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Chapter XII: Data Pre and Post 
Processing
1. Data Normalization
2. Missing Values
3. Curse of Dimensionality
4. Feature Extraction and Selection

4.1. PCA and SVD
4.2. Johnson–Lindenstrauss lemma 
4.3. CX and CUR decompositions

5. Visualization and Analysis of the Results
6. Tales from the Wild
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XII.5: Visualization and Analysis
1. Visualization techniques

1.1. Projections onto 2D or 3D
1.2. Other visualizations

2. Analysis of the Results
2.1. Significance
2.2. Stability
2.3. Leakage
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Visualization Techniques
• Visualization is an important part of the analysis of 

the data and the results
–Good visualization can help us see patterns in the data and 

verify whether our found results are valid
–Visualization also helps us to interpret the results

• Visualization can also lead us seeing patterns that are 
not (significant) in the data
–Visualization alone can never be the basis of analysis
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Projecting multi-dimensional data
• The most common visualization takes n-dimensional 

data and projects it into 2 or 3 dimensions for plotting
–Different methods retain different type of information

• We’ve already seen few projections
– SVD/PCA can be used in multiple ways
•Either project the data in the first singular vectors
•Or do a singular vector scatter plot

• Creating good projections is an on-going research 
topic
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Example: Cereal data
• Data of 77 different cereals
– http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
–We use only 23 Kellogs manufactured cereals in the 

examples
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Example: Clustering
• We clustered the Cereal data using k-means
–But is the clustering meaningful?
–How do we plot a clustering?

• One idea: project the data into 2D and mark which 
point belongs to which cluster
–Question: will we see the clustering structure?
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Cereals in SVD Scatter
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Cereals in PCA w/ Gaussian kernel
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Cereals and multidimensional scaling
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Cereals and Isomap

10

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A Global Geometric Framework for Nonlinear 
Dimensionality Reduction. Science, 290(5500), 2319–2323. doi:10.1126/science.290.5500.2319
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Cereals and Laplacian eigenmaps
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Belkin, M., & Niyogi, P. (2003). Laplacian Eigenmaps for Dimensionality Reduction and Data 
Representation. Neural Computing, 15(6), 1373–1396. doi:10.1162/089976603321780317
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Cereals and neighbourhood-preserving 
embedding
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Non-projection visualizations
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• Projections are not the only type of visualizations
–Again, we have seen other visualizations before
–These are often a bit more specific
•But not always…
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Heat maps
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Heat maps with sorting
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We further verified the detection of false zeros and ones by
preparing two datasets, based on data parametrized by nt¼10
and ns¼ 10. For the first set, we selected 100 random ones, and
flipped them to zero (false zeros). For the second set, we
randomly selected 100 zeros, and changed them to ones (false
ones). We then performed the analysis, and computed median
probability for all zeros to be alive in the first dataset and
median probability for all ones to be alive in the second
datasets. The probabilities corresponding to 92 of 100 added
false zeroswas below themedian, and 88of 100 added false ones
were above median. The differences are statistically significant
when compared to the null hypothesis that the false zeros or
ones are equally likely to end up above or below the median
(Fisher Sign Test). The median probability that the (site,genus)
pair an inserted false one is alive is 0.004, and the median
probability that an inserted false zero is alive is 0.92.
We also tested a model where each taxon has its own c and d

parameters for false one and false zero. The results of the
MCMC runs were almost identical to the ones obtained for
the model with one c and one d parameter (unpublished data).

Discussion

We have described a probabilistic model for paleontolog-
ical data and shown that MCMC methods can be used to
obtain samples from the posterior distribution of the
parameters. The parameters of the model have a natural
interpretation, and the hard sites enable us to insert existing
prior knowledge of the ordering in a natural way.
The task of finding the optimal ordering, or knowing for

certain that a given ordering is optimal, is a very difficult
problem. MCMC methods have the advantage of being able to
explore various parts of the parameter space, but the issue of
guaranteeing convergence of the sampling is always present
in these methods. We have solved the problem of con-
vergence by sampling 100 chains in parallel, and taking into
account only the chains having the best log-likelihood. We
have also checked that the pair-order matrices predicted by
these best chains are consistent with each other. This way, we
can state with reasonable confidence that our results are
indeed an accurate description of the posterior distribution
of the model. We also tested the method by adding false zeros
and ones to the data randomly, and checking that they were
identified correctly.
The results show that for generated data the method is able

to reconstruct orderings and locate outliers with excellent
accuracy. For the data on large late Cenozoic mammals, the
results indicate a high level of agreement with existing
orderings and correctly capture the basic feature of paleon-
tological data that false absences are likely to be common and
false presences rare.
For the past 40 years the main stratigraphic framework for

the study of the Cenozoic landmammals fromEurope has been
the MN system [30–33]. The MN system rests on a complicated
base of taxon appearances and associations that has been

Figure 2. The Data Matrix for the Dataset with nt ¼ 10 and ns ¼ 10

The sites have been ordered by Efp(n)g and the genera by Efamg (top).
Probability that genus m is alive on site n in the dataset specified by nt¼
10 and ns¼ 10 (middle). Probability that one is false (bottom). Black color
denotes probability of one, and white probability of zero.
DOI: 10.1371/journal.pcbi.0020006.g002

PLoS Computational Biology | www.ploscompbiol.org February 2006 | Volume 2 | Issue 2 | e60065

Seriation Using MCMC
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Dendrograms

16



IR&DM ’13/14 XII.5&6-4 February 2014

Heat maps with dendrograms
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Radar charts

18

18 October 2011IR&DM, WS'11/12

Clustering for Medical Data

10

90 4 Studies on real data

Figure 4.8: Temperament cluster centers in the NFBC66 best model as
starplots, normalized data. The male and female seem similar to each other,
despite having been learned independently. The subscales are as follows:
HA-1: anticipatory worry, HA-2: fear of uncertainty, HA-3: shyness, HA-
4: fatigability; NS-1: exploratory excitability, NS-2: impulsiveness, NS-3:
extravagance, NS-4: disorderliness; RD-1: sentimentality, RD-3: attachment,
RD-4: dependence; P: persistence.

Stable, persistent, not very impulsive
High socio-economical status and education

18 October 2011IR&DM, WS'11/12

Clustering for Medical Data

10

90 4 Studies on real data

Figure 4.8: Temperament cluster centers in the NFBC66 best model as
starplots, normalized data. The male and female seem similar to each other,
despite having been learned independently. The subscales are as follows:
HA-1: anticipatory worry, HA-2: fear of uncertainty, HA-3: shyness, HA-
4: fatigability; NS-1: exploratory excitability, NS-2: impulsiveness, NS-3:
extravagance, NS-4: disorderliness; RD-1: sentimentality, RD-3: attachment,
RD-4: dependence; P: persistence.

Shy, pessimistic, prefer routines and privacy
Low socio-economic status, high levels of depression and 

schizophrenia
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Parallel coordinates

19
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Maps…

20
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Analysis of the results

21

• Without analysis, there’s not much point in doing data 
mining
• The analysis should be done by domain experts
– People who know what the data contains and how to 

interpret the results
• Data mining is about finding surprising things…
–… so domain experts are needed to 
• tell if the results really are surprising
• verify that the surprising results are meaningful in the context
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Significance of the results
• Statistical significance tests can be applied to the 

results 
–But they require forming the null hypothesis 

• Too weak null hypothesis ⇒ even significant results 
are not necessarily significant at all
–But strong null hypotheses are harder to test

• We rarely can use (full-blown) exact tests
• Sometimes we can use asymptotic tests
• In other times we can use permutation tests

22
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Significance testing example (1)
• We want to test the significance of association rule 

X → Y in a data with n rows 
• Null hypothesis 1: Itemsets X and Y both appear in the 

data but their tidsets are independent random 
variables
–Each transaction contains X with probability supp(X)/n 

• The probability for supp(XY) is a tail of a binomial 
distribution for p = supp(X)supp(Y)/n2  

23
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Significance testing example (2)
• Null hypothesis 2: X → Y does not add anything over a 

generalization W’ → Y, where W ⊊ X assuming the row 
and column marginals are fixed
• The odds ratio measures the odds of X occurring with 

Y versus the odds of W (but not other parts of X) 
occurring with Y 
– For any W, we can consider the null hypothesis that odds 

ratio = 1 (X \ W is independent of Y given W) 
–We can compute the p-value for this hypothesis using 

hypergeometric distribution
–We can test null hypothesis 2 by computing the p-values for 

all generalizations of X 

24
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Significance testing example (3)
• Null hypothesis 3: The confidence of the rule is 

explained merely by the row and column marginals of 
the data
–Confidence can be replaced with any other interest measure

• This we can test by generating new data sets with 
same row and column marginals
– If many-enough of them contain rules with higher 

confidence, we cannot reject our null hypothesis
–Generating such data can be done e.g. with swap 

randomization
• This is called permutation test 

25
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Stability
• The stability of a data mining result refers to its 

robustness under perturbations
–E.g. if we change all the numerical values a bit, the 

clusterings shouldn’t change a lot
–We can also remove individual rows/columns or make more 

data unknown
• Stability should be tested after the results have been 

obtained
–Run the same analysis with perturbed data
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Stability example (1)
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Stability example (2)
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Leakage
• Leakage in data mining refers to the case when 

prediction algorithm learns from data is should not 
have access to
– Problem as the quality is assessed using already-historical 

test data
–E.g. INFORMS’10 challenge: predict the value of a stock
•Exact stock was not revealed
•But “future” general stock data was available!
⇒ 99% AUC (almost perfect prediction!)

–More subtle one’s exist
•E.g. removing a crucial feature creates a new type of correlation

29
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XII.6: Tales from the Real World
1. Working with non-CS folks

30
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Talk their language!

Archeotype

Voronoi tesselation
Red queen’s problem

NP-hard

31
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Data is dirty

26 2 The clustering process

Figure 2.1: Matrix of the data used in the migraine study described in
Chapter 4.3, observed values in white and missing values in black. X-axis,
the 194 original variables. Y-axis, 6283 individuals in the dataset, ordered
by ID. Note the obvious non-randomness of missing data. This picture was
originally not drawn; only one with rows of the data file was used. Strong
correlations of clusters and other variables to running ID very soon called
for this one, too.

26 2 The clustering process

Figure 2.1: Matrix of the data used in the migraine study described in
Chapter 4.3, observed values in white and missing values in black. X-axis,
the 194 original variables. Y-axis, 6283 individuals in the dataset, ordered
by ID. Note the obvious non-randomness of missing data. This picture was
originally not drawn; only one with rows of the data file was used. Strong
correlations of clusters and other variables to running ID very soon called
for this one, too.
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Not all data is BIG 
It’s all just constants

We further verified the detection of false zeros and ones by
preparing two datasets, based on data parametrized by nt¼10
and ns¼ 10. For the first set, we selected 100 random ones, and
flipped them to zero (false zeros). For the second set, we
randomly selected 100 zeros, and changed them to ones (false
ones). We then performed the analysis, and computed median
probability for all zeros to be alive in the first dataset and
median probability for all ones to be alive in the second
datasets. The probabilities corresponding to 92 of 100 added
false zeroswas below themedian, and 88of 100 added false ones
were above median. The differences are statistically significant
when compared to the null hypothesis that the false zeros or
ones are equally likely to end up above or below the median
(Fisher Sign Test). The median probability that the (site,genus)
pair an inserted false one is alive is 0.004, and the median
probability that an inserted false zero is alive is 0.92.
We also tested a model where each taxon has its own c and d

parameters for false one and false zero. The results of the
MCMC runs were almost identical to the ones obtained for
the model with one c and one d parameter (unpublished data).

Discussion

We have described a probabilistic model for paleontolog-
ical data and shown that MCMC methods can be used to
obtain samples from the posterior distribution of the
parameters. The parameters of the model have a natural
interpretation, and the hard sites enable us to insert existing
prior knowledge of the ordering in a natural way.
The task of finding the optimal ordering, or knowing for

certain that a given ordering is optimal, is a very difficult
problem. MCMC methods have the advantage of being able to
explore various parts of the parameter space, but the issue of
guaranteeing convergence of the sampling is always present
in these methods. We have solved the problem of con-
vergence by sampling 100 chains in parallel, and taking into
account only the chains having the best log-likelihood. We
have also checked that the pair-order matrices predicted by
these best chains are consistent with each other. This way, we
can state with reasonable confidence that our results are
indeed an accurate description of the posterior distribution
of the model. We also tested the method by adding false zeros
and ones to the data randomly, and checking that they were
identified correctly.
The results show that for generated data the method is able

to reconstruct orderings and locate outliers with excellent
accuracy. For the data on large late Cenozoic mammals, the
results indicate a high level of agreement with existing
orderings and correctly capture the basic feature of paleon-
tological data that false absences are likely to be common and
false presences rare.
For the past 40 years the main stratigraphic framework for

the study of the Cenozoic landmammals fromEurope has been
the MN system [30–33]. The MN system rests on a complicated
base of taxon appearances and associations that has been

Figure 2. The Data Matrix for the Dataset with nt ¼ 10 and ns ¼ 10

The sites have been ordered by Efp(n)g and the genera by Efamg (top).
Probability that genus m is alive on site n in the dataset specified by nt¼
10 and ns¼ 10 (middle). Probability that one is false (bottom). Black color
denotes probability of one, and white probability of zero.
DOI: 10.1371/journal.pcbi.0020006.g002

PLoS Computational Biology | www.ploscompbiol.org February 2006 | Volume 2 | Issue 2 | e60065

Seriation Using MCMC
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The best algorithm is the algorithm you have with you

34
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Beware the analysis

possibly because herbivore distributions are most directly

influenced by the maritime–continental climate gradient.

The species with the highest grid cell incidence give more

coherent clusters than other groups (Fig. 1). Those with an

incidence of 10–20% give coherence values approaching those

of all species and small mammals, but higher incidence values

give lower coherence, perhaps because the species with the

highest incidence are few and widespread. The subset of species

‘at risk’ gives spatially the least coherent clusters found in this

study, even less coherent than seen for large mammals (Fig. 1).

The regional divisions identified by the clusterings show

significant differences in the values of basic climate variables

and elevation (Table 4). All cluster pairs in the ‘all species’

clustering seen in Fig. 3 differ significantly in at least two

environmental variables, and most cluster pairs differ in all of

the variables (Table 4a,b). For almost all groupings tempera-

ture is the variable for which the cluster pairs have the most

significant differences (Table 4c). For precipitation, the num-

ber of significant differences is also high. For all environmental

variables the set ‘species at risk’ has the smallest number of

significantly different cluster pairs, while the species set with

the largest number of significant differences is different for

each considered variable. However, more important than these

relatively minor differences is the high overall percentage of

significant differences. The results of the anova tests complete

with P-values for all of the species groupings are provided as

Table S3 in the supplementary material.

DISCUSSION

We find that Europe can be divided into coherent subregions

based on the distributions of mammal species. We also find a

high degree of geographical coherence displayed by the

clusters, and consistency in the basic spatial pattern among

non-overlapping subsets of the data and despite changes in the

number of clusters. These observations, in combination with

the environmental contrast observed between the clusters and

the concordance of the geographical cluster pattern with the

EnS environmental stratification strongly suggest that the

clusters represent real biological units rather than arbitrary

constructs generated by the clustering algorithms. We take

this to indicate that, even in present-day Europe with its

long history of intensive human presence, the main con-

trols on mammalian metacommunity distributions remain

Figure 3 The k-means clustering of the
mammal data cells in 12 clusters with the ‘all
species’ set. The clustering is the best out of
100 clustering runs in terms of squared error.
The cells are projected on to the map with the
Mollweide (equal-area) NAD27 projection.

Clustering of European mammals

Journal of Biogeography 34, 1053–1064 1059
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd
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4.8 Experimental Evaluation 75

Figure 4.5: The division of Finnish dialects [EW97, EW00].

The 20Newsgroups data. This data5 is a bag-of-words repres-
entation of almost 20, 000 Usenet news posts spread (almost) evenly
in 20 newsgroups. As with the Abstracts data, the data was first
stemmed using Porter Stemmer, and all words appearing in less
than 36 or in more than 999 posts were removed. This data set
was only used in this chapter; for subsequent chapters, a different
preprocessing was applied to yield a smaller data set.

The NOW data. This data6 contains information about spe-
cies’ fossils found in specific palaeontological sites in Europe [F+03].
The data is preprocessed following Fortelius et al. [FGJM06].

4.8.5 Randomization of the Data

A simple reconstruction error, even if it is small, does not necessary
guarantee that the data contains the latent structure we were trying
to find. It is possible that the results were obtained by chance.
The standard method to distinguish these cases is to measure the
statistical significance of the results against the null hypothesis,
which – broadly speaking – is ‘results were obtained by chance’.

5http://people.csail.mit.edu/jrennie/20Newsgroups/
6NOW public release 030717, available from http://www.helsinki.fi/

science/now/.

86 4 The BMF and BMP Problems

(a) (b)

Figure 4.7: The partition of municipalities to different dialect regions
by AryaLocal with (a) k = 7 and (b) k = 8.

In short, AryaLocal’s results were mostly what was expected: in
reconstruction errors, it was not as good as Asso+IterX, given the
greater freedom the latter has in constructing the decomposition,
and from the intuitiveness point of view, it performed well only with
data that assumed some partitioned structure.

Itkonen: Proto-Finnic Final Consonants: Their history in the Finnic 
languages with particular reference to the Finnish dialects, part I: 1, 
Introduction and The History of -k in Finnish, 1965
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Know the math of the domain
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possibly because herbivore distributions are most directly

influenced by the maritime–continental climate gradient.

The species with the highest grid cell incidence give more

coherent clusters than other groups (Fig. 1). Those with an

incidence of 10–20% give coherence values approaching those

of all species and small mammals, but higher incidence values

give lower coherence, perhaps because the species with the

highest incidence are few and widespread. The subset of species

‘at risk’ gives spatially the least coherent clusters found in this

study, even less coherent than seen for large mammals (Fig. 1).

The regional divisions identified by the clusterings show

significant differences in the values of basic climate variables

and elevation (Table 4). All cluster pairs in the ‘all species’

clustering seen in Fig. 3 differ significantly in at least two

environmental variables, and most cluster pairs differ in all of

the variables (Table 4a,b). For almost all groupings tempera-

ture is the variable for which the cluster pairs have the most

significant differences (Table 4c). For precipitation, the num-

ber of significant differences is also high. For all environmental

variables the set ‘species at risk’ has the smallest number of

significantly different cluster pairs, while the species set with

the largest number of significant differences is different for

each considered variable. However, more important than these

relatively minor differences is the high overall percentage of

significant differences. The results of the anova tests complete

with P-values for all of the species groupings are provided as

Table S3 in the supplementary material.

DISCUSSION

We find that Europe can be divided into coherent subregions

based on the distributions of mammal species. We also find a

high degree of geographical coherence displayed by the

clusters, and consistency in the basic spatial pattern among

non-overlapping subsets of the data and despite changes in the

number of clusters. These observations, in combination with

the environmental contrast observed between the clusters and

the concordance of the geographical cluster pattern with the

EnS environmental stratification strongly suggest that the

clusters represent real biological units rather than arbitrary

constructs generated by the clustering algorithms. We take

this to indicate that, even in present-day Europe with its

long history of intensive human presence, the main con-

trols on mammalian metacommunity distributions remain

Figure 3 The k-means clustering of the
mammal data cells in 12 clusters with the ‘all
species’ set. The clustering is the best out of
100 clustering runs in terms of squared error.
The cells are projected on to the map with the
Mollweide (equal-area) NAD27 projection.

Clustering of European mammals

Journal of Biogeography 34, 1053–1064 1059
ª 2007 The Authors. Journal compilation ª 2007 Blackwell Publishing Ltd

We repeated Heikinheimo et al.!s (2007)
analysis with a distance measure more
appropriate for species-occurrence data.
Although several such measures are already
in use by biogeographers [e.g. the Kulczyn-
ski coefficient (Moline & Linder, 2006) and
the Bray–Curtis coefficient (Procheş, 2005)],
we chose the Hellinger distance measure
(Rao, 1995). When compared with other
distance measures appropriate for species-
abundance data (chord distance, chi-
squared distance, Bray–Curtis distance), the
Hellinger distance has been shown to be the
most representative of the true geographical
distance among sites (Legendre & Gallagher,
2001). As in Heikinheimo et al. (2007), we
clustered 2183 grid cells characterized by the
presence ⁄ absence records of 124 mammal
species collected by the Societas Euro-

paea Mammalogica (http://www.european-
mammals.org) to prepare the Atlas of
European mammals (Mitchell-Jones et al.,
1999). All analyses were performed with R
ver. 2.6.0 (R Development Core Team,
2007) and ArcGIS ver. 9.1 (ESRI, 2005).

Our cluster analysis produced biogeo-
graphical regions considerably different
from those presented by Heikinheimo et al.
(2007) (Fig. 1). Differences were most
apparent in central Europe, characterized by
three regions in Heikinheimo et al. (2007)
and two in this paper, and Scandinavia,
where the delineation of regions was much
altered. Comparisons between our results
and those of Heikinheimo et al. (2007) for
10 additional species sets are provided in
Appendix S1 in Supporting Information.

The differences in the delineation of
European land mammal biogeographical re-
gions between Heikinheimo et al.!s (2007)
study and this paper highlight the impor-
tance of using an appropriate distance mea-
sure in multivariate analyses of complex
biological data. The issue is compounded in
this case because Heikinheimo et al.!s (2007)
results are so readily applicable to conserva-
tion planning. Meaningful conservation
plans require information on the spatial
distribution of organisms, ideally a true
representation of the spatial structure
inherent in empirical species composition
data. In future, we hope that a greater
emphasis on the application of rigorous
multivariate techniques within conservation
biogeography will lead to an improved
understanding of the spatial distribution of
organisms, and ultimately their conservation.
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P r o u l x
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Figure 1 The k-means clustering of the
"all-species! set of European land mammal
occurrence data in Heikinheimo et al.
(2007) into 12 clusters using the Euclidean
distance (a) and the Hellinger distance (b).
Grid cells are plotted using the Mollweide
(equal-area) NAD27 projection.
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Data mining = voodoo science
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The response from several social scientists has 
been rather unappreciative along the following 
lines: “Where is your hypothesis? What you’re 
doing isn’t science! You’re doing DATA 
MINING !”

http://andrewgelman.com/2007/08/a_rant_on_the_v/
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The clash of paradigms

• Take somebody else’s data
• Pick an algorithm
• Run the algorithm
• Analyse the results
• Rinse and repeat
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• Form a hypothesis
• Design a test
• Collect the data
• Test hypothesis
• Rinse and repeat
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Summary
• Think before you do
• Think while you do
• Think what you just did

• Real-world data analysis requires care and expertise
• Visualizations are powerful tools in data analysts 

toolbox
–With great power comes great responsibility

• Data mining might be voodoo science
–But who wouldn’t want to know the voodoo?
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