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4.1.1 Probabilistic Retrieval: Principles
[Robertson and Sparck Jones 1976]

Goal:
Ranking based on sim(doc d, query q) =
P[R|d] = P [ doc d is relevant for query q |
d has term vector X1, ..., Xm |
Assumptions:
e Relevant and irrelevant documents differ in their terms.
 Binary Independence Retrieval (BIR) Model
 Probabilities for term occurrence are pairwise
iIndependentfor different terms.
e Term weights are binary 0J {0,1}.
 For terms that do not occur in query g the probabillities
for such a term occurring are the same for
relevant and irrelevant documents.
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4.1.2 Probabilistic IR with Term Independence:
Ranking Proportional to Relevance Odds

. P[R]|d]
sm(d,q) =O(R|d) =
(d,q) =O(R]|d) PR d] (odds for relevance)
_ PIA[RI*P[R] ‘
P[d |~ R]x P[~R] (Bayes' theorem)
_ Pld|R e PLXi |R] (independence or
P[d|-R] "P[X; |-R] linked dependence)
. . P[ X | R] (Xi=11if d includes
sm(d,q) =log [1imq PIXi [—R] i-th term, O otherwise)

=Y logP[Xi |R] -logP[Xi |- R]

i00q
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| Probabilistic Retrieval:
Ranking Proportional to Relevance Odds (cont.)

=Y log(pi ' (1- pi )" )-log(qi ' (1-qi )™ ) (binary
iClg features)

with estimators pi=P[Xi=1|R] and qi=P[XI=1R]

€l D I e El 1D

= log( - og ( —)
0g  (1-pi)” (1~qi)™
=Y Xilog P - + Y Xi log 1__0" + > log 1- p_l
ifq 1-p igg gl ing 1—q
. pi . 1-q _
~ > Xilog - + > Xilog——— = dm(d,q)"
ifq 1-pt iog qi (.9
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Probabilistic Retrieval.
Robertson / Sparck Jones Formula

Estimate pi und gi based on training sample
(query g on small sample of corpus) or based on
Intellectual assessment of first round’s restel€vance feedbaqgk

Let N be #docs in sample,
R be # relevant docs in sample
ni #docs in sample that contain term |,
r # relevant docs in sample that contain term |

Esii t r - ni—ri
stimate:pi =—
— I P R N —_R
_ . _ri+05 G -NTNF 05 (Lidstone smoothing
or: pi = g oy
R+1 N-R+1 with A=0.5)
. . rn+05 N-ni—R+ri+05
sm(d,qg)'=> Xilo + » Xilog
= (d.0) Z gR—ri+0.5 Z ni—ri+05

(ri+05) (N-ni—R+ri+0.5)
(R=ri+05)(ni —ri+05)

—> Weight of term i in doc d:log
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Probabilistic Retrieval: tf*idf Formula

Assumptions (without training sample or relevance feedback):
e pi is the same for all I.

 Most documents are irrelevant.

e Each individual term 1 is infrequent.

This implies:
. le Iog P :chi with constant c
- pi
. ql—P[Xl— 1| - R]~%
. 1—C|i _N—dfi _ N
i df df

. . i —qi
= smd,q)"=y Xilog—P— +5 Xi log=—_J
| _ 1-pl | q Scalar product over
=cY Xl + __—the product of tf and
i dampend Idf values
for query terms
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Example for Probabilistic Retrieval

Documents with relevance feedback:
q: t1 t2 t3 t4 t5 t6

t1 2 t3 t4 5 t6 R

1] 1 o 1 1 o0 0 1

2/ 1 1 0 1 1 0 1

3/l 0 0 o 1 1 o0 o FFaN=4
4/ 0 o 1 0O 0 O O

nil2 1 2 3 2 0

il2 1 1 2 1 0

pi |5/6 12 1/2 5/6 1/2 1/6

g |16 16 12 12 12 1/

Score of new document d5 (with Lidstone smoothing watQ.5):

d5ng:<110001> - sim(d5,g) = log5+1log1+log0.2
+log5+log5+1log5

PL 4 5 Xi logt= 9!

1-pl ql
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Laplace Smoothing (with Uniform Prior)

Probabillities pi and qi for term | are estimated

by MLE for binomial distribution
(repeated coin tosses for relevant docs, showing term | with pi,
Repeated coin tosses for irrelevant docs, showing term i with qi)

To avoid overfitting to feedback/training,
the estimates should bemoothed
(e.g. with uniform prior ):

Instead of estimating pi = k/n estimate (aplace’s law of succession
pi = (k+1) / (n+2)

or with heuristic generalization (Lidstone’s law of succession
pi = (k+A) / ( n+2\) with A > 0 (e.g.A=0.5)

And for multinomial distribution (n times w-faceted dice) estimate:
pi=(ki+1)/(n+w)
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4.1.3 Probabillistic IR with Poisson Model
(Okapi BM25)

Generalize term weight w=1log P{L-q)
Py Go ai-p)
into W=log
Ui Bo

with p;, g, denoting prob. that term occurs | times in rel./irrel. doc

Postulate Poisson (or Poisson-mixture) distributions:

) Atf ) ,Utf
_ A7 — u
ptf — tf | qtf € tf |
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Okapi BM25

Approximation of Poisson model by similarly-shaped function:
pd-q) - tf

q@d-p) k +tf

finally leads to Okapi BM25 (which achieved best TREC results):

(k, +tf. N -df. +05
1 J J

o
length(d) ¢ ° df; + 05
avgdoclength”
or in the most comprehensive, tunable form:

w:=log

w,(d) =
k,(@—-b)+b

N-—df +05 +Dtf . k, +1)qtf . —
j (k, +Dtf, E(s )qtf, +k2|q|A len(d)

score(d,q):= > log

len(d)

i +tf, A +len(d)
A

= df; +05 1 (@-b) +b )+tf

with A=avgdoclength and tuning parameters k k., k;, b, and
non-linear influence of tf and consideration of doc length
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Poisson Mixtures for Capturing tf Distribution

Poisson Doesn't Fit Two Poissons Are Not Enough

° =

W o

O.’f ™ = i
E o _-’:.D *.._.. i

g ) [ 1 E g

© ' 0o ol 8 7

2 Coo  © 2

= u 0 0 o i
= IZZIICZIg B L -E
0 0 g

- 0 0O 00 0 00 s .
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distribution of

5 o tf values
§ for term ,said”
=
‘E :ﬁ'{’«‘!__.-..ﬂﬂ
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g \ =% o ° Source:
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- \ o o Roqm o0 oo Church/Gale 1995
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Katz's K-Mixture

0 .,_Hgk
Katz's K-mixture: f(K) = ICID(H)Ep .
S !

e.g. with :
O (6)=@1—-a)o(@=0) +%e—9/g

a

o _ 5\
—fk)=( a)a(k_0)+ﬁ+1(ﬁ+lj

with o(G)=1 if G is true, O otherwise

Parameter estimation for given term:

A=cf/N observed mean tf
idf =log,(N/df)
B =22 -1=(cf —df)/df extra occurrences (tf>1)

a=Alpg
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4.1.4 Extensions of Probabilistic IR

Consider term correlations in documents (with binary Xi)
- Problem of estimating m-dimensional prob. distribnti
P[X1=...0X2=...0...O0Xm=...] = (X1, ..., Xm)

One possible approachiree Dependence Model
a) Consider only 2-dimensional probabilities (for terawpg)
fi (X1, X))=P[Xi=..[X]=..]= X.. Y X X N aXPX =l LD Xy =]
b) For each term pair XKL X% 1 Xm
estimate the error between independence and the actualatmm
c) Construct a tree with terms as nodes and the
m-1 highest error (or correlation) values as weightegesd
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Considering Two-dimensional Term Correlation

Variant 1.
Error of approximating f by giullback-Leibler divergence)
with g assuming pairwise term independence:

; X » f (X
e(f,g)= % f(X)Iogf(;:) = X mf(X)logm( )
)ZD{O,l}m g(Xx) X[{01} |:|19,(X,)

Variant 2: .
Correlation coefficient for term pairs:

O Cov(Xi, X))

Xl, X]) = _ _
P, X)) JVar(Xi) Var (X))
Variant 3:

level-a values or p-values
of Chi-square independence test
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Example for Approximation Error €
(KL Strength)

m=2:
given are documents:
d1=(1,1), d2(0,0), d3=(1,1), d4=(0,1)
estimation of 2-dimensional prob. distribution f:
f(1,1) = P[X1=10X2=1] = 2/4
f(0,0) = 1/4, 1(0,1) = 1/4,1(1,0) =0
estimation of 1-dimensional marginal distributions g1 and g2:
gl(1) = P[X1=1] = 2/4, g1(0) = 2/4
g2(1) = P[X2=1] = 3/4, g2(0) = 1/4
estimation of 2-dim. distribution g with independent Xi:
9(1,1) = 91(1)*92(1) = 3/8,
9(0,0) = 1/8, g(0,1) = 3/8, g(1,0) =1/8
approximation errog (KL divergence):
e=2/4log4/3 + 1/4log2 + 1/4log 2/3 +0
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Constructing the Term Dependence Tree

Given:
complete graph (V, E) with m nodes XV and
m? undirected edged E with weightse (or p)
Wanted:
spanning tree (V, E') with maximal sum of weights
Algorithm:
Sort the M edges of E in descending order of weight
E':=01
Repeat until [E'| = m-1
E':=E"U{@1,)) UE]((,) has max. weight in E}
provided that E' remains acyclic;
E = E-{(@,)) UE | (1,)) has max. weight in E}

0.7

Example: Web Surf Web
5 0.9 0.7
0.9 0.3 ) 9N
1 Internet Surf
Internet—— Swim 0.
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Estimation of Multidimensional Probabilities

with Term Dependence Tree
Given is a term dependence tree (V = {X1, ..., Xm}, E").

Let X1 be the root, nodes are preorder-numbered, and assume that
Xi and Xj are independent for (I,))] E'. Then:

P[X1=..C..C Xm=.]= P[X1: JP[X2=..CXm=.|X1=.]
P[Xi =..|X1=..0X(i-1=.]

| =1..m
= P[X1] [ P[X] | Xi]
(i,j) E' L
_prxayop] PLXLA
inoe  PLXI]
Example:
Web P[Web, Internet, Surf, Swim] =
A PIWeD] P[Web, Internet] P[Web, Surf | P[Surf , Svim]
Internet /Surf PIWeb] P[Wep] P[Surf ]

Swim
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Bayesian Networks

A Bayesian network (BN) is a directed, acyclic graph (V, E)vith
the following properties:
* Nodesl] V representing random variables and
* Edged ] E representing dependencies.
e For a root RV the BN captures the prior probability P[R = ...].
* For a node X1 V with parents parents(X) = {P1, ..., Pk}

the BN captures the conditional probability P[X=... | P1, ..., PK].
* Node X Is conditionally independent of a non-parent node Y

given its parents parents(X) = {P1, ..., Pk}:

P[X|P1, ..., Pk, Y] = P[X | P1, ..., PK].

Thisimplies:  P[ X1..Xn] =P[ X1{X2..Xn] P[ X2... Xn]

* by the chain rule: =M P[Xi|X(i+1)...Xn]
1=1

* by cond. independence: = I_I1 [ Xi| parents( Xi ),other nodes]
I

=] P[ Xi| parents ( Xi )]
1=1
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Example of Bayesian Network (Belief Networl

P[C]:
| P[C]| PRC]
05 | 05

P[R | CJ:

P[S | C]: C|| P[R]| PER]
(sprinkler)  (_Rain) ¢ 02/ 08
C|| PIS]| Pt S] T|| 0.8/ 0.2
FIl 05/ 05
T 0.1} 0.9 @ S| R|| P[W] P§W]
F|F|| 00| 1.0
PIWISRE 211l 09] 01
TIF|| 09| 01
TITI 099 0.01
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Bayesian Inference Networks for IR
P[dj]=1/N

P[ti | djUparents(ti)] =
1 if ti occurs in dj,
O otherwise

variables / Plq | parents(q)] =
@ 1 if (ilparents(q): t is relevant for q,
O otherwise

Plq0di]= S P[qOdj|tl..tM ] P[t1...tM ]
(t1..tM )

=  YP[qOdjOtl0...0tM ]
(t1..tM )

= Y P[q|djOt10...0tM ] P[dj Ot10...0tM ]
(t1..tM )

= YP[q|tl0..0tM] P[t10...0tM|dj] P[ dj]
(t1..tM )

IRDM WS 2005 4-20



Advanced Bayesian Network for IR

W - @) -
\

GG@

concepts / topics

\ / P[ti Ctl] df,

P[ck [ti,tl] =—— = =
P[ti Ot]]  df, +df, —df,

Problems:

e parameter estimation (sampling / training)
e (non-) scalable representation

e (In-) efficient prediction

e fully convincing experiments
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