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*Zaki & Meira, Chapters 13—15; Tan, Steinbach & Kumar, Chapter 8
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L. Basicidea

1. Example
2. Distances between objects
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The clustering task

 Given a set U of objects and a distance d:U? — R
between them, group objects of U into clusters such
that the distance between points 1n the same cluster 1s

low and the distance between the points 1n different
clusters 1s large

— Small and large are not well defined
— Clustering can be

* exclusive (each point belongs to exactly one cluster)

 probabilistic (each point-cluster pair 1s associated with a
probability of the point belonging to that cluster)

* fuzzy (each point can belong to multiple clusters)

— Number of clusters can be pre-defined or not




On distances

e A function d:U? — R" is a metric if:
—d(u,v) =0 if and only if u = v Self-similarity
—du,y)=dv,u) forallu,ve U  Symwetry

Triangle
—d(u,v) <du,w)+dw,v)forallu,v,and we U inequality

» A metric is a distance; if d:U? — [0, a] for some
positive a, then a — d(u,v) 1s similarity
* Common metrics:
—Lp: (Zle ui — Vi|p) " for d-dimensional space
e L1 = Hamming = city-block; L, = Euclidean
— Correlation distance: 1 — ¢
—Jaccard distance: 1 — |4 N B| /|4 U B



More on distances

* For all-numerical data, the sum of squared errors
(SSE) 1s the most common one

—SSE: X iy i —vil’
* For all-binary data, either Hamming or Jaccard 1s
used

* For categorical data either

— first convert the data to binary by adding one binary
variable per category label and then use Hamming; or

—count the agreements and disagreements of category labels
with Jaccard

* For mixed data, some combination must be used



Implicit distance and distance matrix

0 d172 d1,3 dl,n
dio 0 dag -+ dan
dig dg2s O d3.n
dl,n d2,n dS,n Co 0

A distance (or dissimilarity) matrix 1s
* n-by-n for n objects
e non-negative (d;; > 0)
e symmetric (d;; = d; ;)
e zero on diagonal (d;; = 0)



2. Representative-based clusteringiil

1. Partitions and prototypes

2. The k-means algorithm

2.1. Basic algorithm

2.2. Analysis
2.3. The k-means++ algorithm

3. The EM clustering algorithm

3.1. 1-D Gaussian
3.2. General Gaussian
3.3. The k-means as EM

4. How to select the k
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Partitions and prototypes

* Exclusive representative-based clustering:

—The set of objects U 1s partitioned 1nto £ clusters
Ci, Cy, ..., Ck
U; C; = UandClﬂ Ci=Cfori+#j

— Each cluster 1s represented by a prototype (also called
centroid or mean) u;

* Prototype does not have to be (and usually 1s not) one of the

objects Over all objects in this cluster

— Clustering quality 1s based on sumj ot squared errors
between objects in cluster and cluster prototype

~ Over all dimemsionsl
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The naive algorithm

* The naive algorithm:
— Generate all possible clusterings one-by-one

— Compute the squared error
— Select the best

* But this approach 1s infeasible

— There are too many possible clusterings to try
o /" different clusterings to k clusters (some possibly empty)

* The number of ways to cluster n points 1n £ nonempty clusters 1s
the Stirling number of the second kind, S(», k),

(.l = { '} k,Z () e

\\ /




An 1terative k-means algorithm

1. select kK random cluster centroids

2. assign each point to its closest centroid and compute
the error

3.do

3.1. for each cluster C;
3.1.1. compute new centroid as W; = ﬁ ij cc. X

3.2. for each clement x; € U

3.2.1. assign x; to 1ts closest cluster centroid

4. while error decreases



k-means example
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Some notes on the algorithm

* Always converges eventually
— On each step the error decreases
— Only finite number of possible clusterings
— Convergence to local optimum

* At some point a cluster can become empty
— All points are closer to some other centroid

— Some options:

* Split the biggest cluster
 Take the furthest point as a singleton cluster

* Outliers can yield bad clusterings



Computational complexity

* How long does the 1terative k~-means algorithm take?

— Computing the centroid takes O(nd) time
* Averages over total of n points in d-dimensional space

— Computing the cluster assignment takes O(nkd) time

* For each n points we have to compute the distance to all £
clusters 1n d-dimensional space

— If the algorithm takes ¢ iterations, the total running time 1s
O(tnkd)

— But how many 1terations we need?



How many 1terations?

* In practice the algorithm doesn’t usually take many
iterations

— Some hundred 1terations 1s usually enough
» Worst-case upper bound is O(n)
» Worst-case lower bound is superpolynomial: 220

* The discrepancy between practice and worst-case

analysis can be (somewhat) explained with smoothed
analysis [Arthur & Vassilvitskil ’06]:

— If the data 1s sampled from independent d-dimensional
normal distributions with same variance, iterative k-means
algorithm will terminate in time O(#¥) with high probability.



On the importance of 1nitial centroids
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The k-means++ algorithm
» Careful mnitial seeding [ Arthur & Vassilvitskil 07]:

— Choose first centroid u.a.r. from data points

— Let D(x) be the shortest distance from x to any already-selected

centroid
. , .. D(x')?
— Choose next centroid to be x” with probability erixD)(x)z

* Points that are further away are selected more probably

— Repeat until £ centroids have been selected and continue as
normal 1terative k-means algorithm

* The k-means++ algorithm achieves O(log k)
approximation ratio on expectation

— E[cost] < 8(In k + 2)OPT
* The ki-means++ algorithm converges fast in practice



Limitations of cluster types for k-means

* The clusters have to be of roughly equal size
* The clusters have to be of roughly equal density
* The clusters have to be of roughly spherical shape
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The EM clustering algorithm

* Probabilistic clustering

—I.e. not exclusive

* Representative 1n a way

— Each cluster 1s represented by some parameters
— The parameters can include cluster centroid

* Requires us to assume something about the
distribution of the points

— For now, each cluster 1s independent Gaussian

* We use the expectation-maximization approach



The basics

* We aim at finding parameters u; and %; for each
Gaussian cluster plus &£ mixture parameters P(C;) (all

together denoted by

)

—pdf of point x 1n cluster i 1s

fi(x) = fx | my, i) = (271) 2 |Zi 72 exp <

(

\

(x — Hi)TZi_l

(x —m)

2

/

—Total pdf of x 1s a mixture model of the k cluster Gaussians:

fomu

—The log- hkehhood of the data D given parameters 6 1s then

Zf

InP(D | 0) Zln (fo) u, X

Ci)

>)



The general EM clustering algorithm

* Imitialization
— Initialize parameters 6 randomly
* Expectation step
— Compute the posterior probability P(C; | x/)
—Per Bayes’s theorem
P(x; | Ci)P(Cy)
> a1 P(x; | Ca)P(Ca)

a=1

P(Cilx;) =

* Maximization step
— Re-estimate 6 given P(C; | x))
* Repeat £ and M steps until convergence



EM with Gaussians in 1-D

° - 1 2
* Now pdfis f(x| i, o0f) = égi eXP{ (X2§3) }

* [nitialization step

—Mean u 1s sampled u.a.r. from possible values, o= = 1, and
P(C)) = 1/k (each cluster 1s equiprobable)

* Expectation step

f(x; | i, 02)P(C;

Z]cizl f(X) ‘ HLa, G%)P(Ca)

. SUCERYE Weiahted variance Fraction of weight in
Maximization step edvart eluster

Welgh’red mean
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w1 = 6.63 U = 7.57

Example ..1

0.3 -

Initialization 8? !

-1 0 1 2 3 4 5 6 I 3 9 10 11
(a) Initialization: t =0

[teration 1

-2 -1 0 1 2 3 4 5 6 / 3 9 10 11
(b) lteration: t =1

Ho — 7.56

[teration 5

-1 0 1 2 3 4 5 6 I 3 9 10 11

(c) lteration: t =5 (converged)
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EM 1n d dimensions

* The covariance matrix requires d(d + 1)/2 parameters
to be estimated

— Often all dimensions are assumed to be independent,
yielding d parameters

* The expectation step 1s as in 1-D
* The mean and prior P(C;) are estimated as in 1-D
* The variance of cluster i in dimension a 1s

(O.i )2 L Z?zl Wij (Xja o uia)Q
aa o Zn

j=1 Wij




Example

(b) iteration: ¢ =02 TrALLLLL,
(c) iteration: t = 36 3
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k-means as EM

* The iterative k-means algorithm can be seen as a
special case of EM algorithm using different cluster
density function

— P(x; | C;) = 1 1ff centroid i 1s the closest to point x;
* The posterior probability 1s then

— P(C; | xj) = 1 1ff point x; belongs to cluster i
* The parameters are the centroids and P(C5)

— The covariance matrix can be 1gnored



How to select &

* Both k~-means and EM require user to define & before
the algorithm 1s run

— But what 1f we don’t know the £?
* The larger the £,

—the smaller the error
—the more complex the model
—the higher the risk for over-fitting



Cross-validation

* As with regression:
— Hold out some random points (test set)
— Run clustering on the remaining points (training set)
— Compute the error with test set included

— Re-1terate with different values of £ and select the one with
least overall error

* Normally N-fold cross validation
—Typically N= 10
—Data 1s divided 1n N even sized sets

— Cross-validation 1s run N times, each time keeping one set
as the test set and rest N — 1 sets together as the training set



AIC and BIC

* Let In(L) be the maximized log-likelihood of the clustering
(obtained e.g. via EM algorithm)

* Let p(k) be the number of parameters we need for &
clusters

— For Gaussian with independent dimensions, p(k) = k(d+2)

* k clusters, d variances, mean, and mixture parameter P(C;)

* [dea: We need to pay for each new parameter in our model
* In Akaike Information Criterion (AIC) we select & that
minimizes AIC = 2p(k) — 2In(L)

* In Bayesian Information Criterion (BIC) we select £ that
minimizes BIC = p(k)In(n) — 2In(L)



