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1. Basic idea
1. Example
2. Distances between objects
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Example
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The clustering task

5

• Given a set U of objects and a distance d:U2 → R+ 
between them, group objects of U into clusters such 
that the distance between points in the same cluster is 
low and the distance between the points in different 
clusters is large
– Small and large are not well defined
–Clustering can be 
• exclusive (each point belongs to exactly one cluster)
• probabilistic (each point-cluster pair is associated with a 

probability of the point belonging to that cluster)
• fuzzy (each point can belong to multiple clusters)

–Number of clusters can be pre-defined or not 
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On distances
• A function d:U2 → R+ is a metric if:
– d(u,v) = 0 if and only if u = v
– d(u,v) = d(v,u) for all u, v ∈ U
– d(u,v) ≤ d(u, w) + d(w, v) for all u, v, and w ∈ U

• A metric is a distance; if d:U2 → [0, a] for some 
positive a, then a – d(u,v) is similarity 
• Common metrics:
– Lp:                              for d-dimensional space
• L1 = Hamming = city-block; L2 = Euclidean 

–Correlation distance: 1 – φ 
– Jaccard distance: 1 – |A ∩ B| / |A ∪ B|
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More on distances
• For all-numerical data, the sum of squared errors 

(SSE) is the most common one
– SSE:

• For all-binary data, either Hamming or Jaccard is 
used
• For categorical data either
– first convert the data to binary by adding one binary 

variable per category label and then use Hamming; or
– count the agreements and disagreements of category labels 

with Jaccard
• For mixed data, some combination must be used
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Implicit distance and distance matrix
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A distance (or dissimilarity) matrix is
• n-by-n for n objects
• non-negative (di,j ≥ 0)
• symmetric (di,j = dj,i)
• zero on diagonal (di,i = 0)
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2. Representative-based clustering
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2. The k-means algorithm
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3.2. General Gaussian
3.3. The k-means as EM
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Partitions and prototypes
• Exclusive representative-based clustering:
–The set of objects U is partitioned into k clusters 

C1, C2, ..., Ck 
•∪i Ci = U and Ci ∩ Cj = ∅ for i ≠ j 

–Each cluster is represented by a prototype (also called 
centroid or mean) µi 
• Prototype does not have to be (and usually is not) one of the 

objects
–Clustering quality is based on sum of squared errors 

between objects in cluster and cluster prototype
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The naïve algorithm
• The naïve algorithm:
–Generate all possible clusterings one-by-one
–Compute the squared error
– Select the best

• But this approach is infeasible
–There are too many possible clusterings to try
• kn different clusterings to k clusters (some possibly empty)
•The number of ways to cluster n points in k nonempty clusters is 

the Stirling number of the second kind, S(n, k),
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An iterative k-means algorithm
1. select k random cluster centroids
2. assign each point to its closest centroid and compute 

the error
3. do

3.1. for each cluster Ci 
3.1.1. compute new centroid as 

3.2. for each element xj ∈ U 
3.2.1. assign xj to its closest cluster centroid

4. while error decreases
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k-means example
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Some notes on the algorithm
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• Always converges eventually
–On each step the error decreases
–Only finite number of possible clusterings
–Convergence to local optimum

• At some point a cluster can become empty
–All points are closer to some other centroid
– Some options:
• Split the biggest cluster
•Take the furthest point as a singleton cluster

• Outliers can yield bad clusterings
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Computational complexity
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• How long does the iterative k-means algorithm take?
–Computing the centroid takes O(nd) time
•Averages over total of n points in d-dimensional space

–Computing the cluster assignment takes O(nkd) time
• For each n points we have to compute the distance to all k 

clusters in d-dimensional space
– If the algorithm takes t iterations, the total running time is 

O(tnkd)
–But how many iterations we need?
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How many iterations?
• In practice the algorithm doesn’t usually take many 

iterations
– Some hundred iterations is usually enough

• Worst-case upper bound is O(ndk)
• Worst-case lower bound is superpolynomial: 2Ω(√n) 
• The discrepancy between practice and worst-case 

analysis can be (somewhat) explained with smoothed 
analysis [Arthur & Vassilvitskii ’06]:
– If the data is sampled from independent d-dimensional 

normal distributions with same variance, iterative k-means 
algorithm will terminate in time O(nk) with high probability.
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On the importance of initial centroids
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Importance of Choosing Initial Centroids
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The k-means algorithm converges to local optimum 
which can be arbitrary bad vs. the global optimum. 
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The k-means++ algorithm
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• Careful initial seeding [Arthur & Vassilvitskii ’07]:
– Choose first centroid u.a.r. from data points
– Let D(x) be the shortest distance from x to any already-selected 

centroid
– Choose next centroid to be x’ with probability
• Points that are further away are selected more probably

– Repeat until k centroids have been selected and continue as 
normal iterative k-means algorithm

• The k-means++ algorithm achieves O(log k) 
approximation ratio on expectation
– E[cost] ≤ 8(ln k + 2)OPT

• The k-means++ algorithm converges fast in practice

D(x0)2P
x2X D(x)2
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Limitations of cluster types for k-means
• The clusters have to be of roughly equal size
• The clusters have to be of roughly equal density
• The clusters have to be of roughly spherical shape
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Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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The EM clustering algorithm
• Probabilistic clustering
– I.e. not exclusive

• Representative in a way
–Each cluster is represented by some parameters
–The parameters can include cluster centroid

• Requires us to assume something about the 
distribution of the points
– For now, each cluster is independent Gaussian

• We use the expectation-maximization approach

20
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The basics
• We aim at finding parameters µi and Σi for each 

Gaussian cluster plus k mixture parameters P(Ci) (all 
together denoted by θ)
– pdf of point x in cluster i is

–Total pdf of x is a mixture model of the k cluster Gaussians:

–The log-likelihood of the data D given parameters θ is then
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The general EM clustering algorithm
• Initialization
– Initialize parameters θ randomly

• Expectation step
–Compute the posterior probability P(Ci | xj)
– Per Bayes’s theorem

• Maximization step
–Re-estimate θ given P(Ci | xj)

• Repeat E and M steps until convergence

22

P(Ci | xj) =
P(xj | Ci)P(Ci)Pk

a=1 P(xj | Ca)P(Ca)
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EM with Gaussians in 1-D
• Now pdf is
• Initialization step
–Mean µ is sampled u.a.r. from possible values, σ2 = 1, and 

P(Ci) = 1/k (each cluster is equiprobable) 
• Expectation step

• Maximization step
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Example

24
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Figure 16.4: EM in One Dimension

16.3.2 EM in d-Dimensions

We now consider the EM method in d-dimensions, where each cluster is characterized
by a multivariate normal distribution (16.11), with parameters µi , ΣΣΣi and P (Ci). For
each cluster Ci , we thus need to estimate the d-dimensional mean vector

µi = (µi1, µi2, · · · , µid)T

DRAFT @ 2011-11-10 09:03. Please do not distribute. Feedback is Welcome.
Note that this book shall be available for purchase from Cambridge University Press and other standard
distribution channels, that no unauthorized distribution shall be allowed, and that the reader may make
one copy only for personal on-screen use.

Initialization

Iteration 1

Iteration 5
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EM in d dimensions

25

• The covariance matrix requires d(d + 1)/2 parameters 
to be estimated
–Often all dimensions are assumed to be independent, 

yielding d parameters
• The expectation step is as in 1-D
• The mean and prior P(Ci) are estimated as in 1-D
• The variance of cluster i in dimension a is

(�i
aa)

2 =

Pn
j=1 wij(xja - µia)

2

Pn
j=1 wij
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Example
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k-means as EM
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• The iterative k-means algorithm can be seen as a 
special case of EM algorithm using different cluster 
density function
–P(xj | Ci) = 1 iff centroid i is the closest to point xj 

• The posterior probability is then
–P(Ci | xj) = 1 iff point xj belongs to cluster i

• The parameters are the centroids and P(Ci)
–The covariance matrix can be ignored
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How to select k
• Both k-means and EM require user to define k before 

the algorithm is run
–But what if we don’t know the k?

• The larger the k, 
– the smaller the error
– the more complex the model
– the higher the risk for over-fitting

28
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Cross-validation
• As with regression:
–Hold out some random points (test set)
–Run clustering on the remaining points (training set)
–Compute the error with test set included
–Re-iterate with different values of k and select the one with 

least overall error
• Normally N-fold cross validation
–Typically N = 10
–Data is divided in N even sized sets
–Cross-validation is run N times, each time keeping one set 

as the test set and rest N – 1 sets together as the training set

29
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AIC and BIC
• Let ln(L) be the maximized log-likelihood of the clustering 

(obtained e.g. via EM algorithm)
• Let p(k) be the number of parameters we need for k 

clusters
– For Gaussian with independent dimensions, p(k) = k(d+2)
• k clusters, d variances, mean, and mixture parameter P(Ci)

• Idea: We need to pay for each new parameter in our model
• In Akaike Information Criterion (AIC) we select k that 

minimizes AIC = 2p(k) – 2ln(L) 
• In Bayesian Information Criterion (BIC) we select k that 

minimizes BIC = p(k)ln(n) – 2ln(L)
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