
7. Dynamics & Age

Advanced Topics in Information Retrieval / Dynamics & Age

Outline
7.1. Dynamics & Age

7.2. Temporal Information

7.3. Search in Web Archives

7.4. Historical Document Collections

2

Advanced Topics in Information Retrieval / Dynamics & Age

7.1. Dynamics & Age
๏ The Web is highly dynamic: new content is continuously added;

old content is deleted and potentially lost forever

๏ Web archives (e.g., archive.org, internetmemory.org) have been
preserving old snapshots of web pages since 1996

๏ Improved digitization (e.g., OCR) have allowed (newspaper)
archives to make old documents (e.g., from 1700s) searchable

๏ Challenges & Opportunities:
๏ How to index highly redundant document collections like web archives?

๏ How to make use of temporal information such as publication dates?

๏ How to search documents written in archaic language?

3

http://archive.org
http://internetmemory.org

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic is the Web?
๏ Ntoulas et al. [9] study the dynamics of the Web in ’02–‘03  

๏ Data: Weekly crawls of 154 web sites over one year
๏ top-ranked web sites from topical categories in Google Directory

(extension of DMOZ) from different top-level domains

๏ at most 200K web pages per web site per weekly crawl

4

Domain Fraction of pages in domain
.com 41%
.gov 18.7%
.edu 16.5%
.org 15.7%
.net 4.1%
.mil 2.9%
misc 1.1%

Table 1: Distribution of domains in our crawls.
within each category are ordered by PageRank, enabling users
to identify sites deemed to be of high importance easily. By
selecting sites from each topical category, we believe we made
our sample “representative.” By picking only top-ranked sites,
we believe we make our sample “interesting.” A complete list
of sites included in our study can be acquired from [7].

2.2 Download of pages
From the 154Web sites we selected for our study, we down-

loaded pages every week over a period of almost one year.
Our weekly downloads of the sites were thorough in all but a
few cases: starting from the root pages of the Web sites, we
downloaded in a breadth-first order either all reachable pages
in each site, or all pages until we reached a maximum limit of
200,000 pages per site. Since only four Web sites (out of 154)
contained more than 200,000 pages,4 we have captured a rela-
tively complete weekly history of these sites. Capturing nearly
complete snapshots every week is important for our purposes,
as one of our main goals is to study the creation of new pages
on the Web.
The total number of pages that we downloaded every week

ranges from 3 to 5 million pages, with an average of 4.4 mil-
lion pages. The size of each weekly snapshot was around 65
GB before compression. Thus, we currently have a total of
3.3 TB of Web history data, with an additional 4 TB of de-
rived data (such as links, shingles, etc.) used for our various
analyses. When we compress the weekly snapshots using the
standard zlib library, the space footprint is reduced to about
one third of the original.
Table 1 reports the fraction of pages included in our study

that belong to each high-level domain. The misc category
contains other domains including regional ones such as .uk,
.dk, .jp etc. The distribution of domains for pages in our
study roughly matches the general distribution of domains found
on the Web [8].

3. WHAT’S NEW ON THEWEB?
In this section, we focus on measuring what is new on the

Web each week. In particular, we attempt to answer questions
such as: How many new pages are created every week? How
much new content is created? How many new links? We begin
by studying the weekly birth rate of pages. For our analysis in
Sections 3.1 and 3.2 we treat each unique URL as a distinct
unit. Then, in Section 3.3 we measure the shift in the col-
lective content of all pages, to filter out the effect of content
duplication among URLs.

4The sites containing more than 200,000 pages were www.
eonline.com, www.hti.umich.edu, www.pbs.org
and www.intelihealth.com.

2 5 10 15 20 25 30 35 40 45 50
Week

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fraction of
New Pages

Figure 1: Fraction of new pages between successive snap-
shots.
3.1 Weekly birth rate of pages
We first examine how many new pages are created every

week. That is, for every snapshot, we measure the fraction
of the pages in the snapshot that have not been downloaded
before and we plot this number over time. This fraction repre-
sents the “weekly birth rate” of Web pages. We use the URL
of a page as its identity, and consider a page “new” if we did
not download any page with the same URL before. Under this
definition, if a page simply changes its location from URL A
to URL B, we consider that a new page B has been created.
(Later in Section 3.3 we measure how much new “content” is
introduced every week, which factors out this effect.)
In Figure 1 we show the weekly birth rate of pages, with

week along the horizontal axis. The line in the middle of the
graph gives the average of all the values, representing the “av-
erage weekly birth rate” of the pages. From the graph we can
observe that the average weekly birth rate is about 8%. That
is, 8% of pages downloaded by an average weekly crawl had
not been downloaded by any previous crawl. Scaling up from
our data (which, by design, is biased toward popular pages),
and assuming the entire Web consists of roughly four billion
pages,5 we conjecture that there may be around 320 million
new pages created every week (including copies of existing
pages and relocated pages). Admittedly, this number may not
be fully accurate because our study focuses on popular pages.
However, it does give us a ball-park figure.
We also observe that approximately once every month, the

number of new pages being introduced is significantly higher
than in previous weeks. For example, the bars are higher in
weeks 7, 11, 14, etc. than their previous weeks. Most of the
weeks with the higher birth rate fall close to the end of a cal-
endar month. This fact implies that many Web sites use the
end of a calendar month to introduce new pages. Manual ex-
amination of the new pages in these “high birth rate” weeks
revealed that a number of such pages contain job advertise-
ments or portals leading to archived pages in a site. For the
most part, however, we could not detect any specific pattern or
topical category for these pages.

3.2 Birth, death, and replacement
In our next experiment, we study how many new pages are

created and and howmany disappear over time.6 We also mea-

5As reported by Google [2].
6We assume that a page disappeared if our crawler received an
HTTP 404 response for that particular page, or we could not
download the page (due to timeouts, etc.) after three attempts.

3

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic are Web Pages?
๏ Web pages:

๏ on average 8% new web pages per week

๏ peek in creation of new pages at the end of each month

๏ after 9 months about 50% of web pages have been deleted

5

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction
of Pages

Figure 2: Fraction of pages from the first crawl still exist-
ing after n weeks (dark bars) and new pages (light bars).

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction
of Pages

Figure 3: Normalized fraction of pages from the first crawl
still existing after nweeks (dark bars) and new pages (light
bars).
sure what fraction of pages on our Web sites is replaced with
new pages after a certain period. For these purposes, we com-
pare our weekly snapshots of the pages against the first snap-
shot and measure 1) how many pages in the first snapshot still
remain in the nth-week snapshot, and 2) how many pages in
the nth week snapshot do not exist in the first snapshot. For
all the comparisons presented here, the URLs of the crawled
pages were canonicalized.
Figure 2 shows the result. The horizontal axis of this graph

plots the week and the vertical axis shows the number of pages
that we crawled in the given week. The bars are normalized
such that the number of pages in the first week is one. (We
downloaded 4.8 million pages in the first week.) The dark bars
represent the number of first-week pages that were still avail-
able in the given week. The light bars represent the number
of pages that were created since the first week (i.e., the pages
that exist in the given week but did not exist in the first week).
For example, the size of the second-week snapshot was about
80% of that of the first week, and we downloaded about 70%
of the first-week pages in the second week.
The observable fluctuations in our weekly crawl sizes (most

noticeable for week 45) are primarily due to technical glitches
that are difficult to avoid completely. While collecting our
data, to minimize the load on the Web sites and our local net-
work, we ran our crawler in a slow mode. It took almost a
full week for the crawler to finish each crawl. During this
time, a Web site may have been temporarily unavailable or our
local network connection may have been unreliable. To be

robust against short-lived unavailabilities our crawler makes
up to three attempts to download each page. Still, in cer-
tain cases unavailabilities were long-lived and our crawler was
forced to give up. Since these glitches were relatively minor in
most cases (except in the 45th week when one of our crawling
machines crashed), we believe that our results are not signifi-
cantly affected by them.
By inspecting the weeks with the highest bars in Figure 2

and taking glitches with our crawling into account, we find
that the total number of pages available from the 154 sites in
our study remained more or less the same over the entire 51-
week period of our study. However, they are not all the same
pages. Instead, existing pages were replaced by new pages at
a rapid rate. For example, after one month of crawling (week
4), only 75% of the first-week pages were still available (dark
portion of the graph at week 4), and after 6 months of crawling
(week 25), about 52% are available.
A normalized version of our graph is shown in Figure 3,

with the numbers for each week normalized to one to allow us
to study trends in the fraction of new and old pages. After six
months (week 25), roughly 40% of the pages downloaded by
our crawler were new (light bars) and around 60% were pages
that also occurred in our first crawl (dark bars). Finally, after
almost a year (week 51) nearly 60% of the pages were new
and only slightly more than 40% from the initial set was still
available. It took about nine months (week 39) for half of the
pages to be replaced by new ones (i.e., half life of 9 months).
To determine whether the deletion rate of pages shown in

Figure 3 follows a simple trend, we used linear regression to
attempt to fit our data using linear, exponential, and inverse-
polynomial functions. The deletion rate did not fit any of these
trends well. The best match was with a linear trend, but the R-
squared value was still very low at 0.8.

3.2.1 Generalizing to the entire Web
Our results can be combined with results from recent study

by the Online Computer Library Center (OCLC) [5] to get a
picture of the rate of change of the entire Web. The OCLC col-
lects an annual sample of the Web and studies various trends
pertaining to the nature of Web sites. One of the experiments
that the OCLC has conducted over the last few years is to es-
timate how the number of available Web sites changes over
time. From years 1998 to 2002, OCLC has performed sys-
tematic polling of IP addresses to estimate the total number of
available Web sites. They have also measured what fraction of
Web sites are still available after k years.
The result of this OCLC study is shown on Figure 4. In

the figure, the horizontal axis represents the year of measure-
ment. The overall height of each bar shows the total number
of Web sites available at the given year, relative to the number
of sites available in 1998. In 1998 the number of the publicly-
accessible Web sites was estimated to be 1.4 million. The dark
bottom portion of the bar represents the fraction of the Web
sites that existed in 1998 and were still available in the given
year. The light portion represents the fraction of newWeb sites
that became available after 1998. From the graph, we can see
that about 50% of Web sites go offline every year. For exam-
ple, in 1999, half of the 1998 Web sites were still accessible.
Combining this result with ours, we may get an idea of how

many pages on the entire Web will still be available after a cer-
tain period of time. The OCLC study shows that about 50% of
existing Web sites remain available after one year. Our study

4

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic is the Content?
๏ Content: Based on w-shingles (contiguous sequence of w words)

๏ after one year more than 50% of shingles are still available

๏ each week about 5% of new shingles are created

6

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

1.2

Fraction
of Shingles

Figure 6: Fraction of shingles from the first crawl still ex-
isting after n weeks (dark portion of bars) and shingles
newly created (light portion).

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction
of Shingles

Figure 7: Normalized fraction of shingles from the first
crawl still existing after nweeks (dark portion of bars) and
shingles newly created (light portion).
3.4 Link-structure evolution
The success of Google has demonstrated the usefulness of

the Web link structure in measuring the importance of Web
pages. Roughly, Google’s PageRank algorithm estimates the
importance of a page by analyzing howmany other pages point
to the page. In order to keep up with the changing importance
and popularity of Web pages, it is thus important for search
engines to capture the Web link structure accurately. In this
section we study how much the overall link structure changes
over time. For this study, we extracted all the links from every
snapshot and measured how many of the links from the first
snapshot existed in the subsequent snapshots and how many
of them are newly created.
The result of this experiment is shown in Figure 8. The

horizontal axis shows the week and the vertical axis shows the
number of links in the given week. The height of every bar
shows the total number of links in each snapshot relative to
the first week. The dark-bottom portion shows the number of
first-week links that are still present in the given week. The
grey and white portions represent the links that did not exist in
the first week: The grey portion corresponds to the new links
coming from the “old” pages (the pages that existed in the first
week), while the white portion corresponds to the new links
coming from the “new” pages (the pages that did not exist in
the first week). Figure 9 is the normalized graph where the
total number of links in every snapshot is one.

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

1.2

Fraction of Links

Figure 8: Fraction of links from the first weekly snap-
shot still existing after nweeks (dark/bottom portion of the
bars), new links from existing pages (grey/middle) and new
links from new pages (white/top).

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction of Links

Figure 9: Normalized fraction of links from the first
weekly snapshot still existing after n weeks (dark/bottom
portion of the bars), new links from existing pages
(grey/middle) and new links from new pages (white/top).
From the figure, we can see that the link structure of the

Web is significantly more dynamic than the pages and the con-
tent. After one year, only 24% of the initial links are available.
On average, we measure that 25% new links are created ev-
ery week, which is significantly larger than 8% new pages and
5% new content. This result indicates that search engines may
need to update link-based ranking metrics (such as PageRank)
very often. For example, given the 25% new links every week,
a week-old ranking may not reflect the current ranking of the
pages very well.

4. CHANGESINTHEEXISTINGPAGES
The previous experiment demonstrated that every week nu-

merous pages disappear from our weekly snapshots and an-
other set of pages is created. The pages that appear repeatedly
in our weekly snapshots, however, do not all remain static.
In this section we study the way in which the content of pages
captured repeatedly by our weekly snapshots changes over time.

4.1 Change frequency distribution
In our first experiment, we investigate how often Web pages

change on average. We begin by using the simplest definition
of a change: we consider any alteration to a page as constitut-
ing a change. Later, we will consider a more refined notion of
change (Section 4.2).

6

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic is the Link Structure?
๏ Hyperlinks:

๏ after one year only 24% of links are still available

๏ on average 25% of new links are created every week

7

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

1.2

Fraction
of Shingles

Figure 6: Fraction of shingles from the first crawl still ex-
isting after n weeks (dark portion of bars) and shingles
newly created (light portion).

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction
of Shingles

Figure 7: Normalized fraction of shingles from the first
crawl still existing after nweeks (dark portion of bars) and
shingles newly created (light portion).
3.4 Link-structure evolution
The success of Google has demonstrated the usefulness of

the Web link structure in measuring the importance of Web
pages. Roughly, Google’s PageRank algorithm estimates the
importance of a page by analyzing howmany other pages point
to the page. In order to keep up with the changing importance
and popularity of Web pages, it is thus important for search
engines to capture the Web link structure accurately. In this
section we study how much the overall link structure changes
over time. For this study, we extracted all the links from every
snapshot and measured how many of the links from the first
snapshot existed in the subsequent snapshots and how many
of them are newly created.
The result of this experiment is shown in Figure 8. The

horizontal axis shows the week and the vertical axis shows the
number of links in the given week. The height of every bar
shows the total number of links in each snapshot relative to
the first week. The dark-bottom portion shows the number of
first-week links that are still present in the given week. The
grey and white portions represent the links that did not exist in
the first week: The grey portion corresponds to the new links
coming from the “old” pages (the pages that existed in the first
week), while the white portion corresponds to the new links
coming from the “new” pages (the pages that did not exist in
the first week). Figure 9 is the normalized graph where the
total number of links in every snapshot is one.

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

1.2

Fraction of Links

Figure 8: Fraction of links from the first weekly snap-
shot still existing after nweeks (dark/bottom portion of the
bars), new links from existing pages (grey/middle) and new
links from new pages (white/top).

1 5 10 15 20 25 30 35 40 45 50
Week

0.2

0.4

0.6

0.8

1

Fraction of Links

Figure 9: Normalized fraction of links from the first
weekly snapshot still existing after n weeks (dark/bottom
portion of the bars), new links from existing pages
(grey/middle) and new links from new pages (white/top).
From the figure, we can see that the link structure of the

Web is significantly more dynamic than the pages and the con-
tent. After one year, only 24% of the initial links are available.
On average, we measure that 25% new links are created ev-
ery week, which is significantly larger than 8% new pages and
5% new content. This result indicates that search engines may
need to update link-based ranking metrics (such as PageRank)
very often. For example, given the 25% new links every week,
a week-old ranking may not reflect the current ranking of the
pages very well.

4. CHANGESINTHEEXISTINGPAGES
The previous experiment demonstrated that every week nu-

merous pages disappear from our weekly snapshots and an-
other set of pages is created. The pages that appear repeatedly
in our weekly snapshots, however, do not all remain static.
In this section we study the way in which the content of pages
captured repeatedly by our weekly snapshots changes over time.

4.1 Change frequency distribution
In our first experiment, we investigate how often Web pages

change on average. We begin by using the simplest definition
of a change: we consider any alteration to a page as constitut-
ing a change. Later, we will consider a more refined notion of
change (Section 4.2).

6

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic is the (Visited) Web?
๏ Adar et al. [1] conducted a fine-grained study of the visited Web  

๏ Data: Hourly fetches of 55K web pages over 5 weeks
๏ selected based on access statistics from Live Search toolbar

๏ selection balances frequently visited and infrequently visited web pages

๏ more fine-grained fetches for web pages with high change activity

8

Advanced Topics in Information Retrieval / Dynamics & Age

How Dynamic are (Visited) Web Pages?
๏ Change of web page measured using

๏ average time between changes (Hours) 
determined using content checksums

๏ average Dice coefficient (Dice) between 
adjacent versions as word sets

9

make use of document checksums that detect any difference. In a
way this is unsatisfying as both large and small changes, as well
as content and structural changes, are treated the same.

Previous work has focused on measuring textual differences by,
for example, calculating the differences between blocks of text [8]
or word frequencies [14]. We begin our study by utilizing a
similar approach, based on the Dice coefficient, to represent the
amount of textual change. The Dice coefficient, which measures
the overlap in text between various document versions, allows us
to develop a high level model of page change over time (i.e.,
Dice(Wi, Wk)=2*|WiځWk|/(|Wi|+|Wk|), where Wi and Wk are sets
of words for the document at time i and k respectively). A high
Dice coefficient (i.e., 1) reflects high similarity, whereas a low
Dice coefficient (i.e., 0) indicates no similarity. Having identified
this model we further refine our metrics to explore term-level
document change. By comparing term occurrence within a page
with a background language model, we identify the specific terms
that change or persist in a document.

We augment this analysis of content change with a study of
structural change. We develop several algorithms to identify and
track the movement of DOM elements within the documents and
describe the persistence of structural blocks over time.

4. CONTENT CHANGE
4.1 Overview
We begin our analysis of content change by looking at the
frequency and amount of change that occurred for each page
individually in our sample. As an example, a page may not change
at all for several days after it is first crawled, but change a lot
when it finally does. The same page may then begin to experience
small changes at frequent intervals. All of the changes that are
made to a page over the period of our crawl can be represented as
a scatter plot like the ones shown in Figure 2. Each point
represents an instance where the page changes. The amount of
time elapsed since the last change is represented along the x-axis,
and the amount of change that occurs, measured using the Dice
coefficient, is represented along the y-axis. For example, the plot
for the New York Time’s homepage in Figure 2a shows most
changes occur with every crawl (i.e., every 60 minutes), although
some happen after two. In contrast, Figure 2b represents a page
that provides horoscopes and shows larger changes occurring on a
daily basis.

In our collection, 18971 pages (34%), displayed no change during
the studied interval. On average, documents that displayed some
change (35997 pages) did so every 123 hours and the average
Dice coefficient for the change was 0.794. Figure 3a shows the
distribution of average inter-change times, and Figure 3b shows
the average inter-version Dice coefficients.

4.1.1 Change by Page Type
The mean time between changes, and the mean Dice coefficient
for the changes that did occur, are shown in Table 1, broken down
along several different lines including: the number of visitors, top-
level domain, URL depth, and 6 most prevalent categories. For
each page, we calculate the average time between changes (i.e.,
the inter-version time) as well as the amount of change (as
reflected by the Dice similarity). This roughly corresponds to the
centroid of the points for each page in Figure 2. The mean inter-
version time (in hours) and Dice coefficient are then calculated for
pages of the same class (e.g., News pages or pages in the .edu
domain). In this section we concentrate on the mean inter-arrival
times and similarities, returning to the knot data in subsequent

sections. All differences in the table are significant (p<0.0001)
with the exception of differences in mean change interval that are
less than 10 hours, and differences in the mean Dice coefficient
that are less than 0.02. Additionally, the .org top-level domain
Dice coefficient is only significantly different from .net.

When broken down by unique visitors, we observe that pages that
are more popular tend to change more frequently than less popular
pages. This most likely explains why the percentage of pages in
our sample that displayed no change was nearly half of what has
been observed in prior studies ([4], [8]). Pages that are revisited
(as all pages in our sample are) change more often than pages
collected using other sampling techniques. However, while the

Figure 2. The interval between successive changes, plotted
against the amount of change for two pages. Note that the NY
Times page changes on every crawl (i.e., every 60 min.).

Table 1. Pages change at different rates and change different
amounts. This table shows the mean interval between
changes, the mean amount of change to a page, and the mean
knot point, broken down by page type

 Inter-version means Knot Point Location
Hours Dice Hours Dice

Total 123 .7940 145 .7372

V
is

ito
rs

 2 138 .8022 .146* .7594*
3 - 6 125 .8268 143* .7692*
7 - 38 106 .8252 145* .7458*
39+ 102 .8123 139* .7621*

D
om

ai
n

.gov 169 .8358 153 .8177

.edu 161 .8753 200 .8109

.com 126 .7882 145 .7408

.net 125 .7642 132 .7195

.org 95 .8518 129 .6743

U
R

L
 d

ep
th

5+ 199 .6782 173 .7150
4 176 .7401 159 .7413
3 167 .7363 160 .7378
2 127 .7804 144 .7340
1 104 .8200 137 .7432
0 80 .8584 141 .7334

C
at

eg
or

y

Industry/trade 218 .6649 156 .6680
Music 147 .8013 166 .7693
Porn 137 .7649 140 .7365
Personal pages 88 .8288 124 .7347
Sports/recreation 66 .8975 137 .7138
News/magazines 33 .8700 104 .6415

 *Not significant

284

make use of document checksums that detect any difference. In a
way this is unsatisfying as both large and small changes, as well
as content and structural changes, are treated the same.

Previous work has focused on measuring textual differences by,
for example, calculating the differences between blocks of text [8]
or word frequencies [14]. We begin our study by utilizing a
similar approach, based on the Dice coefficient, to represent the
amount of textual change. The Dice coefficient, which measures
the overlap in text between various document versions, allows us
to develop a high level model of page change over time (i.e.,
Dice(Wi, Wk)=2*|WiځWk|/(|Wi|+|Wk|), where Wi and Wk are sets
of words for the document at time i and k respectively). A high
Dice coefficient (i.e., 1) reflects high similarity, whereas a low
Dice coefficient (i.e., 0) indicates no similarity. Having identified
this model we further refine our metrics to explore term-level
document change. By comparing term occurrence within a page
with a background language model, we identify the specific terms
that change or persist in a document.

We augment this analysis of content change with a study of
structural change. We develop several algorithms to identify and
track the movement of DOM elements within the documents and
describe the persistence of structural blocks over time.

4. CONTENT CHANGE
4.1 Overview
We begin our analysis of content change by looking at the
frequency and amount of change that occurred for each page
individually in our sample. As an example, a page may not change
at all for several days after it is first crawled, but change a lot
when it finally does. The same page may then begin to experience
small changes at frequent intervals. All of the changes that are
made to a page over the period of our crawl can be represented as
a scatter plot like the ones shown in Figure 2. Each point
represents an instance where the page changes. The amount of
time elapsed since the last change is represented along the x-axis,
and the amount of change that occurs, measured using the Dice
coefficient, is represented along the y-axis. For example, the plot
for the New York Time’s homepage in Figure 2a shows most
changes occur with every crawl (i.e., every 60 minutes), although
some happen after two. In contrast, Figure 2b represents a page
that provides horoscopes and shows larger changes occurring on a
daily basis.

In our collection, 18971 pages (34%), displayed no change during
the studied interval. On average, documents that displayed some
change (35997 pages) did so every 123 hours and the average
Dice coefficient for the change was 0.794. Figure 3a shows the
distribution of average inter-change times, and Figure 3b shows
the average inter-version Dice coefficients.

4.1.1 Change by Page Type
The mean time between changes, and the mean Dice coefficient
for the changes that did occur, are shown in Table 1, broken down
along several different lines including: the number of visitors, top-
level domain, URL depth, and 6 most prevalent categories. For
each page, we calculate the average time between changes (i.e.,
the inter-version time) as well as the amount of change (as
reflected by the Dice similarity). This roughly corresponds to the
centroid of the points for each page in Figure 2. The mean inter-
version time (in hours) and Dice coefficient are then calculated for
pages of the same class (e.g., News pages or pages in the .edu
domain). In this section we concentrate on the mean inter-arrival
times and similarities, returning to the knot data in subsequent

sections. All differences in the table are significant (p<0.0001)
with the exception of differences in mean change interval that are
less than 10 hours, and differences in the mean Dice coefficient
that are less than 0.02. Additionally, the .org top-level domain
Dice coefficient is only significantly different from .net.

When broken down by unique visitors, we observe that pages that
are more popular tend to change more frequently than less popular
pages. This most likely explains why the percentage of pages in
our sample that displayed no change was nearly half of what has
been observed in prior studies ([4], [8]). Pages that are revisited
(as all pages in our sample are) change more often than pages
collected using other sampling techniques. However, while the

Figure 2. The interval between successive changes, plotted
against the amount of change for two pages. Note that the NY
Times page changes on every crawl (i.e., every 60 min.).

Table 1. Pages change at different rates and change different
amounts. This table shows the mean interval between
changes, the mean amount of change to a page, and the mean
knot point, broken down by page type

 Inter-version means Knot Point Location
Hours Dice Hours Dice

Total 123 .7940 145 .7372

V
is

ito
rs

 2 138 .8022 .146* .7594*
3 - 6 125 .8268 143* .7692*
7 - 38 106 .8252 145* .7458*
39+ 102 .8123 139* .7621*

D
om

ai
n

.gov 169 .8358 153 .8177

.edu 161 .8753 200 .8109

.com 126 .7882 145 .7408

.net 125 .7642 132 .7195

.org 95 .8518 129 .6743

U
R

L
 d

ep
th

5+ 199 .6782 173 .7150
4 176 .7401 159 .7413
3 167 .7363 160 .7378
2 127 .7804 144 .7340
1 104 .8200 137 .7432
0 80 .8584 141 .7334

C
at

eg
or

y
Industry/trade 218 .6649 156 .6680
Music 147 .8013 166 .7693
Porn 137 .7649 140 .7365
Personal pages 88 .8288 124 .7347
Sports/recreation 66 .8975 137 .7138
News/magazines 33 .8700 104 .6415

 *Not significant

284

D(Wi,Wj) =
2 · |Wi \Wj |
|Wi|+ |Wj |

Advanced Topics in Information Retrieval / Dynamics & Age

7.2. Temporal Information
๏ Documents come with different kinds of temporal information

๏ publication dates indicating when the document was published

๏ temporal expressions (e.g., last month, January 9th 2014, in the ‘90s) 
indicating which time periods the document’s content talks about 

๏ Queries can be temporally classified along several dimensions
๏ …whether they can refer to a single or multiple time periods

๏ temporally unambiguous (e.g., fifa world cup 2014, battle of waterloo)

๏ temporally ambiguous (e.g., summer olympics, world war)

10

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Information
๏ …whether a time period is explicitly mentioned or implicitly assumed

๏ explicitly temporal (e.g., fifa world cup 2014, presidential election 2008)

๏ implicitly temporal (e.g., superbowl, london bombing) 

๏ …whether they aim for information about the past, present, or future

๏ past (e.g., historic map of rome, news reports about moon landing)

๏ recent (e.g., paris terrorist attack, tesla stock price, lithuania euro)

๏ future (e.g., lisa pathfinder launch, academy awards 2015) 

๏ …whether they can refer to any time period at all

๏ atemporal (e.g., muffin recipe, side effects of paracetamol, muscle cramps)

11

Advanced Topics in Information Retrieval / Dynamics & Age

7.2.1. Temporal Document Priors
๏ Li and Croft [7] develop an approach based on language models  

targeted at queries favoring more recent documents

๏ Example: Publication dates of relevant documents in TREC  

๏ Query-likelihood approach with temporal document prior P[d]
depending on publication date t of document and current date c

12

Figure 2.1: Distribution over time for relevant documents (queries

251-300)

Figure 2.2: Query 301 “International Organized Crime” – A

“recency” query.

2.2 Examples of Different Types of Queries.
Individual queries can show much more time sensitivity than the

averages. As we mentioned previously, there are two main types

of queries that do not have a “uniform” distribution of relevant

documents over time (there are actually many types of

distributions but these are more common). The first type of query

favors very recent documents and the other has more relevant

documents within a specific period in the past. Query 301 is an

example of the first type of query. (See figure 2.2). Query 156 is

an example of the second type of query, which has more relevant

documents within a particular period in the past. (See figure 2.3)

Query 165 is an example of a query that has a more uniform

distribution of relevant documents along the time line. (See figure

2.4). This group is the most numerous, but there are still a

significant number of examples of the first two types. In this paper

we are more interested in the first type of queries: recency
queries. These queries favor very recent documents. Some

example recency queries are given as follows:

<query 301> International Organized Crime

<query 307> New Hydroelectric Projects

<query 319> New Fuel Sources

<query 378> Euro Opposition

Recency queries favor recent documents for various reasons. We

can tell that some of them are recency queries from the topic

described by its text queries. Others favor recent documents due

to the time-based characteristics of the collections we used. For

example, the topics of Query 307 and Query 319 require recent

documents about undergoing hydroelectric projects and ongoing

research for new fuel sources respectively. The topic of Query 378

favors recent documents given that the corpus we used whose

documents are from 1989 to 1994. Query 301 has more relevant

documents in the recent past. It is hard to tell the reason for this

from the text query itself but it appears to be mostly because of

the distribution of documents in the collection.

In the 100 TREC queries 301-400, we manually identified 36

recency queries based on given relevance judgment information.

These queries are used in the experiments described in section 4.

It is important to emphasize that the distribution of relevant

documents over time is substantially more biased than the

background distribution of the collection.

Figure 2.3: Query 156 “Efforts to Enact Gun Control

Legislation”- Relevant documents mostly in the past.

Figure 2.4: Query 165 “Tobacco Company Advertising and the

Young” - More uniform distribution

3. LANGUAGE MODELS FOR
RETRIEVAL
3.1 Query Likelihood Models
Language modeling frameworks were introduced to information

retrieval by Ponte and Croft [1], followed by some variations

[2,3,4,5] that adopted a similar framework. In the language

470

Query 301: international organized crime

Figure 2.1: Distribution over time for relevant documents (queries

251-300)

Figure 2.2: Query 301 “International Organized Crime” – A

“recency” query.

2.2 Examples of Different Types of Queries.
Individual queries can show much more time sensitivity than the

averages. As we mentioned previously, there are two main types

of queries that do not have a “uniform” distribution of relevant

documents over time (there are actually many types of

distributions but these are more common). The first type of query

favors very recent documents and the other has more relevant

documents within a specific period in the past. Query 301 is an

example of the first type of query. (See figure 2.2). Query 156 is

an example of the second type of query, which has more relevant

documents within a particular period in the past. (See figure 2.3)

Query 165 is an example of a query that has a more uniform

distribution of relevant documents along the time line. (See figure

2.4). This group is the most numerous, but there are still a

significant number of examples of the first two types. In this paper

we are more interested in the first type of queries: recency
queries. These queries favor very recent documents. Some

example recency queries are given as follows:

<query 301> International Organized Crime

<query 307> New Hydroelectric Projects

<query 319> New Fuel Sources

<query 378> Euro Opposition

Recency queries favor recent documents for various reasons. We

can tell that some of them are recency queries from the topic

described by its text queries. Others favor recent documents due

to the time-based characteristics of the collections we used. For

example, the topics of Query 307 and Query 319 require recent

documents about undergoing hydroelectric projects and ongoing

research for new fuel sources respectively. The topic of Query 378

favors recent documents given that the corpus we used whose

documents are from 1989 to 1994. Query 301 has more relevant

documents in the recent past. It is hard to tell the reason for this

from the text query itself but it appears to be mostly because of

the distribution of documents in the collection.

In the 100 TREC queries 301-400, we manually identified 36

recency queries based on given relevance judgment information.

These queries are used in the experiments described in section 4.

It is important to emphasize that the distribution of relevant

documents over time is substantially more biased than the

background distribution of the collection.

Figure 2.3: Query 156 “Efforts to Enact Gun Control

Legislation”- Relevant documents mostly in the past.

Figure 2.4: Query 165 “Tobacco Company Advertising and the

Young” - More uniform distribution

3. LANGUAGE MODELS FOR
RETRIEVAL
3.1 Query Likelihood Models
Language modeling frameworks were introduced to information

retrieval by Ponte and Croft [1], followed by some variations

[2,3,4,5] that adopted a similar framework. In the language

470

Query 165: tobacco company advertising and the young

P [d] = � e�� (c�t)P [d | q] / P [d] ·
Y

v

P [v | d]

Advanced Topics in Information Retrieval / Dynamics & Age

7.2.2. Temporal Query Profiles
๏ Dakka et al. [4] target general time-sensitive queries using 

an approach based on language models

๏ Example: Publication dates of relevant documents in TREC  

๏ Idea: Estimate temporal document prior from publication dates
of pseudo-relevant documents retrieved for the query

13

To illustrate the difference between time-sensitive and
time-insensitive queries, Fig. 2 shows a histogram of both a
time-sensitive query (TREC query number 311) and a time-
insensitive query (TREC query number 304), from the TREC
ad hoc title queries 301-350. Unlike the histograms we
showed in Fig. 1, Fig. 2 shows the true distribution of the
relevant documents, not of the matching documents. Fig. 3
shows the histograms of the number of matching docu-
ments for several real-life, time-sensitive queries.

News archives often include many matching documents
for time-sensitive queries. For example, the query [Saddam
Hussein capture] has 936 matching stories in The New York
Times archive, as of March 2009. We claim that traditional
topic-similarity ranking alone may not be desirable for
time-sensitive queries, where we can explicitly account for
time to produce high-quality query results. Our basic
intuition is that the relevance of one document for a given query
provides us with useful information about the relevancy of other
documents with similar content that were published around the
same time. This is in contrast to “traditional” information
retrieval engines, which consider the relevancy of each
document in isolation. In the next section, we discuss our
first step in accounting for time by introducing techniques
to estimate temporal relevance, which is the probability that
a time period is relevant to a query at hand.

3 TEMPORAL RELEVANCE

Typically, documents in archival collections are stamped
with their publication dates. Unfortunately, queries often are
answered and ranked without consideration of these time
stamps, with the exception of some user feedback to sort by
date or restrict answers to a time range. To answer the type
of time-sensitive queries discussed in Section 2 over a news
archive, we would like to use the temporal information

implicitly available in the archive. For this, we observe that
time-sensitive queries are generally after documents from
specific time periods. For example, the majority of docu-
ments relevant to the TREC query [Industrial Espionage]
(Fig. 2) are located within a specific time period.

This observation suggests that it is important to know the
distribution of relevant documents over time for a given
query. We hypothesize that this distribution can be used to
improve the answer quality for a retrieval task (see Section 4).
Therefore, we could attempt to compute the probability pðtjqÞ
that a day t is relevant to a query q using the distribution of
relevant documents, and use this value for answering the
query q. Unfortunately, we usually have no a priori knowl-
edge of the relevant documents for a given query and, as a
result, we cannot accurately compute this distribution. In this
section, we investigate several ways to estimate pðtjqÞ based
on statistics readily extractable from a news archive.

3.1 Estimation Using “Ground Truth”

We first discuss a hypothetical situation in which we know,
for a given query q, its complete set of relevant documents
Rq, which we refer to as the “ground truth” for the query. In
this situation, we can estimate pðtjqÞ based solely on Rq.
Specifically, consider a news archive D. Then, according to
Bayes’ rule, pðtjqÞ is

pðtjqÞ ¼ pðqjtÞ $ pðtÞ
pðqÞ

¼ pðqjtÞ $ pðtÞ
P

t̂2datesðDÞ pðqjt̂Þ $ pðt̂Þ
; ð1Þ

where datesðDÞ is the time span of D; pðtÞ is the probability
that day t contains a document (relevant to q or not),
multinomially distributed over t; pðqjtÞ follows a Bernoulli
distribution and is the probability that the documents
published in t are relevant for answering query q (e.g., a
random news document selected among the documents
published in April 2008, when Barack Obama lost the
Democratic primaries in Pennsylvania, has higher chances
of being relevant to the query [Obama Pennsylvania],
compared to a random news document selected among
the documents published in April 2007); and pðqÞ is the
prior probability of finding a document relevant to q, and
serves as a normalizing factor.

222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 2, FEBRUARY 2012

Fig. 2. Relevant-document histograms of a time-sensitive (a) and a time-
insensitive (b) query from a TREC ad hoc query set. (a) Query #311,
[Industrial Espionage], a time-sensitive query. (b) Query #304,
[Endangered Species (Mammals)], a time- insensitive query.

Fig. 3. Histograms for several queries, revealing different distributions of
the query terms over the Newsblaster archive from January to
December 2004.

To illustrate the difference between time-sensitive and
time-insensitive queries, Fig. 2 shows a histogram of both a
time-sensitive query (TREC query number 311) and a time-
insensitive query (TREC query number 304), from the TREC
ad hoc title queries 301-350. Unlike the histograms we
showed in Fig. 1, Fig. 2 shows the true distribution of the
relevant documents, not of the matching documents. Fig. 3
shows the histograms of the number of matching docu-
ments for several real-life, time-sensitive queries.

News archives often include many matching documents
for time-sensitive queries. For example, the query [Saddam
Hussein capture] has 936 matching stories in The New York
Times archive, as of March 2009. We claim that traditional
topic-similarity ranking alone may not be desirable for
time-sensitive queries, where we can explicitly account for
time to produce high-quality query results. Our basic
intuition is that the relevance of one document for a given query
provides us with useful information about the relevancy of other
documents with similar content that were published around the
same time. This is in contrast to “traditional” information
retrieval engines, which consider the relevancy of each
document in isolation. In the next section, we discuss our
first step in accounting for time by introducing techniques
to estimate temporal relevance, which is the probability that
a time period is relevant to a query at hand.

3 TEMPORAL RELEVANCE

Typically, documents in archival collections are stamped
with their publication dates. Unfortunately, queries often are
answered and ranked without consideration of these time
stamps, with the exception of some user feedback to sort by
date or restrict answers to a time range. To answer the type
of time-sensitive queries discussed in Section 2 over a news
archive, we would like to use the temporal information

implicitly available in the archive. For this, we observe that
time-sensitive queries are generally after documents from
specific time periods. For example, the majority of docu-
ments relevant to the TREC query [Industrial Espionage]
(Fig. 2) are located within a specific time period.

This observation suggests that it is important to know the
distribution of relevant documents over time for a given
query. We hypothesize that this distribution can be used to
improve the answer quality for a retrieval task (see Section 4).
Therefore, we could attempt to compute the probability pðtjqÞ
that a day t is relevant to a query q using the distribution of
relevant documents, and use this value for answering the
query q. Unfortunately, we usually have no a priori knowl-
edge of the relevant documents for a given query and, as a
result, we cannot accurately compute this distribution. In this
section, we investigate several ways to estimate pðtjqÞ based
on statistics readily extractable from a news archive.

3.1 Estimation Using “Ground Truth”

We first discuss a hypothetical situation in which we know,
for a given query q, its complete set of relevant documents
Rq, which we refer to as the “ground truth” for the query. In
this situation, we can estimate pðtjqÞ based solely on Rq.
Specifically, consider a news archive D. Then, according to
Bayes’ rule, pðtjqÞ is

pðtjqÞ ¼ pðqjtÞ $ pðtÞ
pðqÞ

¼ pðqjtÞ $ pðtÞ
P

t̂2datesðDÞ pðqjt̂Þ $ pðt̂Þ
; ð1Þ

where datesðDÞ is the time span of D; pðtÞ is the probability
that day t contains a document (relevant to q or not),
multinomially distributed over t; pðqjtÞ follows a Bernoulli
distribution and is the probability that the documents
published in t are relevant for answering query q (e.g., a
random news document selected among the documents
published in April 2008, when Barack Obama lost the
Democratic primaries in Pennsylvania, has higher chances
of being relevant to the query [Obama Pennsylvania],
compared to a random news document selected among
the documents published in April 2007); and pðqÞ is the
prior probability of finding a document relevant to q, and
serves as a normalizing factor.

222 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 2, FEBRUARY 2012

Fig. 2. Relevant-document histograms of a time-sensitive (a) and a time-
insensitive (b) query from a TREC ad hoc query set. (a) Query #311,
[Industrial Espionage], a time-sensitive query. (b) Query #304,
[Endangered Species (Mammals)], a time- insensitive query.

Fig. 3. Histograms for several queries, revealing different distributions of
the query terms over the Newsblaster archive from January to
December 2004.

Query 311: industrial espionage Query 304: endangered species (mammals)

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Query Profiles
๏ Let R denote the set of pseudo-relevant documents (e.g.,

top-50 from baseline), a temporal query profile is estimated as  
 
 

๏ Temporal query profile is smoothed in two ways
๏ using linear interpolation with the temporal collection profile 

to account for fluctuations in publication volume  
 

๏ using a moving average to account for longer lasting events

14

P [t | d] = 1(d published at t)P [t | q] =
X

d2R

P [t | d] P [q | d]P
d02R P [q | d0]

P [t |D] =
1

|D|
X

d2D

P [t | d]

P[t | q] = 1

w

w�1X

i=0

P [t� i | q]

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Query Profile
๏ Temporal query profile is integrated as document prior  

with t as the publication date of document d

15

P [q | d] = P [t | q] ·
Y

v

P [v | d]

Advanced Topics in Information Retrieval / Dynamics & Age

7.2.3. Temporal Expressions
๏ Berberich et al. [3] develop an approach based on language

models targeted at explicitly temporal queries that mention  
a temporal expression (e.g., michael jordan 1990s)  

๏ Standard retrieval models treat temporal expressions as terms
and are unaware of their inherent semantics (e.g., ‘90s is
different from 1990s and 2005 is different from March 2005) 

๏ Temporal expressions are vague, i.e., the precise time interval
they refer to is uncertain and this uncertainty needs to be reflected
๏ in the 1990s can refer to [1992, 1995], [1990, 1999], [1992, 1993], etc.

๏ in 2002 can refer to [2002/01/01, 2002/12/31], [2002/05/04, 2002/07/02], etc.

16

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te
(a) [1998/01/01, 1998/12/31]a

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te
(a) [1998/01/01, 1998/12/31]a
(b) [1998/07/12, 1998/07/12]b

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Expression Model
๏ Temporal expressions are modeled as sets of time intervals  

and denoted as four-tuples (tbl, tbu, tel, teu)

๏ Temporal expression T = (tbl, tbu, tel, teu) can refer to  

any time interval [tb, te] such that the following holds

๏ Example: Temporal expression in 1998 represented as  
(1998/01/01, 1998/12/31, 1998/01/01, 1998/12/31)

17

tbl  tb  tbu ^ tb  te ^ tel  te  teu

’99

’98 ’99
tb

te
(a) [1998/01/01, 1998/12/31]a
(b) [1998/07/12, 1998/07/12]b

(c) [1998/02/07, 1998/02/22]
c

Advanced Topics in Information Retrieval / Dynamics & Age

Document and Query Models
๏ Documents are modeled as a set of textual terms dtext  

and a set of temporal expressions dtime

๏ Queries are modeled as a set of textual terms qtext  
and a set of temporal expressions qtime 

๏ Query-likelihood approach assuming independence  
between textual terms and temporal expressions  
 

๏ Query likelihood of textual part P[qtext | dtext] is estimated  
using unigram language model with Jelinek-Mercer smoothing  
(mixing parameter: γ)

18

P [q | d] = P [q
text

| d
text

]⇥ P [q
time

| d
time

]

Advanced Topics in Information Retrieval / Dynamics & Age

Language Model for Temporal Expressions

๏ Query likelihood of temporal part P[qtime | dtime] is estimated
๏ assuming independence between temporal expressions 
 
 

๏ assuming uniform probability for temporal expressions from document d 
 
 

๏ assuming uniform probability for time intervals that Q can refer to

19

P [qtime | dtime] =
Y

Q2qtime

P [Q | dtime]

P [Q | dtime] =
1

|dtime |
X

T2dtime

P [Q | T]

P [Q | T] =
1

|Q|
X

[qb, qe]2Q

P [[qb, qe] | T]

Advanced Topics in Information Retrieval / Dynamics & Age

Language Model for Temporal Expressions
๏ assuming uniform probability for time intervals that T can refer to 
 
 

๏ P[Q | T] can be simplified as 
 
 
 
treating temporal expressions as sets of time intervals

๏ P[Q | dtime] is smoothed with collection model P[Q | Dtime] 
using Jelinek-Mercer smoothing (mixing parameter: λ)

20

P [[qb, qe] | T] =
1

|T | 1([qb, qe] 2 T)

P [Q | T] =
|T \Q|
|T | · |Q|

Advanced Topics in Information Retrieval / Dynamics & Age

Experimental Evaluation
๏ Document Collection: The New York Times Annotated Corpus  

(1.8 million newspaper articles published between ’87 and ’07)

๏ Queries: 40 queries in total gathered using crowdsourcing

๏ related to four topics sports, culture, technology, world affairs

๏ five temporal granularities (day, month, year, decade, century)

21

20 K. Berberich et al.

Sports Culture

Day boston red sox [october 27, 2004] kurt cobain [april 5, 1994]
ac milan [may 23, 2007] keith harring [february 16, 1990]

Month stefan edberg [july 1990] woodstock [august 1994]
italian national soccer team [july 2006] pink floyd [march 1973]

Year babe ruth [1921] rocky horror picture show [1975]
chicago bulls [1991] michael jackson [1982]

Decade michael jordan [1990s] sound of music [1960s]
new york yankees [1910s] mickey mouse [1930s]

Century la lakers [21st century] academy award [21st century]
soccer [21st century] jazz music [21st century]

Technology World Affairs
Day mac os x [march 24, 2001] berlin [october 27, 1961]

voyager [september 5, 1977] george bush [january 18, 2001]
Month thomas edison [december 1891] poland [december 1970]

microsoft halo [june 2000] pearl harbor [december 1941]
Year roentgen [1895] nixon [1970s]

wright brothers [1905] iraq [2001]
Decade internet [1990s] vietnam [1960s]

sewing machine [1850s] monica lewinsky [1990s]
Century musket [16th century] queen victoria [19th century]

siemens [19th century] muhammed [7th century]

Fig. 2. Queries categorized according to their topic and temporal granularity

that our baseline Lm, not aware of temporal expressions, always only considers
q text as determined using the inclusive mode.

Document Collection. As a dataset for our experimental evaluation we use
the publicly-available New York Times Annotated Corpus [6] that contains about
1.8 million articles published in New York Times (NYT) between 1987 and 2007.

Queries. Since we target a specific class of information needs, query workloads
used in benchmarks like TREC [11] are not useful in our setting. To assemble a
query workload that captures users’ interests and preferences, we ran two user
studies on Amazon Mechanical Turk (AMT). In our first study, workers were
provided with an entity related to one of the topics Sports, Culture, Technology,
or World Affairs and asked to specify a temporal expression that fits the given
entity. In our second study, users were shown a temporal expression correspond-
ing to a Day, Month, Year, Decade, or Century and asked to add an entity related
to one of the aforementioned topics. Among the queries obtained from our user
studies, we selected the 40 queries shown in Figure 2. Queries are categorized
according to their topic and temporal granularity, giving us a total of 20 query
categories, each of which contains two queries.

Relevance Assessments were also collected using AMT. We computed top-10
query results for each query and each method configuration under comparison,
pooled them, yielding a total of 1, 251 query-document pairs. Each of these
query-document pairs was assessed by five workers on AMT. Workers could
state whether they considered the document relevant or not relevant to the
query. To prevent spurious assessments, a third option (coined I don’t know)
was provided, which workers should select if they had insufficient information
or knowledge to assess the document’s relevance. Further, we asked workers to
explain in their own words, why the document was relevant or not relevant.
We found the feedback provided through the explanations extremely insightful.
Examples of provided explanations are:

A Language Modeling Approach for Temporal Information Needs 21

– roentgen [1895]: Wilhelm Roentgen was alive in 1895 when the building in
New York at 150 Nassau Street in downtown Manhattan, NYC was built,
they do not ever intersect other than sharing the same timeline of existence
for a short while.

– nixon [1970s]: This article is relevant. It is a letter to the editor in response
to a column about 1970s-era Nixon drug policy.

– keith harring [february 16, 1990]: The article does not have any information on
Keith Harring, only Laura Harring. Though it contains the keywords Harring
and 1990, the article is obviously not what the searcher is looking for.

Apart from that, when having to explain their assessment, workers seemed more
thorough in their assessments. Per completely assessed query-document pair
we paid $0.02 per assignment to workers. Workers chose relevant for 33%, not
relevant for 63%, and the third option (i.e., I don’t know) for 4% of the total
6, 255 relevance assessments. Relevance assessments with the last option are
ignored when computing retrieval-effectiveness measures below.

Implementation Details. We implemented all methods in Java. All data was
kept in an Oracle 11g database. Temporal expressions were extracted using
TARSQI [12]. TARSQI detects and resolves temporal expressions using a com-
bination of hand-crafted rules and machine learning. It annotates a given input
document using the TimeML [13] markup language. Building on TARSQI’s out-
put, we extracted range temporal expressions such as “from 1999 until 2002”,
which TARSQI does not yet support. Further, we added each article’s publica-
tion date as an additional temporal expression. We map temporal expressions
to our quadruple representation using milliseconds as chronons and the UNIX
epoch as our reference time-point.

4.2 Experimental Results

We measure the retrieval effectiveness of the methods under comparison using
Precision at k (P@k) and nDCG at k (N@k) as two standard measures. When
computing P@k, we employ majority voting. Thus, a document is considered
relevant to a query, if the majority of workers assessed it as relevant. When
computing N@k, the average relevance grade assigned by workers is determined
interpreting relevant as grade 1 and not relevant as grade 0, respectively.

Table 1. Retrieval effectiveness overall

P@5 N@5 P@10 N@10

Lm (γ = 0.25) 0.33 0.34 0.30 0.32
Lm (γ = 0.75) 0.38 0.39 0.37 0.38

LmT-IN (γ = 0.25, λ = 0.75) 0.26 0.27 0.23 0.25
LmT-IN (γ = 0.75, λ = 0.75) 0.29 0.31 0.25 0.28

LmT-EX (γ = 0.25, λ = 0.75) 0.36 0.36 0.32 0.33
LmT-EX (γ = 0.5, λ = 0.75) 0.37 0.37 0.32 0.33

LmtU-IN (γ = 0.25, λ = 0.75) 0.41 0.42 0.37 0.37
LmtU-IN (γ = 0.75, λ = 0.25) 0.44 0.44 0.39 0.40

LmtU-EX (γ = 0.25, λ = 0.75) 0.53 0.51 0.49 0.49
LmtU-EX (γ = 0.5, λ = 0.75) 0.54 0.52 0.51 0.49

A Language Modeling Approach for Temporal Information Needs 21

– roentgen [1895]: Wilhelm Roentgen was alive in 1895 when the building in
New York at 150 Nassau Street in downtown Manhattan, NYC was built,
they do not ever intersect other than sharing the same timeline of existence
for a short while.

– nixon [1970s]: This article is relevant. It is a letter to the editor in response
to a column about 1970s-era Nixon drug policy.

– keith harring [february 16, 1990]: The article does not have any information on
Keith Harring, only Laura Harring. Though it contains the keywords Harring
and 1990, the article is obviously not what the searcher is looking for.

Apart from that, when having to explain their assessment, workers seemed more
thorough in their assessments. Per completely assessed query-document pair
we paid $0.02 per assignment to workers. Workers chose relevant for 33%, not
relevant for 63%, and the third option (i.e., I don’t know) for 4% of the total
6, 255 relevance assessments. Relevance assessments with the last option are
ignored when computing retrieval-effectiveness measures below.

Implementation Details. We implemented all methods in Java. All data was
kept in an Oracle 11g database. Temporal expressions were extracted using
TARSQI [12]. TARSQI detects and resolves temporal expressions using a com-
bination of hand-crafted rules and machine learning. It annotates a given input
document using the TimeML [13] markup language. Building on TARSQI’s out-
put, we extracted range temporal expressions such as “from 1999 until 2002”,
which TARSQI does not yet support. Further, we added each article’s publica-
tion date as an additional temporal expression. We map temporal expressions
to our quadruple representation using milliseconds as chronons and the UNIX
epoch as our reference time-point.

4.2 Experimental Results

We measure the retrieval effectiveness of the methods under comparison using
Precision at k (P@k) and nDCG at k (N@k) as two standard measures. When
computing P@k, we employ majority voting. Thus, a document is considered
relevant to a query, if the majority of workers assessed it as relevant. When
computing N@k, the average relevance grade assigned by workers is determined
interpreting relevant as grade 1 and not relevant as grade 0, respectively.

Table 1. Retrieval effectiveness overall

P@5 N@5 P@10 N@10

Lm (γ = 0.25) 0.33 0.34 0.30 0.32
Lm (γ = 0.75) 0.38 0.39 0.37 0.38

LmT-IN (γ = 0.25, λ = 0.75) 0.26 0.27 0.23 0.25
LmT-IN (γ = 0.75, λ = 0.75) 0.29 0.31 0.25 0.28

LmT-EX (γ = 0.25, λ = 0.75) 0.36 0.36 0.32 0.33
LmT-EX (γ = 0.5, λ = 0.75) 0.37 0.37 0.32 0.33

LmtU-IN (γ = 0.25, λ = 0.75) 0.41 0.42 0.37 0.37
LmtU-IN (γ = 0.75, λ = 0.25) 0.44 0.44 0.39 0.40

LmtU-EX (γ = 0.25, λ = 0.75) 0.53 0.51 0.49 0.49
LmtU-EX (γ = 0.5, λ = 0.75) 0.54 0.52 0.51 0.49

Queries Precision / nDCG

Advanced Topics in Information Retrieval / Dynamics & Age

7.3. Search in Web Archives
๏ Web archives (e.g., archive.org, internetmemory.org) preserve 

old snapshots of URLs (web pages, images, etc.)

๏ Internet Archive has harvested 435 billion web pages  
(including embedded media files) since 1996

22

http://archive.org
http://internetmemory.org

Advanced Topics in Information Retrieval / Dynamics & Age

7.3. Search in Web Archives
๏ Web archives (e.g., archive.org, internetmemory.org) preserve 

old snapshots of URLs (web pages, images, etc.)

๏ Internet Archive has harvested 435 billion web pages  
(including embedded media files) since 1996

22

http://archive.org
http://internetmemory.org

Advanced Topics in Information Retrieval / Dynamics & Age

Search in Web Archives
๏ Challenges & Opportunities:

๏ vast volume of web archives (Internet Archive: 435 billion snapshots)

๏ longitudinal coverage of web archives (Internet Archive: 1996 – now)

๏ document versions (snapshots of the same document) taken at nearby
times exhibit a high degree of redundancy allowing for compression

๏ document versions come with a valid-time interval, indicating when
the version was current, which allows for more effective search

23

Advanced Topics in Information Retrieval / Dynamics & Age

7.3.1. Non-Redundant Indexing
๏ Zhang and Suel [11] devise an approach to index highly-

redundant document collections (e.g., web archives)

๏ Ideas:
๏ break up documents into shorter segments

๏ segments should be shared between overlapping documents

๏ use a two-level index structure to index associations between 
words-and-segments and segments-and-documents

24

a a c 
b a b 
c c b

a a c

b a b

a b c

d1

s1

s2

s3

a

s1 d1 d3 d9 …

s1 s2 s3 s7 …

Advanced Topics in Information Retrieval / Dynamics & Age

Segmenting Documents
๏ Problem: How to break up documents into smaller segments so

that segments are shared between overlapping documents

๏ Hash breaking (as a naïve approach)
๏ compute hash code h[i] for each term d[i] in document

๏ break document at all indices i such that h[i] % w = 0

25

a a c 
b a b 
c c b

d1

a c b 
a b c 
c b a

d2

Advanced Topics in Information Retrieval / Dynamics & Age

Segmenting Documents
๏ Problem: How to break up documents into smaller segments so

that segments are shared between overlapping documents

๏ Hash breaking (as a naïve approach)
๏ compute hash code h[i] for each term d[i] in document

๏ break document at all indices i such that h[i] % w = 0

25

a a c 
b a b 
c c b

d1

a c b 
a b c 
c b a

d2

Advanced Topics in Information Retrieval / Dynamics & Age

Segmenting Documents
๏ Problem: How to break up documents into smaller segments so

that segments are shared between overlapping documents

๏ Hash breaking (as a naïve approach)
๏ compute hash code h[i] for each term d[i] in document

๏ break document at all indices i such that h[i] % w = 0

25

a a c 
b a b 
c c b

d1

a c b 
a b c 
c b a

d2

a a c

b a b

c c b

a c b

a b c

c b a

Advanced Topics in Information Retrieval / Dynamics & Age

Segmenting Documents
๏ Problem: How to break up documents into smaller segments so

that segments are shared between overlapping documents

๏ Hash breaking (as a naïve approach)
๏ compute hash code h[i] for each term d[i] in document

๏ break document at all indices i such that h[i] % w = 0

25

a a c 
b a b 
c c b

d1

a c b 
a b c 
c b a

d2

Advanced Topics in Information Retrieval / Dynamics & Age

Segmenting Documents
๏ Problem: How to break up documents into smaller segments so

that segments are shared between overlapping documents

๏ Hash breaking (as a naïve approach)
๏ compute hash code h[i] for each term d[i] in document

๏ break document at all indices i such that h[i] % w = 0

25

a a c 
b a b 
c c b

d1

a c b 
a b c 
c b a

d2

a

a c b

a b c

c b

a c b

a b c

c b

a

Advanced Topics in Information Retrieval / Dynamics & Age

Winnowing
๏ Winnowing [10] (as a better approach with guarantees)

๏ compute hash code h[i] for all subsequences d[i … i+b-1] of length b

๏ slide window of size w over the array of hash codes h[0 .. |d|-b]

๏ if h[i] is strictly smaller than all other values h[j] in current window  
then cut the document between i and i -1

๏ if there are multiple positions i in the current window with minimal value h[i]

๏ if we have previously cut directly before one of them, then don’t perform a cut

๏ otherwise, cut before the rightmost position i having minimal value h[i]

26

Advanced Topics in Information Retrieval / Dynamics & Age

Winnowing

๏ Winnowing guarantees that two documents having a
subsequence of length at least w+b+1 in common 
share at least one segment

๏ Maximum segment length is w

๏ Expected sequence length is (w+1)/2

27

tain one pointer into each of the inverted lists involved in the query,
and move these pointers forward in a synchronized manner to iden-
tify postings with matching docIDs in the different lists. At any
point in time, only one posting from each list is considered and
must be available in uncompressed form in main memory. Another
advantage of the approach is that it allows us to implement opti-
mizations that skip over many elements when moving forward in
the lists [24], while hiding all details of the index structure and
compression method.

Content-Depending File Partitioning Using Winnowing: A
significant amount of research in the networking, OS, and data
compression communities has focused on eliminating redundancies
in large data sets by partitioning each file into a number of blocks
and then removing any blocks that have previously occurred. This
is usually done by identifying each block by a hash of its content;
if we choose the blocks to be large enough, we can limit the num-
ber of hashes such that they can be kept in main memory for many
scenarios. One problem is how to perform the partitioning. If we
simply partition each file into blocks of fixed size and store their
hashes, then we would be unable to detect many repeated blocks
due to alignment issues. (E.g., if one file differs from another only
by a deleted or inserted character at the beginning, none of the
blocks would likely match.) In some cases, this can be resolved
by checking for all possible alignments between current and previ-
ously seen blocks [37, 34, 32], but in other scenarios this is infea-
sible [22, 25, 13, 27, 19].

For such cases, several techniques have been proposed that parti-
tion a file in a content-dependent manner, such that two similar files
are likely to contain a large number of common blocks [20, 30, 29,
35]. Among these, we focus on the more recent winnowing tech-
nique proposed in [30], which appears to perform well in practice.
Given a file , the process runs in two phases:

(1) First, we choose a hash function that maps substrings of
some fixed small size to integer values, say for around

to . We then hash each of the substrings
in , resulting in an array of integer

values with .
(2) We now choose a larger window size , say or

more, and slide this window over the array ,
one position at a time. For every position of the window, we
now use the following rules to partition the original file :

(a) Suppose is strictly smaller than all other values
in the current window of size . Then cut between

and .
(b) Suppose there are several positions in the current win-

dow with the same minimum value . If we have pre-
viously cut directly before one of these positions, then
no cut is applied in this step. Otherwise, cut before the
rightmost such position.

It is shown in [30] that if two files have a common substring of
size at least , then they are guaranteed to have at least
one common block. The maximum size of a block is , while the
expected size, assuming a random hash , is . The parti-
tioning can be performed highly efficiently by using a rolling hash
function , i.e., a function such that can be computed di-
rectly from and . The entire process is illustrated in
Figure 2.1.

Index Updates: Finally, we need some background on efficient
schemes for updating inverted indexes. Consider a new page that
has been crawled and needs to be added to the index. The primary
performance challenge here is that the typical page has several hun-

K A B A B A B F H A CMR A …

45 13 48 13 48 87 19 7 21 12 29 13 23 17 …
.

hash

window of size b for hashing

Block 1 Block 2 Block 3

window of size w

Figure 2.1: Example of the winnowing approach on a file. A
small window of size moves over the file to create a se-
quence of hashes. A larger window of size moves over
the hashes to determine block boundaries.

dred distinct words, and thus a naive scheme for disk-resident in-
dexes would require several hundred changes in different locations
on disk. A number of optimizations for index updates have been
proposed [9, 36, 11]. If a very high rate of updates needs to be
supported, then the best approach appears to be based on periodi-
cally pushing updates to the index. That is, when new documents
arrive in the system, we first add them to a second, memory-based
index structure. To keep this structure from growing beyond mem-
ory size, we periodically merge it (or parts of it) into the main index
on disk. If the main index is very large, it may be preferable to use
a multi-level scheme where the data in memory is first merged into
a slightly larger index structure on disk, which itself is periodically
merged into an even larger structure, etc. To process a query, we
perform separate accesses into each of the index structures (includ-
ing the one in memory) and then merge the results. This approach
has provable performance bounds and is used in a number of sys-
tems (e.g., Lucene and the text index of MS SQL Server).

Many details depend on the types of updates we need to support,
e.g., addition of new documents, deletions, replacement of old ver-
sions by newer versions, or addition of newer versions. Note that
if we do not store positions in the postings, then a new version of
a page that differs very slightly from the previous one may only
require updates to a few postings. If positions are stored as well,
then a single word added to the beginning of the page may result
in updates to all postings. This challenge was addressed by the
Landmarks approach in [23], which we discuss in more detail later.
In general, when a document is added, deleted, or modified, this
results in a sequence of insert, delete, and update commands on
individual postings that are first buffered in memory and then pe-
riodically applied to the larger disk-based structures. The perfor-
mance of such an update scheme is determined by the number of
such commands that are generated, as this determines the frequency
and amortized cost of the periodic merges into the disk-based struc-
tures. In our later experiments, we will use this as our measure of
efficiency.

3. DISCUSSION OF RELATED WORK
We now provide some pointers to related work and discuss the

most closely related previous work in more detail. For basics of
search engine architecture we refer to [5, 28, 14]. For background
on indexing, ranking, and query execution in IR and web search
engines, see [2, 3, 38, 39]. Document-at-a-time query processing
is described and evaluated, e.g., in [21].

Inverted Index Compression: There are a large number of tech-
niques for inverted index compression; see [38, 39] for an overview.
One simple and popular scheme called var-byte, evaluated in [31],

WWW 2007 / Track: Search Session: Search Potpourri

413

Advanced Topics in Information Retrieval / Dynamics & Age

Query Processing
๏ Query processing needs to be adapted to reflect that  

the same segment can occur in many documents
๏ when seeing a segment in a posting list of the first index, 

look up documents containing it in the second index

๏ effectiveness of skipping for conjunctive queries is reduced

๏ terms could be spread over different segments in a document

๏ segments can be contained in documents with arbitrary document identifiers

28

Advanced Topics in Information Retrieval / Dynamics & Age

7.3.2. Time-Travel Text Search
๏ Berberich et al. [2] develop an approach to support time-travel

text search on version document collections

๏ Time-travel keyword query q@t combines keywords q with a
time of interest t to search “as of” the indicated time in the past  

๏ Ideas:

๏ coalesce postings belonging to temporally adjacent versions  
if their payloads (e.g., score) are almost the same

๏ partition the index along time  
to improve query processing performance and

29

Advanced Topics in Information Retrieval / Dynamics & Age

Time-Travel Inverted Index
๏ Time-travel inverted index adds a valid-time interval [tb, te) to

postings indicating when the information therein was current  
 
 
 
 
 

๏ Time-travel keyword query q@t is processed by reading posting
lists for keywords in q and filtering out postings 
whose valid-time interval does not contain t, i.e.:

30

d123, 2, [1, 4) d125, 2, [4, 8)

ga z
Dictionary

Posting list

d123, 2, [4, 6)

t 62 [tb, te)

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Naïve application of time-travel inverted index results in 

one posting per keyword per document version

๏ Observation: Postings belonging to temporally adjacent
versions of the same document often have similar payloads  
 
 
 
 
 
 

๏ Idea: Coalesce (i.e., group together) postings having similar
payloads to reduce index size

31

d123, 3, [3, 5) d123, 8, [9, 10)

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Naïve application of time-travel inverted index results in 

one posting per keyword per document version

๏ Observation: Postings belonging to temporally adjacent
versions of the same document often have similar payloads  
 
 
 
 
 
 

๏ Idea: Coalesce (i.e., group together) postings having similar
payloads to reduce index size

31

d123, 3, [3, 5) d123, 8, [9, 10)

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
๏ Problem Statement: Given a sequence I of postings for term v in

document d, determine a minimal-length output sequence O 
that keeps the relative approximation error below a threshold ε 
 
 
 

๏ Optimal output sequence can be determined using 
a greedy one-pass algorithm in time O(|I|)

32

sc
or
e

p1

p2

p3
p’ 8 pi 2 I :

|pi � p̂|
pi

 ✏

!me

sc
or
e

non-coalesced coalesced bounds

Advanced Topics in Information Retrieval / Dynamics & Age

Temporal Coalescing
Input: Sequence I of temporally adjacent postings ⟨ p1, …, pn ⟩ for document d 
	 	 	 each with valid-time interval [tb, te), and score s 
Output: Sequence O  

O = ⟨ ⟩; D = d; LOW = p1.s - p1.s ₒ ự; UP = p1.s + p1.s ₒ ự; TB = p1.tb 		 // initialize
for each posting pi from input sequence I
	 low = pi.s - pi.s ₒ ự; up = pi.s + pi.s ₒ ự	 	 	 	 // lower and upper bound
	 if [LOW, UP] ∩ [low, up] ≠ ∅	 	 	 	 	 	 // can pi be coalesced?
	 	 LOW = max(low, LOW), UP = min(up, UP) 
	 else 
	 	 TE = pi.tb;O = O ∪ {(D, [TB, TE), (LOW + UP) / 2)}	 // coalesced posting 
	 	 LOW = low; UP = up; TB = pi.tb	 	 	 	 	 	 // re-initialize 
	 if i = n 
	 	 TE = pi.te; O = O ∪ {(D, [TB, TE), (LOW + UP) / 2)}		 // last posting

	

33

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning
๏ Problem: Query processing needs to read entire posting lists,  

although many postings can be discarded for a query q@t

๏ Idea: Partition each posting list along the time dimension, so
that the posting list for time interval [ti, tj) contains all postings  
whose valid-time interval overlaps with it

34

t1 ti ti+1 tn

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning

๏ Trade-off between index size and query-processing performance
๏ space optimal Sopt (poor performance): use a single partition [t1, tn)

๏ performance optimal Popt (poor space): use partitions [ti, ti+1)

35

t1 ti ti+1 tn

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning

๏ Trade-off between index size and query-processing performance
๏ space optimal Sopt (poor performance): use a single partition [t1, tn)

๏ performance optimal Popt (poor space): use partitions [ti, ti+1)

35

t1 ti ti+1 tn

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning

๏ Trade-off between index size and query-processing performance
๏ space optimal Sopt (poor performance): use a single partition [t1, tn)

๏ performance optimal Popt (poor space): use partitions [ti, ti+1)

35

t1 ti ti+1 tn

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning

๏ Trade-off between index size and query-processing performance
๏ space optimal Sopt (poor performance): use a single partition [t1, tn)

๏ performance optimal Popt (poor space): use partitions [ti, ti+1)

35

t1 ti ti+1 tn

Advanced Topics in Information Retrieval / Dynamics & Age

Index Partitioning
๏ Idea: Define optimization problem to systematically trade off  

index space vs. query-processing performance
๏ determine a partitioning P of [t1, tn)

๏ s(P) : number of postings under partitioning P

๏ c(t, P) : number of postings read to process time point t under P

๏ Performance guarantee PG ensures that cost for any time
point is within a factor γ of best performance achieved by Popt  
 

๏ Optimal solution computable using dynamic programming  
over prefix subproblems [t1, ti)

36

argmin
P

s(P) s.t. 8 t 2 [t1, tn) : c(t, P)  � · c(t, P
opt

)

Advanced Topics in Information Retrieval / Dynamics & Age

7.4. Historical Document Collections
๏ Improved digitization methods (e.g., OCR) 

have resulted in (very) old documents 
now being digitally available 

๏ Examples:
๏ The New York Times Archive (1851 – today)

๏ The Times Archive (1785 – now)

๏ Google Books (~1500 – now)

๏ HathiTrust (~1500 – now)  

37

Advanced Topics in Information Retrieval / Dynamics & Age

Historical Document Collections
๏ Challenges & Opportunities:

๏ unknown publication dates of documents can be estimated  
based on similar documents with known publication dates

๏ vocabulary gap between today’s queries and old documents  
needs to be bridged for effective information retrieval

๏ longitudinal document collections allow analyses that give
insights into, e.g., the evolution of language and historic events  

38

Advanced Topics in Information Retrieval / Dynamics & Age

7.4.1. Document Dating
๏ Problem: Publication dates of documents are unknown

๏ in historical document collections due to lack of information

๏ on the Web due to unreliable usage of the HTTP last-modified field 

๏ de Jong et al. [5] employ language models to date documents  

๏ Requirements: Document collection D with known dates which
๏ is sufficiently large to avoid overfitting to individual documents

๏ covers the same domain as the documents to be dated

๏ covers the period from which documents to be dated originate

39

Advanced Topics in Information Retrieval / Dynamics & Age

Document Dating
๏ Fix a temporal granularity (e.g., decade, year, month) and  

partition the document collection D into disjoint partitions  
D1,…,Dn so that all documents in Di have been published  
during the i-th time period (e.g., decade)  
 
 
 
 
 
 

๏ Unigram language model with Dirichlet smoothing θDi 
is estimated for each partition Di 

40

time
1995 2000 2005

✓D095 ✓D096 ✓D097 ✓D098 ✓D099 ✓D000 ✓D001 ✓D002 ✓D003 ✓D004 ✓D005

Advanced Topics in Information Retrieval / Dynamics & Age

Document Dating
๏ Document with unknown publication date d is 

dated as having been published in time interval i*  
 
 

๏ Approach achieves precision of ~30% in experiments on 
Dutch newspaper articles published between ’99 and ’05

41

argmin
i⇤

KL(✓Di⇤ k✓d)

Advanced Topics in Information Retrieval / Dynamics & Age

7.4.2. Historical Document Retrieval
๏ Information retrieval on historical document collection suffers from

a vocabulary gap between today’s queries and old documents
๏ language evolution (e.g., “and if he hear thee, thou wilt anger him”)

๏ terminology evolution (e.g., Leningrad/Saint Petersburg) 

๏ Koolen et al. [6] treat the problem as a cross-language
information retrieval problem by translating documents 
using rewriting rules mined from the document collection

42

Advanced Topics in Information Retrieval / Dynamics & Age

Historical Document Retrieval
๏ Phonetic Sequence Similarity

๏ transcribe historical and modern words into phonemes 
veeghen (historical) ⟶ v e g @ n, vegen (modern) ⟶ v e g @ n

๏ find pairs of historical and modern word with same pronouncation

๏ split words into sequences of consonants and vowels

๏ align sequences and spot rewritings (e.g., ee ⟶ e, gh ⟶ g)

๏ rewritings that are often observed become rewriting rules

43

historical:
modern:

v ee gh e n
v e g e n

Advanced Topics in Information Retrieval / Dynamics & Age

7.4.3. Culturomics
๏ Michel et al. [8] use n-gram statistics computed for every year  

in the Google Books corpus to conduct analysis, e.g., about
๏ language evolution

๏ popularity of celebrities

๏ historic events 

๏ Data & Demo available at: 
https://books.google.com/ngrams

44

Although irregulars generally yield to regu-
lars, two verbs did the opposite: light/lit and
wake/woke. Both were irregular inMiddle English,
were mostly regular by 1800, and subsequently
backtracked and are irregular again today. The
fact that these verbs have been going back and
forth for nearly 500 years highlights the gradual
nature of the underlying process.

Still, there was at least one instance of rapid
progress by an irregular form. Presently, 1% of

the English-speaking population switches from
“sneaked” to “snuck” every year. Someone will
have snuck off while you read this sentence. As
before, this trend is more prominent in the United
States but recently sneaked across the Atlantic:
America is the world’s leading exporter of both
regular and irregular verbs.

Out with the old. Just as individuals forget
the past (18, 19), so do societies (20) (fig. S6). To
quantify this effect, we reasoned that the fre-

quency of 1-grams such as “1951” could be used
to measure interest in the events of the corre-
sponding year, and we created plots for each year
between 1875 and 1975.

The plots had a characteristic shape. For
example, “1951” was rarely discussed until
the years immediately preceding 1951. Its fre-
quency soared in 1951, remained high for 3 years,
and then underwent a rapid decay, dropping by
half over the next 15 years. Finally, the plots

Fig. 2. Culturomics has profound consequences for
the study of language, lexicography, and grammar.
(A) The size of the English lexicon over time. Tick
marks show the number of single words in three
dictionaries (see text). (B) Fraction of words in the
lexicon that appear in two different dictionaries as a
function of usage frequency. (C) Five words added
by the AHD in its 2000 update. Inset: Median fre-
quency of new words added to AHD4 in 2000. The
frequency of half of these words exceeded 10−9 as
far back as 1890 (white dot). (D) Obsolete words
added to AHD4 in 2000. Inset: Mean frequency of
the 2220 AHD headwords whose current usage fre-
quency is less than 10−9. (E) Usage frequency of
irregular verbs (red) and their regular counterparts
(blue). Some verbs (chide/chided) have regularized
during the past two centuries. The trajectories for
“speeded” and “speed up” (green) are similar, re-
flecting the role of semantic factors in this instance
of regularization. The verb “burn” first regularized
in the United States (U.S. flag) and later in the
United Kingdom (UK flag). The irregular “snuck” is
rapidly gaining on “sneaked”. (F) Scatterplot of the
irregular verbs; each verb’s position depends on its
regularity (see text) in the early 19th century (x coor-
dinate) and in the late 20th century (y coordinate).
For 16% of the verbs, the change in regularity was
greater than 10% (large font). Dashed lines sepa-
rate irregular verbs (regularity < 50%) from reg-
ular verbs (regularity > 50%). Six verbs became
regular (upper left quadrant, blue), whereas two be-
came irregular (lower right quadrant, red). Inset:
The regularity of “chide” over time. (G) Median reg-
ularity of verbs whose past tense is often signified
with a -t suffix instead of -ed (burn, smell, spell, spill,
dwell, learn, and spoil) in U.S. (black) and UK (gray)
books.

words added to
AHD in 2000

0

2

4

x10-8

1800 2000

ycneuqerf nai de
M

Decade

rare words still in AHD

0

2

4

x10-9

ycneuqerf nae
M

1800 2000
Decade

AHD4

W3
OED

A B

C D

E F

G

14 JANUARY 2011 VOL 331 SCIENCE www.sciencemag.org178

RESEARCH ARTICLE

Although irregulars generally yield to regu-
lars, two verbs did the opposite: light/lit and
wake/woke. Both were irregular inMiddle English,
were mostly regular by 1800, and subsequently
backtracked and are irregular again today. The
fact that these verbs have been going back and
forth for nearly 500 years highlights the gradual
nature of the underlying process.

Still, there was at least one instance of rapid
progress by an irregular form. Presently, 1% of

the English-speaking population switches from
“sneaked” to “snuck” every year. Someone will
have snuck off while you read this sentence. As
before, this trend is more prominent in the United
States but recently sneaked across the Atlantic:
America is the world’s leading exporter of both
regular and irregular verbs.

Out with the old. Just as individuals forget
the past (18, 19), so do societies (20) (fig. S6). To
quantify this effect, we reasoned that the fre-

quency of 1-grams such as “1951” could be used
to measure interest in the events of the corre-
sponding year, and we created plots for each year
between 1875 and 1975.

The plots had a characteristic shape. For
example, “1951” was rarely discussed until
the years immediately preceding 1951. Its fre-
quency soared in 1951, remained high for 3 years,
and then underwent a rapid decay, dropping by
half over the next 15 years. Finally, the plots

Fig. 2. Culturomics has profound consequences for
the study of language, lexicography, and grammar.
(A) The size of the English lexicon over time. Tick
marks show the number of single words in three
dictionaries (see text). (B) Fraction of words in the
lexicon that appear in two different dictionaries as a
function of usage frequency. (C) Five words added
by the AHD in its 2000 update. Inset: Median fre-
quency of new words added to AHD4 in 2000. The
frequency of half of these words exceeded 10−9 as
far back as 1890 (white dot). (D) Obsolete words
added to AHD4 in 2000. Inset: Mean frequency of
the 2220 AHD headwords whose current usage fre-
quency is less than 10−9. (E) Usage frequency of
irregular verbs (red) and their regular counterparts
(blue). Some verbs (chide/chided) have regularized
during the past two centuries. The trajectories for
“speeded” and “speed up” (green) are similar, re-
flecting the role of semantic factors in this instance
of regularization. The verb “burn” first regularized
in the United States (U.S. flag) and later in the
United Kingdom (UK flag). The irregular “snuck” is
rapidly gaining on “sneaked”. (F) Scatterplot of the
irregular verbs; each verb’s position depends on its
regularity (see text) in the early 19th century (x coor-
dinate) and in the late 20th century (y coordinate).
For 16% of the verbs, the change in regularity was
greater than 10% (large font). Dashed lines sepa-
rate irregular verbs (regularity < 50%) from reg-
ular verbs (regularity > 50%). Six verbs became
regular (upper left quadrant, blue), whereas two be-
came irregular (lower right quadrant, red). Inset:
The regularity of “chide” over time. (G) Median reg-
ularity of verbs whose past tense is often signified
with a -t suffix instead of -ed (burn, smell, spell, spill,
dwell, learn, and spoil) in U.S. (black) and UK (gray)
books.

words added to
AHD in 2000

0

2

4

x10-8

1800 2000

ycneuqerf nai de
M

Decade

rare words still in AHD

0

2

4

x10-9

ycneuqerf nae
M

1800 2000
Decade

AHD4

W3
OED

A B

C D

E F

G

14 JANUARY 2011 VOL 331 SCIENCE www.sciencemag.org178

RESEARCH ARTICLE

enter a regime marked by slower forgetting:
Collective memory has both a short-term and a
long-term component.

But there have been changes. The amplitude
of the plots is rising every year: Precise dates are
increasingly common. There is also a greater fo-
cus on the present. For instance, “1880” declined
to half its peak value in 1912, a lag of 32 years. In

contrast, “1973” declined to half its peak by
1983, a lag of only 10 years. We are forgetting
our past faster with each passing year (Fig. 3A).

We were curious whether our increasing
tendency to forget the old was accompanied by
more rapid assimilation of the new (21). We di-
vided a list of 147 inventions into time-resolved
cohorts based on the 40-year interval in which

they were first invented (1800–1840, 1840–1880,
and 1880–1920) (7). We tracked the frequency
of each invention in the nth year after it was
invented as compared to its maximum value and
plotted the median of these rescaled trajectories
for each cohort.

The inventions from the earliest cohort
(1800–1840) took over 66 years from invention

D
ou

bl
in

g
tim

e:
 4

 y
rs

Half life: 73 yrs

Year of invention

0

5

x10-5

ycneuqer
F

A B

C D

E F

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
(lo

g)
M

ed
ia

n
fr

eq
ue

nc
y

(%
 o

f p
ea

k
va

lu
e)

M
ed

ia
n

fr
eq

ue
nc

y

M
ed

ia
n

fr
eq

ue
nc

y
(lo

g)

Fig. 3. Cultural turnover is accelerating. (A) We forget: frequency of “1883”
(blue), “1910” (green), and “1950” (red). Inset: We forget faster. The half-life
of the curves (gray dots) is getting shorter (gray line: moving average). (B) Cultural
adoption is quicker. Median trajectory for three cohorts of inventions from three
different time periods (1800–1840, blue; 1840–1880, green; 1880–1920,
red). Inset: The telephone (green; date of invention, green arrow) and radio
(blue; date of invention, blue arrow). (C) Fame of various personalities born
between 1920 and 1930. (D) Frequency of the 50 most famous people born in

1871 (gray lines; median, thick dark gray line). Five examples are highlighted.
(E) The median trajectory of the 1865 cohort is characterized by four
parameters: (i) initial age of celebrity (34 years old, tick mark); (ii) doubling
time of the subsequent rise to fame (4 years, blue line); (iii) age of peak celebrity
(70 years after birth, tick mark), and (iv) half-life of the post-peak forgetting
phase (73 years, red line). Inset: The doubling time and half-life over time.
(F) The median trajectory of the 25 most famous personalities born between
1800 and 1920 in various careers.

www.sciencemag.org SCIENCE VOL 331 14 JANUARY 2011 179

RESEARCH ARTICLE

https://books.google.com/ngrams

Advanced Topics in Information Retrieval / Dynamics & Age

Summary
๏ Web is highly dynamic, hyperlinks more than web pages more

than shingles; degree of dynamics depends on characteristics of
the website and/or web page 

๏ Temporal information (e.g., publication dates and temporal
expressions) can be leveraged for more effective IR  

๏ Web archives keep often highly-similar old snapshots of web
pages, allowing for efficient indexing and time-travel text search  

๏ Historical document collections contain documents published
long time ago, are challenging to search, but insightful to analyze

45

Advanced Topics in Information Retrieval / Dynamics & Age

References
[1]	 E. Adar, J. Teevan, S. T. Dumais, J. L. Elsass: The Web Changes Everything: 	 	
		 Understanding the Dynamics of Web Content, WSDM 2009

[2]	 K. Berberich, S. Bedathur, T. Neumann, G. Weikum:  
 A Time Machine for Text Search, SIGIR 2007

[3]	 K. Berberich, S. Bedathur, O. Alonso, G. Weikum:  
 A Language Modeling Approach for Temporal Information Needs, ECIR 2010

[4]	 F. de Jong, H. Rohde, D. Hiemstra: Temporal Language Models for the Disclosure 	
		 of Historical Text, Royal Netherlands Academy of Arts and Sciences, 2005

[5]	 W. Dakka, L. Gravano, P. G. Ipeirotis: Answering General Time-Sensitive Queries, 	
		 TKDE 24(2), 2012

46

Advanced Topics in Information Retrieval / Dynamics & Age

References
[6]	 M. Koolen, F. Adriaans, J. Kaamps, M. de Rĳke: A Cross-Language Approach to 	
		 Historic Document Retrieval, ECIR 2006

[7]	 X. Li and W. B. Croft: Time-Based Language Models, 
		 CIKM 2003

[8]	 J.-B. Michel et al.: Quantitative Analysis of Culture Using Millions of Digitized Books,
		 Science 331, 2011

[9]	 A. Ntoulas, J. Cho, C. Olston: What’s New on the Web? The Evolution of the Web 	
		 from a Search Engine Perspective, WWW 2004

[10]	 S. Schleimer, D. S. Wilkerson, A. Aiken: Winnowing: Local Algorithms for 		 	
		 Document Fingerprinting, SIGMOD 2003

[11]	 J. Zhang and T. Suel: Efficient Search in Large Textual Collections with Redundancy, 
		 WWW 2007

47

