Chapter X: Graph Mining

- **1. Introduction to Graph Mining**
- 2. Centrality and Other Graph Properties
- 3. Frequent Subgraph Mining
 - **3.1. Graphs and Isomorphism**
 - **3.2. Canonical Codes**
 - 3.3. gSpan
- 4. Graph Clustering
 - 4.1. Where do Graphs Come From?
 - 4.2. Clustering as Graph Cutting
 - 4.3. Spectral Clustering
 - 4.4. Markov Clustering
- ZM Ch. 4, 11, 16

Chapter X.4: Graph Clustering

- 1. Where do Graphs Come From?
 - **1.1. Similarity and adjacency matrices**
- 2. Clustering as Graph Cuts
 - 2.1. Even more matrices
 - 2.2. Finding approximate cuts
- **3. Spectral Clustering**
- 4. Markov Clustering

ZM Ch. 16, von Luxburg: A tutorial on spectral clustering, 2007

Where do Graphs Come From?

- We can have data in a graph form
 - -E.g. the clusters of our social networks
- Or we can map existing data to a graph
 - Data points become vertices

Linked in Maps in the state of a server

- Add an edge if two data points are similar
 - Edge weights can also tell about similarity

Similarity and adjacency matrices

- A **similarity** matrix is an *n*-by-*n* non-negative, symmetric matrix
 - The opposite of the distance matrix
- Recall that a weighted adjacency matrix is an *n*-by-*n* non-negative, symmetric matrix
 - -For weighted, undirected graphs
- So, we can think every similarity matrix as an adjacency matrix of some weighted, undirected graph This graph will be complete (a clique)
- Further, we can use any similarity measure between two points as an edge weight

Getting non-complete graphs

- Using complete graphs can be a waste of resources
 For clustering, we don't really care about pairs of elements that are very dissimilar
- We can remove the edges between dissimilar pairs of vertices
 - -Zero weight
- Alternatively, we can adjust the weights to diminish dissimilar points
 - The Gaussian kernel is popular for this

$$w_{ij} = \exp\left\{-\frac{|\boldsymbol{x}_i - \boldsymbol{x}_j|^2}{2\sigma^2}\right\}$$

Getting non-complete graphs (2)

- How to decide when vertices are too dissimilar?
- In ε -neighbour graphs we add an edge between two vertices that are within distance ε to each other
 - -Usually the resulting graph is considered unweighted as all weights would be roughly similar
- In *k*-nearest neighbour graphs we connect two vertices if one is within the *k* nearest neighbours of the other
 - In mutual k-nearest neighbour graph we only connect two vertices if they're both in each other's k nearest neighbours

Which similarity graph?

- With ε -graphs choosing the parameter is hard
 - -No single correct answer if different clusters have different internal similarities
- *k*-nearest neighbours can connect points with different similarities
 - -But far-away high density regions become unconnected
- The mutual *k*-nearest neighbours is somewhat in between
 - -Good for detecting clusters with different densities
- General recommendation: start with *k*-NN – Others if data supports that

Example graph

ZM Fig. 16.1

Clustering as Graph Cuts

- A cut of a connected graph G = (V, E) divides the set of vertices into two partitions S and V \ S and removes the edges between them
 - Cut can be expressed by giving the set S
 - Or by giving the cut set, i.e. edges with exactly one end in *S*, $F = \{(v, u) \in E : |\{v, u\} \cap S| = 1\}$
- Graph cut clusters graph's vertices into two clusters
 Subsequent cuts in the components give us a hierarchical clustering
- A *k*-way cut cuts the graph into *k* disjoint set of vertices $C_1, C_2, ..., C_k$ and removes the edges between them

What is a good cut?

- Just any cut won't cut it
- In **minimum cut** the goal is to find any set of vertices such that cutting them from the rest of the graph requires removing the least number of edges
 - -Least sum of weights for weighted graphs
 - The extension to multiway cuts is straightforward
- The minimum cut can be found in polynomial time
 The max-flow min-cut theorem
- But minimum cut isn't very good for clustering purposes

What cuts would cut it? (1)

- The minimum cut usually just removes one vertex from the graph
 - -Not very appealing clustering
 - -We want to penalize the cut for imbalanced cluster sizes
- In **ratio cut**, the goal is to minimize the ratio of the weight of the edges in the cut set and the size of the clusters *C_i*

-Let
$$W(A, B) = \sum_{i \in A, j \in B} w_{ij}$$

• w_{ij} is the weight of edge (i, j)

RatioCut =
$$\sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{|C_i|}$$

What cuts would cut it? (2)

• The **volume** of a set of vertices *A* is the weight of all edges connected to *A*

$$-vol(A) = W(A,V) = \sum_{i \in A, j \in V} w_{ij}$$

• In **normalized cut** we measure the size of C_i not by $|C_i|$ but by $vol(C_i)$

NormalizedCut =
$$\sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{vol(C_i)}$$

Finding optimal RatioCut or NormalizedCut is NP-hard

Even More Matrices

- The (weighted) adjacency matrix *A* has the weight of edge (*i*, *j*) at position *a*_{*ij*}
- The **degree matrix** Δ of a graph is a diagonal *n*-by-*n* matrix with the (weighted) degree of vertex *i* at position $\Delta_{ii} = d_i$

$$-\Delta_{ii} = d_i = \sum_j a_{ij}$$

- The **normalized adjacency matrix** *M* is the adjacency matrix where in every row *i* all values are divided by *d_i*
 - -Every row sums up to 1
 - $-M = \Delta^{-1}A$

Graph Laplacians

• The Laplacian matrix *L* of a graph is the adjacency matrix subtracted from the degree matrix

$$L = \Delta - A = \begin{pmatrix} \sum_{j \neq 1} a_{1,j} & -a_{1,2} & \cdots & -a_{1,n} \\ -a_{2,1} & \sum_{j \neq 2} a_{2,j} & \cdots & -a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n,1} & -a_{n,2} & \cdots & \sum_{j \neq n} a_{n,j} \end{pmatrix}$$

- The Laplacian is symmetric and positive semidefinite
 - -Undirected graphs
 - -Has *n* real, non-negative, orthogonal eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \ldots \ge \lambda_n \ge 0$

The normalized, symmetric Laplacian

• The normalized, symmetric Laplacian matrix *L^s* of a graph is defined as

$$\boldsymbol{\Delta}^{-1/2} \boldsymbol{L} \boldsymbol{\Delta}^{-1/2} = \boldsymbol{I} - \boldsymbol{\Delta}^{-1/2} \boldsymbol{A} \boldsymbol{\Delta}^{-1/2} = \begin{pmatrix} \frac{\sum_{j \neq 1} a_{1,j}}{\sqrt{d_1 d_1}} & -\frac{a_{1,2}}{\sqrt{d_1 d_2}} & \cdots & -\frac{a_{1,n}}{\sqrt{d_1 d_n}} \\ -\frac{a_{2,1}}{\sqrt{d_2 d_1}} & \frac{\sum_{j \neq 2} a_{2,j}}{\sqrt{d_2 d_2}} & \cdots & -\frac{a_{2,n}}{\sqrt{d_2 d_n}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n,1}}{\sqrt{d_n d_1}} & -\frac{a_{n,2}}{\sqrt{d_n d_2}} & \cdots & \frac{\sum_{j \neq n} a_{n,j}}{\sqrt{d_n d_n}} \end{pmatrix}$$

-Also positive semi-definite

• The normalized, asymmetric Laplacian L^a is $L^a = \varDelta^{-1}L$

Clusterings and matrices redux

- Recall that we can express a clustering using a binary cluster assignment matrix
 - -Each row has exactly one non-zero
- Let the *i*-th column of this matrix be c_i
 - -Clusters are disjoint so $c_i^T c_j = 0$
 - -Cluster has $c_i^T c_i = ||c_i||^2$ elements
- We can get the $vol(C_i)$ and $W(C_i, V)$ using c_i 's $-vol(C_i) = \sum_{j \in C_i} d_j = \sum_{r=1}^n \sum_{s=1}^n c_{ir} \Delta_{rs} c_{is} = c_i^T \Delta c_i$ $-W(C_i, C_i) = \sum_{r \in C_i} \sum_{s \in C_i} a_{rs} = c_i^T A c_i$ $-W(C_i, V \setminus C_i) = W(C_i, V) - W(C_i, C_i) = c_i^T (\Delta - A) c_i$ $= c_i^T L c_i$

Cuts using matrices

$$\operatorname{RatioCut} = \sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{|C_i|} = \sum_{i=1}^{k} \frac{c_i^T L c_i}{||c_i||^2}$$
$$\operatorname{NormalizedCut} = \sum_{i=1}^{k} \frac{W(C_i, V \setminus C_i)}{vol(C_i)} = \sum_{i=1}^{k} \frac{c_i^T L c_i}{c_i^T \Delta c_i}$$

Finding approximate cuts

- Re-writing the objective functions doesn't make them any easier
 - -But the complexity comes from the fact that we have to have binary clustering assignments
- Relax!
 - -Let c_i 's take any real value
- Relaxed RatioCut now looks like

$$J_{rc}(C) = \sum_{i=1}^{k} \frac{c_i^T L c_i}{\|c_i\|^2} = \sum_{i=1}^{k} \left(\frac{c_i}{\|c_i\|}\right)^T L\left(\frac{c_i}{\|c_i\|}\right) = \sum_{i=1}^{k} u_i^T L u_i$$

 $-u_i = c_i/||c_i||$ i.e. the unit vector in the direction of c_i

Solving the relaxed version

- We want to minimize the function J_{rc} over u_i 's -We have a constraint that $u_i^T u_i = 1$
- To solve, derive w.r.t. u_i 's and find the roots
 - -Add Lagrange multipliers to incorporate the constraints:

$$\frac{\partial}{\partial \boldsymbol{u}_i} \left(\sum_{i=1}^k \boldsymbol{u}_i^T \boldsymbol{L} \boldsymbol{u}_i + \sum_{i=1}^k \lambda_i (1 - \boldsymbol{u}_i^T \boldsymbol{u}_i) \right) = 0$$

• Hence, $Lu_i = \lambda_i u_i$

 $-u_i$ is an eigenvector of *L* corresponding to the eigenvalue λ_i

Which eigenvectors to choose

- We know that $Lu_i = \lambda_i u_i$
 - -Hence $\lambda_i = \boldsymbol{u}_i^T \boldsymbol{L} \boldsymbol{u}_i$
- As we're minimizing the sum of $u_i^T L u_i$'s we should choose the u_i 's corresponding to the k smallest eigenvalues
 - -They are our relaxed cluster indicators
- Note that we know that λ_n = 0 and that the corresponding eigenvector is (n^{-1/2}, n^{-1/2}, ..., n^{-1/2})
 No help on clustering...

Normalized cut and choice of Laplacians

- For normalized cut similar procedure shows that we should select the *k* smallest eigenvectors of *L*^s instead of *L*
 - -Or we can use the asymmetric Laplacian L^a
- Which one we should choose?
 - -Both ratio and normalized cut aim at minimizing intracluster similarity
 - -But only normalized cut considers inter-cluster similarity \Rightarrow Either L^s or L^a
- The asymmetric Laplacian is better
 - With symmetric one further normalization is needed

Spectral clustering

- To do the clustering, we need to move our real-valued eigenvectors *u_i* to binary cluster indicator vectors
- First, create a matrix U with u_i 's as its columns
 - -Optionally, normalize the rows to sum up to 1
 - Esp. if using L^s
- Cluster the rows of this matrix using *k*-means
 Or, in principle, any other clustering algorithm
- Solving the eigenvectors is $O(n^3)$ in general or $O(n^2)$ if the similarity graph has as many edges as vertices
 - The *k*-means on the *U* matrix takes $O(tnk^2)$
 - *t* is the number of iterations in *k*-means

Spectral clustering pseudo-code

Assume connected graph

Algorithm 16.1: Spectral Clustering Algorithm SPECTRAL CLUSTERING (D, k): 1 Compute the similarity matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ 2 if ratio cut then $\mathbf{B} \leftarrow \mathbf{L}$ 3 else if normalized cut then $\mathbf{B} \leftarrow \mathbf{L}^s$ or \mathbf{L}^a 4 Solve $\mathbf{Bu}_i = \lambda_i \mathbf{u}_i$ for $i = n, \dots, n - k + 1$, where $\lambda_n \leq \lambda_{n-1} \leq \dots \leq \lambda_{n-k+1}$ 5 $\mathbf{U} \leftarrow (\mathbf{u}_n \ \mathbf{u}_{n-1} \ \dots \ \mathbf{u}_{n-k+1})$ 6 $\mathbf{Y} \leftarrow$ normalize rows of \mathbf{U} using (16.19) 7 $\mathcal{C} \leftarrow \{C_1, \dots, C_k\}$ via K-means on \mathbf{Y}

Example

ZM Figures 16.1 and 16.4

Is spectral clustering optimal?

- Spectral clustering is not always a good approximation of the graph cuts
 - In so-called cockroach graphs, spectral clustering always horizontally, when optimal is to cut vertically
 - -Approximation ratio of O(n)

Markov Clustering

- A random walk on a graph that is in vertex *v* should visit other vertices from *v*'s cluster more probably than vertices in other clusters
 - Transition probabilities are the edge weights, i.e. similarity counts
- Normalized adjacency matrix $M = \Delta^{-1}A$ gives transition probabilities for a Markov chain
 - $-M^t = M \times M \times ... \times M$ gives the probabilities to move from node *i* to node *j* in *t* steps
 - For *i* and *j* to be in the same cluster, these probabilities should be high versus what they are if *i* and *j* are in different clusters

Transition probability inflation

- The probabilities in *M^t* might not make the differences obvious enough
- We can inflate the probabilities by applying to every element of *M* the inflation operator

$$\Upsilon(\boldsymbol{M}, r) = \left(\frac{(m_{ij})^r}{\sum_{a=1}^n (m_{ia})^r}\right)_{ij}$$

- This increases larger probabilities and reduces smaller ones

Markov clustering algorithm

- Compute $M^1 \leftarrow \Delta^{-1}A$
 - -Add self-edges to A if they don't exist
- repeat
 - $-M^t \leftarrow M^{t-1} \times M$
 - $-M^t \leftarrow \Upsilon(M^t, r)$
- until successive *M*^t's don't change much
 - -E.g. Frobenius is below a given threshold
- return clusters induced by M^t

How to get the clusters

- M^t induces a weighted, directed graph G
 - Weight for edge (*i*, *j*) is the current transition probability from *i* to *j*
- In this graph, a vertex *i* is called **attractor** if it has a self-loop with positive probability
 - N.B. expects very small probabilities to be rounded to zero
- Attractor j attracts i if edge (i, j) has non-zero probability
- The number of clusters is the number of strongly connected components of attractors in *G*

– These are the initial clusters

• Other vertices are attached to all clusters they can reach

Some notes

- The inflation parameter *r* implicitly defines the number of clusters
 - -Higher $r \Rightarrow$ more clusters
- The convergence criterion can also have some effects
- Time complexity is $O(tn^{\omega})$
 - $-\omega$ is the exponent for matrix multiplication
 - In practice $\omega = 3$ for full matrices and $\omega = 2$ for sparse matrices
 - Matrix *M^t* usually becomes sparse quickly

Summary

- Frequent subgraph mining can find recurring patterns in graph data
 - Enormously complex problem ⇒ exact algorithms can't be fast
 - -But graphs are not usually very big even if there are many of them
- Graph clustering is much like other clustering
 - -Any clusterable data can be turned into similarity graph
 - Spectral clustering uses well-known linear algebra
 - But this doesn't necessarily make it a good clustering algorithm
 - -Markov clustering doesn't need the number of clusters
 - But does need the number of clusters