Chapter 4: Advanced IR Models

4.1 Probabilistic IR

4.1.1 Principles

4.1.2 Probabilistic IR with Term Independence

4.1.3 Probabilistic IR with 2-Poisson Model (Okapi BM25)

4.1.4 Extensions of Probabilistic IR

4.2 Statistical Language Models

4.3 Latent-Concept Models

4.1.1 Probabilistic Retrieval: Principles[Robertson and Sparck Jones 1976]

Goal:

Ranking based on sim(doc d, query q) = P[R|d] = P [doc d is relevant for query q | d has term vector X1, ..., Xm]

Assumptions:

- **Relevant and irrelevant documents differ in their terms.**
- **Binary Independence Retrieval (BIR) Model:**
	- **Probabilities for term occurrence are pairwise independent for different terms.**
	- **Term weights are binary** \in $\{0,1\}.$
- **For terms that do not occur in query q the probabilitiesfor such a term occurring are the same forrelevant and irrelevant documents.**

4.1.2 Probabilistic IR with Term Independence:Ranking Proportional to Relevance Odds

$$
sim(d, q) = O(R | d) = \frac{P[R | d]}{P[-R | d]}
$$
 (odds for relevance)
\n
$$
= \frac{P[d | R] \times P[R]}{P[d | \neg R] \times P[-R]}
$$
 (Bayes' theorem)
\n
$$
\sim \frac{P[d | R]}{P[d | \neg R]} = \prod_{i} \frac{P[X_i | R]}{P[X_i | \neg R]}
$$
 (independence or linked dependence)
\n
$$
sim(d, q) = log \prod_{i \in q} \frac{P[Xi | R]}{P[Xi | \neg R]}
$$
 (Xi = 1 if d includes
\n
$$
sim(d, q) = log \prod_{i \in q} \frac{P[Xi | R]}{P[Xi | \neg R]}
$$
 (Xi = 1 if d includes
\n
$$
sim(d, q) = log \prod_{i \in q} \frac{P[Xi | R]}{P[Xi | \neg R]}
$$

Probabilistic Retrieval:Ranking Proportional to Relevance Odds (cont.)

$$
= \sum_{i \in q} \log (pi^{Xi} (1 - pi)^{1 - Xi}) - \log (qi^{Xi} (1 - qi)^{1 - Xi})
$$
 (binary
features)

with estimators $pi=P[Xi=1|R]$ and $qi=P[Xi=1|\neg R]$

$$
= \sum_{i \in q} log(\frac{pi^{Xi}(1-pi)}{(1-pi)^{Xi}}) - log(\frac{qi^{Xi}(1-qi)}{(1-qi)^{Xi}})
$$

$$
= \sum_{i \in q} Xi \log \frac{pi}{1 - pi} + \sum_{i \in q} Xi \log \frac{1 - qi}{qi} + \sum_{i \in q} \log \frac{1 - pi}{1 - qi}
$$

$$
\sim \sum_{i \in q} Xi \log \frac{pi}{1 - pi} + \sum_{i \in q} Xi \log \frac{1 - qi}{qi} = sim(d, q)
$$

Probabilistic Retrieval:Robertson / Sparck Jones Formula

Estimate pi und qi based on training sample(query q on small sample of corpus) or based onintellectual assessment of first round's result (*relevance feedback*):

Let N be #docs in sample, R be # relevant docs in sample ni #docs in sample that contain term i,ri # relevant docs in sample that contain term i

IRDM WS 2005 \sim 4-5 ⇒ Estimate: *R* $\cdots \alpha$ \vdots \cdots \cdots \cdots *ri* $pi = -\frac{1}{l}$ = *NR* $qi = \frac{ni - ri}{N - R}$ − $=$ $$ or: $pi = \frac{p_i}{R+1}$ $0.5\,$ ++ $=$ $-$ *Rri* $pi = \frac{p_1 p_2 q_3}{p_1 q_2 q_3}$ $q_1 = \frac{q_1 q_2}{N - R + 1}$ $0.5\,$ − K + + = $N-R$ $qi = \frac{ni - ri}{r}$ \implies sim(d,q)"= $\sum_i X_i \log \frac{n+0.5}{R-n+0.5} + \sum_i X_i \log \frac{n-n+1}{R-n+1}$ $(1, 0, 0, 1)$ ++ $+$ > Xl \log — — — — — $-ri+0.5$ + $=$ λ μ 109 \rightarrow $\frac{1}{i}$ *i* $R - ri + 0.5$ *i* $ni - ri$ $\frac{ri + 0.5}{R - ri + 0.5}$ + \sum_{i} $Xi \log \frac{N - ni - R + ri}{ni - ri + 0.5}$ *ri* $sim(d,a)' = \sum Xi \log$ *d* q ^{*y*} = $\sum_i X_i \log \frac{X_i}{R - r_i + 0.5} + \sum_i X_i \log \frac{X_i}{n_i - r_i + 0.5}$ $\frac{0.5}{+0.5} + \sum_{i} Xi \log \frac{N - ni - R + ri + 0.5}{ni - ri + 0.5}$ $(d, q)' = \sum Ki \log$ \Rightarrow Weight of term i in doc d: $(R-ri+0.5)$ $(ni-ri+0.5)$ $log\frac{(ri+0.5) (N-ni-R+ri+0.5)}{(R-ri+0.5) (ni-ri+0.5)}$ +−−++ $R - ri + 0.5$) $(ni - ri + 0.5)$ $\frac{ri + 0.5}{N - ni - R + ri}$ **(Lidstone smoothing with** $λ=0.5$ **)**

Probabilistic Retrieval: tf*idf Formula

Assumptions (without training sample or relevance feedback):

- pi is the same for all i.
- Most documents are irrelevant.
- Each individual term i is infrequent.

This implies:

•
$$
\sum_{i} Xi \log \frac{pi}{1 - pi} = c \sum_{i} Xi
$$
 with constant c
\n• $qi = P[Xi = 1 | \neg R] \approx \frac{df_i}{N}$
\n• $\frac{1 - qi}{qi} = \frac{N - df_i}{df_i} \approx \frac{N}{df_i}$
\n $\implies \quad \sin(d, q)' = \sum_{i} Xi \log \frac{pi}{1 - pi} + \sum_{i} Xi \log \frac{1 - qi}{qi}$
\n $\approx c \sum_{i} Xi + \sum_{i} Xi \, idf_i$

Scalar product over
the product of tf and
dampend idf values for query terms

Example for Probabilistic Retrieval

Documents with relevance feedback:

q: t1 t2 t3 t4 t5 t6

Score of new document d5 (with Lidstone smoothing with λ =0.5): d5∩q: <1 1 0 0 0 1> \rightarrow sim(d5, q) = log 5 + log 1 + log 0.2
+ log 5 + log 5 + log 5 $+ \log 5 + \log 5 + \log 5$ $\sum_{i=1}^{\infty} X_i \log \frac{p_i}{1-p_i} + \sum_{i=1}^{\infty} X_i \log \frac{1-p_i}{q_i}$ \sum_{i} $Xi \log \frac{pi}{1 - pi} + \sum_{i} Xi \log \frac{1 - qi}{qi}$

Laplace Smoothing (with Uniform Prior)

Probabilities pi and qi for term i are estimatedby MLE for binomial distribution (repeated coin tosses for relevant docs, showing term i with pi, Repeated coin tosses for irrelevant docs, showing term i with qi)

To avoid overfitting to feedback/training, the estimates should be smoothed(e.g. with uniform prior):

Instead of estimating pi = k/n estimate (Laplace's law of succession): $pi = (k+1) / (n+2)$

or with heuristic generalization (Lidstone's law of succession): *p***i** = (k+ λ) / (n+2 λ) with λ > 0 (e.g. λ =0.5)

And for multinomial distribution (n times w-faceted dice) estimate: $pi = (ki + 1) / (n + w)$

4.1.3 Probabilistic IR with Poisson Model (Okapi BM25)

Generalize term weight $w = \log \frac{P}{P}$ $\frac{q(1-p)}{q(1-p)}$ **into** $log \frac{p(1-q)}{q}$ *q*(1- *p* $w = \log \frac{p(1-q)}{q(1-p)}$ $q_{\scriptscriptstyle tf}$ $p_{\scriptscriptstyle 0}$ $\log \frac{P_{\textit{tf}} \mathbf{Y}_0}{P}$ $w = \log \frac{p_{tf}q}{q}$ $=$ $\log \frac{P_{tf}}{P}$

with ^pj, q^j denoting prob. that term occurs j times in rel./irrel. doc

Postulate Poisson (or Poisson-mixture) distributions:

$$
p_{tf} = e^{-\lambda} \frac{\lambda^{tf}}{tf!} \qquad q_{tf} = e^{-\mu} \frac{\mu^{tf}}{tf!}
$$

Okapi BM25

Approximation of Poisson model by similarly-shaped function:

$$
w := \log \frac{p(1-q)}{q(1-p)} \cdot \frac{tf}{k_1 + tf}
$$

finally leads to Okapi BM25 (which achieved best TREC results):

$$
w_j(d) := \frac{(k_1 + 1)tf_j}{k_1((1 - b) + b \frac{length(d)}{avgdoclength}) + tf_j} \cdot \log \frac{N - df_j + 0.5}{df_j + 0.5}
$$

or in the most comprehensive, tunable form:

$$
score(d,q) := \sum_{j=1..|q|} \log \frac{N - df_j + 0.5}{df_j + 0.5} \cdot \frac{(k_1 + 1)tf_j}{k_1((1-b) + b\frac{len(d)}{\Delta}) + tf_j} \cdot \frac{(k_3 + 1)qtf_j}{k_3 + tf_j} + k_2|q|\frac{\Delta - len(d)}{\Delta + len(d)}
$$

with Δ =avgdoclength and tuning parameters \bf{k}_1 , \bf{k}_2 , \bf{k}_3 , \bf{b} , and **non-linear influence of tf and consideration of doc length**

Poisson Mixtures for Capturing tf Distribution

Katz's K-mixture:

Poisson Doesn't Fit

distribution of tf values for term , said"

Source:Church/Gale 1995

 $frequency$ 4-11

Katz's K-Mixture

∫ \int_{0}^{∞} $= \int \Phi(\theta) \cdot$ $f(k) = \int_{0}^{\infty} \Phi(\theta) \cdot \frac{e^{-t}}{k!}$ $\boldsymbol{\theta}^k$ θ). **Katz's K-mixture:** $f(k) = \int_{k}^{\infty} \Phi(\theta) \cdot \frac{e^{-\theta}}{k}$

e.g. with :

$$
\Phi_K(\theta) = (1 - \alpha)\delta(\theta = 0) + \frac{\alpha}{\beta}e^{-\theta/\beta}
$$

$$
\longrightarrow f(k) = (1 - \alpha)\delta(k = 0) + \frac{\alpha}{\beta + 1}\left(\frac{\beta}{\beta + 1}\right)^k
$$

with $\delta(G)=1$ if G is true, 0 otherwise

Parameter estimation for given term:

$$
\lambda = cf / N
$$

\n
$$
idf = \log_2(N / df)
$$

\n
$$
\beta = \lambda 2^{idf} - 1 = (cf - df) / df
$$

\n
$$
\alpha = \lambda / \beta
$$

observed mean tf

extra occurrences (tf>1)

4.1.4 Extensions of Probabilistic IR

Consider term correlations in documents (with binary Xi) \rightarrow Problem of estimating m-dimensional prob. distribution
PIX1= \land X2= \land \land Xm= \quad = f \cdot f \cdot (X1 \cdot Xm) $P[X1=... \land X2=... \land ... \land Xm=...] =: f_X(X1, ..., Xm)$

One possible approach: **Tree Dependence Model**:

a) Consider only 2-dimensional probabilities (for term pairs)

 $f_{ij}(Xi, Xj)=P[Xi=.. \wedge Xj=..]=$ $\sum_{X_1} \sum_{X_1 \ldots X_n} \sum_{X_2 \ldots X_n} \sum_{X_3 \ldots X_n} \sum_{X_4 \ldots X_n} \sum_{X_5 \ldots X_n} P[X_1 = \ldots \wedge \ldots \wedge X_m =$ $1 \lambda_{i-1} \lambda_{i+1} \lambda_{j-1} \lambda_{j+1}$ $\sum_{X_1} \sum_{X_i=1}^{N} \sum_{X_{i+1}} \sum_{X_{j-1}} \sum_{X_{j+1}} \sum_{X_m} P[X_1 = ... \land ... \land X_m = ...]$ $P[X_1 = ... \land ... \land X_m]$

b) For each term pair

estimate the error between independence and the actual correlation

c) Construct a tree with terms as nodes and the

m-1 highest error (or correlation) values as weighted edges

Considering Two-dimensional Term Correlation

Variant 1:

 Error of approximating f by g (**Kullback-Leibler divergence**)with g assuming pairwise term independence:

$$
\mathcal{E}(f,g) := \sum_{\vec{X} \in \{0,1\}^m} f(\vec{X}) \log \frac{f(\vec{X})}{g(\vec{X})} = \sum_{\vec{X} \in \{0,1\}^m} f(\vec{X}) \log \frac{f(\vec{X})}{\prod_{i=1}^m g_i(X_i)}
$$

Variant 2:

Correlation coefficient for term pairs:

$$
\rho(Xi, Xj) := \frac{Cov(Xi, Xj)}{\sqrt{Var(Xi)} \sqrt{Var(Xj)}}
$$

Variant 3:

level-α values or p-values of **Chi-square independence test**

Example for Approximation Error ε**(KL Strength)**

 $m=2$:

given are documents:

 $d1=(1,1), d2(0,0), d3=(1,1), d4=(0,1)$

estimation of 2-dimensional prob. distribution f:

 $f(1,1) = P[X1=1 \wedge X2=1] = 2/4$

$$
f(0,0) = 1/4
$$
, $f(0,1) = 1/4$, $f(1,0) = 0$

estimation of 1-dimensional marginal distributions g1 and g2:

$$
g1(1) = P[X1=1] = 2/4, g1(0) = 2/4
$$

$$
g2(1) = P[X2=1] = 3/4, g2(0) = 1/4
$$

estimation of 2-dim. distribution g with independent Xi:

 $g(1,1) = g(1)^*g(1) = 3/8$,

$$
g(0,0) = 1/8
$$
, $g(0,1) = 3/8$, $g(1,0) = 1/8$

approximation error ^ε (KL divergence):

 $\varepsilon = 2/4 \log 4/3 + 1/4 \log 2 + 1/4 \log 2/3 + 0$

Constructing the Term Dependence Tree

Given:

complete graph (V, E) with m nodes $Xi \in V$ and

m² undirected edges \in E with weights ε (or ρ)

Wanted:

 spanning tree (V, E') with maximal sum of weightsAlgorithm:

Sort the m^2 edges of E in descending order of weight $E^{\prime} := \varnothing$

Repeat until $|E'| = m-1$

 $E^* := E^* \cup \{(i,j) \in E \mid (i,j) \text{ has max. weight in } E\}$ provided that E' remains acyclic;

 $E := E - \{(i, j) \in E \mid (i, j) \text{ has max. weight in } E\}$

Estimation of Multidimensional Probabilities with Term Dependence Tree

Given is a term dependence tree ($V = \{X1, ..., Xm\}, E'$). Let X1 be the root, nodes are preorder-numbered, and assume thatXi and Xj are independent for $(i,j) \notin E^{\prime}$. Then:

 $P[X1 = ... \land ... \land Xm = ...] = P[X1 = ...] P[X2 = ... \land Xm = ... | X1 = ...]$ ∏∈ $=$ $F[X]$. $(i, j) \in E'$
 $P[X1] \cdot \prod_{i} P[Xj | Xi]$ ∈ $=$ $P[X]$. $\prod_{(i,j)\in E'}^{\blacksquare\blacksquare\blacksquare} P[Xi]$ $[X1] \cdot \prod_{(i,j)\in E'}^{(i,j)\in E} \frac{P[Xi, Xj]}{P[Xi]}$ $P[X1] \cdot \prod^{(i,j)\in E} \frac{P[Xi, Xj]}{P[Xi, Xj]}$ *^X* Example:WebInternet SurfSwimP[Web, Internet, Surf, Swim] = $[Surf]$ $[Surf, Swim]$ $[Web]$ $[Web, surf]$ $[Web]$ $[Web] \frac{P[Web, Internet]}{P[test]}$ $P[Web] \frac{P[Web]}{P[Web]}$ $P[Web]$ *P*[Web_, Internet] *P*[Web, Surf] *P*[Surf, Swim
P[Web] *P*[Web] *P*[Web] *P*[Surf] $[F = \prod_{i=1..m} P[X_i = .. \mid X1 = .. \land X(i-1) = ..]$

Bayesian Networks

A **Bayesian network (BN) is a directed, acyclic graph (V, E)** with the following properties:

- Nodes \in V representing random variables and Γ
- Edges \in E representing dependencies.
- For a root $R \in V$ the BN captures the prior probability $P[R = ...]$.
- For a node $X \in V$ with parents parents $(X) = \{P1, ..., Pk\}$ the BN captures the conditional probability $P[X=... | P1, ..., Pk]$.
- Node X is conditionally independent of a non-parent node Ygiven its parents parents $(X) = \{P1, ..., Pk\}$: $P[X | P1, ..., Pk, Y] = P[X | P1, ..., Pk].$

This implies: $P[X1...Xn] = P[X1/X2...Xn] P[X2...Xn]$ • by the chain rule:• by cond. independence: $=\prod_{i=1} P[X_i|X(i+1)...X_n]$ =*i*1*n*= [∏] *P[Xi| parents(Xi),other nodes]* $i=1$ *n*= [∏] *P[Xi | parents (Xi)] n*

=*i*1

Example of Bayesian Network (Belief Network)

Bayesian Inference Networks for IR

Advanced Bayesian Network for IR

Problems:

- parameter estimation (sampling / training)
- (non-) scalable representation
- (in-) efficient prediction
- fully convincing experiments

Additional Literature for Chapter 4

Probabilistic IR:

- •Grossman/Frieder Sections 2.2 and 2.4
- S.E. Robertson, K. Sparck Jones: Relevance Weighting of Search Terms, \bullet JASIS 27(3), 1976
- S.E. Robertson, S. Walker: Some Simple Effective Approximations to the \bullet 2-Poisson Model for Probabilistic Weighted Retrieval, SIGIR 1994K.W. Church, W.A. Gale: Poisson Mixtures, Natural Language Engineering 1(2), 1995
- C.T. Yu, W. Meng: Principles of Database Query Processing for \bullet Advanced Applications, Morgan Kaufmann, 1997, Chapter 9
- D. Heckerman: A Tutorial on Learning with Bayesian Networks, •Technical Report MSR-TR-95-06, Microsoft Research, 1995