
Cloud Computing
Towards Elastic Transactional Cloud Storage with Range Query Support
Saarbrücken, November 30th, 2010

Martin Ites

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

2

Motivation

• Cloud computing should be used as a utility

• Cloud storage has to be adjusted dynamically
• Minimal startup costs
•  Pay-per-use model
• Elastically scale on-demand
▫  Allow users scale up and down on the fly

• Can only be archived when storage nodes could
be easily added into or removed from the system

3

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

4

Related work

• Replication in distributed and peer-to-peer
systems
▫  Primary copy of data is responsible to handle both

read and write request from clients
▫  Only support operations on a single data items
▫  Data resided on a storage node is replicated on the

successor node
▫  Pessimistic replication technique

5

Related work

• Distributed and parallel databases
▫  B+-tree, optimistic scheme, two-phase commit

protocol
▫  Online load balancing in range-partitioned

systems using data migration and self-tuning
approach to re-organize the data in a shared-
nothing system
▫  Traditional parallel database technologies not fit

100% for scalable storage

6

Related work

• Cloud data and transaction service
▫  Data management system on top of the Amazon

S3 based on the client-server model
▫  System with a not tightly coupled transactional

component and a data component
▫  Storage nodes are organized on a ring-based

distributed hash table (DHT) and each data item is
asynchronously replicated on the successor
storage nodes

7

Weaknesses of cloud storage services

• Guarantees on consistency (data updates)
• No range query support
• Data migration to balance the storage load
• No support transactional semantics across

multiple keys

8

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

9

ecStore (elastic cloud storage system)

•  Scalable storage system within the cloud cluster
•  The architecture follows a stratum design
• Organizes storage nodes as a balanced tree

structured overlay and assigns a data range for
each storage node

• Data objects are distributed and replicated in a
cluster of commodity computer nodes

10

Architecture of ecStore

•  Automated data
partitioning and
replication

•  Load balancing
•  Efficient range query
•  Transactional access

11

11

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

12

Distributed storage layer

• Distributed data structure
▫  Decluster data objects across storage nodes
▫  Facilitates parallelism to improve performance

• DHT-based structure (distributed hash table)
▫  BATON (BAlance Tree Overlay Network)

13

BATON

•  Tree-based structure
▫  To realize a scalable range-partitioned system

•  Support efficient range query processing

• Automatically repartition and redistribute the
data when storage nodes are added into or
removed from the system

14

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

15

Replication layer
• BATON does not provide replication and

transaction support
• Extend BATON to efficiently support load-

adaptive replication for large-scale data
▫  Two-tier partial replication strategy
 Data availability
  Load balancing function

•  Tuning the replication process based on data
popularity in common
▫  Self-tuning range histogram

16

Replication in BATON

• Usually BATON is range instead of hash based
•  “Where to replicate a certain data object?”

• Approaches
▫  Straightforward approach
▫  Replication based on data range
▫  Shift key value scheme (ecStore)

17

Replication in BATON

•  Straightforward approach
▫  Replicate data on the surrounding nodes
▫  Replicas indentified by the location of primary

copy
▫  It is complicated to identify the surrounding links

of a failure node

18

Replication in BATON

• Replication based on data range
▫  If the key of a data item belongs to a certain range
 Hash the range value
 Use the output to determine the identity of the

storage node where we can store the replica
▫  Hashing breaks the order of replicated data

19

Replication in BATON

•  Shift key value scheme (ecStore)
▫  Different replicas will be stored in the same

BATON structure of the primary copy but
associated with their virtual keys
▫  Well distributed across the storage nodes in the

cluster
▫  Shifting the initial key to multiple virtual keys
▫  Preserves the order of replicated data

20

Two-tier partial replication

•  “Which data should be replicated?”

• Approaches
▫  Straightforward approach
▫  Data migration
▫  Two-tier replication mechanism (ecStore)

21

Two-tier partial replication

•  Straightforward approach
▫  Replicate all data objects with the same replication

level K
▫  If K is large, the system storage and the overhead

to keep them consistent can be considerably high
• Data migration
▫  Migrating hot data from one overloaded node to

another node only shuffles the hotspot throughout
the system

22

Two-tier partial replication

•  Two-tier replication mechanism (ecStore)
▫  Provide both data availability and load balancing
▫  Each data object is associated with two kinds of

replicas – secondary and slave replicas

23

Two-tier partial replication

•  First tier
▫  Small level K replication for all data objects

•  Second tier
▫  Popular data objects are associated with

additional replicas – called slave replicas
▫  Facilitate load balancing for frequently accessed

objects

24

BATON-Two-tier partial replication

25

Self-tuning range histogram

• Only a small number of replicas
▫  Histogram maintenance cost minimal

• Histogram to approximately estimate the access
frequency of a data range

• When load balancing process is triggered, the
storage node will replicate most popular data
ranges to other lighter-loaded nodes

•  Piggy-back the load information on the query

26

Self-tuning range histogram

• Dynamically restructuring the histogram
▫  Splitting/merging the buckets

•  Total number of buckets is kept constant
▫  Merge consecutive buckets with similar frequency

into a bucket with a larger data range
▫  Split the bucket with high access frequency into

buckets with smaller data range

• Only replicate the data ranges maintained by
small buckets

27

Self-tuning range histogram

• Reduce the cost of maintaining unnecessary
replicas

• No benefits for load balancing anymore
▫  Discard slave replica of a data range

28

Replica consistency management
•  cloud storage has provide 24x7 data availability
• Updating all copies synchronously is not suitable

•  Pessimistic replication technique
▫  Update needs to be reflected on all replicas before

coming to effect
• Optimistic replication method (ecStore)
▫  Primary copy is always updated immediately

29

Replica consistency management

• Write-ahead logging scheme
• Guarantees that updates to the primary copy are

durable and eventually propagated to the
secondary copies

• Adaptive read consistency by using the quorum
model for read operations

• Write request will update primary copy first and
asynchronously propagate it to the replicas

30

Replica consistency Management

• Adopts the notion of BASE (BAsically available,
Soft state, Eventually consistency)

• Does not need to implement the two-phase
commit protocol for refresh transaction

31

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

32

Transaction management layer

• Multi-versioning
▫  Enhances the performance of read-dominant apps
▫  Can benefit the read-only transactions

• Optimistic concurrency control
▫  Advantages of apps where users access mutually

exclusive data
▫  Protects system from locking overheads

• Commit protocol and Recovery control
▫  Guarantees the data durability requirement
▫  Atomicity and durability

33

Transaction management layer

• Data in the Cloud
▫  Perform operations on recent snapshot of data
▫  Independent between concurrent transactions
▫  Hybrid scheme of multi-version and optimistic

concurrency control
  Isolation and consistency for large-scale databases

34

Transaction management layer
• Multi-version Optimistic Concurrency Scheme
▫  Startup timestamp, commit timestamp
▫  Read-only transactions runs against a consistent

snapshot of the database
  Can commit without the validation phase
▫  Update transactions uses version number
  To check for write-write/write-read conflicts
▫  Update transaction can only commit if the version

of the object is the same as in the read phase
▫  Snapshot isolation property
 Not serializable in all executions

 Not checking read-before-write conflicts
35

Transaction management layer

• Commit protocol
▫  Read-only transactions
  Consistent snapshot of the database – no commit
▫  Update transactions
  The log and commit records are stored in a local

dedicated disk and also replicated over the storage
nodes in the system

36

Transaction management layer
• Recovery control
▫  A storage node can safely leave the system
 No recovery process is needed
▫  Unsafe departure
  Short-term failure (software bugs …)

  Check its local log store
  Long-term failure (hardware crashes …)

  Another healthy node take care of the range index that
previously is managed by the failure node

 New responsible node will recover the data
 New responsible node will check the transaction logs
▫  Redo operations by forwarding the log records

37

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

38

Performance study

•  Pessimistic replication
method is outperformed
by the optimistic
replication

39

39

Performance study

• Results show that the proposed load-adaptive
replication method can effectively balance the
system load distribution under skewed
workloads

40

Outline

• Motivation
• Related work
•  System architecture of ecStore
▫  distributed storage layer (BATON)
▫  replication layer (self-tuning range histogram)
▫  transaction layer

•  Performance study
• Conclusion

41

Conclusion

•  ecStore
▫  Underlying BATON distributed index
  Load-adaptive replication
 Multi-version optimistic concurrency control

42

Thanks for your attention!
Questions?

Martin Ites

