

Matrix “Bit” loaded: A Scalable Lightweight Join
Query Processor for RDF Data

Hot Topics in Information Retrieval

 Amalia Radoiu

Outline

1. Introduction

2. BitMat method overview

3. BitMat construction

4. Join processing algorithm

5. Evaluation

6. Conclusions and further work

Introduction
• RDF (Resource Description Framework) for representing any

information

Introduction - SPARQL

 SPARQL join query

 SELECT *

 WHERE {
 B - ?m rdf:type :movie
 C - ?n rdf:type :movie
 A - ?m :similar_to ?n
}

Equivalent SQL join query

SELECT * FROM
tripletable AS A, tripletable AS B,
tripletable AS C

WHERE A.subject = B. subject
AND A.object = C. subject
AND A.predicate = “:similar_to”
AND B.predicate = “rdf:type”
AND C.object = “:movie”
AND B.object = “:movie”
AND C. predicate = “rdf:type”

Introduction
● Database systems used for querying and storage of RDF data:

RDF-3X

 - generic solution for storing and indexing RDF triples

 - query processor that leverages fast merge joins

 - a query optimizer for choosing optimal join orders

 using a cost model based on statistical synopses for

 entire join path

Introduction

• MonetDB

 - storage model based on vertical fragmentation

 - a modern CPU-tuned query execution architecture

 - automatic and self-tuning indexes

• Jena-TDB

• Hexastore

Introduction
Join queries classification:

1. Highly selective triple patterns

(?s :residesInUSA)(?s :hasSSN “123-56-6789”)

2. Low-selectivity triple patterns, but highly selective join results

(?s :residesIn India)(?s :worksFor BigOrg)

3. Low-selectivity triple patterns and low-selectivity join results

(?s :residesIn USA)(?s :hasSSN ?y)

Introduction
BitMat method overview

● compressed bit-matrix structure for storing huge RDF graphs
● novel, lightweight, SPARQL query processing method
● no intermediate join tables
● works directly on compressed data

BitMat Construction
• V

S
, V

P
 and V

O
 denote sets of distinct subjects, predicates and

objects in the RDF data

• 3D bit cube with volume V
S
x V

P
 x V

O

BitMatConstruction

● 3D bit-cube sliced along P-dimension to get 2D matrices
● Inverting an S-O BitMat gives an O-S BitMat
● S-O and O-S BitMats stored for each P value

BitMat Construction
• |V

S
| x |V

P
| x |V

O
| possible triples

• RDF data contains much fewer number of triples

→ gap compression scheme

 Example: 0011000 → [0] 2 2 3
• Store the number of triples in each compressed BitMat
• Store two bitarrays – row and column bitarray

 → +

• Store the compressed S-O, O-S, P-S, P-O BitMats

BitMat Operations

Fold
● 'fold(BitMat, retainDimension) returns bitArray'
● RetainDimension can take the values “rows” or “columns”
● Folds the input BitMat by retaining the retainDimension
● Example:

0 0 0 1 OR
1 0 0 0

1 0 0 1

BitMat Operations

Unfold
● 'unfold(BitMat, MaskBitArray, RetainDimension)'
● Unfolds the MaskBitArray on the BitMat
● Example: unfold(BitMat, '011000', 'columns')

0 1 0 1 0 0 AND [0] 1 1 1 1 2 AND
0 1 1 0 0 0 [0] 1 2 3
--------------------------- -----------------------------
0 1 0 0 0 0 [0] 1 1 4

Join Processing Algorithm - Properties

Property 1

Property 2

 →

Join Processing Algorithm - Properties

Property 3

Constructing the Constraint Graph G

 triple pattern = tp-node

 join variable = jvar-node

Constructing the Constraint Graph G

● undirected, unlabeled edge between a jvar-node and a tp-node

Constructing the Constraint Graph G

● Edge between two jvar-nodes

Constructing the Constraint Graph G

● Edge between two tp-nodes

Join Processing Algorithm – Step 1
Preparation for the pruning algorithm

● Initialize each tp-node by loading the triples which match that triple
pattern

● Construct the 4 BitMats S-O, O-S, P-S, P-O

The pruning algorithm

● G
jvar

 contains only jvar-nodes

● Embed a tree on G
jvar

 discarding cyclic edges

Join Processing Algorithm – Step 1

The pruning algorithm (continued)

● Walk the tree from root to the leaves and backwards in a
“breadth first search manner”

● At every jvar-node take the intersection of bindings generated
by its adjacent tp-nodes

● After the intersection, drop the triples from tp-node BitMats as
a result of dropped bindings

Pruning phasePruning phase

WWW 2010, Raleigh NC,
USA

?
m

?m ?n

?m rdf:type :movie ?m :similar_to ?n ?n rdf:type :movie

fold foldunfold unfold fold foldunfold unfold

1

1

1

1 1

1

1 1

11

1

1 1 1 1 1 1 111

1

1

1 1

1

11

1

1

1

1 1 1 1 111

1 1 1 11

1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Join Processing Algorithm – Step 1

Join Processing Algorithm – Step 2

● Start with the triple pattern with least number of triples left in its
BitMat

● Generate bindings for variables in that triple pattern
● select another triple pattern which shares a join variable with any of

the previously selected triple patterns
● Check if it can generate the same bindings for the shared join variable

and generate bindings for its other variables
● Continue this and at the end of one round when all triple patterns are

processed and all variables have consistent bindings, output the result

Evaluation
Choice of competitive RDF stores

● Considered stores: Hexastore, Jena-TDB, RDF-3X and
MonetDB

● Chose RDF-3X and MonetDB because

 → can load a large amount of RDF data

 → gave better performance than others

 → are open-source systems, which can be used by the
 research community

Evaluation
During the evaluation the following parameters were measured:

1. query execution times (cold and warm cache)

2. initial number of triples

3. the number of results

Cache = A cache in general is a fast temporary store that speeds
 up access to a (larger) slower store.

Cold Cache = data that isn't in the CPU cache

Warm Cache = data that is in cache

Evaluation

● A UniProt dataset was used in 845,074,885 triples, 147,524,984
subjects, 95 predicates, and 128,321,926 objects

● Another dataset which was generated using LUMB was used,
which gave 1,335,081,176 unique triples with 217,206,845
subjects, 18 predicates and 161,413,042 objects

Evaluation

Evaluation

Evaluation
Queries where BitMat performed better: Q1, Q2

Queries where results were comparable to other systems: Q3,
Q6

Queries where BitMat performed worse than other systems: Q4,
Q5, Q7, Q8, Q9, Q10, Q11, Q12, Q13

Conclusions and Further Work

● A novel method of processing RDF join queries was
introduced, which:

→ works with compressed data

→ doesn't build intermediate join tables

→ produces the final results in a streaming fashion

Conclusions and Further Work
● RDF-3X and MonetDB gave better results in highly selective

queries
● BitMat had a better performance on low-selectivity queries

 → develop a hybrid system having BitMat's query processing
algorithm and the conventional query processor

 → the optimal method would be chosen based on heuristics
and selectivity of the triple patterns in the query

Questions

● Would it actually be feasible to create a hybrid system? Would
the structures be compatible in order to be able to implement
such a system?

● There have been made improvements to the RDF-3X system.
What would the performance comparison look like with the
new version for RDF-3X?

● To what extent is BitMat usable for queries of type (?x ?y ?z),
as it is not possible to load a BitMat for all-variable tp-node
containing the entire data set in memory?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

