
Cloud Computing
Towards Elastic Transactional Cloud Storage with Range Query Support
Saarbrücken, November 30th, 2010

Martin Ites

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

2

Motivation

• Cloud computing should be used as a utility

• Cloud storage has to be adjusted dynamically
• Minimal startup costs
•  Pay-per-use model
• Elastically scale on-demand
▫  Allow users scale up and down on the fly

• Can only be archived when storage nodes could
be easily added into or removed from the system

3

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

4

Related work

• Replication in distributed and peer-to-peer
systems
▫  Primary copy of data is responsible to handle both

read and write request from clients
▫  Only support operations on a single data items
▫  Data resided on a storage node is replicated on the

successor node
▫  Pessimistic replication technique

5

Related work

• Distributed and parallel databases
▫  B+-tree, optimistic scheme, two-phase commit

protocol
▫  Online load balancing in range-partitioned

systems using data migration and self-tuning
approach to re-organize the data in a shared-
nothing system
▫  Traditional parallel database technologies not fit

100% for scalable storage

6

Related work

• Cloud data and transaction service
▫  Data management system on top of the Amazon

S3 based on the client-server model
▫  System with a not tightly coupled transactional

component and a data component
▫  Storage nodes are organized on a ring-based

distributed hash table (DHT) and each data item is
asynchronously replicated on the successor
storage nodes

7

Weaknesses of cloud storage services

• Guarantees on consistency (data updates)
• No range query support
• Data migration to balance the storage load
• No support transactional semantics across

multiple keys

8

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

9

ecStore (elastic cloud storage system)

•  Scalable storage system within the cloud cluster
•  The architecture follows a stratum design
• Organizes storage nodes as a balanced tree

structured overlay and assigns a data range for
each storage node

• Data objects are distributed and replicated in a
cluster of commodity computer nodes

10

Architecture of ecStore

•  Automated data
partitioning and
replication

•  Load balancing
•  Efficient range query
•  Transactional access

11

11

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

12

Distributed storage layer

• Distributed data structure
▫  Decluster data objects across storage nodes
▫  Facilitates parallelism to improve performance

• DHT-based structure (distributed hash table)
▫  BATON (BAlance Tree Overlay Network)

13

BATON

•  Tree-based structure
▫  To realize a scalable range-partitioned system

•  Support efficient range query processing

• Automatically repartition and redistribute the
data when storage nodes are added into or
removed from the system

14

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

15

Replication layer
• BATON does not provide replication and

transaction support
• Extend BATON to efficiently support load-

adaptive replication for large-scale data
▫  Two-tier partial replication strategy
 Data availability
  Load balancing function

•  Tuning the replication process based on data
popularity in common
▫  Self-tuning range histogram

16

Replication in BATON

• Usually BATON is range instead of hash based
•  “Where to replicate a certain data object?”

• Approaches
▫  Straightforward approach
▫  Replication based on data range
▫  Shift key value scheme (ecStore)

17

Replication in BATON

•  Straightforward approach
▫  Replicate data on the surrounding nodes
▫  Replicas indentified by the location of primary

copy
▫  It is complicated to identify the surrounding links

of a failure node

18

Replication in BATON

• Replication based on data range
▫  If the key of a data item belongs to a certain range
 Hash the range value
 Use the output to determine the identity of the

storage node where we can store the replica
▫  Hashing breaks the order of replicated data

19

Replication in BATON

•  Shift key value scheme (ecStore)
▫  Different replicas will be stored in the same

BATON structure of the primary copy but
associated with their virtual keys
▫  Well distributed across the storage nodes in the

cluster
▫  Shifting the initial key to multiple virtual keys
▫  Preserves the order of replicated data

20

Two-tier partial replication

•  “Which data should be replicated?”

• Approaches
▫  Straightforward approach
▫  Data migration
▫  Two-tier replication mechanism (ecStore)

21

Two-tier partial replication

•  Straightforward approach
▫  Replicate all data objects with the same replication

level K
▫  If K is large, the system storage and the overhead

to keep them consistent can be considerably high
• Data migration
▫  Migrating hot data from one overloaded node to

another node only shuffles the hotspot throughout
the system

22

Two-tier partial replication

•  Two-tier replication mechanism (ecStore)
▫  Provide both data availability and load balancing
▫  Each data object is associated with two kinds of

replicas – secondary and slave replicas

23

Two-tier partial replication

•  First tier
▫  Small level K replication for all data objects

•  Second tier
▫  Popular data objects are associated with

additional replicas – called slave replicas
▫  Facilitate load balancing for frequently accessed

objects

24

BATON-Two-tier partial replication

25

Self-tuning range histogram

• Only a small number of replicas
▫  Histogram maintenance cost minimal

• Histogram to approximately estimate the access
frequency of a data range

• When load balancing process is triggered, the
storage node will replicate most popular data
ranges to other lighter-loaded nodes

•  Piggy-back the load information on the query

26

Self-tuning range histogram

• Dynamically restructuring the histogram
▫  Splitting/merging the buckets

•  Total number of buckets is kept constant
▫  Merge consecutive buckets with similar frequency

into a bucket with a larger data range
▫  Split the bucket with high access frequency into

buckets with smaller data range

• Only replicate the data ranges maintained by
small buckets

27

Self-tuning range histogram

• Reduce the cost of maintaining unnecessary
replicas

• No benefits for load balancing anymore
▫  Discard slave replica of a data range

28

Replica consistency management
•  cloud storage has provide 24x7 data availability
• Updating all copies synchronously is not suitable

•  Pessimistic replication technique
▫  Update needs to be reflected on all replicas before

coming to effect
• Optimistic replication method (ecStore)
▫  Primary copy is always updated immediately

29

Replica consistency management

• Write-ahead logging scheme
• Guarantees that updates to the primary copy are

durable and eventually propagated to the
secondary copies

• Adaptive read consistency by using the quorum
model for read operations

• Write request will update primary copy first and
asynchronously propagate it to the replicas

30

Replica consistency Management

• Adopts the notion of BASE (BAsically available,
Soft state, Eventually consistency)

• Does not need to implement the two-phase
commit protocol for refresh transaction

31

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

32

Transaction management layer

• Multi-versioning
▫  Enhances the performance of read-dominant apps
▫  Can benefit the read-only transactions

• Optimistic concurrency control
▫  Advantages of apps where users access mutually

exclusive data
▫  Protects system from locking overheads

• Commit protocol and Recovery control
▫  Guarantees the data durability requirement
▫  Atomicity and durability

33

Transaction management layer

• Data in the Cloud
▫  Perform operations on recent snapshot of data
▫  Independent between concurrent transactions
▫  Hybrid scheme of multi-version and optimistic

concurrency control
  Isolation and consistency for large-scale databases

34

Transaction management layer
• Multi-version Optimistic Concurrency Scheme
▫  Startup timestamp, commit timestamp
▫  Read-only transactions runs against a consistent

snapshot of the database
  Can commit without the validation phase
▫  Update transactions uses version number
  To check for write-write/write-read conflicts
▫  Update transaction can only commit if the version

of the object is the same as in the read phase
▫  Snapshot isolation property
 Not serializable in all executions

 Not checking read-before-write conflicts
35

Transaction management layer

• Commit protocol
▫  Read-only transactions
  Consistent snapshot of the database – no commit
▫  Update transactions
  The log and commit records are stored in a local

dedicated disk and also replicated over the storage
nodes in the system

36

Transaction management layer
• Recovery control
▫  A storage node can safely leave the system
 No recovery process is needed
▫  Unsafe departure
  Short-term failure (software bugs …)

  Check its local log store
  Long-term failure (hardware crashes …)

  Another healthy node take care of the range index that
previously is managed by the failure node

 New responsible node will recover the data
 New responsible node will check the transaction logs
▫  Redo operations by forwarding the log records

37

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

38

Performance study

•  Pessimistic replication
method is outperformed
by the optimistic
replication

39

39

Performance study

• Results show that the proposed load-adaptive
replication method can effectively balance the
system load distribution under skewed
workloads

40

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

41

Conclusion

•  ecStore
▫  Underlying BATON distributed index
  Load-adaptive replication
 Multi-version optimistic concurrency control

42

Thanks for your attention!
Questions?

Martin Ites

