
A Self-Organized, Fault-Tolerant
and Scalable Replication Scheme for
Cloud Storage
Author: Nicolas Bonvin, Thanasis G. Papaioannou and
Karl Aberer
Presenter: Haiyang Xu
4, Jan, 2011 - Cloud Computing Seminar

1

Agenda

1.  Introduction
2.  Skute
3.  Problem Definition
4.  Individual Optimization
5.  Equilibrium Analysis
6.  Rational Strategies
7.  Test Results
8.  Conclusion and Future Work

2

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

� Background
◦ Cloud storage is becoming a popular business

paradigm
�  Amazon S3
�  ElephantDrive
�  Gigaspaces

◦  Small companies rent distributed storage and
pay per use

3

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

� Data availability can be affected in many
ways
◦ Hardware failures
◦ Geographic proximity
◦ Natural disasters
◦ Highly irregular query rates
◦ An application may become temporarily

unavailable*

* http://en.wikipedia.org/wiki/Slashdot_effect
4

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

� Therefore
◦  the support of service level agreements

(SLAs) with data availability guarantees in
cloud storage is very important
◦  In reality, different applications may have

different availability requirements
◦  Fault-tolerance is commonly dealt with by

replication

5

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

� Distributed key-value store
◦ Widely employed

◦ Widely researched (by research communities)
�  Peer-to-peer
�  Scalable distributed data structures
�  Databases

6

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

�  In this paper, the authors propose a
scattered key-value store (Skute),
◦  Skutes provides high and differentiated data

availability statistical guarantees to multiple
applications in a cost-efficient way in terms of
rent price and query response times

7

Agenda

I

II

III

IV

V

VI

VII

VIII

Introduction

�  Skute combines the following innovative
characteristics:
◦ Computational
◦ Differentiated availability statistical guarantees
◦ Distributed economic model
◦  Efficiently and fairly utilizing cloud resources

� A game-theoretic model is employed

8

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

�  Skute is designed to
◦  provide low response time on read and write

operations
◦  ensure replicas’ geographical dispersion in a

cost- efficient way
◦  offer differentiated availability guarantees per

data item to multiple applications

9

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

�  Skute is divided into these parts
◦  Physical node
◦ Virtual node
◦ Virtual ring
◦ Routing

10

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Physical node
◦ A physical node (i.e. a server) belongs to a

rack, a room, a data center, a country and a
continent.
◦ A label of the form “continent-country-

datacenter-room- rack-server”
◦ A server located in a data center in Berlin

could be “EU-DE-BE1-C12-R07-S34”

11

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Virtual node
◦  ring topology
◦  consistent hashing
◦ Data is identified by a key
�  A one-way cryptographic hash function, e.g. MD5

◦ The key space is split into partitions

12

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store
� Virtual node (cont’d)
◦ A physical node (i.e. a server) gets assigned to

multiple points in the ring, called tokens
◦ A virtual node (alternatively a partition) holds

data for the range of keys in (previous token,
token]
◦ A virtual node may replicate or migrate its

data to another server, or suicide (i.e. delete
its data replica)
◦ A physical node hosts a varying amount of

virtual nodes depending on the query load

13

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Virtual ring
◦  Skute allows multiple applications to share the

same cloud infrastructure
◦  Each application uses its own virtual rings,

while one ring per availability level is needed,
as depicted in Figure 1

14

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Virtual ring

!

"##$!"! "##$!%! "##$!&!
!""#$%&'$()*+

,$-'.&#+
)(/0+ ,$-'.&#+

-$)1+

!,&$#&2$#$'3+
40,0#+

'$(!'$'! '$)! '$*!'$+!

'$,! '$-! '$.!'$/!'$0!

(!

)!

*!

.!

'$(!'$'! '$)! '$*!'$+!

'$,! '$-! '$.!'$/!'$0!

'$(!'$'! '$)! '$*!'$+!

'$,! '$-! '$.!'$/!'$0!

Figure 1: Three applications with different availability levels.

data of different applications would have to be stored in the
same partition, thus removing the ability to move data close
to the clients. However, by employing multiple virtual rings,
Skute is able to provide one virtual store per application, al-
lowing the geographical optimization of data placement.

2.4 Routing
As Skute is intended to be used with real-time applications, a

query should not be routed through multiple servers before reach-
ing its destination. Routing has to be efficient, therefore every
server should have enough information in its routing table to route a
query directly to its final destination. Skute could be seen as a
DHT, similarly to [9]. Each virtual ring has its own routing entries,
resulting in potentially large routing tables. Hence, the number of
entries in the routing table is:

(1)

where returns the number of partitions (i.e. vir-
tual nodes) of the virtual ring of the availability level belonging to
application . However, the memory space requirement of the rout-
ing table is quite reasonable; e.g. for 100 applications, each with
3 availability levels and 5K data partitions, the necessary memory
space would be MB, assuming that each entry consists of
22 bytes (2 bytes for application id, 1 byte for availability level, 3
bytes for the partition id and 16 bytes for the sequence of server ids
that host the partition).

A physical node is responsible to manage the routing table of
all virtual rings hosted in it, in order to minimize the update costs.
Upon migration, replication and suicide events, hierarchical broad-
cast that leverages the geographical topology of servers is employed.
This approach costs , but it uses the minimum network span-
ning tree. The position of a moving virtual node (i.e. during the
migration process) is tracked by forwarding pointers (e.g. SSP
chains [25]). Also, the routing table is periodically updated using a
gossiping protocol for shortening/repairing chains or updating stale
entries (e.g. due to failures). According to this protocol, a server
exchanges with random other servers the routing entries of
the virtual nodes that they are responsible for.

Moreover, as explained in Section 5 and experimentally proved
in Section 7, no routing table updates are expected at equilibrium
with stable system conditions regarding the query load and the
number of servers. Even if a routing table contains a large num-
ber of entries, its practical maintenance is not costly thanks to the
stability of the system. The scalability of this approach is experi-
mentally assessed in a real testbed, as described in Section 8.

3. THE PROBLEM DEFINITION
The data belonging to an application is split into partitions,

where each partition has distributed replicas. We assume that
servers are present in the data cloud.

3.1 Maximize data availability
The first objective of a data owner (i.e. application provider)

is to provide the highest availability for a partition , by placing
all of its replicas in a set of different servers. Data availability
generally increases with the geographical diversity of the selected
servers. Obviously, the worst solution in terms of data availability
would be to put all replicas at a server with equal or worse proba-
bility of failure than others.

We denote as a failure event at server . These events
may be independent from each other or correlated. If we assume
without loss of generality that events are independent and
that events are correlated, then the probability a par-
tition to be unavailable is given as follows:

unavailable

(2)

if .

3.2 Minimize communication cost
While geographical diversity increases availability, it is also im-

portant to take into account communication cost among servers that
host different replicas, in order to save bandwidth during replica-
tion or migration, and to reduce latency in data accesses and dur-

ing conflict resolution for maintaining data consistency. Let be
a location matrix with its element if a replica
of partition of application is stored at server and
otherwise. Then, we maximize data proximity by minimizing net-
work costs for each partition , e.g. the total communication cost
for conflict resolution of replicas for the mesh network of servers
where the replicas of the partition are stored. In this case, the net-
work cost for conflict resolution of the replicas of a partition
of application can be given by

(3)

where is a strictly upper triangular matrix whose el-
ement is the communication cost between servers and ,
and denotes the sum of matrix elements.

3.3 Maximize net benefit
Every application provider has to periodically pay the opera-

tional cost of each server where he stores replicas of his data parti-
tions. The operational cost of a server is mainly influenced by the
quality of the hardware, its physical hosting, the access bandwidth
allocated to the server, its storage, and its query processing and
communication overhead. The data owner wants to minimize his
expenses by replacing expensive servers with cheaper ones, while
maintaining a certain minimum data availability promised by SLAs
to his clients. He also obtains some utility from the queries
answered by its data replicas that depends on the popularity (i.e.
query load) of the data contained in the replica of the partition

and the response time (i.e. processing and network latency) asso-
ciated to the replies. The network latency depends on the distance

207

Figure 1: Three applications with different availability levels.

15

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Virtual ring
◦ Multiple data availability levels per application
◦ Geographical data placement per application

16

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Routing
◦  Skute is intended to be used with real-time

applications
◦ Routing has to be efficient
◦  Each virtual ring has its own routing entries,

resulting in potentially large routing tables
◦ The number of entries in the routing table is:

 (1)

17

Agenda

I

II

III

IV

V

VI

VII

VIII

Skute: Scattered Key-Value Store

� Routing
◦ A physical node is responsible to manage the

routing table of all virtual rings hosted in it, in
order to minimize the update costs.
◦ The routing table is periodically updated using

a gossiping protocol

18

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� The data belonging to an application is
split into M partitions, where each
partition i has ri distributed replicas. We
assume that N servers are present in the
data cloud

Maximize data
availability

Minimize
communica
tion cost

Maximize
net benefit

19

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Maximize data availability
◦  Placing replicas of a partition in a set of

different servers
◦ Data availability generally increases with the

geographical diversity of the selected servers.
◦ The worst solution
�  Put all replicas at a server with equal or worse

probability of failure than others

20

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Maximize data availability
◦  Probability a partition i to be unavailable:

� 

 (2)

21

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Minimize communication cost
◦  Save bandwidth during migration and

replication
◦ Reduce latency

22

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Minimize communication cost
◦  Ld: M×N location matrix of application d

◦  Lij = 0 if application i has a replica on server j

23

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Minimize communication cost
◦ Network cost cn can be given by:

� 
�  (3)

◦  NC is a strictly upper triangular N×N whose
element NCjk is the communication cost
between servers j and k

◦  sum denotes the sum of matrix elements

24

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Minimize communication cost
◦ Network cost (more clearly)

25

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Maximize net benefit
◦ The data owner wants to

Maintaining a
certain

minimum data
availability

promised by
SLAs to his

clients

Minimize his
expenses by

replacing
expensive

servers with
cheaper ones

26

Agenda

I

II

III

IV

V

VI

VII

VIII

Problem Definition

� Maximize net benefit
◦ Overall, he seeks to maximize his net benefit

and the global optimization problem can be
formulated as follows:

� 
�  (4)

27

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Keep data availability above a certain
minimum level required by the application

� Minimizing the associated costs
� Time is split into epochs
� The virtual rent of each server is

announced at a board and is updated at
the beginning of a new epoch.

28

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� A virtual node may replicate or migrate
its data to another server, or suicide at
each epoch and pay a virtual rent

� NO global coordination and each virtual
node behaves independently

S
R M

29

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Board
◦ At each epoch, the virtual nodes need to

know the virtual rent price of the servers
◦ One server in the network is elected to store

the current virtual rent per epoch of each
server
�  i) it assumes trustworthiness of the elected server
�  ii) the elected server may become a bottleneck.

30

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Board
◦ Another approach
�  Each server maintains its own local board
�  Periodically updates the virtual prices of a ran- dom

subset (log(N)) of servers by contacting them
directly

�  Does not have the aforementioned problems
�  Decision may be based on outdated information
�  Verified with low communication overhead

31

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Board
◦ Confidence value
�  Stored at board(s) after new server added
�  Based on servers’ offered availability and

performance

32

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization
�  Physical node
◦  The virtual rent price c of a physical node for the

next epoch can be given by:

�  up is the marginal usage price of the server
�  The query load and the storage usage at the current epoch

are considered to be good approximations of the ones at the
next epoch

�  an expensive server tends to be also expensive in the virtual
economy

33

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization
� Maintaining availability

�  (6)
� 

◦ Where Si=(s1,…,sn) is the set of servers

hosting replicas of the virtual node i and
confi, confj are the confidence levels of
servers i, j. The diversity function returns a
number calculated based on the geographical
distance among each server pairs

34

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Maintaining availability
◦ Distance representation

�  If the location parts are equivalent, the
corresponding bit is set to 1, otherwise 0

�  Diversity value (binary “NOT”):

� Diversity values of server pairs are sum up
� More replicas in distinct servers located in the same

location è increased availability

Cont Coun Data Room Rack serv

1 1 1 0 0 0

35

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization
� Maintaining availability
◦ When the availability of a virtual node falls

below th, it replicates its data to a new server
◦  Specifically, a virtual node i with current

replica locations in Si maximizes:

�  cj: virtual rent price of candidate of server j
�  gj: a weight related to the proximity of the server

location to the geographical distribution of query
clients for the partition of a virtual node

36

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Maintaining availability
�  gj is given by:

�  Where ql is the number of queries for the partition
of the virtual node per client location l.

37

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization
�  Virtual node decision tree
◦  balance (i.e. net benefit) b for a virtual node is

defined as follows:

◦  balance b’ for consecutive f epochs:

�  where cn is a term representing the consistency (i.e.

network) cost
�  c’ is the current virtual rent of the candidate server for

replication

38

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization
�  Virtual node decision tree
◦  Average bandwidth consumption

◦  Respective bandwidth per replica

◦ Where q is the average number of queries for
the last win epochs, qs is the average size of the
replies, |Si| is the number of servers currently
hosting replicas of partition i and ps is the size of
the partition.

39

Agenda

I

II

III

IV

V

VI

VII

VIII

Individual Optimization

� Virtual node decision tree
◦ …

40

Agenda

I

II

III

IV

V

VI

VII

VIII

Equilibrium Analysis

�  Single round strategy payoffs at round t
+1 are given by:

41

Agenda

I

II

III

IV

V

VI

VII

VIII

Equilibrium Analysis

�  If we assume probability of
◦ Migrate: x; Replicate: y; Suicide: z; Stay: 1 – x –
y – z
◦  then we calculate , as follows:

�  : : Recall that the total number of queries
for a partition is divided by the total number of
replicas of that partition and thus replication also
reduces the rent price of the current server.

42

Agenda

I

II

III

IV

V

VI

VII

VIII

Equilibrium Analysis

� The expected payoffs of these strategies
should be equal at equilibrium, as the
virtual node should be indifferent
between them:

43

Agenda

I

II

III

IV

V

VI

VII

VIII

Equilibrium Analysis

� At equilibrium,
◦ Rent of the current server used by a virtual

node > rent of the cheapest server + cost of
migration for this virtual node
◦ The probability to migrate decrease with the

total number of replicas in the system
◦ The # of migration at equilibrium will be

almost 0

44

Agenda

I

II

III

IV

V

VI

VII

VIII

Rational Strategies
�  The rational strategies that could be

employed by servers in an untrustworthy
environment

�  Eg. a server may overutilize its bandwidth resources by
advertising a lower virtual price

�  The aforementioned rational strategies
could be tackled as:

�  The confidence value of a server could also reflect its
trustworthiness for reporting its utilization correctly

�  Application providers should divide cj by the confidence
confj of the server j in the maximization formula (7)

45

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Simulation Results
◦ Test environment

46

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Simulation Results – small scale
◦  Small scale

Figure 3: Small-scale scenario: replication process at startup

47

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Simulation Results – large scale

Figure 4: Large-scale scenario: robustness against upgrades and failures
48

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Adaptation to the query load
◦  Simulate a load peak similar to what it would

result with the “Slashdot effect”: in a short
period the query rate gets multiplied by 60.

Figure 5: Large-scale scenario: total amount of virtual nodes in the system over time
49

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Adaptation to the query load

Figure 6: Large scale scenario: average query load per virtual
ring per server over time with queries evenly distributed

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

#!

$!

%!

'()*+,)-+./012-/3-(4*20+5-1/6)7-8)*-7)*()*

98/:;

<
0.
=)
*-/
3-(
4*2
0+
5-1
/6
)7

Figure 5: Large-scale scenario: total amount of virtual nodes
in the system over time.

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-!-@#A%-/3-2/2+5-5/+6B-$-*)854:+7C

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-#-@#A%-/3-2/2+5-5/+6B-%-*)854:+7C

<
0.
=)
*-/
3-*
)D
0)
72
7

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-$-@#A%-/3-2/2+5-5/+6B-&-*)854:+7C

98/:;

'()*+,)-D0)*E-5/+6-8)*-7)*()*

$!!-7)*()*7-@#A%F-#$"GB-$A%F-#!!GCB-.+H-5/+6-I-#J%K-*)D0)727A)8/:;

Figure 6: Large scale scenario: average query load per vir-
tual ring per server over time when the queries are evenly dis-
tributed among applications.

queries per epoch. The other parameters of this experiment are
those of the large-scale scenario of Table 1. Following the Pareto
distribution properties, a small amount of virtual nodes are respon-
sible for a large amount of queries. These virtual nodes become
wealthier thanks to their high popularity, and they are able to repli-
cate to one or several servers in order to handle the increasing load.
Therefore, the total amount of virtual nodes is adjusted to the query
load, as depicted in Figure 5. The number of virtual nodes re-
mains almost constant during the high query load period. This is
explained as follows: For robustness, replication is only initiated by
a high query load. However, a replicated virtual node can survive
even with a small number of requests before committing suicide.
Therefore, the number of virtual nodes decreases when the query
load is significantly reduced. Finally, at epoch 375, the balance of
the additional replicated virtual nodes becomes negative and they
commit suicide. More importantly, the query load per server re-
mains quite balanced despite the variations in the total query load.
This is true both for the case that the query load is evenly distributed
among applications (see Figure 6) and for the case that 4/7, 2/7 and
1/7 fractions of the total query load are attracted by application 1
(virtual ring 0), 2 (virtual ring 1) and 3 (virtual ring 2) respectively
(see Figure 7).

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-!-@&AL-/3-2/2+5-5/+6B-$-*)854:+7C

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-#-@$AL-/3-2/2+5-5/+6B-%-*)854:+7C

<
0.
=)
*-/
3-*
)D
0)
72
7

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-$-@#AL-/3-2/2+5-5/+6B-&-*)854:+7C

98/:;

'()*+,)-D0)*E-5/+6-8)*-7)*()*

$!!-7)*()*7-@#A%F-#$"GB-$A%F-#!!GCB-.+H-5/+6-I-#J%K-*)D0)727A)8/:;

Figure 7: Large-scale scenario: average query load per virtual
ring per server over time when 4/7, 2/7, 1/7 of the queries are
attracted by application 1, 2, 3 respectively.

! $! &! M! J! #!!
!

$!

&!

M!

J!

#!!
N17)*2-3+450*)7

O/2+5-:5/06-72/*+,)-:+8+:42E-07)6-@41-PC

N1
7)
*2-
3+
450
*)
7-
@41
-P
C

Figure 8: Storage saturation: insert failures

7.5 Scalability of the approach
Initially, we investigate the scalability of the approach regarding

the storage capacity. For this purpose, we assume the arrival of in-
sert queries that store new data into the cloud. The insert queries are
again distributed according to Pareto(1, 50). We allow a maximum
partition capacity of 256MB after which the data of the partition is
split into two new ones, so that each virtual node is always respon-
sible for up to 256MB of data. The insert query rate is fixed and
equal to 2000 queries per epoch, while each query inserts 500KB
of data. We employ the large-scale scenario parameters, but with
the number of servers and 2 racks per room in this case.
The initial number of partitions is . We fill the cloud up
to its total storage capacity. As depicted in Figure 8, our approach
manages to balance the used storage efficiently and fast enough so
that there are no data losses for used capacity up to 96% of the total
storage. At that point, virtual nodes start not fitting to the available
storage of the individual servers and thus they cannot migrate to
accommodate their data.

Next, we consider that the query rate to the cloud is not dis-
tributed according to Poisson, but it increases with the rate of 200
queries per epoch until the total bandwidth capacity of the cloud
is saturated. In this experiment, real rents of servers are uniformly
distributed in [1, 100]$. Now, our approach for selecting the desti-

213

50

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Scalability of the approach
◦  The insert queries are distributed according to

Pareto(1, 50)
◦ Max. partition capacity of 256MB after which the

data of the partition is split into two new ones
èeach virtual node is always responsible for up
to 256MB of data
◦  Fixed insert query rate = 2000 queries/epoch,
◦  Each query inserts 500KB of data
◦  Large-scale scenario parameters, but with 100

servers and 2 racks/room.
◦  Initial number of partitions is M=200

51

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Scalability of the approach

Figure 8: Storage saturation: insert failures

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

#!

$!

%!

'()*+,)-+./012-/3-(4*20+5-1/6)7-8)*-7)*()*

98/:;

<
0.
=)
*-/
3-(
4*2
0+
5-1
/6
)7

Figure 5: Large-scale scenario: total amount of virtual nodes
in the system over time.

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-!-@#A%-/3-2/2+5-5/+6B-$-*)854:+7C

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-#-@#A%-/3-2/2+5-5/+6B-%-*)854:+7C

<
0.
=)
*-/
3-*
)D
0)
72
7

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-$-@#A%-/3-2/2+5-5/+6B-&-*)854:+7C

98/:;

'()*+,)-D0)*E-5/+6-8)*-7)*()*

$!!-7)*()*7-@#A%F-#$"GB-$A%F-#!!GCB-.+H-5/+6-I-#J%K-*)D0)727A)8/:;

Figure 6: Large scale scenario: average query load per vir-
tual ring per server over time when the queries are evenly dis-
tributed among applications.

queries per epoch. The other parameters of this experiment are
those of the large-scale scenario of Table 1. Following the Pareto
distribution properties, a small amount of virtual nodes are respon-
sible for a large amount of queries. These virtual nodes become
wealthier thanks to their high popularity, and they are able to repli-
cate to one or several servers in order to handle the increasing load.
Therefore, the total amount of virtual nodes is adjusted to the query
load, as depicted in Figure 5. The number of virtual nodes re-
mains almost constant during the high query load period. This is
explained as follows: For robustness, replication is only initiated by
a high query load. However, a replicated virtual node can survive
even with a small number of requests before committing suicide.
Therefore, the number of virtual nodes decreases when the query
load is significantly reduced. Finally, at epoch 375, the balance of
the additional replicated virtual nodes becomes negative and they
commit suicide. More importantly, the query load per server re-
mains quite balanced despite the variations in the total query load.
This is true both for the case that the query load is evenly distributed
among applications (see Figure 6) and for the case that 4/7, 2/7 and
1/7 fractions of the total query load are attracted by application 1
(virtual ring 0), 2 (virtual ring 1) and 3 (virtual ring 2) respectively
(see Figure 7).

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-!-@&AL-/3-2/2+5-5/+6B-$-*)854:+7C

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-#-@$AL-/3-2/2+5-5/+6B-%-*)854:+7C

<
0.
=)
*-/
3-*
)D
0)
72
7

! "! #!! #"! $!! $"! %!! %"! &!! &"! "!!
!

"!!

#!!!
>4*20+5-?41,-$-@#AL-/3-2/2+5-5/+6B-&-*)854:+7C

98/:;

'()*+,)-D0)*E-5/+6-8)*-7)*()*

$!!-7)*()*7-@#A%F-#$"GB-$A%F-#!!GCB-.+H-5/+6-I-#J%K-*)D0)727A)8/:;

Figure 7: Large-scale scenario: average query load per virtual
ring per server over time when 4/7, 2/7, 1/7 of the queries are
attracted by application 1, 2, 3 respectively.

! $! &! M! J! #!!
!

$!

&!

M!

J!

#!!
N17)*2-3+450*)7

O/2+5-:5/06-72/*+,)-:+8+:42E-07)6-@41-PC

N1
7)
*2-
3+
450
*)
7-
@41
-P
C

Figure 8: Storage saturation: insert failures

7.5 Scalability of the approach
Initially, we investigate the scalability of the approach regarding

the storage capacity. For this purpose, we assume the arrival of in-
sert queries that store new data into the cloud. The insert queries are
again distributed according to Pareto(1, 50). We allow a maximum
partition capacity of 256MB after which the data of the partition is
split into two new ones, so that each virtual node is always respon-
sible for up to 256MB of data. The insert query rate is fixed and
equal to 2000 queries per epoch, while each query inserts 500KB
of data. We employ the large-scale scenario parameters, but with
the number of servers and 2 racks per room in this case.
The initial number of partitions is . We fill the cloud up
to its total storage capacity. As depicted in Figure 8, our approach
manages to balance the used storage efficiently and fast enough so
that there are no data losses for used capacity up to 96% of the total
storage. At that point, virtual nodes start not fitting to the available
storage of the individual servers and thus they cannot migrate to
accommodate their data.

Next, we consider that the query rate to the cloud is not dis-
tributed according to Poisson, but it increases with the rate of 200
queries per epoch until the total bandwidth capacity of the cloud
is saturated. In this experiment, real rents of servers are uniformly
distributed in [1, 100]$. Now, our approach for selecting the desti-

213

52

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Scalability of the approach
◦ Now consider that the query rate is not

distributed according to Poisson
◦  It increases with the rate of 200 queries/

epoch until reaching the total bandwidth
capacity
◦  In this experiment, real rents of servers are

uniformly distributed in [1, 100]$
◦ Our approach (referred as Economic)

compared with other basic approaches:
Random and Greedy

53

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
�  Scalability of the approach

Figure 9: Network saturation: query failures

! "! #! $! %! &! '! (!)! *! "!! ""!
&
!
&
"!
"&

+,-./012,3456/.74.08/46,8294:6994-9;6<4,/8=;.>4-0?0-287
@;
80
94:
02
96
./
14
A2,
4B
C

! "! #! $! %! &! '! (!)! *! "!! ""!
!

#!

%!

! "! #! $! %! &! '! (!)! *! "!! ""!
&

!

&

"!

@;8094-9;6<4D0,<=2<8E461/<4A2,4BC

.0,<;F

3.//<7

/-;,;F2-

Figure 9: Network saturation: query failures

nation server of a new replica is compared against two other rather
basic approaches:

Random: a random server is selected for replication and mi-
gration, as long as it has the available bandwidth capacity for
migration and replication, and enough storage space.

Greedy: the cheapest server is selected for replication and
migration, as long as it has the available bandwidth capacity
for migration and replication, and enough storage space.

As depicted in Figure 9, our approach (referred to as “economic")
outperforms the simple approaches regarding the amount of dropped
queries having the bandwidth of the cloud completely saturated.
Specifically, only 5% of the total queries are dropped at this worst
case scenario. Therefore, our approach multiplexes the resources
of the cloud very efficiently.

8. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS IN A REAL TESTBED

We have implemented a fully working prototype of Skute on top
of Project Voldemort (project-voldemort.com), which is an open
source implementation of Dynamo [9] written in Java. Servers are
not synchronized and no centralized component is required. The
epoch is considered to be equal to 30 seconds. We have imple-
mented a fully decentralized board based on a gossiping protocol,
where each server exchanges its virtual rent price periodically with
a small (, where is the total number of servers) random
subset of servers. Routing tables are maintained using a similar
gossiping protocol for routing entries. The periods of these gos-
siping protocols are assumed to be 1 epoch. In case of migration,
replication or suicide of a virtual node, the hosting server broad-
casts the routing table update using a distribution tree leveraging
the geographical topology of the servers.

Our testbed consists of Skute servers, hosted by 8 ma-
chines (OS: Debian 5.0.3, Kernel: 2.6.26-2-amd64, CPU: 8 core
Intel Xeon CPU E5430 @ 2.66GHz, RAM: 16GB) with Sun Java
64-Bit VMs (build 1.6.0_12-b04) and connected in a 100 Mbps
LAN. According to our scenario, we assume a Skute data cloud
spanning across 4 European countries with 2 datacenters per coun-
try. Each datacenter is hosted by a separate machine and contains 5

")!! "*!! #!!! #"!! ##!! #$!! #%!! #&!! #'!!
!

&

"!

"&

G4"!% H;,8.;940,<4I??92-082;,4@.0::2-

@2F/4A1/-C

J
08
04
8.0
,1
:/
../
<4
AK
L
C

H;,8.;9

I??92-082;,

")!! "*!! #!!! #"!! ##!! #$!! #%!! #&!! #'!!
"#!

"#!M&

"#"
IN/.03/4O2.86094P/,84?/.4Q/.N/.

@2F/4A1/-C

O
2.8
60
94P
/,
8

./?92-082;,

Figure 10: Top: Application and control traffic in case of a load
peak. Bottom: Average virtual rent in case of a load peak.

Skute servers, which are considered to be at the same rack. We con-
sider 3 applications, each of partitions, with a minimum
required availability of 2, 3 and 4 replicas respectively.
data items of 10KB have been evenly inserted in the 3 applications.
We generate 100 data requests per second using a Pareto(1,50) key
distribution, denoted as application traffic. We refer as control traf-
fic to the data volume transferred for migrations, replications and
the maintenance of the boards as well as the routing tables.

We first evaluate the behavior of the system in case of a load
peak. At second 1980, additional 100 requests per second are gen-
erated for a unique key. After 100 seconds, at second 2080, the
popular virtual node hosting this unique key is replicated, as shown
by the peak in the control traffic in Figure 10(top). Moreover, as de-
picted in Figure 10(bottom), the average virtual rent price increases
during the load peak, as more physical resources are required to
serve the increased number of requests. It further increases after
the replication of the popular virtual node, because more storage is
used at a server for hosting the new replica of the popular partition.

Next, the behavior of the system in case of a server crash is as-
sessed. At second 2800, a Skute server collapses. As soon as the
virtual nodes detect the failure (by means of the gossiping proto-
cols), they start replicating the partitions hosted on the failed Skute
server to satisfy again the minimum availability guarantees. Fig-
ure 11(top) shows that the replication process (as revealed by the
increased control traffic) starts directly after the crash. Moreover,
as depicted in Figure 11(bottom), the average virtual rent increases
during the replication process, because the same storage and pro-
cessing requirements as before the crash, have to be now satisfied
by fewer servers.

Finally, note that in every case and especially when the system
is at equilibrium the control traffic is minimal as compared to the
application one.

9. RELATED WORK
Dealing with network failure, strong consistency (which databases

care of) and high data availability can not be achieved at the same
time [3]. High data availability by means of replication has been
investigated in various contexts, such as P2P systems [23, 17],
data clouds, distributed databases [21, 9] and distributed file sys-
tems [13, 24, 1, 11]. In the P2P storage systems PAST [23] and

214

54

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Real Testbed
◦  Servers are not synchronized
◦ No centralized component is required
◦ The epoch equals to 30 seconds
◦  Fully decentralized board
◦ Routing tables maintained using a gossiping

protocol for routing entries
◦  In case of migration, replication or suicide of a

virtual node, the hosting server broadcasts
the routing table update

55

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Real Testbed
◦  40 Skute servers
◦  hosted by 8 machines
�  OS: Debian 5.0.3, Kernel: 2.6.26-2-amd64
�  CPU: 8 core Intel Xeon CPU E5430 @ 2.66GHz
�  RAM: 16GB

◦  Sun Java 64-Bit VMs (build 1.6.0_12-b04)
◦  100 Mbps LAN

56

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Real Testbed Results

Figure 10: Top: Application and control traffic in case of a load peak.
Bottom: Average virtual rent in case of a load peak.

! "! #! $! %! &! '! (!)! *! "!! ""!
&
!
&
"!
"&

+,-./012,3456/.74.08/46,8294:6994-9;6<4,/8=;.>4-0?0-287

@;
80
94:
02
96
./
14
A2,
4B
C

! "! #! $! %! &! '! (!)! *! "!! ""!
!

#!

%!

! "! #! $! %! &! '! (!)! *! "!! ""!
&

!

&

"!

@;8094-9;6<4D0,<=2<8E461/<4A2,4BC

.0,<;F

3.//<7

/-;,;F2-

Figure 9: Network saturation: query failures

nation server of a new replica is compared against two other rather
basic approaches:

Random: a random server is selected for replication and mi-
gration, as long as it has the available bandwidth capacity for
migration and replication, and enough storage space.

Greedy: the cheapest server is selected for replication and
migration, as long as it has the available bandwidth capacity
for migration and replication, and enough storage space.

As depicted in Figure 9, our approach (referred to as “economic")
outperforms the simple approaches regarding the amount of dropped
queries having the bandwidth of the cloud completely saturated.
Specifically, only 5% of the total queries are dropped at this worst
case scenario. Therefore, our approach multiplexes the resources
of the cloud very efficiently.

8. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS IN A REAL TESTBED

We have implemented a fully working prototype of Skute on top
of Project Voldemort (project-voldemort.com), which is an open
source implementation of Dynamo [9] written in Java. Servers are
not synchronized and no centralized component is required. The
epoch is considered to be equal to 30 seconds. We have imple-
mented a fully decentralized board based on a gossiping protocol,
where each server exchanges its virtual rent price periodically with
a small (, where is the total number of servers) random
subset of servers. Routing tables are maintained using a similar
gossiping protocol for routing entries. The periods of these gos-
siping protocols are assumed to be 1 epoch. In case of migration,
replication or suicide of a virtual node, the hosting server broad-
casts the routing table update using a distribution tree leveraging
the geographical topology of the servers.

Our testbed consists of Skute servers, hosted by 8 ma-
chines (OS: Debian 5.0.3, Kernel: 2.6.26-2-amd64, CPU: 8 core
Intel Xeon CPU E5430 @ 2.66GHz, RAM: 16GB) with Sun Java
64-Bit VMs (build 1.6.0_12-b04) and connected in a 100 Mbps
LAN. According to our scenario, we assume a Skute data cloud
spanning across 4 European countries with 2 datacenters per coun-
try. Each datacenter is hosted by a separate machine and contains 5

")!! "*!! #!!! #"!! ##!! #$!! #%!! #&!! #'!!
!

&

"!

"&

G4"!% H;,8.;940,<4I??92-082;,4@.0::2-

@2F/4A1/-C

J
08
04
8.0
,1
:/
..
/<
4AK
L
C

H;,8.;9

I??92-082;,

")!! "*!! #!!! #"!! ##!! #$!! #%!! #&!! #'!!
"#!

"#!M&

"#"
IN/.03/4O2.86094P/,84?/.4Q/.N/.

@2F/4A1/-C

O
2.8
60
94P
/,
8

./?92-082;,

Figure 10: Top: Application and control traffic in case of a load
peak. Bottom: Average virtual rent in case of a load peak.

Skute servers, which are considered to be at the same rack. We con-
sider 3 applications, each of partitions, with a minimum
required availability of 2, 3 and 4 replicas respectively.
data items of 10KB have been evenly inserted in the 3 applications.
We generate 100 data requests per second using a Pareto(1,50) key
distribution, denoted as application traffic. We refer as control traf-
fic to the data volume transferred for migrations, replications and
the maintenance of the boards as well as the routing tables.

We first evaluate the behavior of the system in case of a load
peak. At second 1980, additional 100 requests per second are gen-
erated for a unique key. After 100 seconds, at second 2080, the
popular virtual node hosting this unique key is replicated, as shown
by the peak in the control traffic in Figure 10(top). Moreover, as de-
picted in Figure 10(bottom), the average virtual rent price increases
during the load peak, as more physical resources are required to
serve the increased number of requests. It further increases after
the replication of the popular virtual node, because more storage is
used at a server for hosting the new replica of the popular partition.

Next, the behavior of the system in case of a server crash is as-
sessed. At second 2800, a Skute server collapses. As soon as the
virtual nodes detect the failure (by means of the gossiping proto-
cols), they start replicating the partitions hosted on the failed Skute
server to satisfy again the minimum availability guarantees. Fig-
ure 11(top) shows that the replication process (as revealed by the
increased control traffic) starts directly after the crash. Moreover,
as depicted in Figure 11(bottom), the average virtual rent increases
during the replication process, because the same storage and pro-
cessing requirements as before the crash, have to be now satisfied
by fewer servers.

Finally, note that in every case and especially when the system
is at equilibrium the control traffic is minimal as compared to the
application one.

9. RELATED WORK
Dealing with network failure, strong consistency (which databases

care of) and high data availability can not be achieved at the same
time [3]. High data availability by means of replication has been
investigated in various contexts, such as P2P systems [23, 17],
data clouds, distributed databases [21, 9] and distributed file sys-
tems [13, 24, 1, 11]. In the P2P storage systems PAST [23] and

214

57

Agenda

I

II

III

IV

V

VI

VII

VIII

Test Results in Simulated and Real
Testbed
� Real Testbed Results

Figure 11: Top: Application and control traffic in case of a server crash.
Bottom: Average virtual rent in case of a server crash.

!"## !$## %### %!## %&## %"##
#

!

&

"

$

'()#& *+,-.+/(0,1(233/450-4+,(6.07745

6489(:;95<

=
0-
0(
-.0
,;
79
..
91
(:>
?
<

!"## !$## %### %!## %&## %"##
)!#

)!)

)!!

)!%
2@9.0A9(B4.-C0/(D9,-(39.(E9.@9.

6489(:;95<

B
4.-
C0
/(D
9,
-

*+,-.+/

233/450-4+,;9.@9.(5.0;F(

(&#(;9.@9.; %G(;9.@9.;(

Figure 11: Top: Application and control traffic in case of a
server crash. Bottom: Average virtual rent in case of a server
crash.

Oceanstore [17], the geographical diversity of the replicas is based
on random hashing of data keys. Oceanstore deals with consistency
by serializing updates on replicas and then applying them atomi-
cally. In the distributed databases and systems context, Coda [24],
Bayou [21] and Ficus [13] allow disconnected operations and are
resilient to issues, such as network partitions and outages. Conflicts
among replicas are dealt with different approaches that guarantee
event causality. In distributed data clouds, Amazon Dynamo [9]
replicates each data item at a fixed number of physically distinct
nodes. Dynamo deals with load balancing by assuming the uni-
form distribution of popular data items among nodes through par-
titioning. However, load balancing based on dynamic changes of
query load are not considered. Data consistency is handled based
on vector clocks and a quorum system approach with a coordinator
for each data key. In all the aforementioned systems, replication is
employed in a static way, i.e. the number of replicas and their lo-
cation are predetermined. Also, no replication cost considerations
are taken into account and no geographical diversity of replicas is
employed.

In [28], data replicas are organized in multiple rings to achieve
query load-balancing. However, only one ring is materialized (i.e.
has a routing table) and the other rings are accessible by iteratively
applying a static hash function. This static approach for mapping
replicas to servers does not allow to perform advanced optimiza-
tions, such as moving data close to the end user or ensuring the ge-
ographical diversity between replicas. Moreover, as opposed to our
approach, the system in [28] does not support a different availabil-
ity level per application or per data item, while the data belonging
to different applications is not separately stored.

Some economic-aware approaches are dealing with the optimal
locations of replicas. Mariposa [27] aims at latency minimization
in executing complex queries over relational distributed databases,
i.e. not primary-key access queries on which we focus. Sites in
Mariposa exchange data items (i.e. migrate or replicate them) based
on their expected query rate and their processing cost. The data
items are exchanged based on their expected values using combi-
natorial auctions, where winner determination is tricky and syn-
chronization is required. In our approach, asynchronous individual
decisions are taken by data items regarding replication, migration
or deletion, so that high availability is preserved and dynamic load
balancing is performed. Also, in [26], a cost model is defined for
the factors that affect data and application migration for minimizing

latency in replying queries. Data is migrated towards the applica-
tion or the application towards the data based on their respective
costs that depends on various aspects, such as query load, replicas
placement and network and storage availability.

On the other hand, in the Mungi operating system [14], a com-
modity market of storage space has been proposed. Specifically,
storage space is lent by storage servers to users and the rental prices
increase as the available storage runs low, forcing users to release
unneeded storage. This model is equivalent to that of dynamic pric-
ing per volume in telecommunication networks according to which
prices increase with the level of congestion, i.e. congestion pricing.
Occupied storage is associated to specific objects that are linked to
bank accounts from which rent is collected for the storage. This ap-
proach does not take into account the different query rates for the
various data items and it does not have any availability objectives.

In [15], an approach is proposed for reorganizing replicas evenly
in case that new storage is added into the cloud, while minimizing
data movement. Relocated data and new replicas are assigned with
higher probability to newer servers. Replication process randomly
determines the locations of replicas, while preserving that no repli-
cas are placed in the same server. However, this approach does
not consider geographical distribution of replicas or differentiated
availability levels to multiple applications, and it does not take into
account popularity of data items in the replication process.

In [19], an approach has been proposed for optimally selecting
the query plan to be executed in the cloud in a cost-efficient way
considering the load of remote servers, the latency among servers
and the availability of servers. This approach has similar objectives
to ours, but the focus of our paper is solely on primary-key queries.

In [2] and [8] efficient data management for the consistency of
replicated data in distributed databases is addressed by an approach
guaranteeing one-copy serializability in the former and snapshot
isolation in lazy replicated databases (i.e. where replicas are syn-
chronized by separate transactions) in the latter. In our case, we
do not expect high update rates in a key-value store and therefore
concurrent copy of changes to all replicas can be an acceptable ap-
proach. However, regarding fault tolerance against failures during
updates, the approach of [2] could be employed, so as the replicas
of a partition to be organized in a tree.

10. CONCLUSION
In this paper, we described Skute, a robust, scalable and highly-

available key-value store that dynamically adapts to varying query
load or disasters by determining the most cost-efficient locations
of data replicas with respect to their popularity and their client lo-
cations. We experimentally proved that our approach converges
fast to equilibrium, where as predicted by a game-theoretical model
no migrations happen for steady system conditions. Our approach
achieves net benefit maximization for application providers and
therefore it is highly applicable to real business cases. We have
built a fully working prototype in a distributed setting that clearly
demonstrates the feasibility, the effectiveness and the low commu-
nication overhead of our approach. As a future work, we plan to
investigate the employment of our approach for more complex data
models, such as the one in Bigtable [6].

11. ACKNOWLEDGMENTS
This work was partly supported by the EU projects HYDROSYS

(224416, DG-INFSO) and OKKAM (215032, ICT).

215

58

Agenda

I

II

III

IV

V

VI

VII

VIII

Conclusion and Future Work
� Conclusion
◦  Skute - a robust, scalable and highly- available key-

value store
�  dynamically adapts to varying query load or disasters
�  determining the most cost-efficient locations of data

replicas with respect to their popularity and their client
locations

◦  Experimentally proved that our Skute converges
fast to equilibrium
◦  As predicted by a game-theoretical model no

migrations happen for steady system conditions

59

Agenda

I

II

III

IV

V

VI

VII

VIII

Conclusion and Future Work

�  Future Work
◦  Investigate the employment of Skute for more

complex data models

60

Agenda

I

II

III

IV

V

VI

VII

VIII

Question

61

