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Chapter 2: Basics from Probability Theory
and Statistics

2.1 Probability Theory
Events, Probabilities, Random Variables, Distributions, Moments

Generating Functions, Deviation Bounds, Limit Theorems

Basics from Information Theory

2.2 Statistical Inference: Sampling and Estimation
Moment Estimation, Confidence Intervals

Parameter Estimation, Maximum Likelihood, EM Iteration

2.3 Statistical Inference: Hypothesis Testing and Regression
Statistical Tests, p-Values, Chi-Square Test

Linear and Logistic Regression

mostly following L. Wasserman, with additions from othersources
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2.2 Statistical Inference: 
Sampling and Estimation

A statistical modelis a set of distributions (or regression functions),
e.g., all unimodal, smooth distributions.
A parametric modelis a set that is completely described by
a finite number of parameters,
(e.g., the family of Normal distributions).

Statistical inference: given a sample X1, ..., Xn how do we
infer the distribution or its parameters within a given model.

For multivariate models with one specific „outcome (response)“ 
variable Y, this is calledpredictionor regression, 
for discrete outcome variable also classification.
r(x) = E[Y | X=x] is called theregression function.



IRDM  WS 2005 2-3

Statistical Estimators
A point estimator for a parameterθ of a prob. distribution is a
random variable X derived from a random sample X1, ..., Xn.
Examples:

Sample mean:

Sample variance:
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An estimator T for parameterθ is unbiased
if ; 

otherwise the estimator has bias .

An estimator on a sample of size n isconsistent

if
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Sample mean and sample variance
are unbiased, consistent estimators with minimal variance.
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Estimator Error
Let = T(θ) be an estimator for parameterθ over sample X1, ..., Xn. 

The distribution of       is called the sampling distribution.

Thestandard errorfor is:

nθ̂
nθ̂

ˆ ˆse( ) Var[ ]θ θ=nθ̂

Themean squared error (MSE)for is:     nθ̂
2

n
ˆ ˆMSE( ) E[( ) ]θ θ θ= −

2
n n

ˆ ˆbias ( ) Var[ ]θ θ= +

If bias → 0 and se → 0 then the estimator is consistent.

The estimator isasymptotically Normalif
converges in distribution to standard Normal N(0,1) 

nθ̂
n

ˆ( ) / seθ θ−
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Nonparametric Estimation

Theempirical distribution function is the cdf that

puts prob. mass 1/n at each data point Xi:
nF̂

n
n ii 1

1
F̂ ( x ) I( X x )

n == ≤∑
A statistical functionalT(F) is any function of F,
e.g., mean, variance, skewness, median, quantiles, correlation

Instead of the full empirical distribution, often compact data synopses
may be used, such as histogramswhere X1, ..., Xn are grouped into
m cells (buckets) c1, ..., cm with bucket boundaries lb(ci) and ub(ci) s.t.
lb(c1) = −∞, ub(cm) = ∞, ub(ci) = lb(ci+1) for 1≤i<m, and
freq(ci) = 

Theplug-in estimatorof θ = T(F) is: n n
ˆ ˆT( F )θ =

n
n i i1

1
F̂ ( x ) I( lb( c ) X ub( c ))

n νν == ≤ <∑
Histograms provide a (discontinuous) density estimator.
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Parametric Inference: Method of Moments

Compute sample moments:                               for j-th momentαj
n j

n ii 1
1

ˆ X
n

α == ∑
Estimate parameterθ by method-of-moments estimator s.t. nθ̂

1 n 1
ˆ ˆ( F( ))α θ α=

and 2 n 2
ˆ ˆ( F( ))α θ α=

3 n 3
ˆ ˆ( F( ))α θ α=and

and    ...      (for some number of moments)

Method-of-moments estimators are usually consistent and
asympotically Normal, but may be biased
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Parametric Inference:
Maximum Likelihood Estimators (MLE)

Estimate parameterθ of a postulated distribution f(θ,x) such that
the probability that the data of the sample are generated by
this distribution is maximized.
→ Maximum likelihood estimation:

MaximizeL(x1,...,xn, θ) = P[x1, ..., xn originate from f(θ,x)]
(often written as 
L(θ | x1,...,xn) = f(x1,...,xn | θ) )

or maximize log L
if analytically untractable→ use numerical iteration methods
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MLE Properties

Maximum Likelihood Estimators are
consistent, asymptotically Normal, and
asymptotically optimalin the following sense:

Consider two estimators U and T which are asymptotically Normal.
Let u2 and t2 denote the variances of the two Normal distributions
to which U and T converge in probability.
Theasymptotic relative efficiencyof U to T is ARE(U,T) = t2/u2 .

Theorem:For an MLE       and any other estimator
the following inequality holds:  

nθ̂ nθɶ

n n
ˆARE( , ) 1θ θ ≤ɶ
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Simple Example for
Maximum Likelihood Estimator

given: 
• coin with Bernoulli distribution with

unknown parameter p für head, 1-p for tail
• sample (data): k times head with n coin tosses
needed: maximum likelihood estimation of p

Let L(k, n, p) = P[sample is generated from distr. with param. p]
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Maximize log-likelihood function log L (k, n, p):
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AdvancedExample for
Maximum Likelihood Estimator

given: 
• Poisson distribution with parameterλ (expectation) 
• sample (data): numbers x1, ..., xn ∈N0

needed: maximum likelihood estimation of λ
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Let r be the largest among these numbers, 
and let f0, ..., fr be the absolute frequencies of numbers 0, ..., r.
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SophisticatedExample for
Maximum Likelihood Estimator

given: 
• discrete uniform distribution over [1,θ] ⊆ N0 and density f(x) = 1/ θ
• sample (data): numbers x1, ..., xn ∈N0

MLE for θ is max{x1, ..., xn } (see Wasserman p. 124)
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MLE for Parameters 
of Normal Distributions
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Bayesian Viewpoint of Parameter Estimation

• assumeprior distribution f(θ) of parameterθ
• choose statistical model (generative model) f(x | θ)

that reflects our beliefs about RV X
• given RVs X1, ..., Xn for observed data, 

theposterior distribution is f(θ | x1, ..., xn)

for X1=x1, ..., Xn=xn the likelihood is
L(x1, ..., xn | θ) i in n '

ii 1 i 1

f ( | x ) f ( x | ') f ( ')
f ( x | )

f ( )
θθ θ θ

θ
θ= =

⋅
= = ∑∏ ∏

which implies

1 n 1 nf ( | x ,...,x ) ~ L( x ,...,x | ) f ( )θ θ θ⋅ (posterior is proportional to
likelihood times prior)

MAP estimator (maximum a posteriori):
computeθ that maximizes f(θ | x1, …, xn) given a prior forθ
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Analytically Non-tractable MLE for parameters
of Multivariate Normal Mixture
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consider samples from a mixture of multivariate Normal distributions
with the density (e.g. height and weight of males and females):
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Expectation-Maximization Method (EM)
Key idea:

when L(θ, X1, ..., Xn) (where the Xi and θ are possibly multivariate)

is analytically intractable then

• introducelatent (hidden, invisible, missing) random variable(s) Z

such that

• the joint distribution J(X1, ..., Xn, Z, θθθθ) of the „complete“ data

is tractable(often with Z actually being Z1, ..., Zn)

• derive the incomplete-data likelihood L(θ, X1, ..., Xn) by

integrating (marginalization) J:

1 nz
ˆ arg max J [ ,X ,...,X ,Z | Z z ]P[ Z z ]θθ θ= = =∑
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EM Procedure

E step (expectation): 
estimate posterior probability of Z:  P[Z | X1, …, Xn, θ(t)]
assumingθ were known and equal to previous estimateθ(t), 
and compute EZ | X1, …, Xn, θ(t) [log J(X1, …, Xn, Z | θ)]
by integrating over values for Z

Initialization: choose start estimate forθ(0)

Iterate (t=0, 1, …) until convergence:

M step (maximization, MLE step): 
Estimateθ(t+1) by maximizing
EZ | X1, …, Xn, θ(t) [log J(X1, …, Xn, Z | θ)]

convergence is guaranteed
(because the E step computes a lower bound of the true L function, 
and the M step yields monotonically non-decreasing likelihood),

but may result in local maximum of log-likelihood function
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EM Example for Multivariate Normal Mixture

Expectation step (E step):
( t )
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Confidence Intervals
Estimator T for an interval for parameterθ such that

For the distribution of random variable X a value
xγ (0< γ <1) with
is called aγγγγ quantile; the 0.5 quantile is called themedian.
For the normal distribution N(0,1) theγ quantile is denotedΦγ .

γγ γγ −≥≥∧≥≤ 1]xX[P]xX[P

αθ −=+≤≤− 1]aTaT[P

[T-a, T+a] is theconfidence intervaland 1-α is theconfidence level.
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Confidence Intervals for Expectations (1)
Let x1, ..., xn be a sample from a distribution with unknown
expectationµ and known varianceσ2. 
For sufficiently large n the sample mean is N(µ,σ2/n) distributed
and                     is N(0,1) distributed:
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Confidence Intervals for Expectations (2)
Let x1, ..., xn be a sample from a distribution with unknown
expectationµ and unknown varianceσ2 and sample variance S2 .
For sufficiently large n the random variable

S

n)X(
:T

µ−= has a t distribution (Student distribution)
with n-1 degrees of freedom:
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Normal Distribution Table
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Student‘s t Distribution Table
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2.3 Statistical Inference: 
Hypothesis Testing and Regression

Hypothesis testing: 
• aims to falsify some hypothesis by lack of statistical evidence
• design of test RV and its (approximate / limit) distribution

Regression: 
• aims to estimate joint distribution of input and output RVs
based on some model and usually minimizing quadratic error
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Statistical Hypothesis Testing
A hypothesis test determines a probability 1-α
(test levelαααα, significance level) that a sample X1, ..., Xn
from some unknown probability distribution has a certain property.
Examples:
1) The sample originates from a normal distribution.
2) Under the assumption of a normal distribution

the sample originates from a N(µ, σ2) distribution.
3) Two random variables are independent.

4) Two random variables are identically distributed.
5) Parameter λ of a Poisson distribution from which the sample stems has value 5.
6) Parameter p of a Bernoulli distribution from which the sample stems has value 0.5.

General form:
null hypothesis H0 vs. alternative hypothesis H1
needstest variable X(derived from X1, ..., Xn, H0, H1) and
test region R with
X∈R for rejecting H0 and 
X∉R for retaining H0

Retain H0 Reject H0

H0 true � type I error
H1 true type II error �
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Hypotheses and p-Values
A hypothesis of the form θ = θ0 is called a simple hypothesis.
A hypothesis of the form θ > θ0 or θ < θ0 is calledcomposite hypothesis.
A test of the form H0: θ = θ0 vs. H1: θ ≠ θ0 is called a two-sided test.
A test of the form H0: θ ≤ θ0 vs. H1: θ > θ0 or H0: θ ≥ θ0 vs. H1: θ < θ0
is called a one-sided test.

Suppose that for every levelα ∈ (0,1) there is a test
with rejection region Rα. Then thep-valueis the smallest level
at which we can reject H0: - 1 np value inf{ |T( X ,...,X ) Rαα= ∈

small p-value means strong evidence against H0
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Hypothesis Testing Example

Null hypothesisfor n coin tosses: coin is fair or has
head probability p = p0; alternative hypothesis: p ≠ p0

Test variable: X, the #heads, is
N(pn, p(1-p)n2) distributed (by the Central Limit Theorem),
thus is N(0, 1) distributed

)1(

/
:

pp

pnX
Z

−
−=

Rejection of null hypothesis at test levelα (e.g. 0.05) if

221 // ZZ αα Φ<∨Φ> −
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Wald Test

for testing H0: θ = θ0 vs. H1: θ ≠ θ0 use the test variable 0
ˆ

W ˆse( )

θ θ
θ

−=

with sample estimate and standard errorθ̂

W converges in probability to N(0,1)

→ reject H0 at levelα when |W| > / 2αΦ

ˆ ˆse( ) Var[ ]θ θ=
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Chi-Square Distribution

Let X1, ..., Xn be independent, N(0,1) distributed random variables.

Then the random variable

is chi-square distributed with n degrees of freedom:
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Let n be a natural number, let X  be N(0,1) distributed and

Y χ2 distributed with n degrees of freedom.

Then the random variable

is t distributed with n degrees of freedom.
Y

X
n:Tn =
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Chi-Square Goodness-of-Fit-Test
Given: 

n sample values X1, ..., Xn of random variable X
with relative frequencies H1, ..., Hk for k value classes vi

(e.g. value intervals) of random variable X
Null hypothesis: 

the values Xi are f distributed (e.g. uniformly distributed),
where f has expectationµ and varianceσ2

Approach:                                             and       ∑
=
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k

i
iik nvEHY

1

/))((: σ

Rejection of null hypothesis at test levelα (e.g. 0.05) if
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are both approximately χ2 distributed with k-1 degrees of freedom

with E(vi) := n P[X is in class vi according to f ] 
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Chi-Square Independence Test
Given: 

n samples of two random variables X, Y or, equivalently,
a twodimensional random variable
with (absolute) frequencies H11, ..., Hrc for r*c value classes,
where X has r and Y has c distinct classes.
(This is called a contingency table.)  

Null hypothesis:
X und Y are independent; then the
expectations for the relative frequencies of the value classes would be

n

CR
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ji
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j
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= ∑ ∑Approach:                                      is approximatelyχ2 distributed

with (r-1)(c-1) degrees of freedom
Rejection of null hypothesis at test levelα (e.g. 0.05) if

2
111 αχ −−−> ),c)(r(Z
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Chi-Square Distribution Table
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Chi-Square Distribution Table
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Linear Regression
(often used for parameter fitting of models)

Estimate r(x) = E[Y | X1=x1 ∧ ... ∧Xm=xm] using a linear model
m

0 i ii 1Y r( x ) xε β β ε== + = + +∑ with errorε with E[ε]=0

given n sample points (x1
(i) , ..., xm

(i), y(i)), i=1..n, the
least-squares estimator (LSE) minimizes the quadratic error:

2
( i ) ( i )

k 0 mk
i 1..n k 0..m

x y : E( ,..., )β β β
= =

  
− =      ∑ ∑ (with xo

(i)=1)

Solve linear equation system:
k

E
0

β
∂ =
∂ for k=0, ..., m

equivalent to MLE T 1 T( X X ) X Yβ −=
�

with Y = (y(1) ... y(n))T and 

( 1) ( 1) ( 1 )
m1 2

( 2 ) ( 2 ) ( 2 )
m1 2

( n ) ( n ) ( n )
m1 2

1 x x ... x

1 x x ... x
X

...

1 x x ... x

   
=      
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Logistic Regression
Estimate r(x) = E[Y | X=x] using a logistic model

m
0 i ii 1

m
0 i ii 1

x

x

e
Y r( x )

1 e

β β

β β
ε ε

∑ =∑ =

+

+
= + = +

+
with errorε with E[ε]=0

→ solution for MLE forβi values based on numerical methods
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Additional Literature for Chapter 2

• Manning / Schütze: Chapters 2 und 6
• Duda / Hart / Stork: Appendix A
• R. Nelson: Probability, Stochastic Processes, and Queueing Theory,

Springer, 1995
• M. Mitzenmacher, E. Upfal: Probability and Computing, 

Cambridge University Press, 2005
• M. Greiner, G. Tinhofer: Stochastik für Studienanfänger der Informatik,

Carl Hanser Verlag, 1996
• G. Hübner: Stochastik, Vieweg, 1996
• Sean Borman: The Expectation Maximization Algorithm:
A Short Tutorial, http://www.seanborman.com/publications/EM_algorithm.pdf

• Jason Rennie: A Short Tutorial on Using Expectation-Maximization
with Mixture Models, http://people.csail.mit.edu/jrennie/writing/mixtureEM.pdf


