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Chapter 2: Basics from Probability Theory
and Statistics

2.1 Probability Theory
Events, Probabilities, Random Var iables, Distr ibutions, Moments
Generating Functions, Deviation Bounds, L imit Theorems
Basics from Information Theory

2.2 Statistical Inference: Sampling and Estimation
Moment Estimation, Confidence Intervals
Parameter  Estimation, Maximum Likelihood, EM I teration

2.3 Statistical Inference: Hypothesis Testing and Regression
Statistical Tests, p-Values, Chi-SquareTest
L inear  and Logistic Regression

mostly following L. Wasserman Chapters 1-5, with additions from other textbooks on stochastics
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2.1 Basic Probability Theory
A probability space is a triple (Ω, E, P) with
• a set Ω of elementary events (sample space),
• a family E of subsets of Ω with Ω∈E which is closed under

∩, ∪, and − with a countable number of operands
(with finite Ω usually E=2Ω), and

• a probability measure P: E →→→→ [0,1] with P[Ω]=1 and 
P[∪i Ai] = i P[Ai] for countably many, pairwise disjoint Ai

Properties of P:
P[A] + P[¬A] = 1
P[A ∪ B] = P[A] + P[B] – P[A ∩ B]             
P[∅] = 0 (null/impossible event)

P[Ω ] = 1 (true/certain event)
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Independence and Conditional Probabilities

Two events A, B of a prob. space are independent
if P[A ∩ B] = P[A] P[B].

The conditional probability P[A | B] of A under the
condition (hypothesis) B is defined as:
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A finite set of events A={ A1, ..., An}  is independent
if for every subset S ⊆A the equation
holds.
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P[ A ] P[A ]
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Event A is conditionally independent of B given C
if P[A | BC] = P[A | C].
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Total Probability and Bayes’ Theorem
Total probability theorem:
For a partitioning of Ω into events B1, ..., Bn:

n
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P[ A] P[ A| B ] P[ B ]
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Bayes‘ theorem:
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P[A|B] is called posterior probability
P[A] is called prior probability
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Random Var iables
A random var iable (RV) X on the prob. space (Ω, E, P) is a function
X: Ω → M with M ⊆ R s.t. { e | X(e) ≤ x}  ∈E for all x ∈M 
(X is measurable).

Random variables with countableM arecalled discrete,
otherwise they are called continuous.
For discrete random variables the density function isalso
referred to as theprobability mass function.

For a random variable X with distribution function F, the inverse function
F-1(q) := inf{ x | F(x) > q}  for q ∈ [0,1] is called quantile function of X.
(0.5 quantile (50th percentile) is called median)

FX: M → [0,1] with FX(x) = P[X  ≤ x] is the
(cumulative) distribution function (cdf) of X.
With countable set M the function fX: M → [0,1] with fX(x) = P[X = x] 
is called the (probability) density function (pdf) of X; 
in general fX(x) is F‘X(x).
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Impor tant Discrete Distr ibutions
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• Binomial distribution (coin toss n times repeated; X: #heads):

• Poisson distribution (with rate λ):
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• Uniform distribution over { 1, 2, ..., m} :

• Geometr ic distribution (#coin tosses until first head):
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• 2-Poisson mixture (with a1+a2=1):
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• Bernoulli distribution with parameter p: x 1 xP[ X x] p (1 p) −= = −
for x { 0,1}∈
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Impor tant Continuous Distr ibutions

• Exponential distribution (z.B. time until next event of a  
Poisson process) with rate λ = lim∆t→0 (# events in ∆t) / ∆t :

)otherwise(xfore)x(f x
X 00≥= −λλ

• Uniform distribution in the interval [a,b]
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• Hyperexponential distribution:

• Pareto distribution:

Example of a „heavy-tailed“ distribution with 1+→ αx
c

X )x(f
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• logistic distribution: X x
1

F ( x )
1 e−=

+
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Normal Distr ibution (Gaussian Distr ibution)

• Normal distribution N(µµµµ,σσσσ2) (Gauss distribution; 
approximates sums of independent, 
identically distributed random variables):
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• Distribution function of N(0,1):
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Theorem:

Let X be normal distributed with

expectation µ and variance σ2.

Then

is normal distributed with expectation 0 and variance 1.
σ

µ−= X
:Y
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Multidimensional (Multivar iate) Distr ibutions
Let X1, ..., Xm be random variables over thesame prob. space
with domains dom(X1), ..., dom(Xm). 
The joint distribution of X1, ..., Xm has a density function

)x...,,x(f mmX...,,X 11

1
11

11 =
∈ ∈)X(domx )mX(dommx

mmX...,,X )x...,,x(f...with

1 m

X1,...,Xm 1 m m 1
dom( X ) dom( X )

or ... f ( x ,...,x ) dx ...dx 1=

The marginal distribution of Xi in the joint distribution
of X1, ..., Xm has the density function

− +1 1 1
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X iX iX mX
iimmmX...,,X dx...dxdx...dx)x...,,x(f......
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multinomial distribution (n trials with m-sided dice):

Impor tant Multivar iate Distr ibutions
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multidimensional normal distribution:

with covariance matrix Σ with Σij := Cov(Xi,Xj)
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Moments
For a discrete random variable X with density fX

∈
=

Mk
X kfkXE )(][ is the expectation value (mean) of X

∈
=

Mk
X

ii kfkXE )(][ is the i-th moment of X

222 ][][]])[[(][ XEXEXEXEXV −=−= is the variance of X

For a continuous random variable X with density fX
∞+

∞−
= dxxfxXE X )(][ is the expectation value of X

is the i-th moment of X

222 ][][]])[[(][ XEXEXEXEXV −=−= is the variance of X
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Theorem: Expectation values are additive:
(distributions are not)

]Y[E]X[E]YX[E +=+
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Properties of Expectation and Var iance

Var[aX+b] = a2 Var[X] for constants a, b

Var[X1+X2+...+Xn] = Var[X1] + Var[X2] + ... + Var[Xn]
if X1, X2, ..., Xn are independent RVs

E[aX+b] = aE[X]+b for constants a, b

Var[X1+X2+...+XN] = E[N] Var[X] + E[X]2 Var[N] 
if X1, X2, ..., XN are iid RVs with mean E[X] and variance Var[X] 
and N is a stopping-time RV

E[X1+X2+...+Xn] = E[X1] + E[X2] + ... + E[Xn]
(i.e. expectation values are generally additive, but distributions are not!)

E[X1+X2+...+XN] = E[N] E[X] 
if X1, X2, ..., XN are independent and identically distributed (iid RVs)
with mean E[X] and N is a stopping-time RV
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Correlation of Random Var iables

Correlation coefficient of Xi and Xj

)()(
),(

:),(
XjVarXiVar

XjXiCov
XjXi =ρ

Covariance of random variables Xi and Xj::

]])[(])[([:),( XjEXjXiEXiEXjXiCov −−=
22 ]X[E]X[E)Xi,Xi(Cov)Xi(Var −==

Conditional expectation of X given Y=y:

X|Y

X|Y

x f (x | y)
E[X |Y y]

x f (x | y)dx
= =

discrete case

continuous case
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Transformations of Random Var iables
Consider expressions r(X,Y) over RVs such as X+Y, max(X,Y), etc.

1. For each z find Az = { (x,y) | r(x,y)≤z}

2. Find cdf FZ(z) = P[r(x,y) ≤ z] = 

3. Find pdf fZ(z) = F‘Z(z) 

Important case: sum of independent RVs (non-negative)

Z = X+Y

FZ(z) = P[r(x,y) ≤ z] = 

A X,Yz
f (x,y)dx dy

x y z X Y
y x

f (x)f (y)dx dy+ ≤

z x z
X Yy 0 x 0

f (x)f (y) dx dy
−
= ==

z
X Yx 0

f (x)F (z x) dx== −
Convolutionor in discrete case:

Z x y z X Y
x y

F (z) f (x)f (y)+ ≤=
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Generating Functions and Transforms
X, Y, ...: continuous random variables 

with non-negative real values

0

sx sX
X Xf * ( s) e f ( x )dx E [ e ]

∞
− −= =

Laplace-Stieltjes transform (LST) of X 

A, B, ...: discrete random variables with
non-negative integer values

sx sX
X X

0

M ( s) e f ( x )dx E[ e ] :
∞

= = i A
A A

i 0
G ( z) z f ( i ) E[ z ] :

∞

=
= =

moment-generating function of X generating function of A
(z transform) 

Examples:
x
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X
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Af ( k ) e
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Poisson:

( z 1)
AG ( z) eα −=

Erlang-k:exponential:

* s
A A Af ( s) M ( s) G ( e )− = =
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Properties of Transforms

+ −=
z
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Convolution of independent random variables:

)(*)(*)(* sfsfsf YXYX =+

X Y X YM ( s) M ( s)M ( s)+ =

k

A B A Y
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F ( k ) f ( i )F ( k i )+
=
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A B A BG ( z) G ( z)G ( z)+ =

2 2 3 3

X
s E[ X ] s E[ X ]

M ( s) 1 sE[ X ] ...
2! 3!

= + + + +
n

n X
n

d M ( s)
E[ X ] (0 )

ds
=

n
A

A n

1 d G ( z)
f ( n ) (0 )

n! dz
=

AdG ( z)
E[ A] (1)

dz
=

Xf ( x ) ag( x ) bh( x ) f * ( s) ag* ( s) bh* ( s)= + = +

Xf ( x ) g'( x ) f * ( s) sg* ( s) g(0 )−= = −
x

X
0

g* ( s)
f ( x ) g( t )dt f * ( s)

s
= =
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Inequalities and Tail Bounds

{ }t
XP[ X t ] inf e M ( ) | 0θ θ θ−≥ ≤ ≥Chernoff-Hoeffding bound:

Markov inequality: P[X ≥ t] ≤ E[X] / t      for t > 0 and non-neg. RV X

Chebyshev inequality: P[ |X−E[X]| ≥ t] ≤ Var[X] / t2

for t > 0 and non-neg. RV X

Corollary: :
22nt

i
1

P X p t 2e
n

−− ≥ ≤

Mill‘s inequality:

2t / 22 e
P Z t

t

−
> ≤

π
for N(0,1) distr. RV Z 
and t > 0

for Bernoulli(p) iid. RVs
X1, ..., Xn and any t > 0

Jensen‘s inequality: E[g(X)] ≥ g(E[X]) for convex function g
E[g(X)] ≤ g(E[X]) for concave function g

(g is convex if for all c∈[0,1] and x1, x2: g(cx1 + (1-c)x2) ≤ cg(x1) + (1-c)g(x2))

Cauchy-Schwarz inequality: 2 2E[XY] E[X ] E[Y ]≤
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Convergence of Random Var iables
Let X1, X2, ...be a sequence of RVs with cdf‘s F1, F2, ...,
and let X be another RV with cdf F.
• Xn converges to X in probability, Xn →P X, if for every ε > 0

P[|Xn−X| > ε] → 0 as n → ∞
• Xn converges to X in distribution, Xn →D X, if

lim n→ ∞ Fn(x) = F(x) at all x for which F is continuous
• Xn converges to X in quadratic mean, Xn →qm X, if

E[(Xn−X)2] → 0 as n → ∞
• Xn converges to X almost surely, Xn →as X, if P[Xn →X] = 1

weak law of large numbers (for )
if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then
that is: 
strong law of large numbers:
if X1, X2, ..., Xn, ... are iid RVs with mean E[X], then
that is:   

n PX E[X]→
n nlim P[|X E[X] | ] 0→∞ − >ε =

n ii 1..nX X / n==

n asX E[X]→
n nP[lim |X E[X] | ] 0→∞ − >ε =



IRDM  WS 2005 2-19

Poisson Approximates Binomial
Theorem: 
Let X be a random variable with binomial distribution with
parametersn and p := α/n with large n and small constant α << 1.

Then
k

n Xlim f ( k ) e
k!

α α−
→∞ =
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Central L imit Theorem
Theorem: 
Let X1, ..., Xn be independent, identically distributed random variables
with expectation µ and variance σ2.
The distribution function Fn of the random variable Zn := X1 + ... + Xn

converges to a normal distribution N(nµ, nσ2)
with expectation nµ and variancenσ2:

)a()b(]b
n

nZ
a[Plim n

n Φ−Φ=≤
−

≤∞→ σ
µ

Corollary: 

converges to a normal distribution N(µ, σ2/n)

with expectation µ and variance σ2/n .

=
=

n

i
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n
:X

1
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Elementary Information Theory

For two prob. distributions f(x) and g(x) the
relative entropy (Kullback-Leibler divergence) of f to g is

=
x )x(g

)x(f
log)x(f:)gf(D

Let f(x) be the probability (or relative frequency) of the x-th symbol
in some text d. The entropy of the text 
(or the underlying prob. distribution f) is:
H(d) is a lower bound for the bits per symbol
needed with optimal coding (compression).

=
x )x(f

log)x(f)d(H
1

2

Relative entropy is a measure for the (dis-)similarity of
two probability or frequency distributions.
It corresponds to the average number of additional bits
needed for coding information (events) with distribution f 
when using an optimal code for distribution g.

The cross entropy of f(x) to g(x) is:
−=+=

x
)x(glog)x(f)gf(D)f(H:)g,f(H
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Compression
• Text is sequence of symbols (with specific frequencies)
• Symbols can be

• letters or other characters from some alphabet Σ
• strings of fixed length (e.g. trigrams)
• or words, bits, syllables, phrases, etc.

Limits of compression:
Let pi be the probability (or relative frequency)
of the i-th symbol in text d
Then theentropy of the text:
is a lower bound for the averagenumber of bits per symbol
in any compression (e.g. Huffman codes)

=
i i

i p
pdH

1
log)( 2

Note:
compression schemessuch as Ziv-Lempel (used in zip)
arebetter because they consider context beyond single symbols;
with appropriately generalized notions of entropy
the lower-bound theorem doesstill hold


