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Introduction
• RDF (Resource Description Framework) for representing any 

information



  

Introduction - SPARQL

    
  SPARQL join query

  SELECT *                        
     
       WHERE {
    B -  ?m rdf:type :movie
    C -  ?n rdf:type :movie
    A -  ?m :similar_to ?n
}

Equivalent SQL join query

SELECT * FROM
tripletable AS A, tripletable AS B,    
tripletable AS C

WHERE A.subject = B. subject    
AND       A.object = C. subject 
AND       A.predicate = “:similar_to”  
AND       B.predicate = “rdf:type”
AND       C.object = “:movie”    
AND       B.object = “:movie”    
AND       C. predicate = “rdf:type”



  

Introduction
● Database systems used for querying and storage of RDF data:

RDF-3X

    - generic solution for storing and indexing RDF triples

    - query processor that leverages fast merge joins 

    - a query optimizer for choosing optimal join orders    

      using a cost model based on statistical synopses for

      entire join path



  

Introduction

• MonetDB

       - storage model based on vertical fragmentation 

       - a modern CPU-tuned query execution architecture     

       - automatic and self-tuning indexes

• Jena-TDB

• Hexastore     



  

Introduction
Join queries classification:

1. Highly selective triple patterns

(?s :residesInUSA)(?s :hasSSN “123-56-6789”)

2. Low-selectivity triple patterns, but highly selective join results

(?s :residesIn India)(?s :worksFor BigOrg)

3. Low-selectivity triple patterns and low-selectivity join results 

(?s :residesIn USA)(?s :hasSSN ?y)



  

Introduction
BitMat method overview

● compressed bit-matrix structure for storing huge RDF graphs
● novel, lightweight, SPARQL query processing method
● no intermediate join tables
● works directly on compressed data



  

BitMat Construction
• V

S
, V

P
 and V

O
 denote sets of distinct subjects, predicates and 

objects in the RDF data

• 3D bit cube with volume V
S 
x V

P
 x V

O
 



  

BitMatConstruction

● 3D bit-cube sliced along P-dimension to get 2D matrices
● Inverting an S-O BitMat gives an O-S BitMat
● S-O and O-S BitMats stored for each P value



  

BitMat Construction
• |V

S
| x |V

P
| x |V

O
| possible triples

• RDF data contains much fewer number of triples

→ gap compression scheme

     Example:    0011000 → [0] 2 2 3
• Store the number of triples in each compressed BitMat
• Store two bitarrays – row and column bitarray

                       →                +  

• Store the compressed S-O, O-S, P-S, P-O BitMats



  

BitMat Operations

Fold
● 'fold(BitMat, retainDimension) returns bitArray'
● RetainDimension can take the values “rows” or “columns”
● Folds the input BitMat by retaining the retainDimension
● Example:

0  0  0  1   OR
1  0  0  0
-------------
1  0  0  1



  

BitMat Operations

Unfold
● 'unfold(BitMat, MaskBitArray, RetainDimension)'
● Unfolds the MaskBitArray on the BitMat
● Example: unfold(BitMat, '011000', 'columns')

0  1  0  1  0  0  AND               [0]  1  1  1  1  2  AND
0  1  1  0  0  0                          [0]  1  2  3 
---------------------------               -----------------------------
0  1  0  0  0  0                          [0]  1  1  4



  

Join Processing Algorithm - Properties

Property 1

Property 2

                                                             → 



  

Join Processing Algorithm - Properties

Property 3



  

Constructing the Constraint Graph G

 triple pattern  =  tp-node

 join variable   =   jvar-node



  

Constructing the Constraint Graph G

● undirected, unlabeled edge between a jvar-node and a tp-node



  

Constructing the Constraint Graph G

● Edge between two jvar-nodes



  

Constructing the Constraint Graph G

● Edge between two tp-nodes



  

Join Processing Algorithm – Step 1
Preparation for the pruning algorithm

● Initialize each tp-node by loading the triples which match that triple 
pattern

● Construct the 4 BitMats  S-O, O-S, P-S, P-O

The pruning algorithm

● G
jvar

 contains only jvar-nodes

● Embed a tree on G
jvar

 discarding cyclic edges



  

Join Processing Algorithm – Step 1

The pruning algorithm (continued)

● Walk the tree from root to the leaves and backwards in a 
“breadth first search manner”

● At every jvar-node take the intersection of bindings generated 
by its adjacent tp-nodes 

● After the intersection, drop the triples from tp-node BitMats  as 
a result of dropped bindings
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Join Processing Algorithm – Step 1

  



  

Join Processing Algorithm – Step 2

● Start with the triple pattern with least number of triples left in its 
BitMat

● Generate bindings for variables in that triple pattern
● select another triple pattern which shares a join variable with any of 

the previously selected triple patterns
● Check if it can generate the same bindings for the shared join variable 

and generate bindings for its other variables
● Continue this and at the end of one round when all triple patterns are 

processed and all variables have consistent bindings, output the result



  

Evaluation
Choice of competitive RDF stores 

● Considered stores: Hexastore, Jena-TDB, RDF-3X and 
MonetDB

● Chose RDF-3X and MonetDB because 

      → can load a large amount of RDF data

      → gave better performance than others

     → are open-source systems, which can be used by the   
          research community



  

Evaluation
During the evaluation the following parameters were measured:

1. query execution times (cold and warm cache)

2. initial number of triples

3. the number of results

Cache = A cache in general is a fast temporary store that speeds 
              up access to a (larger) slower store.

Cold Cache = data that isn't in the CPU cache

Warm Cache = data that is in cache  



  

Evaluation

● A UniProt dataset was used in 845,074,885 triples, 147,524,984 
subjects, 95 predicates, and 128,321,926 objects

● Another dataset which was generated using LUMB was used, 
which gave 1,335,081,176 unique triples with 217,206,845 
subjects, 18 predicates and 161,413,042 objects



  

Evaluation

   



  

Evaluation

   



  

Evaluation
Queries where BitMat performed better: Q1, Q2

Queries where results were comparable to other systems: Q3, 
Q6

Queries where BitMat performed worse than other systems: Q4, 
Q5, Q7, Q8, Q9, Q10, Q11, Q12, Q13



  

Conclusions and Further Work

● A novel method of processing RDF join queries was 
introduced, which:

→ works with compressed data

→ doesn't build intermediate join tables

→ produces the final results in a streaming fashion



  

Conclusions and Further Work
● RDF-3X and MonetDB gave better results in highly selective 

queries
● BitMat had a better performance on low-selectivity queries 

  → develop a hybrid system having BitMat's query processing 
algorithm and the conventional query processor

  → the optimal method would be chosen based on heuristics 
and selectivity of the triple patterns in the query



  

Questions

● Would it actually be feasible to create a hybrid system? Would 
the structures be compatible in order to be able to implement 
such a system?

● There have been made improvements to the RDF-3X system. 
What would the performance comparison look like with the 
new version for RDF-3X?

● To what extent is BitMat usable for queries of type (?x ?y ?z), 
as it is not possible to load a BitMat for all-variable tp-node 
containing the entire data set in memory?
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