
 1

MULTENANT-DATABASES

Kaushik Mukherjee
 23rd Nov 2010

 2

Outline
● Motivation

– Software as a Service

– Need for Multi-tenancy

– Need for Multi-tenant Databases

● Multi-tenant Databases

– Challenges

– Design Approaches and tradeoff

– Experiment

● Discussion

● Conclusion

 3

Today's Software Service Industry

● On Premise Software

Add Feature Decrease
Operational
Expendture

Decrease
Capital
Expenditure

Decrease
Operaional
Expenditure

Add Feature Decrease Capital
Expenditure

● Software as a Service

 4

Multi-tenancy

 5

Why Multi-tenant databases ?

● Consolidating multiple databases onto same operational system

● Reduces Total Cost of Ownership

 6

Challenges in Multi-tenant
Database

● Scalability

– Tradeoff between cost handling many tables and cost query
rewriting

● Allow Schema Extensibility

– Multiple tenant share tables

– Need for tenant specific schema extensibility

 7

Design Approaches

● Private Table

– Natural Thing to do - each
tenant gets a private
schema

– Low cost on query
transformation

– Less consolidation

● Extension Table

– Split off extensions into
separate tables

– Higher cost on Query
transformation

– Slightly better consolidation

 8

Universal Table
● Generic Structure with

VARCHAR value columns

– n-th Column of the
logical table is
mapped to Col-n in
the universal table

– Extensibility

● Disadvantages

– Many Null Values

– Not type safe

– No Indexing

 9

Pivot Table

 10

Chunk Table
● Generic Structure

– Suitable if data-set can
be partitioned into
dense subsets

– Derived from Pivot table

● Performance

– Fewer joins for
reconstruction if
densely populated
subsets can be
extracted

– Reduced meta-
data/data ratio
dependent on the
chunk size

– Indexable

 11

Row Fragmentation

● Combine different schema
mappings for getting best fit

– Mixes Extension and
Chunk Tables

– Each fragment can be
stored in an optimal
schema layout

● Optimal row fragmentation
depends on

– Workload

– Data distribution

– Data popularity

 12

Query Transformation
● Reconstructing original tav requires many equi-joins

● Source Query

SELECT Beds

FROM Account17

WHERE Hospital = 'State'

● Collect table and column names

– Account17 : Beds , Hospital

● Obtain chunk tables and meta-data

– Chunk (int|str)

– Account17 :

● Table = 0, Tenant =17
– Beds , Hospital :

● Chunk =1

12

 13

Query Transformation

● Generate filter query

 SELECT Str1 as Hospital , Int1 as Beds

 FROM Chunk (int|str)

 WHERE Tenant = 17 AND Table = 0 AND Chunk = 1

● Replace reference in source query

SELECT Beds FROM

(SELECT Str1 as Hospital Int1 as Beds

FROM Chunk (int|str) WHERE Tenant = 17

AND Table =0 AND Chunk =1) As Account17

WHERE Hospital = 'State'

 14

Query Transformation

● Structural Changes

– Additional Nesting

– Joins

– Base Table Access

● Impact on Performance

– Nesting can be flattened by query optimizer

– Joins are cheaper only if the cost of loading the chunks and
applying index supported join are cheaper that loading
wider conventional relation

– Meta data columns in base tables have indexing support

 15

Query Evaluation Experiment

● Goal

– Show if the query transformation can handle issues of
scalibility

– Evaluate impact of Join overhead

– Evaluate impact of meta-data overhead

● Test Query

SELECT p.id, ...

FROM parent p , child c

WHERE p.id = c.parent

AND p.id = ?.

 16

Query Evaluation Experiments

● Conventional Schema

Parent

id col1 col2 ... col90

Child

id Parent col1 col2...col90

● Chunk Schema

ChunkData

table chunk row int1 int2 int2 date date2
str1 str2

ChunkIndex

table chunk row int1

 17

Join Overhead Costs

 18

Meta-Data Costs

 19

Discussion

● Strengths

– Chunk tables is a good design for trade-of extensibility and
meta data usage.

– Chunk tables gives response time improvement over vertical
partitioning

● ShortComings/Future work

– No Algorithms to design chunk tables

– Identifying the chunks is heuristic

– No comparative experiment done with the other schema
mapping techniques proposed in the paper

 20

Conclusion

● Is chunk tables a good approach for designing multi-tenant
databases?

● How practical it is for real life systems ?

● How do companies like Salesforce.com handle it ?

 21

THANK YOU

QUESTIONS ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

