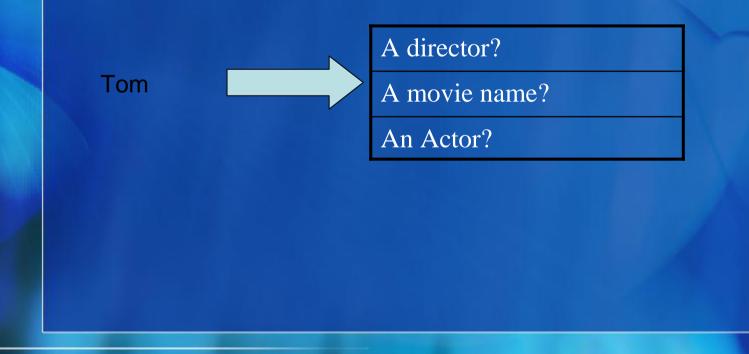
Diversification for Keyword Search over Structured Databases

HIR 2011

Outline

- Introduction
- Related Background
- DivQ
- Evaluation metrics
- Experiment
- Conclusion

- Keywords queries over structured database
 - an organized collection of data
 - Data may be stored in different tables
 - Computationally expensive if too much data need to be retrieved cross multiple tables
 - Not attract much attention
- Compared with unstructured document
 - keyword queries need to be interpreted in terms of the underlying database
 - take advantage of the structure of the database


	movie	actor
Item 1	War	Tom Hanks
Item 2	•••	

	movie	director
Item 1	•••	
Item 2	War	Tom Billy

	movie	year
Item 1	•••	•••
Item 2	War	2011

- Keyword queries over structured databases are notoriously ambiguous
 - Single interpretation of a keyword query is not enough
 - Multiple interpretation will yield to overlapping results
- Search "Tom 2011"
 - Tom : a director?
 - Tom: an actor?

- Diversification aims at minimizing user's dissatisfaction
 - Provide users a quick glance of the major plausible interpretations, so that the users can simply choose.

Keyword Query: Tom Hanks 2001	1 Search
Structured Queries:	Query Construction Options:
director: 0	O "Hanks" is a movie title
name: HANKS TOM directs: 1 movie: 2 year: 2001	O"Tom Hanks" is an actor's name
actor: 0	O "Hanks" is a director's name
name: HANKS TOM acts: 1 year: 2001	Oothers
	Selected Options (1):
actor: 2 acts: 3 as_character: HANKS TOM	"2001" refers to 2001 A.D.

- diversification should take advantage of the structure of the database
 - Query disambiguation before actual execution
 - Avoid computational overhead for retrieving and filtering actual result
 - executes only the top-ranked query interpretations at last

- This scheme balances the relevance and novelty of keyword search results
 - A probabilistic model helps to rank the possible interpretations, to create semantic interpretations
 - a scheme to diversify the search results by re-ranking query interpretations, generating the top-k most relevant and diverse query interpretations

Related Background

- In document retrieval
 - Diversification performs as a post-processing or re-ranking step
 - first retrieve relevant results and then filter or re-order the result list to achieve diversification
- However in structured database
 - computationally expensive
 - obtained by joining multiple tables
- So in *DivQ*, take the advantage of rich structure
 - clear semantics in database before retrieving any results
 - Only the results of the top ranked interpretations are retrieved from the database

Related Background

- Diversification by classifying search results
 - based on similarity
 - understandable for end user
 - classes are usually pre-defined
- In *DivQ* -- a special kind of classes
 - Well-defined semantics
 - Query interpretations are generated based on users' keyword
 - consider the similarity between query interpretations to avoid redundant search results

Related Background

- Some ideas from traditional IR variance
 - to select top-n documents first
 - order them by balancing the overall relevance of the list against its variance
- Other complementation in *DivQ*
 - categorization, which takes into account user preferences

Major part -- DivQ

DivQ

• *DivQ* translates a keyword query to a set of structured queries, taking not only relevance but also diversification into consideration

Table	1. Structured Interpr	etations f	or a Keyword Query
25	rd query: DERATION CHRISTO	PHER G	UEST
Relev ance	Top-3 interpretations ranking	Relev ance	Top-3 interpretations diversification
0.9	A director CHRISTOPHER GUEST of a movie CONSIDERATION	0.9	A director CHRISTOPHER GUEST of a movie CONSIDERATION
0.5	A director CHRISTOPHER GUEST	0.4	An actor CHRISTOPHER GUEST
0.8	An actor CHRISTOPHER GUEST in a movie CONSIDERATION	0.2	A plot containing CHRISTOPHER GUEST of a movie
			2223

DivQ - Bringing Keywords into Structure

- translate a keyword query *K* to a structured query *Q*
 - a set of *keyword interpretations* Ai:ki, map each ki to Ai
 - Then joins the keyword interpretations using a predefined *query template T*
- For example
 - Search "CONSIDERATION CHRISTOPHER GUEST"
 - "director:CHRISTOPHER", "director:GUEST", "movie: CONSIDERATION"
 - query interpretation: "A director *X* of a movie *Y*"
- "complete query interpretation", "partial query interpretation"

DivQ - Estimating Query Relevance

- estimate relevance as the conditional probability,
 P(Q|K)
 - keyword query K
 - -Q is the user's intended interpretation of K
- probability P(Q|K) can be expressed as P(Q | K) = P(I,T | K).
 - query interpretation Q is composed of a query template T
 - I: a set of keyword interpretations

 $I = \{A_j : \{k_{j1}, k_{jn}\} \mid A_j \in T, \{k_{ji}, k_{jn}\} \subset K, \{k_{i1}, k_{im}\} \mathbf{I} \{k_{j1}, k_{jn}\} = \{\} fori \neq j\}$

DivQ - Estimating Query Relevance

- Two assumptions for simplifying the computation
 - each keyword has one particular interpretation intended by the user
 - The probability of a keyword interpretation is independent
- Based on these assumptions and Bayes' rule

$$P(Q \mid K) \propto \left(\prod_{A_j \in T} P(A_j : \{k_{j1}, k_{jn}\} \mid A_j)\right) \times \left(\prod_{k_u \in K \cap k_u \notin Q} P_u\right) \times P(T)$$

DivQ - Estimating Query Relevance

$$P(Q \mid K) \propto \left(\prod_{A_j \in T} P(A_j : \{k_{j1}, k_{jn}\} \mid A_j)\right) \times \left(\prod_{k_u \in K \cap k_u \notin Q} P_u\right) \times P(T)$$

- P(Aj:{kj1,kjn}|Aj) represents the probability that Aj:{kj1,kjn} are a part of the query interpretation, estimated using attribute specific term frequency
- Constant smoothing factor *Pu*, the probability that keyword *Ku* does not match any available attribute in the database, smaller than the minimum probability of any existing keyword interpretation
- P(T) is the prior probability that the template *T* is used to form a query interpretation, a frequency of the template's occurrence in the database query log if available

DivQ - Estimating Query Similarity

• The resulting query interpretations should be not only relevant but also as dissimilar to each other

$$Sim(Q_1, Q_2) = \frac{\left|I_1 \cap I_2\right|}{\left|I_1 \cup I_2\right|}$$

- -Q1 and Q2 be two query interpretations of a keyword query K
- *I1* and *I2* be the sets of keyword interpretations contained by *Q1* and *Q2*
- resulting similarity value should always fall in [0, 1], 1 means the highest possible similarity

DivQ - Combining Relevance and Similarity

- For generating the top-k query interpretations that are both relevant and diverse
 - First, select the most relevant interpretation as the top-1 interpretation
 - Then select the interpretation based on both its relevance and novelty

$$Score(Q) = \lambda \cdot P(Q \mid K) - (1 - \lambda) \cdot \sum_{q \in QI} \frac{Sim(Q, q)}{|QI|}$$

- a query interpretation Q
- a set of query interpretations *QI* that are already presented to the user
- λ is a parameter to trade-off query interpretation relevance against novelty, $\lambda = 1$ only care about relevance, 0 otherwise
- The interpretation with highest score will be next interpretation

Input: list L[l] of top-k query interpretations ranked by relevance **Output:** list R[r] of the relevant and diverse query interpretations Proc Select Diverse Query Interpretations R[0]=L[0]; i=1;//less than r elements selected while (i < r)//select the best candidate for R[i] j=i; best score=0; //more candidates for R[i]in L while(L[j]!=null){ //check score upper bound if (best score> $\lambda P(L[j])$) break; if (score(L[j])>best score){ best score=score(L[i]); c=j; i++ //add the best candidate to R R[i] = L[c];Swap L[i...c-1] and L[c]; i++;End Proc:

For creating a set *R* of the most relevant and diverse query interpretations

 starts with the most relevant query interpretation at the top of L

scan the remaining candidate elements in *L*, compare their
scores according to the formula

Add item

DivQ - The Diversification Algorithm

- Worst case
 - Worst complexity is $O(l^*r)$
 - maximal number of similarity computations is $(l^2-l)/2$
 - l is the number of query interpretations and r is the number of interpretations in the result list R

Evaluation metrics

- In document retrieval
 - α -NDCG (normalized Discounted Cumulative Gain)
 - S-recall
- In structured data
 - $-\alpha$ -NDCG-W
 - Weighted S-Recall
- Differences
 - primary key -- notion of information nugget -- subtopic
 - α -NDCG and S-recall assume equal relevance of information nuggets and subtopics in a document. However relevance of primary keys in a query result may vary a lot

Evaluation metrics - cg

- What is CG?
 - Cumulative Gain (CG) is the predecessor of DCG
 - The value: The gain G[k] at rank k
 - does not care the position of a result in result set.

– The CG at a particular rank position *p* is defined as:

$$\mathrm{CG}_{\mathrm{p}} = \sum_{i=1}^{p} rel_{i}$$

CG = 3 + 2 + 3 + 0 + 1 + 2

D1	3
D2	2
D3	3
D4	0
D5	1
D6	2

Evaluation metrics - DCG

- What is DCG?
 - Discounted Cumulative Gain
 - Take position into consideration
 - Change the position, the value changes

$$\mathrm{DCG}_{\mathrm{p}} = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

D1	3
D2	2
D3	3
D4	0
D5	1
D6	2

$$DCG_6 = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i} = 3 + (2 + 1.887 + 0 + 0.431 + 0.772) = 8.09$$

Evaluation metrics - nDCG

- What is nDCG
 - Normalized DCG Discounted Cumulative Gain
 - Sort the order first, then calculate

$\mathrm{nDCG}_6 =$	DCG_6	_	8.09	= 0.9306
	$\overline{IDCG6}$	_	8.693	- 0.3500

- IDCG: ideal DCG

D1	3
D3	3
D2	2
D6	2
D5	1
D4	0

Evaluation metrics - a -NDCG

- α -nDCG
 - G[k] is extended with a parameter α ,
 - a trade-off between relevance and novelty
 - α -nDCG views a document as the set of information nuggets
 - $-\alpha$ is in the interval [0, 1]; 0 just care about the relevance, increasing α , novelty is rewarded with more credit

Evaluation metrics - a -NDCG-W

- α NDCG-W
 - For reflecting the graded relevance assessment on the PK
 - Take overlapping and diversification into consideration

 $G[k] = relevance(Q_k) \cdot (1 - \alpha)^r$

- *r* expresses overlap in result list at ranks 1...*k*-1.
- Each *pk* is distinct with others in other interpretations
- for each primary key pk_i in the result of Q_k , count how many query interpretations with pk_i were seen before

$$r = \sum_{pk_i \in Q_k} \sum_{j \in [1,k-1]} \left| pk_i \in Q_j \right|$$

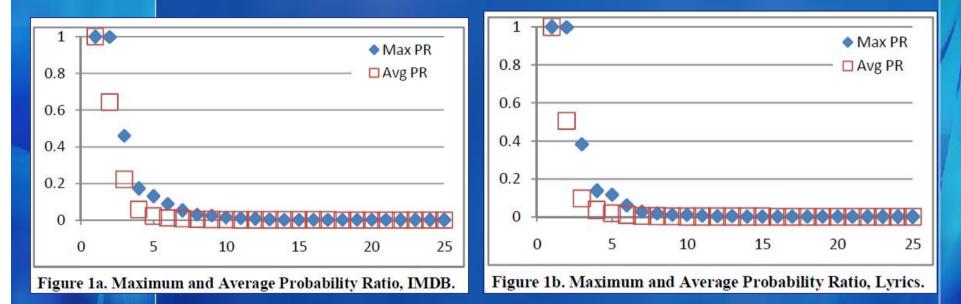
Evaluation metrics – weighted S-Recall

- S-recall is the number of unique subtopics covered by the first *k* results, divided by the total number of subtopics
- In database keyword search
 - single primary key corresponds to a subtopic in S-recall
 - take the graded relevance of subtopics into account
 - WS-Recall is computed as the aggregated relevance of the subtopics divided by the maximum possible relevance

$$WS - recall @ k = \frac{\sum_{pk \in Q_{1..k}} relevance(pk)}{\sum_{pk \in U} relevance(pk)}$$

- U is the set of relevant subtopics (primary keys)
- Same to S-recall, if only binary relevance assessments are available

Experiments – Dataset and Queries


- two real-world datasets
 - a crawl of the Internet Movie Database (IMDB)
 - seven tables
 - more than 10,000,000 records
 - a crawl of a lyrics database from the web
 - five tables
 - around 400,000 records
- No associated query log
 - extracted the keyword queries from logs of MSN and AOL
 - obtained thousands of queries for the IMDB and lyrics domains

Experiments — Dataset and Queries

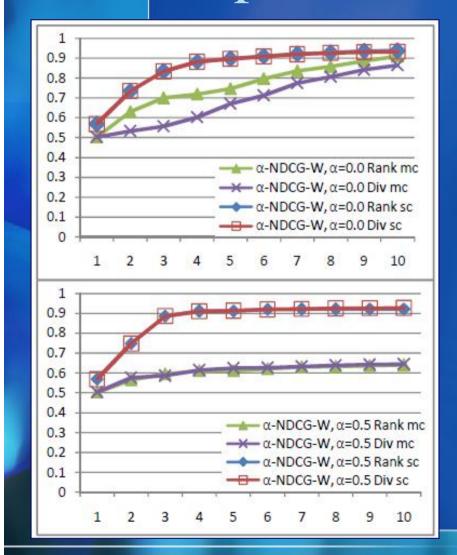
- most popular keyword queries
 - first sorted the queries based on frequency in the log
 - each domain, select 200 most frequent queries with non-empty results exist in the database
 - *single concept queries* -- mostly either single keyword or single concept queries
 - manually selected for more complex queries
 - 100 queries for each dataset from the query log
 - multi-concept queries
- for each keyword query
 - ranked interpretations
 - entropy in the top-10 ranks of the resulting list -- ambiguity
 - selected 25 single concept and 25 multi-concept queries with the highest entropy for each dataset

Experiments – User Study

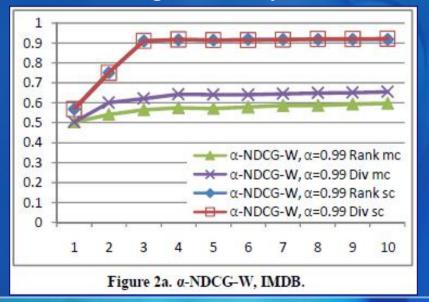
• at most the top-25 interpretations

- average ratio of the probability of a query at rank *i* and the aggregated probabilities of queries at rank j < i

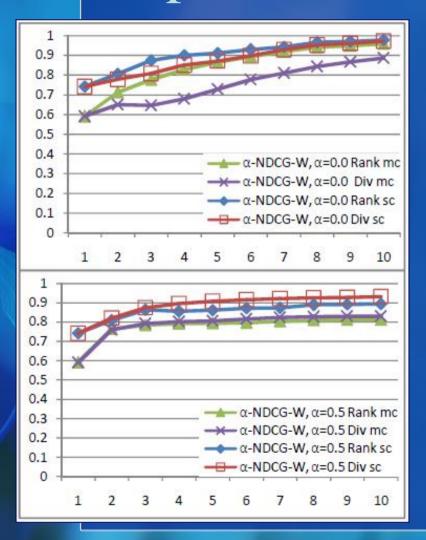
$$PR_i = P(Q_i \mid K) / \sum_{j < i} P(Q_j \mid K)$$

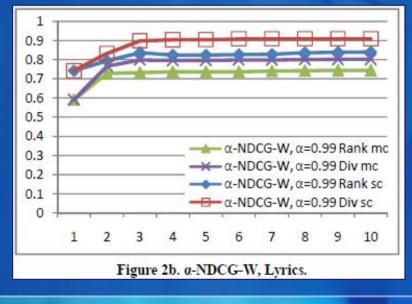

Experiments – User Study

- For each query
 - pruned all query interpretations *Qi* whose probability constituted less than 0.1% of the aggregated probability
 - included at most five more interpretations with probability below the threshold
 - randomized the order when presented for user assessment
- In total
 - Each user -- 630 interpretations for IMDB, 517 for Lyrics
 - 10 persons all tasks, 6 persons 30% IMDB, 9% Lyrics
 - two-point Likert scale for each interpretation
 - Agreement in kappa statistics: 0.33 in IMDB; 0.28 in Lyrics
 - Such low agreement, additional indication of ambiguity of queries

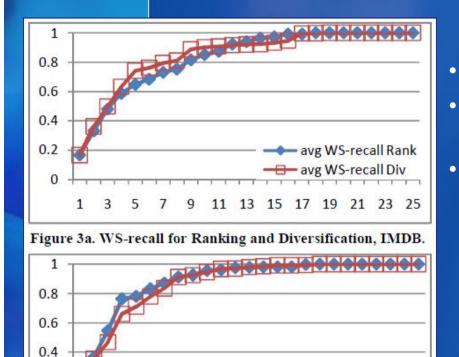

Experiments $-\alpha$ -nDCG-W

- For assessing quality of ranking and diversification
 - measure α NDCG-W by varying α parameter
 - $-\alpha = 0$, novelty of results is completely ignored = NDCG
 - $-\alpha = 0.5$, novelty is given a certain credit
 - $-\alpha = 0.99$ results without novelty are regarded as redundant


Experiments $-\alpha$ -nDCG-W


- Y-axis: α -NDCG-W value
- Rank: without diversification
- Div: with diversification
- When $\alpha = 0.99$ and k>3
 - diversification on mc queries outperforms by about 7%

Experiments $-\alpha$ -nDCG-W


- Y-axis: α -NDCG-W value
- Rank: without diversification
- Div: with diversification
- When $\alpha = 0.99$ and k>3
 - diversification on mc queries outperforms by about 7%

Experiments – ws-recall

avg WS-recall Rank avg WS-recall Div

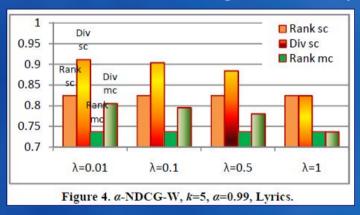
11 13 15 17 19 21 23 25

0.2

0

5

9


Figure 3b. WS-recall for Ranking and Diversification, Lyrics.

- Y-axis: WS-recall value
- Normalizing result sizes for WS-recall is future work
- No significant effect of diversification

Experiments — Balancing Relevance and Novelty

$$Score(Q) = \lambda \cdot P(Q \mid K) - (1 - \lambda) \cdot \sum_{q \in QI} \frac{Sim(Q, q)}{|QI|}$$

• λ is parameter to balance relevance against novelty

- α -NDCG-W values decrease with increasing λ , until $\lambda = 1$
- The smaller λ is, the more visible is the impact of diversification

Conclusion

- Advantages
 - Take diversification into consideration
 - A good attempt for queries under structured database
 - Evaluation results demonstrate that the novelty of keyword search results improved
 - Better characterized than initial relevance ranking
- Drawbacks
 - No significant improvement according to the evaluation
 - Still need improvement

