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Chapter 4: Advanced IR Models

4.1 Probabilistic IR
4.1.1 Principles

4.1.2 Probabilistic IR with Term Independence

4.1.3 Probabilistic IR with 2-Poisson Model (Okapi BM25)

4.1.4 Extensions of Probabilistic IR

4.2 Statistical Language Models
4.3 Latent-Concept Models
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4.1.1 Probabilistic Retrieval: Principles
[Robertson and Sparck Jones 1976]

Goal:
Ranking based on sim(doc d, query q) =
P[R|d] = P [ doc d is relevant for query q |

d has term vector X1, ..., Xm ]
Assumptions:
• Relevant and irrelevant documents differ in their terms.
• Binary Independence Retrieval (BIR) Model:

• Probabilities for term occurrence arepairwise
independentfor different terms.

• Term weights are binary ∈∈∈∈ {0,1}.
• For terms that do not occur in query q the probabilities
for such a term occurring are the same for
relevant and irrelevant documents.
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4.1.2 Probabilistic IR with Term Independence:
Ranking Proportional to Relevance Odds
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Probabilistic Retrieval:
Ranking Proportional to Relevance Odds (cont.)
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Probabilistic Retrieval:
Robertson / Sparck Jones Formula

Estimate pi und qi based on training sample
(query q on small sample of corpus) or based on
intellectual assessment of first round‘s result (relevance feedback):

Let N be #docs in sample, 
R be # relevant docs in sample
ni #docs in sample that contain term i,
ri # relevant docs in sample that contain term i
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Probabilistic Retrieval: tf*idf Formula
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Assumptions (without training sample or relevance feedback):
• pi is the same for all i.
• Most documents are irrelevant.
• Each individual term i is infrequent.

This implies:
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Example for Probabilistic Retrieval
Documents with relevance feedback:

t1      t2      t3      t4      t5      t6      R
d1     1       0       1       1       0      0        1
d2     1       1       0       1       1       0       1
d3     0       0       0       1       1       0       0
d4     0       0       1       0       0       0       0
ni 2       1       2       3       2       0     
ri 2 1       1       2       1       0
pi 5/6    1/2     1/2   5/6   1/2 1/6
qi 1/6    1/6     1/2   1/2    1/2   1/6

R=2, N=4

q: t1 t2 t3 t4 t5 t6

Score of new document d5 (with Lidstone smoothing with λ=0.5):

d5∩q: <1 1 0 0 0 1> → sim(d5, q) =   log 5 + log 1 + log 0.2
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−
=

i i qi
qi

Xi
pi

pi
Xiqdsim

1
log

1
log')',(



IRDM  WS 2005 4-8

Laplace Smoothing (with Uniform Prior)
Probabilities pi and qi for term i are estimated
by MLE for binomial distribution
(repeated coin tosses for relevant docs, showing term i with pi,
Repeated coin tosses for irrelevant docs, showing term i with qi) 

To avoid overfitting to feedback/training,
the estimates should besmoothed
(e.g. with uniform prior ):

Instead of estimating pi = k/n  estimate (Laplace‘s law of succession):
pi = (k+1) / (n+2)

or with heuristic generalization (Lidstone‘s law of succession): 
pi = (k+λλλλ) / ( n+2λλλλ) with λλλλ > 0 (e.g. λλλλ=0.5)

And for multinomial distribution (n times w-faceted dice) estimate:
pi = (ki + 1) / (n + w)
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4.1.3 Probabilistic IR with Poisson Model 
(Okapi BM25)

Generalize term weight

into
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Okapi BM25
Approximation of Poisson model by similarly-shaped function:

finally leads to Okapi BM25 (which achieved best TREC results):
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non-linear influence of tf and consideration of doc length
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Poisson Mixtures for Capturing tf Distribution

Source:
Church/Gale 1995

distribution of 
tf values 
for term „said“

Katz‘s K-mixture:
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Katz‘s K-Mixture
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4.1.4 Extensions of Probabilistic IR

One possible approach: Tree Dependence Model:
a) Consider only 2-dimensional probabilities (for term pairs)

f ij(Xi, Xj)=P[Xi=..∧Xj=..]=

b) For each term pair

estimate the error between independence and the actual correlation

c) Construct a tree with terms as nodes and the

m-1 highest error (or correlation) values as weighted edges

Consider term correlations in documents (with binary Xi)
→ Problem of estimating m-dimensional prob. distribution

P[X1=... ∧ X2= ... ∧ ... ∧ Xm=...] =: fX(X1, ..., Xm)

∑ ∑ ∑ ∑ ∑ ∑ =∧∧=
− + − +1 1 1 1 1

1 ...].....[......
X iX iX jX jX mX

mXXP
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Considering Two-dimensional Term Correlation
Variant 1:
Error of approximating f by g (Kullback-Leibler divergence)
with g assuming pairwise term independence: ∑
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of Chi-square independence test
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Example for Approximation Error εεεε
(KL Strength)

m=2:
given are documents:

d1=(1,1), d2(0,0), d3=(1,1), d4=(0,1)
estimation of 2-dimensional prob. distribution f:

f(1,1) = P[X1=1 ∧ X2=1] = 2/4
f(0,0) = 1/4, f(0,1) = 1/4, f(1,0) = 0 

estimation of 1-dimensional marginal distributions g1 and g2:
g1(1) = P[X1=1] = 2/4, g1(0) = 2/4
g2(1) = P[X2=1] = 3/4, g2(0) = 1/4

estimation of 2-dim. distribution g with independent Xi:
g(1,1) = g1(1)*g2(1) = 3/8,
g(0,0) = 1/8, g(0,1) = 3/8, g(1,0) =1/8

approximation errorε (KL divergence):
ε = 2/4 log 4/3  +  1/4 log 2  +  1/4 log 2/3  + 0 
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Constructing the Term Dependence Tree
Given:

complete graph (V, E) with m nodes Xi∈V and
m2 undirected edges∈ E with weightsε (or ρ)

Wanted:
spanning tree (V, E‘) with maximal sum of weights

Algorithm:
Sort the m2 edges of E in descending order of weight
E‘ := ∅
Repeat until |E‘| = m-1

E‘ := E‘ ∪ {(i,j) ∈E | (i,j) has max. weight in E}
provided that E‘ remains acyclic;
E := E – {(i,j) ∈E | (i,j) has max. weight in E}

Example: Web

Internet

Surf

Swim

0.9

0.7

0.1

0.3
0.5

0.1

Web

Internet Surf

Swim

0.9 0.7

0.3
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Estimation of Multidimensional Probabilities 
with Term Dependence Tree

Given is a term dependence tree (V = {X1, ..., Xm}, E‘).
Let X1 be the root, nodes are preorder-numbered, and assume that
Xi and Xj are independent for (i,j) ∉ E‘. Then:
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A Bayesian network (BN) is a directed, acyclic graph (V, E)with
the following properties:
• Nodes∈ V representing random variables and
• Edges∈ E representing dependencies.
• For a root R ∈ V the BN captures the prior probability P[R = ...].
• For a node X ∈ V with parents parents(X) = {P1, ..., Pk}

the BN captures the conditional probability P[X=... | P1, ..., Pk].
• Node X is conditionally independent of a non-parent node Y

given its parents parents(X) = {P1, ..., Pk}:
P[X | P1, ..., Pk, Y] = P[X | P1, ..., Pk].

This implies:
• by the chain rule:

• by cond. independence:
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Example of Bayesian Network (Belief Network)

Cloudy

Sprinkler Rain

Wet

C    P[S]   P[¬S]
F      0.5      0.5
T      0.1      0.9

P[C]   P[¬C]
0.5      0.5

C    P[R]   P[¬R]
F      0.2      0.8
T      0.8      0.2

S   R    P[W]   P[¬W]
F   F      0.0      1.0
F   T      0.9      0.1
T   F      0.9      0.1
T   T      0.99    0.01

P[W | S,R]:

P[C]:

P[R | C]:
P[S | C]:
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Bayesian Inference Networks for IR

d1 dj dN... ...

t1 ti tM... ...

q

... tl

P[dj]=1/N

P[ti | dj∈parents(ti)] = 
1 if ti occurs in dj,
0 otherwise

P[q | parents(q)] =
1 if ∃t∈parents(q): t is relevant for q,
0 otherwise

with
binary
random
variables
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Advanced Bayesian Network for IR
d1 dj dN... ...

t1 ti tM... ...

q

... tl

c1 ck cK... ... concepts / topics

Problems:
• parameter estimation (sampling / training)
• (non-) scalable representation
• (in-) efficient prediction
• fully convincing experiments
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Additional Literature for Chapter 4
Probabilistic IR:
• Grossman/Frieder Sections 2.2 and 2.4
• S.E. Robertson, K. Sparck Jones: Relevance Weighting of Search Terms,

JASIS 27(3), 1976
• S.E. Robertson, S. Walker: Some Simple Effective Approximations to the

2-Poisson Model for Probabilistic Weighted Retrieval, SIGIR 1994
K.W. Church, W.A. Gale: Poisson Mixtures, 
Natural Language Engineering 1(2), 1995

• C.T. Yu, W. Meng: Principles of Database Query Processing for
Advanced Applications, Morgan Kaufmann, 1997, Chapter 9

• D. Heckerman: A Tutorial on Learning with Bayesian Networks,
Technical Report MSR-TR-95-06, Microsoft Research, 1995


