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1. Data Normalization

2. Missing Values

3. Curse of Dimensionality
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. Feature Extraction and Selection
4.1. PCA and SVD
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5. Visualization and Analysis of the Results
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XILS: Visualization and Analysisilil

1. Visualization techniques

1.1. Projections onto 2D or 3D
1.2. Other visualizations

2. Analysis of the Results

2.1. Significance
2.2. Stability
2.3. Leakage
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Visualization Techniques

* Visualization 1s an important part of the analysis of
the data and the results

— Good visualization can help us see patterns in the data and
verify whether our found results are valid

— Visualization also helps us to interpret the results

* Visualization can also lead us seeing patterns that are
not (significant) in the data

— Visualization alone can never be the basis of analysis



Projecting multi-dimensional data

* The most common visualization takes n-dimensional
data and projects i1t into 2 or 3 dimensions for plotting

— Different methods retain different type of information

* We’ve already seen few projections
—SVD/PCA can be used in multiple ways

 Either project the data 1n the first singular vectors
* Or do a singular vector scatter plot

* Creating good projections 1s an on-going research
topic



Example: Cereal data
» Data of 77 different cereals

— http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
— We use only 23 Kellogs manufactured cereals in the

examples
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http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

Example: Clustering

* We clustered the Cereal data using k-means
— But 1s the clustering meaningtul?
—How do we plot a clustering?

* One 1dea: project the data into 2D and mark which
point belongs to which cluster

— Question: will we see the clustering structure?



Cereals in SVD Scatter
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Cereals in PCA w/ Gaussian kernel

PCA with standard Gaussian kemel
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Cereals and multidimensional scaling
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Cereals and Isomap
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Cereals and Laplacian eigenmaps
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Cereals and neighbourhood-preserving
embedding

Neighbourhood-preserving embedding
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Non-projection visualizations

* Projections are not the only type of visualizations
— Again, we have seen other visualizations before

— These are often a bit more specific
* But not always...
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Heat maps
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Heat maps with sorting
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Dendrograms
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Heat maps with dendrograms
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Radar charts

Females, cluster | Males, cluster |

TCI-HAL TCI-HAL
TCI-HAZ TCI-RD4 TCI-HAZ TCI-RD4

TCI-RD3 TCI-HAS TCI-RD3

TCI-RDO1

Females, cluster 1V Males, cluster 1V

TCI-HAL TCI-HAL
TCI-HAZ TCI-RD4 TCI-HAZ TCI-RD4




Parallel coordinates
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Maps...
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Analysis of the results

* Without analysis, there’s not much point in doing data
mining
* The analysis should be done by domain experts

—People who know what the data contains and how to
interpret the results
* Data mining 1s about finding surprising things...
— ... so domain experts are needed to

e tell 1f the results really are surprising
o verify that the surprising results are meaningful in the context



Significance of the results

o Statistical significance tests can be applied to the
results

— But they require forming the null hypothesis

» Too weak null hypothesis = even significant results

are not necessarily significant at all
— But strong null hypotheses are harder to test

* We rarely can use (full-blown) exact tests
* Sometimes we can use asymptotic tests
* In other times we can use permutation tests



Significance testing example (1)

* We want to test the significance of association rule
X — Y 1n a data with n rows

* Null hypothesis 1: Itemsets X and Y both appear 1n the
data but their tidsets are independent random
variables

— Each transaction contains X with probability supp(X)/n

* The probability for supp(XY) 1s a tail of a binomial
distribution for p = supp(X)supp(Y)/n?

n

D, (Z)ps(l -p)"

s=supp(XY)



Significance testing example (2)

* Null hypothesis 2: X — Y does not add anything over a
generalization W — Y, where W € X assuming the row

and column marginals are fixed

* The odds ratio measures the odds of X occurring with
Y versus the odds of W (but not other parts of X)
occurring with Y

—For any W, we can consider the null hypothesis that odds
ratio = 1 (X'\ W 1s independent of Y given W)

— We can compute the p-value for this hypothesis using
hypergeometric distribution

— We can test null hypothesis 2 by computing the p-values for

all generalizations of X
Z&M Ch. 12.2.1



Significance testing example (3)

* Null hypothesis 3: The confidence of the rule 1s
explained merely by the row and column marginals of
the data

— Confidence can be replaced with any other interest measure

* This we can test by generating new data sets with
same row and column marginals

—If many-enough of them contain rules with higher
confidence, we cannot reject our null hypothesis

— Generating such data can be done e.g. with swap
randomization

* This 1s called permutation test
Z&M Ch. 12.2.2



Stability

* The stability of a data mining result refers to its
robustness under perturbations

—E.g. if we change all the numerical values a bit, the
clusterings shouldn’t change a lot

— We can also remove individual rows/columns or make more
data unknown

* Stability should be tested after the results have been
obtained

— Run the same analysis with perturbed data



Stability example (1)

Clustering 3
2.5

1.5}

05}

15+

IR&DM ‘ 10/ 17T T 1L VU1 ucu_y L\J 1T /Xll.5&6_27



Stability example (2)
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Leakage

* Leakage 1n data mining refers to the case when
prediction algorithm learns from data 1s should not
have access to

— Problem as the quality 1s assessed using already-historical
test data

—E.g. INFORMS’10 challenge: predict the value of a stock

e Exact stock was not revealed

* But “future” general stock data was available!
= 99% AUC (almost perfect prediction!)

— More subtle one’s exist
* E.g. removing a crucial feature creates a new type of correlation



XIL6: Tales from the Real Worldiil

1. Working with non-CS folks
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Talk their language!

NP-hard
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Data 1s dirty
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Not all data 1s BIG
It’s all just constants
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The best algorithm 1s the algorithm you have with you
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Beware the analysis
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south-west
central S.W.,
Tavastia

S. Ostrobothnia
C. & N. Ostrob.
far north
Savonia
south-east

Itkonen: Proto-Finnic Final Consonants: Their history in the Finnic

languages with particular reference to the Finnish dialects, part I: 1,
Introduction and The History of -k in Finnish, 1965



Know the math of the domain
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cluster index
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Data mining = voodoo science
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The response from several social scientists has
been rather unappreciative along the following
lines: “Where 1s your hypothesis? What you’re
doing 1sn’t science! You’re doing DATA

MINING !™

http://andrewgelman.com/2007/08/a_rant on_the v/




The clash of paradigms

* Form a hypothesis
* Design a test

* Collect the data

* Test hypothesis

* Rinse and repeat

- Take somebody else’s data
» Pick an algorithm

* Run the algorithm

- Analyse the results

» Rinse and repeat



Summary

* Think before you do
* Think while you do
* Think what you just did

» Real-world data analysis requires care and expertise

* Visualizations are powerful tools 1n data analysts
toolbox
— With great power comes great responsibility

» Data mining might be voodoo science

— But who wouldn’t want to know the voodoo?



