
Efficient parallel set-similarity joins using
MapReduce

Speaker: Bibek Paudel
Tutor: Jörg Schad

January 28, 2011



Set Similarity

Figure: Set Similarity (Jaccard) is: 3/8



Examples and Uses

I Detect Spam

I Detect mirrored web pages

I Detect plagiarism

I Information Extraction

I Distance between strings or documents



Examples and Uses

I Detect Spam

I Detect mirrored web pages

I Detect plagiarism

I Information Extraction

I Distance between strings or documents



Examples and Uses

I Detect Spam

I Detect mirrored web pages

I Detect plagiarism

I Information Extraction

I Distance between strings or documents



Examples and Uses

I Detect Spam

I Detect mirrored web pages

I Detect plagiarism

I Information Extraction

I Distance between strings or documents



Examples and Uses

I Detect Spam

I Detect mirrored web pages

I Detect plagiarism

I Information Extraction

I Distance between strings or documents



Different Metrics

I Edit Distance
I Hamming Distance
I Overlap coefficient
I Similarity measures

Figure: Sample duplicate recordsa

aAdaptive Name Matching in
Information Integration, Bilenko et al,
IEEE Computer Society



Different Metrics

I Edit Distance
I Hamming Distance
I Overlap coefficient
I Similarity measures

Figure: Sample duplicate recordsa

aAdaptive Name Matching in
Information Integration, Bilenko et al,
IEEE Computer Society



Challenges

I Find similarity between all pairs?
I Find exact similarity or an approximation?

I How to reduce the number of comparisons?
I How to use filtering?



Challenges

I Find similarity between all pairs?
I Find exact similarity or an approximation?

I How to reduce the number of comparisons?
I How to use filtering?



Existing Methods

I length filter

I suffix and prefix filter

I PPJoin [Example on board]



Existing Methods

I length filter

I suffix and prefix filter

I PPJoin [Example on board]



Existing Methods

I length filter

I suffix and prefix filter

I PPJoin [Example on board]



How to scale it up?
I Attractions of distributed system

I MapReduce?

I Working of MapReduce

Figure: MapReduce



How to scale it up?
I Attractions of distributed system

I MapReduce?

I Working of MapReduce

Figure: MapReduce



How to scale it up?
I Attractions of distributed system

I MapReduce?

I Working of MapReduce

Figure: MapReduce



The algorithm of the paper

Figure: Phase 1



The algorithm of the paper

Figure: Phase 2



The algorithm of the paper

Figure: Phase 3



Alternatives for each phase

I One phase token ordering

I Kernel

I One phase for phase 3

I Total three M/R jobs

I R-S Join and Self-Join



Alternatives for each phase

I One phase token ordering

I Kernel

I One phase for phase 3

I Total three M/R jobs

I R-S Join and Self-Join



Alternatives for each phase

I One phase token ordering

I Kernel

I One phase for phase 3

I Total three M/R jobs

I R-S Join and Self-Join



Alternatives for each phase

I One phase token ordering

I Kernel

I One phase for phase 3

I Total three M/R jobs

I R-S Join and Self-Join



Alternatives for each phase

I One phase token ordering

I Kernel

I One phase for phase 3

I Total three M/R jobs

I R-S Join and Self-Join



Issues and shortcomings

I Dictionary size
I Candidates size



Issues and shortcomings

I Does it really scale up?
I Billions of pairs (depending on tokenization level)
I Experimental data set is too small to prove massive scale-up



Issues and shortcomings

I Does it really scale up?
I Billions of pairs (depending on tokenization level)
I Experimental data set is too small to prove massive scale-up



Possible Research Problems

I How to decrese the candidate blow-up?

I storing the dictionary in some distributed key-value store?

I Exploiting the low number of candidates generated after
map-phase?



Possible Research Problems

I How to decrese the candidate blow-up?

I storing the dictionary in some distributed key-value store?

I Exploiting the low number of candidates generated after
map-phase?



Possible Research Problems

I How to decrese the candidate blow-up?

I storing the dictionary in some distributed key-value store?

I Exploiting the low number of candidates generated after
map-phase?



Conclusion

I The problem of scale
I MapReduce is a nice paradigm for distributed large-scale jobs
I But we need specialized strategies



Questions?


	Introduction

