Chapter 2: Basics from Probability Theory and Statistics

2.1 Probability Theory

Events, Probabilities, Random Variables, Distributions, Moments
Generating Functions, Deviation Bounds, Limit Theorems
Basics from Information Theory
2.2 Statistical Inference: Sampling and Estimation

Moment Estimation, Confidence Intervals
Parameter Estimation, Maximum Likelihood, EM Iteration
2.3 Statistical Inference: Hypothesis Testing and Regression

Statistical Tests, p-Values, Chi-Square Test
Linear and Logistic Regression

[^0]
2.1 Basic Probability Theory

A probability space is a triple $(\Omega, \mathrm{E}, \mathrm{P})$ with

- a set Ω of elementary events (sample space),
- a family E of subsets of Ω with $\Omega \in \mathrm{E}$ which is closed under
\cap, \cup, and - with a countable number of operands (with finite Ω usually $\mathrm{E}=2^{\Omega}$), and
- a probability measure $\mathbf{P}: \mathbf{E} \rightarrow[0,1]$ with $\mathrm{P}[\Omega]=1$ and $\mathrm{P}\left[\cup_{i} \mathrm{~A}_{\mathrm{i}}\right]=\sum_{\mathrm{i}} \mathrm{P}\left[\mathrm{A}_{\mathrm{i}}\right]$ for countably many, pairwise disjoint A_{i}

Properties of P:
$\mathrm{P}[\mathrm{A}]+\mathrm{P}[\neg \mathrm{A}]=1$
$\mathrm{P}[\mathrm{A} \cup \mathrm{B}]=\mathrm{P}[\mathrm{A}]+\mathrm{P}[\mathrm{B}]-\mathrm{P}[\mathrm{A} \cap \mathrm{B}]$
$\mathrm{P}[\varnothing]=0$ (null/impossible event)
$\mathrm{P}[\Omega]=1$ (true/certain event)

Independence and Conditional Probabilities

Two events A, B of a prob. space are independent if $\mathrm{P}[\mathrm{A} \cap \mathrm{B}]=\mathrm{P}[\mathrm{A}] \mathrm{P}[\mathrm{B}]$.

A finite set of events $A=\left\{A_{1}, \ldots, A_{n}\right\}$ is independent if for every subset $S \subseteq A$ the equation $P\left[\bigcap_{A_{i} \in S} A_{i}\right]=\prod_{A_{i} \in S} P\left[A_{i}\right]$
holds.

The conditional probability $\mathbf{P}[\mathbf{A} \mid \mathbf{B}]$ of A under the condition (hypothesis) B is defined as: $P[A \mid B]=\frac{P[A \cap B]}{P[B]}$

Event A is conditionally independent of B given C if $\mathrm{P}[\mathrm{A} \mid \mathrm{BC}]=\mathrm{P}[\mathrm{A} \mid \mathrm{C}]$.

Total Probability and Bayes' Theorem

Total probability theorem:
For a partitioning of Ω into events $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$:
$P[A]=\sum_{i=1}^{n} P\left[A \mid B_{i}\right] P\left[B_{i}\right]$

Bayes‘ theorem: $\quad P[A \mid B]=\frac{P[B \mid A] P[A]}{P[B]}$
$\mathrm{P}[\mathrm{A} \mid \mathrm{B}]$ is called posterior probability $\mathrm{P}[\mathrm{A}]$ is called prior probability

Random Variables

A random variable ($\mathbf{R V}$) X on the prob. space $(\Omega, \mathrm{E}, \mathrm{P})$ is a function $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ with $\mathrm{M} \subseteq \mathrm{R}$ s.t. $\{\mathrm{e} \mid \mathrm{X}(\mathrm{e}) \leq \mathrm{x}\} \in \mathrm{E}$ for all $\mathrm{x} \in \mathrm{M}$ (X is measurable).
$\mathrm{F}_{\mathrm{X}}: \mathrm{M} \rightarrow[0,1]$ with $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\mathrm{P}[\mathrm{X} \leq \mathrm{x}]$ is the (cumulative) distribution function (cdf) of X .
With countable set M the function $\mathrm{f}_{\mathrm{X}}: \mathrm{M} \rightarrow[0,1]$ with $\mathrm{f}_{\mathrm{X}}(\mathrm{x})=\mathrm{P}[\mathrm{X}=\mathrm{x}]$ is called the (probability) density function (pdf) of X; in general $f_{X}(x)$ is $F^{\prime}{ }_{X}(x)$.

For a random variable X with distribution function F , the inverse function $\mathrm{F}^{-1}(\mathrm{q}):=\inf \{\mathrm{x} \mid \mathrm{F}(\mathrm{x})>\mathrm{q}\}$ for $\mathrm{q} \in[0,1]$ is called quantile function of X . (0.5 quantile ($50^{\text {th }}$ percentile) is called median)

Random variables with countable M are called discrete, otherwise they are called continuous.
For discrete random variables the density function is also referred to as the probability mass function.

Important Discrete Distributions

- Bernoulli distribution with parameter $\mathrm{p}: P[X=x]=p^{x}(1-p)^{1-x}$
- Uniform distribution over $\{1,2, \ldots, \mathrm{~m}\}$:
for $x \in\{0,1\}$ $P[X=k]=f_{X}(k)=\frac{1}{m} \quad$ for $1 \leq k \leq m$
- Binomial distribution (coin toss n times repeated; X : \#heads): $P[X=k]=f_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- Poisson distribution (with rate λ):

$$
P[X=k]=f_{X}(k)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

- Geometric distribution (\#coin tosses until first head):

$$
P[X=k]=f_{X}(k)=(1-p)^{k} p
$$

- 2-Poisson mixture (with $\mathrm{a}_{1}+\mathrm{a}_{2}=1$):

$$
P[X=k]=f_{X}(k)=a_{1} e^{-\lambda_{1}} \frac{\lambda_{1}^{k}}{k!}+a_{2} e^{-\lambda_{2}} \frac{\lambda_{2}^{k}}{k!}
$$

Important Continuous Distributions

- Uniform distribution in the interval $[\mathrm{a}, \mathrm{b}]$

$$
f_{X}(x)=\frac{1}{b-a} \quad \text { for } a \leq x \leq b \quad(0 \text { otherwise })
$$

- Exponential distribution (z.B. time until next event of a Poisson process) with rate $\lambda=\lim _{\Delta t \rightarrow 0}(\#$ events in $\Delta t) / \Delta t$:

$$
f_{X}(x)=\lambda e^{-\lambda x} \quad \text { for } x \geq 0(0 \text { otherwise })
$$

- Hyperexponential distribution: $f_{X}(x)=p \lambda_{1} e^{-\lambda_{1} x}+(1-p) \lambda_{2} e^{-\lambda_{2} x}$
- Pareto distribution: $f_{X}(x) \rightarrow \frac{a}{b}\left(\frac{b}{x}\right)^{a+1}$ for $x>b, 0$ otherwise Example of a „heavy-tailed" distribution with $f_{X}(x) \rightarrow \frac{c}{x^{\alpha+1}}$
- logistic distribution: $F_{X}(x)=\frac{1}{1+e^{-x}}$

Normal Distribution (Gaussian Distribution)

- Normal distribution $N\left(\mu, \sigma^{2}\right)$ (Gauss distribution; approximates sums of independent,

$$
\begin{aligned}
& \text { sution; } \\
& f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

- Distribution function of $\mathrm{N}(0,1)$:

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x
$$

Theorem:

Let X be normal distributed with expectation μ and variance σ^{2}.
Then $\quad Y:=\frac{X-\mu}{\sigma}$
is normal distributed with expectation 0 and variance 1 .

Multidimensional (Multivariate) Distributions

Let X_{1}, \ldots, X_{m} be random variables over the same prob. space with domains dom $\left(\mathrm{X}_{1}\right), \ldots, \operatorname{dom}\left(\mathrm{X}_{\mathrm{m}}\right)$.
The joint distribution of $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{m}}$ has a density function

$$
\begin{aligned}
& f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) \\
& \text { with } \sum_{x_{1} \in \operatorname{dom}\left(X_{1}\right)} \ldots \sum_{x_{m} \in \operatorname{dom}\left(X_{m}\right)} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right)=1 \\
& \text { or } \int_{\operatorname{dom}\left(X_{1}\right)} \ldots \int_{\operatorname{dom}\left(X_{m}\right)} f_{X 1, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) d x_{m} \ldots d x_{1}=1
\end{aligned}
$$

The marginal distribution of X_{i} in the joint distribution of X_{1}, \ldots, X_{m} has the density function

$$
\begin{aligned}
& \sum_{x_{1}} \ldots \sum_{x_{i-1}} \sum_{x_{i+1}} \ldots \sum_{x_{m}} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) \text { or } \\
& \int_{X_{1}} \ldots \int_{X_{i-1}} \int_{X_{i+1}} \ldots \int_{X_{m}} f_{X_{1}, \ldots, X_{m}}\left(x_{1}, \ldots, x_{m}\right) d x_{m} \ldots d x_{i+1} d x_{i-1} \ldots d x_{1}
\end{aligned}
$$

Important Multivariate Distributions

multinomial distribution (n trials with m -sided dice):
$P\left[X_{1}=k_{1} \wedge \ldots \wedge X_{m}=k_{m}\right]=f_{X_{1}, \ldots, X_{m}}\left(k_{1}, \ldots, k_{m}\right)=\binom{n}{k_{1} \ldots k_{m}} p_{1}^{k_{1}} \ldots p_{m}^{k_{m}}$
with $\binom{n}{k_{1} \ldots k_{m}}:=\frac{n!}{k_{1}!\ldots k_{m}!}$
multidimensional normal distribution:
$f_{X_{1}, \ldots, X_{m}}(\vec{x})=\frac{1}{\sqrt{(2 \pi)^{m}|\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^{T} \Sigma^{-1}(\vec{x}-\vec{\mu})}$
with covariance matrix Σ with $\Sigma_{\mathrm{ij}}:=\operatorname{Cov}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)$

Moments

For a discrete random variable X with density f_{X}

$$
\begin{aligned}
& E[X]=\sum_{k \in M} k f_{X}(k) \quad \text { is the expectation value (mean) of X } \\
& E\left[X^{i}\right]=\sum_{k \in M} k^{i} f_{X}(k) \text { is the } i \text {-th moment of X } \\
& V[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2} \quad \text { is the } \text { variance of X }
\end{aligned}
$$

For a continuous random variable X with density f_{X}

$$
\begin{aligned}
& E[X]=\int_{-\infty}^{+\infty} x f_{X}(x) d x \quad \text { is the expectation value of } \mathrm{X} \\
& E\left[X^{i}\right]=\int_{-\infty}^{+\infty} x^{i} f_{X}(x) d x \quad \text { is the } i \text {-th moment of X } \\
& V[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2} \quad \text { is the variance of X }
\end{aligned}
$$

Theorem: Expectation values are additive: $E[X+Y]=E[X]+E[Y]$ (distributions are not)

Properties of Expectation and Variance

$\mathrm{E}[\mathrm{aX}+\mathrm{b}]=\mathrm{aE}[\mathrm{X}]+\mathrm{b}$ for constants a, b
$\mathrm{E}\left[\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}}\right]=\mathrm{E}\left[\mathrm{X}_{1}\right]+\mathrm{E}\left[\mathrm{X}_{2}\right]+\ldots+\mathrm{E}\left[\mathrm{X}_{\mathrm{n}}\right]$
(i.e. expectation values are generally additive, but distributions are not!)
$\mathrm{E}\left[\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{N}}\right]=\mathrm{E}[\mathrm{N}] \mathrm{E}[\mathrm{X}]$
if $X_{1}, X_{2}, \ldots, X_{N}$ are independent and identically distributed (iid RVs) with mean $\mathrm{E}[\mathrm{X}]$ and N is a stopping-time RV
$\operatorname{Var}[\mathrm{aX}+\mathrm{b}]=\mathrm{a}^{2} \operatorname{Var}[\mathrm{X}]$ for constants a, b
$\operatorname{Var}\left[X_{1}+X_{2}+\ldots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]+\ldots+\operatorname{Var}\left[X_{n}\right]$
if $X_{1}, X_{2}, \ldots, X_{n}$ are independent RVs
$\operatorname{Var}\left[\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{N}}\right]=\mathrm{E}[\mathrm{N}] \operatorname{Var}[\mathrm{X}]+\mathrm{E}[\mathrm{X}]^{2} \operatorname{Var}[\mathrm{~N}]$
if $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$ are iid RV s with mean $\mathrm{E}[\mathrm{X}]$ and variance $\operatorname{Var}[\mathrm{X}]$ and N is a stopping-time RV

Correlation of Random Variables

Covariance of random variables Xi and $\mathrm{Xj}:$:

$$
\begin{aligned}
& \operatorname{Cov}(X i, X j):=E[(X i-E[X i])(X j-E[X j])] \\
& \operatorname{Var}(X i)=\operatorname{Cov}(X i, X i)=E\left[X^{2}\right]-E[X]^{2}
\end{aligned}
$$

Correlation coefficient of Xi and Xj

$$
\rho(X i, X j):=\frac{\operatorname{Cov}(X i, X j)}{\sqrt{\operatorname{Var}(X i)} \sqrt{\operatorname{Var}(X j)}}
$$

Conditional expectation of X given $\mathrm{Y}=\mathrm{y}$:

$$
E[X \mid Y=y]= \begin{cases}\sum x f_{X \mid Y}(x \mid y) & \text { discrete case } \\ \int x f_{X \mid Y}(x \mid y) d x & \text { continuous case }\end{cases}
$$

Transformations of Random Variables

Consider expressions $r(X, Y)$ over RVs such as $\mathrm{X}+\mathrm{Y}$, $\max (\mathrm{X}, \mathrm{Y})$, etc.

1. For each z find $A_{z}=\{(x, y) \mid r(x, y) \leq z\}$
2. Find cdf $F_{Z}(z)=P[r(x, y) \leq z]=\iint_{A_{z}} f_{X, Y}(x, y) d x d y$
3. Find $\operatorname{pdf}_{\mathrm{Z}}(\mathrm{z})=\mathrm{F}_{\mathrm{z}}{ }^{\prime}(\mathrm{z})$

Important case: sum of independent RVs (non-negative)

$$
\mathrm{Z}=\mathrm{X}+\mathrm{Y}
$$

$$
F_{Z}(z)=P[r(x, y) \leq z]=\int_{y x} \int_{x+y \leq z} f_{X}(x) f_{Y}(y) d x d y
$$

$$
=\int_{y=0}^{z-x} \int_{x=0}^{z} f_{X}(x) f_{Y}(y) d x d y
$$

$$
=\int_{x=0}^{z} f_{X}(x) F_{Y}(z-x) d x
$$

or in discrete case:
Convolution

$$
\mathrm{F}_{\mathrm{Z}}(\mathrm{z})=\sum_{\mathrm{x}} \sum_{\mathrm{y}} \mathrm{x}+\mathrm{y} \leq \mathrm{z} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{f}_{\mathrm{Y}}(\mathrm{y})
$$

Generating Functions and Transforms

$\mathrm{X}, \mathrm{Y}, \ldots$: continuous random variables with non-negative real values
$\mathrm{A}, \mathrm{B}, \ldots$: discrete random variables with non-negative integer values

$$
G_{A}(z)=\sum_{i=0}^{\infty} z^{i} f_{A}(i)=E\left[z^{A}\right]:
$$

generating function of A (z transform)
$M_{X}(s)=\int_{0}^{\infty} e^{s x} f_{X}(x) d x=E\left[e^{s X}\right]:$
moment-generating function of X
$f_{X}^{*}(s)=\int_{0}^{\infty} e^{-s x} f_{X}(x) d x=E\left[e^{-s X}\right]$

Laplace-Stieltjes transform (LST) of X

$$
f_{A}^{*}(-s)=M_{A}(s)=G_{A}\left(e^{s}\right)
$$

Examples:
exponential:

$$
\begin{array}{lll}
f_{X}(x)=\alpha e^{-\alpha x} & f_{X}(x)=\frac{\alpha k(\alpha k x)^{k-1}}{(k-1)!} e^{-\alpha k x} & f_{A}(k)=e^{-\alpha} \frac{\alpha^{k}}{k!} \\
f_{X}^{*_{X}}(s)=\frac{\alpha}{\alpha+s} & f *_{X}(s)=\left(\frac{k \alpha}{k \alpha+s}\right)^{k} & G_{A}(z)=e^{\alpha(z-1)}
\end{array}
$$

Properties of Transforms

$$
\begin{aligned}
& M_{X}(s)=1+s E[X]+\frac{s^{2} E\left[X^{2}\right]}{2!}+\frac{s^{3} E\left[X^{3}\right]}{3!}+\ldots \\
& \Rightarrow E\left[X^{n}\right]=\frac{d^{n} M_{X}(s)}{d s^{n}}(0) \quad f_{A}(n)=\frac{1}{n!} \frac{d^{n} G_{A}(z)}{d z^{n}}(0) \\
& f_{X}(x)=a g(x)+b h(x) \Rightarrow f *(s)=a g *(s)+b h *(s) \\
& f_{X}(x)=g^{\prime}(x) \Rightarrow f *(s)=s g^{*}(s)-g\left(0^{-}\right) \\
& f_{X}(x)=\int_{0}^{x} g(t) d t \Rightarrow f^{*}(1) \\
&
\end{aligned}
$$

Convolution of independent random variables:

$$
\begin{array}{ll}
F_{X+Y}(z)=\int_{0}^{z} f_{X}(x) F_{Y}(z-x) d x & F_{A+B}(k)=\sum_{i=o}^{k} f_{A}(i) F_{Y}(k-i) \\
f^{*} X_{X+Y}(s)=f^{*}{ }_{X}(s) f^{*}{ }_{Y}(s) & \\
M_{X+Y}(s)=M_{X}(s) M_{Y}(s) & G_{A+B}(z)=G_{A}(z) G_{B}(z)
\end{array}
$$

Inequalities and Tail Bounds

Markov inequality: $\mathrm{P}[\mathrm{X} \geq \mathrm{t}] \leq \mathrm{E}[\mathrm{X}] / \mathrm{t}$ for $\mathrm{t}>0$ and non-neg. RV X Chebyshev inequality: $\mathrm{P}[|\mathrm{X}-\mathrm{E}[\mathrm{X}]| \geq \mathrm{t}] \leq \operatorname{Var}[\mathrm{X}] / \mathrm{t}^{2}$ for $t>0$ and non-neg. RV X
Chernoff-Hoeffding bound: $P[X \geq t] \leq \inf \left\{e^{-\theta t} M_{X}(\theta) \mid \theta \geq 0\right\}$ Corollary: : $\mathrm{P}\left[\left|\frac{1}{\mathrm{n}} \sum \mathrm{X}_{\mathrm{i}}-\mathrm{p}\right| \geq \mathrm{t}\right] \leq 2 \mathrm{e}^{-2 \mathrm{nt}^{2}} \quad \begin{aligned} & \text { for Bernoulli(p) iid. RVs } \\ & \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \text { and any } \mathrm{t}>0\end{aligned}$
Mill's inequality: $\mathrm{P}[|\mathrm{Z}|>\mathrm{t}] \leq \frac{\sqrt{2}}{\pi} \frac{\mathrm{e}^{-\mathrm{t}^{2} / 2}}{\mathrm{t}} \quad \begin{aligned} & \text { for } \mathrm{N}(0,1) \text { distr. } \mathrm{RV} \mathrm{Z} \\ & \text { and } \mathrm{t}>0\end{aligned}$
Cauchy-Schwarz inequality: $\mathrm{E}[\mathrm{XY}] \leq \sqrt{\mathrm{E}\left[\mathrm{X}^{2}\right] \mathrm{E}\left[\mathrm{Y}^{2}\right]}$
Jensen's inequality: $\mathrm{E}[\mathrm{g}(\mathrm{X})] \geq \mathrm{g}(\mathrm{E}[\mathrm{X}])$ for convex function g $\mathrm{E}[\mathrm{g}(\mathrm{X})] \leq \mathrm{g}(\mathrm{E}[\mathrm{X}])$ for concave function g
(g is convex if for all $\mathrm{c} \in[0,1]$ and $\left.\mathrm{x}_{1}, \mathrm{x}_{2}: \mathrm{g}\left(\mathrm{cx}_{1}+(1-\mathrm{c}) \mathrm{x}_{2}\right) \leq \mathrm{cg}\left(\mathrm{x}_{1}\right)+(1-\mathrm{c}) \mathrm{g}\left(\mathrm{x}_{2}\right)\right)$

Convergence of Random Variables

Let X_{1}, X_{2}, \ldots be a sequence of RVs with cdf's F_{1}, F_{2}, \ldots, and let X be another RV with cdf F .

- X_{n} converges to X in probability, $\mathrm{X}_{\mathrm{n}} \rightarrow_{\mathrm{P}} \mathrm{X}$, if for every $\varepsilon>0$ $\mathrm{P}\left[\left|\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right|>\varepsilon\right] \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
- X_{n} converges to X in distribution, $\mathrm{X}_{\mathrm{n}} \rightarrow_{\mathrm{D}} \mathrm{X}$, if $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ at all x for which F is continuous
- X_{n} converges to X in quadratic mean, $\mathrm{X}_{\mathrm{n}} \rightarrow_{\mathrm{qm}} \mathrm{X}$, if $\mathrm{E}\left[\left(\mathrm{X}_{\mathrm{n}}-\mathrm{X}\right)^{2}\right] \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
- X_{n} converges to X almost surely, $\mathrm{X}_{\mathrm{n}} \rightarrow_{\mathrm{as}} \mathrm{X}$, if $\mathrm{P}\left[\mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{X}\right]=1$
weak law of large numbers (for $\bar{X}_{n}=\sum_{\mathrm{i}=1 . . \mathrm{n}} \mathrm{X}_{\mathrm{i}} / \mathrm{n}$) if $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are iid RVs with mean $E[X]$, then $\bar{X}_{n} \rightarrow_{P} E[X]$ that is: $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}\left[\left|\bar{X}_{\mathrm{n}}-\mathrm{E}[\mathrm{X}]\right|>\varepsilon\right]=0$ strong law of large numbers:
if $_{\mathrm{X} 1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}, \ldots$ are iid RVs with mean $\mathrm{E}[\mathrm{X}]$, then $\bar{X}_{\mathrm{n}} \rightarrow_{\mathrm{as}} \mathrm{E}[\mathrm{X}]$ that is: $P\left[\lim _{n \rightarrow \infty}\left|\bar{X}_{n}-E[X]\right|>\varepsilon\right]=0$

Poisson Approximates Binomial

Theorem:
Let X be a random variable with binomial distribution with parameters n and $\mathrm{p}:=\alpha / \mathrm{n}$ with large n and small constant $\alpha \ll 1$.
Then $\lim _{n \rightarrow \infty} f_{X}(k)=e^{-\alpha} \frac{\alpha^{k}}{k!}$

Central Limit Theorem

Theorem:

Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ be independent, identically distributed random variables with expectation μ and variance σ^{2}.
The distribution function Fn of the random variable $\mathrm{Z}_{\mathrm{n}}:=\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}$ converges to a normal distribution $\mathrm{N}\left(\mathrm{n} \mu, \mathrm{n} \sigma^{2}\right)$ with expectation $n \mu$ and variance $n \sigma^{2}$:
$\lim _{n \rightarrow \infty} P\left[a \leq \frac{Z_{n}-n \mu}{\sqrt{n} \sigma} \leq b\right]=\Phi(b)-\Phi(a)$

Corollary:
$\bar{X}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad$ converges to a normal distribution $\mathrm{N}\left(\mu, \sigma^{2} / \mathrm{n}\right)$ with expectation μ and variance σ^{2} / n.

Elementary Information Theory

Let $f(x)$ be the probability (or relative frequency) of the x-th symbol in some text d. The entropy of the text (or the underlying prob. distribution f) is:

$$
H(d)=\sum_{x} f(x) \log _{2} \frac{1}{f(x)}
$$

$H(d)$ is a lower bound for the bits per symbol needed with optimal coding (compression).

For two prob. distributions $f(x)$ and $g(x)$ the relative entropy (Kullback-Leibler divergence) of f to g is

$$
D(f \| g):=\sum_{x} f(x) \log \frac{f(x)}{g(x)}
$$

Relative entropy is a measure for the (dis-)similarity of two probability or frequency distributions.
It corresponds to the average number of additional bits needed for coding information (events) with distribution f when using an optimal code for distribution g.

The cross entropy of $f(x)$ to $g(x)$ is:

$$
H(f, g):=H(f)+D(f \| g)=-\sum_{x} f(x) \log g(x)
$$

Compression

- Text is sequence of symbols (with specific frequencies)
- Symbols can be
- letters or other characters from some alphabet Σ
- strings of fixed length (e.g. trigrams)
- or words, bits, syllables, phrases, etc.

Limits of compression:

Let p_{i} be the probability (or relative frequency)
of the i-th symbol in text d
Then the entropy of the text: $H(d)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}$
is a lower bound for the average number of bits per symbol in any compression (e.g. Huffman codes)

Note:

compression schemes such as Ziv-Lempel (used in zip) are better because they consider context beyond single symbols; with appropriately generalized notions of entropy the lower-bound theorem does still hold

[^0]: mostly following L. Wasserman Chapters 1-5, with additions from other textbooks on stochastics

