\lambda x} \quad \text{for } x \ge 0 (0 \text{ otherwise })$
- **Hyperexponential** distribution: $f_X(x) = p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x}$
- **Pareto** distribution: $f_X(x) \rightarrow \frac{a}{b} \left(\frac{b}{x}\right)^{a+1}$ for x > b, 0 otherwise

Example of a ,,heavy-tailed" distribution with $f_X(x) \rightarrow \frac{c}{\alpha+1}$

• **logistic** distribution:
$$F_X(x) = \frac{1}{1 + e^{-x}}$$

Normal Distribution (Gaussian Distribution)

- *Normal distribution* $N(\mu, \sigma^2)$ (Gauss distribution; approximates sums of independent, identically distributed random variables): $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Distribution function of N(0,1):

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

Theorem:

Let X be normal distributed with

expectation μ and variance σ^2 . Then $Y := \frac{X - \mu}{M}$

is normal distributed with expectation 0 and variance 1.

Multidimensional (Multivariate) Distributions

Let $X_1, ..., X_m$ be random variables over the same prob. space with domains dom $(X_1), ..., dom(X_m)$.

The *joint distribution* of $X_1, ..., X_m$ has a density function

$$f_{X_{1},...,X_{m}}(x_{1},...,x_{m})$$
with $\sum_{x_{1}\in dom(X_{1})} ... \sum_{x_{m}\in dom(X_{m})} f_{X_{1},...,X_{m}}(x_{1},...,x_{m}) = 1$
or $\int ... \int_{dom(X_{1})} f_{X_{1},...,X_{m}}(x_{1},...,x_{m}) dx_{m}...dx_{1} = 1$

The *marginal distribution* of X_i in the joint distribution of X_1 , ..., X_m has the density function

$$\sum_{x_{1}} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_{m}} f_{X_{1},\dots,X_{m}}(x_{1},\dots,x_{m}) \text{ or }$$

$$\int_{x_{1}} \dots \int_{x_{i-1}} \int_{x_{i+1}} \dots \int_{x_{m}} f_{X_{1},\dots,X_{m}}(x_{1},\dots,x_{m}) dx_{m} \dots dx_{i+1} dx_{i-1} \dots dx_{1}$$

Important Multivariate Distributions

multinomial distribution (n trials with m-sided dice):

$$P[X_{1} = k_{1} \land ... \land X_{m} = k_{m}] = f_{X_{1},...,X_{m}}(k_{1},...,k_{m}) = \binom{n}{k_{1}...k_{m}} p_{1}^{k_{1}} ... p_{m}^{k_{m}}$$

with $\binom{n}{k_{1}...k_{m}} := \frac{n!}{k_{1}!...k_{m}!}$

multidimensional normal distribution:

Bivariate Normal

with covariance matrix Σ with $\Sigma_{ij} := Cov(X_i, X_j)$

Moments

For a discrete random variable X with density f_X

 $E[X] = \sum_{k \in M} k f_X(k) \text{ is the expectation value (mean) of X}$ $E[X^i] = \sum_{k \in M} k^i f_X(k) \text{ is the } i\text{-th moment of X}$ $V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2 \text{ is the variance of X}$

For a continuous random variable X with density f_X

$$E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx \quad \text{is the expectation value of X}$$

$$E[X^i] = \int_{-\infty}^{+\infty} x^i f_X(x) dx \quad \text{is the i-th moment of X}$$

$$V[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2 \quad \text{is the variance of X}$$

<u>Theorem</u>: Expectation values are additive: E[X + Y] = E[X] + E[Y] (distributions are not)

IRDM WS 2005

Properties of Expectation and Variance

E[aX+b] = aE[X]+b for constants a, b

 $E[X_1 + X_2 + \dots + X_n] = E[X_1] + E[X_2] + \dots + E[X_n]$

(i.e. expectation values are generally additive, but distributions are not!)

 $E[X_1+X_2+...+X_N] = E[N] E[X]$ if $X_1, X_2, ..., X_N$ are independent and identically distributed (**iid RVs**) with mean E[X] and N is a stopping-time RV

 $Var[aX+b] = a^2 Var[X]$ for constants a, b

 $Var[X_1+X_2+...+X_n] = Var[X_1] + Var[X_2] + ... + Var[X_n]$ if X₁, X₂, ..., X_n are independent RVs

 $Var[X_1+X_2+...+X_N] = E[N] Var[X] + E[X]^2 Var[N]$ if X₁, X₂, ..., X_N are iid RVs with mean E[X] and variance Var[X] and N is a stopping-time RV

Correlation of Random Variables

Covariance of random variables Xi and Xj:: $Cov(Xi, Xj) \coloneqq E[(Xi - E[Xi])(Xj - E[Xj])]$ $Var(Xi) = Cov(Xi, Xi) = E[X^2] - E[X]^2$

Correlation coefficient of Xi and Xj

$$\rho(Xi, Xj) \coloneqq \frac{Cov(Xi, Xj)}{\sqrt{Var(Xi)}\sqrt{Var(Xj)}}$$

Conditional expectation of X given Y=y:

$$E[X | Y = y] = \begin{cases} \sum x f_{X|Y}(x | y) & \text{discrete case} \\ \int x f_{X|Y}(x | y) dx & \text{continuous case} \end{cases}$$

Transformations of Random Variables

Consider expressions r(X,Y) over RVs such as X+Y, max(X,Y), etc.

- 1. For each z find $A_z = \{(x,y) | r(x,y) \le z\}$
- 2. Find cdf $F_Z(z) = P[r(x,y) \le z] = \iint_{A_Z} f_{X,Y}(x,y) dx dy$
- 3. Find pdf $f_Z(z) = F'_Z(z)$

Important case: *sum of independent RVs* (non-negative) Z = X+Y $F_{Z}(z) = P[r(x,y) \le z] = \iint_{\substack{y \ x \\ y=0}} f_{X+y \le z} f_{X}(x) f_{Y}(y) dx dy$ $= \int_{y=0}^{z-x} \int_{x=0}^{z} f_{X}(x) f_{Y}(y) dx dy$ $= \int_{x=0}^{z} f_{X}(x) F_{Y}(z-x) dx$

or in discrete case:

$$F_{Z}(z) = \sum_{x} \sum_{y} f_{X+y \le z} f_{X}(x) f_{Y}(y)$$

Convolution

Generating Functions and Transforms

- X, Y, ...: continuous random variables with non-negative real values
- A, B, ...: discrete random variables with non-negative integer values

$$M_X(s) = \int_{0}^{\infty} e^{sx} f_X(x) dx = E[e^{sX}]:$$

moment-generating function of X

$$f *_X (s) = \int_0^\infty e^{-sx} f_X(x) dx = E[e^{-sX}]$$

$$G_A(z) = \sum_{i=0}^{\infty} z^i f_A(i) = E[z^A]:$$

generating function of A (z transform)

Such the substitution $(LSI) \cup I$

$$f_A^*(-s) = M_A(s) = G_A(e^s)$$

Examples: exponential: Erlang-k: Poisson:

$$f_X(x) = \alpha e^{-\alpha x} \quad f_X(x) = \frac{\alpha k(\alpha kx)^{k-1}}{(k-1)!} e^{-\alpha kx} \quad f_A(x) = e^{-\alpha} \frac{\alpha^k}{k!}$$

$$f_X(x) = \frac{\alpha}{\alpha + s} \quad f_X(x) = \left(\frac{k\alpha}{k\alpha + s}\right)^k \quad G_A(z) = e^{\alpha(z-1)}$$

Properties of Transforms

$$M_{X}(s) = 1 + sE[X] + \frac{s^{2}E[X^{2}]}{2!} + \frac{s^{3}E[X^{3}]}{3!} + \dots \qquad f_{A}(n) = \frac{1}{n!} \frac{d^{n}G_{A}(z)}{dz^{n}}(0)$$
$$\Rightarrow E[X^{n}] = \frac{d^{n}M_{X}(s)}{ds^{n}}(0) \qquad \qquad E[A] = \frac{dG_{A}(z)}{dz}(1)$$

$$f_X(x) = ag(x) + bh(x) \implies f^*(s) = ag^*(s) + bh^*(s)$$

$$f_X(x) = g'(x) \implies f^*(s) = sg^*(s) - g(0^-)$$

$$f_X(x) = \int_0^x g(t) dt \implies f^*(s) = \frac{g^*(s)}{s}$$

Convolution of independent random variables: $F_{X+Y}(z) = \int_{0}^{z} f_{X}(x) F_{Y}(z-x) dx \qquad F_{A+B}(k) = \sum_{i=0}^{k} f_{A}(i) F_{Y}(k-i)$ $f *_{X+Y}(s) = f *_{X}(s) f *_{Y}(s)$ $M_{X+Y}(s) = M_{X}(s) M_{Y}(s) \qquad G_{A+B}(z) = G_{A}(z) G_{B}(z)$

Inequalities and Tail Bounds

Markov inequality: $P[X \ge t] \le E[X] / t$ for t > 0 and non-neg. RV X *Chebyshev inequality:* $P[|X-E[X]| \ge t] \le Var[X] / t^2$ for t > 0 and non-neg. RV X **Chernoff-Hoeffding bound**: $P[X \ge t] \le \inf \left\{ e^{-\theta t} M_X(\theta) | \theta \ge 0 \right\}$ Corollary: :P $\begin{bmatrix} \left| \frac{1}{n} \sum X_i - p \right| \ge t \end{bmatrix} \le 2e^{-2nt^2}$ for Bernoulli(p) iid. RVs $X_1, ..., X_n$ and any t > 0*Mill's inequality:* $P[|Z| > t] \le \frac{\sqrt{2}}{\pi} \frac{e^{-t^2/2}}{t}$ for N(0,1) distr. RV Z and t > 0*Cauchy-Schwarz inequality:* $E[XY] \le \sqrt{E[X^2]E[Y^2]}$ *Jensen's inequality:* $E[g(X)] \ge g(E[X])$ for convex function g $E[g(X)] \le g(E[X])$ for concave function g (g is convex if for all $c \in [0,1]$ and x_1, x_2 : $g(cx_1 + (1-c)x_2) \le cg(x_1) + (1-c)g(x_2)$)

IRDM WS 2005

Convergence of Random Variables

- Let X_1, X_2 , ... be a sequence of RVs with cdf's F_1, F_2 , ..., and let X be another RV with cdf F.
- X_n *converges* to X *in probability*, $X_n \rightarrow_P X$, if for every $\varepsilon > 0$ $P[|X_n - X| > \varepsilon] \rightarrow 0$ as $n \rightarrow \infty$
- X_n *converges* to X *in distribution*, $X_n \rightarrow_D X$, if $\lim_{n \to \infty} F_n(x) = F(x)$ at all x for which F is continuous
- X_n *converges* to X *in quadratic mean*, $X_n \rightarrow_{qm} X$, if $E[(X_n X)^2] \rightarrow 0$ as $n \rightarrow \infty$
- X_n *converges* to X *almost surely*, $X_n \rightarrow_{as} X$, if $P[X_n \rightarrow X] = 1$

weak law of large numbers (for $\overline{X}_n = \sum_{i=1..n} X_i / n$) if $X_1, X_2, ..., X_n, ...$ are iid RVs with mean E[X], then $\overline{X}_n \rightarrow_P E[X]$ that is: $\lim_{n\to\infty} P[|\overline{X}_n - E[X]| > \varepsilon] = 0$ *strong law of large numbers:* if $_{X1}, X_2, ..., X_n, ...$ are iid RVs with mean E[X], then $\overline{X}_n \rightarrow_{as} E[X]$ that is: $P[\lim_{n\to\infty} |\overline{X}_n - E[X]| > \varepsilon] = 0$

Poisson Approximates Binomial

Theorem:

Let X be a random variable with binomial distribution with parameters n and p := α/n with large n and small constant $\alpha << 1$.

1_

Then
$$\lim_{n \to \infty} f_X(k) = e^{-\alpha} \frac{\alpha^k}{k!}$$

Central Limit Theorem

Theorem:

Let $X_1, ..., X_n$ be independent, identically distributed random variables with expectation μ and variance σ^2 . The distribution function Fn of the random variable $Z_n := X_1 + ... + X_n$ converges to a normal distribution N(n μ , n σ^2) with expectation n μ and variance n σ^2 :

$$\lim_{n \to \infty} P[a \le \frac{Z_n - n\mu}{\sqrt{n\sigma}} \le b] = \Phi(b) - \Phi(a)$$

 $\frac{\text{Corollary:}}{\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i} \quad \text{converges to a normal distribution N}(\mu, \sigma^2/n)$ with expectation μ and variance σ^2/n .

Elementary Information Theory

Let f(x) be the probability (or relative frequency) of the x-th symbol in some text d. The **entropy** of the text (or the underlying prob. distribution f) is: $H(d) = \sum_{x} f(x) \log_2 \frac{1}{f(x)}$ H(d) is a lower bound for the bits per symbol needed with optimal coding (compression).

For two prob. distributions f(x) and g(x) the **relative entropy (Kullback-Leibler divergence**) of f to g is

$$D(f \| g) := \sum_{x} f(x) \log \frac{f(x)}{g(x)}$$

Relative entropy is a measure for the (dis-)similarity of two probability or frequency distributions. It corresponds to the average number of additional bits needed for coding information (events) with distribution f when using an optimal code for distribution g.

The **cross entropy** of f(x) to g(x) is: $H(f,g) := H(f) + D(f || g) = -\sum f(x) log g(x)$

Compression

- Text is sequence of symbols (with specific frequencies)
- Symbols can be
 - \bullet letters or other characters from some alphabet Σ
 - strings of fixed length (e.g. trigrams)
 - or words, bits, syllables, phrases, etc.

Limits of compression:

Let p_i be the probability (or relative frequency) of the i-th symbol in text d Then the *entropy* of the text: $H(d) = \sum_i p_i \log_2 \frac{1}{p_i}$ is a *lower bound* for the average number of bits per symbol in any compression (e.g. Huffman codes)

Note:

compression schemes such as *Ziv-Lempel* (used in zip) are better because they consider context beyond single symbols; with appropriately generalized notions of entropy the lower-bound theorem does still hold

IRDM WS 2005