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XIL1: Data Normalization il

1. Centering and unit variance
2. Why and why not normalization?
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Zero centering

 Consider a data D that contains n observations over m
variables

—n-by-m matrix D

* We say D is zero centered if mean(d;) = 0 for each
column d; of D

* We can center any matrix by subtracting from its
columns their means



Unit variance and z-scores

* Matrix D 1s said to have unit variance if var(d;) = 1
for each column d; of D

— The unit variance 1s obtained by dividing every column with
its standard deviation

* Data that 1s zero centered and normalized to unit
variance 1s called the z-scores
— Many methods assume the input 1s z-scores

* We can also apply non-linear transformations before
normalizing to the z-scores

—E.g. taking logarithms (from positive data) or cubic roots
(from general data) diminishes the importance of larger
values



Why centering?
* Consider the red data ellipse

— The main direction of variance

1s from the origin to the data

— The second direction 1s orthogonal
to the first

— These don’t tell the variance of the data!

* [f we center the data, the directions
are correct
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Why unit variance?

* Assume one observation 1s height in meters and other
welght 1n grams

— Now weight contains much higher values (for humans, at
least)

= weight has more weight 1n calculations

* Division by standard deviation makes all observations
equally important
— Most values fall between —1 and 1



When not to center?

* Centering cannot be applied to all kinds of data

* [t destroys non-negativity
—E.g. NMF becomes impossible

* Centered data won’t contain integers

—E.g. counting or binary data
— Can hurt interpretability

— Itemset mining and BMF become impossible
* Centering destroys sparsity
— Bad for algorithmic efficiency

— We can retain sparsity by only chancing non-zero values



What’s wrong with unit variance?

* Dividing by standard deviation 1s based on the
assumption that the values follow Gaussian
distribution

— Often plausible by the Law of Large Numbers
* Not all data 1s Gaussian

— Integer counts
* Especially over a small range

— Transaction data



XIL2: Missing values

1. Handling missing values
2. Imputation
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Missing values

* Missing values are common 1n real-world data
— Unobserved
— Lost 1n collection
— Error in measurement device

* Data with missing values needs to be dealt with care
— Some methods are robust to missing values
* E.g. naive Bayes classifiers

— Some methods cannot (natively) handle missing values
* E.g. support vector machines



Handling missing values

* Two common techniques to handle missing values are
— Imputation
—Ignoring them

 [n imputation, the missing values are replaced with
“educated guesses”

—E.g. the mean value of the variable
 Perhaps stratified over some class

—The mean height vs. the mean height of the males
— Or a model 1s fitted to the data and the missing values are
drawn from the model

* E.g. a low-rank matrix factorization that fits the observed values
—This technique 1s used with lots of missing values 1n matrix completion



Some problems

* Imputation might impute wrong values
— This might have significant effect on the results

— Especially categorical data 1s hard
* The effect of imputation is never “smooth”

* [gnoring records or variable with missing values
might not be possible
— There might not be any data left

* Especially binary data has the problem of
distinguishing non-existent and non-observed data

—E.g. if data says that certain species does not observed in
certain area, 1t does not mean the species couldn’t live there



XIL3: Curse of Dimensionality il

1. The Curse
2. Some oddities of high-dimensional spaces
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Curse of dimensionality

* Many data mining algorithms need to work 1n high-

dimensional data

* But life gets harder as dimensionality increases

— The volume grows too fast

100 points evenly-spaced points in unit interval have max

distance between ad;

* To get that distance
hypercube requires

acent points of 0.01

for adjacent points in 10-dimensional unit
10%Y points

e Factor of 10!8 increase

* High-dimensional data also makes algorithms slower



Hypersphere and hypercube

* Hypercube 1s d-dimensional cube with edge length 2r
— Volume: vol(Ha4(2r)) = (2r)¢

* Hypersphere 1s the d-dimensional ball of radius r
—vol(Si(r)) = 2r
—vol(Sa(r)) = 12
—vol(S3(r)) = 4/3 ©r’
—vol(Sa(r)) = Kar¢, where Kgq =
I'(d/2+1)=(d/2)! for even d

/2

rd/2+1)




Hypersphere within hypercube

2=
NI

Fraction of volume hypersphere has of surrounding hypercube:
VOl(Sd(T)\ : 7Td/2

J

i Mass is in the corners!§

)
dmso0 vol (Hy (21))

2D 3D 4D higher dimensions



Volume of thin shell of hypersphere

Sa(7,€)

vol(Sa(7,€)) = vol(Sa(7)) — vol(Sa(r—¢))
= Kar? — Ka(r—)?

. . vol(S4(T, €)) €
Fraction of volume 1n the shell: =1 — (
vol(S4(1))

. vol(Sq4(r,€)) , €\ d
1 — lim1—=(1== ;
dmroc vol(S4(T)) dmroc ( r> 1




XI1I.
Sele

1. Dimensionality reduction and PCA
1.1. PCA
1.2. SVD

2. Johnson—Lindenstrauss lemma
3. CX and CUR decompositions
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Dimensionality reduction

* Aim: reduce the number of features/dimensions by
replacing them with new ones

—The new features should capture the “essential part” of the
data

— What 1s considered essential defines what method to use

— Vice versa, using wrong dimensionality reduction can lead
to non-sensical results

* Usually dimensionality reduction methods work on
numerical data

—For categorical or binary data, feature selection can be more
appropriate



Principal component analysis

* The goal of the principal component analysis (PCA)
1s to project the data onto linearly uncorrelated
variables 1n (possibly) lower-dimensional subspace
that preserves as much of the variance of the original
data as possible

— Also known as Karhunen—Loeve transform or Hotelling

al

franstorm

* And with many other names, too

* In matrix terms, we want to find a column-orthogonal
n-by-r matrix U that projects n-dimensional data
vector x into r-dimensional vector a = U'x



Deriving the PCA: 1-D case (1)

e We assume our data 1s normalized to z-scores

* We want to find a unit vector # that maximizes the
variance of the projections u’xiu

— Scalar u’x; gives the coordinate of x; along u

— As data 1s normalized, 1ts mean 1s 0, which has coordinate 0
when projected to u

* The variance of the projection 1s

1 & 1 <
p) T p) - T
0':—E(u Xi— My) Z——Ex,-xi
n 4 rn <4
i=1 =1
T : :
=u Xu The covariance matrix

for centered data



Deriving the PCA: 1-D case (2)

« To maximize variance g2, we maximize
Jw)=u'Xu — A(u'u - 1)
— The second term 1s to ensure u 1s a unit vector
* Solving the derivative gives 2u = Au
—u 1s an eigenvector and 4 1s an eigenvalue
— Further u’2u = u’u implying that o> = A
* To maximize variance, we need to take the largest eigenvalue

* Thus, the first principal component u 1s the
dominant eigenvector of the covariance matrix 2’



Example of 1-D
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Deriving the PCA: » dimensions

* The second principal component should be
orthogonal to the first one and maximize the variance

— Adding this constraint and deriving shows that the second
principal component 1s the eigenvector associated with the
second-highest eigenvalue

— Further, to find » principal components, we take the
eigenvectors of 2 associated to the r largest eigenvalues

— The total variance 1s the sum of the eigenvalues

* It also turns out that maximizing the variance
minimizes the mean squared error

1 T 2
= > lx; =U" xU||



Computing the PCA

* We can compute the covariance matrix and 1ts top-k
eigenvectors

e Or we can use SVD

— Because covariance matrix 2 = XX’ and if X = USV7,
columns of U are the eigenvectors of XX”

— This approach 1s preferred due to numerical stability

* Computing the covariance matrix can cause numerical stability
1ssues with the eigendecomposition



Kernel PCA

* PCA separates linear correlations

— But what if the correlations are not linear?

* We can use the kernel trick as with SVMs, say

— Map the mnput space into higher-dimensional feature space
and find linear correlations there

* Basic 1dea: replace 2" with (centered) kernel matrix K
— n-by-n matrix with k; = K(xi, xj) = ¢(xi) 1d(x;)
* We cannot compute the principal vectors directly

—They’re expressed using @(x)

— But we can project ¢(x) onto the principal direction using
kernels



Problems with PCA and SVD

* Many characteristics of the original data are lost
— Non-negativity
— Integrality
— Sparsity
* Also, the computation can be costly for big matrices

— Although there exists approximate methods to do SVD 1n a
single sweep of the matrix



Johnson—Lindenstrauss lemma

* Finding the decomposition can be expensive

* Decompositions give only global guarantees

— Any pair of points can have very different distances

* Can we guarantee [ocal similarity?

ohnson—Llndenstrauss lemma. Given g > >0 and an 1nteger n, , let
be a positive integer such that £ > ko = O(e*log n). For every set X

of n points in R< there exists F: RY — R* such that for all x;, x; € X ;

(1—¢) [[xi —x;5]1> < IF(x1) — F(x)|1” < (1 + &) |[xi — x5



How to find the projections?
* We need to find an k-by-d matrix R = () such that

function x = Rx satisfies JLL

* Remarkably, 1f we select 7;; ~ N(0,1), R satisfies JL
with high probability
—That 1s, JL holds for all points of X with high probability

» Achlioptas has show that we can also select
Pr|r;=1]=1/2 and Pr[r;j=—1]=1/2 or
Pr[ri=1]=1/6, Pr|r;=0]=2/3, Pr[rij=—1]=1/6

— Sparse matrix



CX and CUR decompositions

* Sometimes we want to retain the original features
— Interpretability
— Sparsity

* We can select the most important features and work
only on them

* There are many ways to do feature selection

—CX and CUR decompositions are one option



The CX factorization

* G1ven a data matrix D, find a subset of columns of D
in matrix C and a matrix X s.t. ||[D — CX]|r is
minimized
— Interpretability: 1f columns of D are easy to interpret, so are

columns of C
— Sparsity: 1f all columns of D are sparse, so are columns of C
— Feature selection: selects actual columns

— Approximation accuracy: if Dy 1s the rank-k truncated SVD
of D and C has k columns, then with high probability

|D — CX|l¢ < O(ky/logk) |D — Dxlly

[Boutsidis, Mahoney & Drineas, KDD 08, SODA *09]



The CUR factorization

* G1ven data matrix D, 1its CUR factorization 1s
D = CUR, where matrix C has r columns of D and
matrix R has » rows of D and U 1s arbitrary mixing
matrix
— The aim 1s to minimize ||[D — CUR||F
— We also have approximation results for CUR, but they

require many more rows and columns

* The CUR decomposition selects “stereotypical” rows

and columns



Computing CX and CUR — the 1dea

* The columns (and rows 1in CUR) are selected
randomly

— The probability of sampling each row or column 1s
proportional to 1ts Lo-norm

* Heavy rows and columns are more probable

» After C 1s obtained, the X in CX 1s computed using
the pseudo-inverse

* To compute the U 1in the CUR, we first take the
submatrix of D defined by the Cartesian product of
row 1ndices in R and column indices in C

—The final U 1s the pseudo-inverse of this matrix



Summary

* Normalizing the data can be crucial
* Missing values need to be dealt with

* High-dimensional data 1s a problem for many data
mining methods

— Computational complexity
— Everything 1s evenly far from everything

* Many ways to address the problem
—PCA gives dimensionality reduction with global guarantees
— JL lemma tells us we can also achieve local guarantees
— Feature selections retains important features of the data



