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XII.1: Data Normalization
1. Centering and unit variance
2. Why and why not normalization?
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Zero centering
• Consider a data D that contains n observations over m 

variables
– n-by-m matrix D 

• We say D is zero centered if mean(di) = 0 for each 
column di of D 
• We can center any matrix by subtracting from its 

columns their means
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Unit variance and z-scores
• Matrix D is said to have unit variance if var(di) = 1 

for each column di of D 
–The unit variance is obtained by dividing every column with 

its standard deviation
• Data that is zero centered and normalized to unit 

variance is called the z-scores 
–Many methods assume the input is z-scores

• We can also apply non-linear transformations before 
normalizing to the z-scores
–E.g. taking logarithms (from positive data) or cubic roots 

(from general data) diminishes the importance of larger 
values
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Why centering?
• Consider the red data ellipse
–The main direction of variance

is from the origin to the data
–The second direction is orthogonal

to the first
–These don’t tell the variance of the data!

• If we center the data, the directions
are correct
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Why unit variance?
• Assume one observation is height in meters and other 

weight in grams
–Now weight contains much higher values (for humans, at 

least)
⇒ weight has more weight in calculations

• Division by standard deviation makes all observations 
equally important
–Most values fall between –1 and 1
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When not to center?
• Centering cannot be applied to all kinds of data
• It destroys non-negativity
–E.g. NMF becomes impossible

• Centered data won’t contain integers
–E.g. counting or binary data
–Can hurt interpretability
– Itemset mining and BMF become impossible

• Centering destroys sparsity
–Bad for algorithmic efficiency
–We can retain sparsity by only chancing non-zero values
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What’s wrong with unit variance?
• Dividing by standard deviation is based on the 

assumption that the values follow Gaussian 
distribution
–Often plausible by the Law of Large Numbers

• Not all data is Gaussian
– Integer counts
•Especially over a small range

–Transaction data
–…
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XII.2: Missing values
1. Handling missing values
2. Imputation
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Missing values
• Missing values are common in real-world data
–Unobserved 
–Lost in collection
–Error in measurement device
–…

• Data with missing values needs to be dealt with care
– Some methods are robust to missing values
•E.g. naïve Bayes classifiers

– Some methods cannot (natively) handle missing values
•E.g. support vector machines 
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Handling missing values
• Two common techniques to handle missing values are
– Imputation
– Ignoring them

• In imputation, the missing values are replaced with 
“educated guesses”
–E.g. the mean value of the variable
• Perhaps stratified over some class 
–The mean height vs. the mean height of the males

–Or a model is fitted to the data and the missing values are 
drawn from the model
•E.g. a low-rank matrix factorization that fits the observed values
–This technique is used with lots of missing values in matrix completion 
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Some problems
• Imputation might impute wrong values
–This might have significant effect on the results
–Especially categorical data is hard
•The effect of imputation is never “smooth”

• Ignoring records or variable with missing values 
might not be possible
–There might not be any data left

• Especially binary data has the problem of 
distinguishing non-existent and non-observed data
–E.g. if data says that certain species does not observed in 

certain area, it does not mean the species couldn’t live there
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XII.3: Curse of Dimensionality
1. The Curse
2. Some oddities of high-dimensional spaces
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Curse of dimensionality
• Many data mining algorithms need to work in high-

dimensional data
• But life gets harder as dimensionality increases
–The volume grows too fast
• 100 points evenly-spaced points in unit interval have max 

distance between adjacent points of 0.01
•To get that distance for adjacent points in 10-dimensional unit 

hypercube requires 1020 points
• Factor of 1018 increase

• High-dimensional data also makes algorithms slower
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Hypersphere and hypercube
• Hypercube is d-dimensional cube with edge length 2r
–Volume: vol(Hd(2r)) = (2r)d

• Hypersphere is the d-dimensional ball of radius r
– vol(S1(r)) = 2r
– vol(S2(r)) = πr2

– vol(S3(r)) = 4/3 πr3 
– vol(Sd(r)) = Kdrd, where
• Γ(d/2 + 1) = (d/2)! for even d

16
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Hypersphere within hypercube
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Figure 6.3: Hypersphere inscribed inside a hypercube in (a) 2D, (b) 3D

In d Dimensions As the dimensionality d increases asymptotically, we get

lim
d→∞

vol(Sd(r))

vol(Hd(2r))
= lim
d→∞

πd/2

2dΓ(d2 + 1)
→ 0 (6.19)

This means that as the dimensionality increases, most of the volume of the hypercube
is in the “corners”, whereas the center is essentially empty. The mental picture that
emerges is that high-dimensional space looks like a rolled-up porcupine, as illustrated
in Figure 6.4.
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Fraction of volume hypersphere has of surrounding hypercube:

Mass is in the corners!
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Figure 6.4: Conceptual View of High Dimensional Space in (a) 2D, (b) 3D, (c) 4D,
and (d) Higher Dimensions. In d dimensions there are 2d “corners” and 2d−1 diagonals.
The radius of the inscribed circle accurately reflects the difference between the volume
of the hypercube and the inscribed hypersphere in d dimensions.

6.4 Volume of Thin Hypersphere Shell

Let us now consider the volume of a thin hypersphere shell of width ϵ bounded by an
outer hypersphere of radius r , and an inner hypersphere of radius r − ϵ. The volume
of the thin shell is given as the difference between the volumes of the two bounding
hyperspheres, as illustrated in Figure 6.5.
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Figure 6.5: Volume of the Thin Shell: Comparing vol(Sd(r − ϵ)) to vol(Sd(r)) for
small ϵ > 0

Let Sd(r, ϵ) denote the thin hypershell of width ϵ. Its volume is given as

vol(Sd (r, ϵ)) = vol(Sd(r))− vol(Sd(r − ϵ)) = Kd rd −Kd(r − ϵ)d . (6.20)

Let us consider the ratio of the volume of the thin shell to the volume of the outer

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

2D 3D 4D higher dimensions



lim

d!1

vol(Sd(r, ✏))

vol(Sd(r))
= lim

d!1
1 -

⇣
1 -

✏

r

⌘d
! 1

IR&DM ’13/14 XII.1–4-30 January 2014

Volume of thin shell of hypersphere
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Mass is in the shell!
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XII.4: Feature Extraction and 
Selection

19

1. Dimensionality reduction and PCA
1.1. PCA
1.2. SVD

2. Johnson–Lindenstrauss lemma 
3. CX and CUR decompositions
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Dimensionality reduction
• Aim: reduce the number of features/dimensions by 

replacing them with new ones
–The new features should capture the “essential part” of the 

data
–What is considered essential defines what method to use
–Vice versa, using wrong dimensionality reduction can lead 

to non-sensical results
• Usually dimensionality reduction methods work on 

numerical data
– For categorical or binary data, feature selection can be more 

appropriate
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Principal component analysis
• The goal of the principal component analysis (PCA) 

is to project the data onto linearly uncorrelated 
variables in (possibly) lower-dimensional subspace 
that preserves as much of the variance of the original 
data as possible
–Also known as Karhunen–Lòeve transform or Hotelling 

transform
•And with many other names, too

• In matrix terms, we want to find a column-orthogonal 
n-by-r matrix U that projects n-dimensional data 
vector x into r-dimensional vector a = UTx  
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Deriving the PCA: 1-D case (1)
• We assume our data is normalized to z-scores
• We want to find a unit vector u that maximizes the 

variance of the projections uTxiu 
– Scalar uTxi gives the coordinate of xi along u 
–As data is normalized, its mean is 0, which has coordinate 0 

when projected to u 
• The variance of the projection is

22
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Deriving the PCA: 1-D case (2)
• To maximize variance σ2, we maximize

–The second term is to ensure u is a unit vector
• Solving the derivative gives Σu = λu 
– u is an eigenvector and λ is an eigenvalue
– Further uTΣu = uTλu implying that σ2 = λ 
•To maximize variance, we need to take the largest eigenvalue

• Thus, the first principal component u is the 
dominant eigenvector of the covariance matrix Σ 
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Example of 1-D PCA
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CHAPTER 7. DIMENSIONALITY REDUCTION 212

Further, by (2.28), we have

var(D) = tr(Σ) =
d∑

i=1

σ2
i

Thus, we may rewrite (7.15) as

MSE(u) = var(D)− uTΣu =
d∑

i=1

σ2
i − uTΣu

Since the first term, var(D), is a constant for a given dataset D, the vector u

that minimizes MSE(u) is thus the same one that maximizes the second term, the
projected variance uTΣu. Since we know that u1, the dominant eigenvector of Σ,
maximizes the projected variance, we have

MSE(u1) = var(D)− uT
1 Σu1 = var(D)− uT

1 λ1u1 = var(D)− λ1 (7.16)

Thus, the principal component u1, which is the direction that maximizes the pro-
jected variance, is also the direction that minimizes the mean squared error.

X1

X2

X3

u1

Figure 7.2: Best One-dimensional or Line Approximation
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Deriving the PCA: r dimensions

25

• The second principal component should be 
orthogonal to the first one and maximize the variance
–Adding this constraint and deriving shows that the second 

principal component is the eigenvector associated with the 
second-highest eigenvalue
– Further, to find r principal components, we take the 

eigenvectors of Σ associated to the r largest eigenvalues 
–The total variance is the sum of the eigenvalues

• It also turns out that maximizing the variance 
minimizes the mean squared error 

1
n

Pn
i=1kxi �UT

xU k2
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Computing the PCA
• We can compute the covariance matrix and its top-k 

eigenvectors
• Or we can use SVD
–Because covariance matrix Σ = XXT and if X = USVT, 

columns of U are the eigenvectors of XXT 
–This approach is preferred due to numerical stability
•Computing the covariance matrix can cause numerical stability 

issues with the eigendecomposition
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Kernel PCA
• PCA separates linear correlations
–But what if the correlations are not linear?

• We can use the kernel trick as with SVMs, say
–Map the input space into higher-dimensional feature space 

and find linear correlations there
• Basic idea: replace Σ with (centered) kernel matrix K 
– n-by-n matrix with kij = K(xi, xj) = ϕ(xi) Tϕ(xj) 

•  We cannot compute the principal vectors directly
–They’re expressed using ϕ(x) 
–But we can project ϕ(x) onto the principal direction using 

kernels
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Problems with PCA and SVD
• Many characteristics of the original data are lost
–Non-negativity
– Integrality
– Sparsity
–…

• Also, the computation can be costly for big matrices
–Although there exists approximate methods to do SVD in a 

single sweep of the matrix
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Johnson–Lindenstrauss lemma
• Finding the decomposition can be expensive
• Decompositions give only global guarantees
–Any pair of points can have very different distances 

• Can we guarantee local similarity?

29

Johnson–Lindenstrauss lemma. Given ε > 0 and an integer n, let k 
be a positive integer such that k ≥ k0 = O(ε–2log n). For every set X 
of n points in ℝd there exists F: ℝd → ℝk such that for all xi, xj ∈ X

(1 - ") kxi - xjk2 6 kF(xi)- F(xj)k2 6 (1 + ") kxi - xjk2
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How to find the projections?

30

• We need to find an k-by-d matrix R = (rij) such that 
function x ↦ Rx satisfies JL
• Remarkably, if we select rij ~ N(0,1), R satisfies JL 

with high probability 
–That is, JL holds for all points of X with high probability

• Achlioptas has show that we can also select 
Pr[rij = 1] = 1/2 and Pr[rij = –1] = 1/2 or 
Pr[rij = 1] = 1/6, Pr[rij = 0] = 2/3, Pr[rij = –1] = 1/6
– Sparse matrix



IR&DM ’13/14 XII.1–4-30 January 2014

CX and CUR decompositions
• Sometimes we want to retain the original features
– Interpretability
– Sparsity
–…

• We can select the most important features and work 
only on them
• There are many ways to do feature selection
–CX and CUR decompositions are one option
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The CX factorization
• Given a data matrix D, find a subset of columns of D 

in matrix C and a matrix X s.t. ||D – CX||F is 
minimized
– Interpretability: if columns of D are easy to interpret, so are 

columns of C 
– Sparsity: if all columns of D are sparse, so are columns of C
– Feature selection: selects actual columns
–Approximation accuracy: if Dk is the rank-k truncated SVD 

of D and C has k columns, then with high probability
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kD- CXkF 6 O(k
p

log k) kD-DkkF

[Boutsidis, Mahoney & Drineas, KDD ’08, SODA ’09] 
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The CUR factorization
• Given data matrix D, its CUR factorization is 
D ≈ CUR, where matrix C has r columns of D and 
matrix R has r rows of D and U is arbitrary mixing 
matrix 
–The aim is to minimize ||D – CUR||F 
–We also have approximation results for CUR, but they 

require many more rows and columns
• The CUR decomposition selects “stereotypical” rows 

and columns
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Computing CX and CUR — the idea
• The columns (and rows in CUR) are selected 

randomly
–The probability of sampling each row or column is 

proportional to its L2-norm 
•Heavy rows and columns are more probable

• After C is obtained, the X in CX is computed using 
the pseudo-inverse
• To compute the U in the CUR, we first take the 

submatrix of D defined by the Cartesian product of 
row indices in R and column indices in C 
–The final U is the pseudo-inverse of this matrix
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Summary
• Normalizing the data can be crucial
• Missing values need to be dealt with
• High-dimensional data is a problem for many data 

mining methods
–Computational complexity
–Everything is evenly far from everything

• Many ways to address the problem
– PCA gives dimensionality reduction with global guarantees
– JL lemma tells us we can also achieve local guarantees
– Feature selections retains important features of the data
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