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Mining & Organization
๏ Retrieving a list of relevant documents (10 blue links) insufficient 

๏ for vague or exploratory information needs (e.g., “find out about brazil”) 

๏ when there are more documents than users can possibly inspect  

๏ Organizing and visualizing collections of documents can help 
users to explore and digest the contained information, e.g.: 
๏ Clustering groups content-wise similar documents 

๏ Faceted search provides users with means of exploration 

๏ Timelines visualize contents of timestamped document collections
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8.1. Clustering
๏ Clustering groups  

content-wise similar documents  

๏ Clustering can be used  
to structure a document collection 
(e.g., entire corpus or query results) 

๏ Clustering methods: DBScan,  
k-Means, k-Medoids, 
hierarchical agglomerative clustering 

๏ Example of search result clustering: clusty.com  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k-Means
๏ Cosine similarity sim(c,d) between document vectors c and d  

๏ Clusters Ci represented by a cluster centroid document vector ci 

๏ k-Means groups documents into k clusters, maximizing the 
average similarity between documents and their cluster centroid 

๏ Document d is assigned to cluster C having most similar centroid
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Documents-to-Centroids
๏ k-Means is typically implemented iteratively with every iteration 

reading all documents and assigning them to most similar cluster 
๏ initialize cluster centroids c1,…,ck (e.g., as random documents) 

๏ while not converged (i.e., cluster assignments unchanged) 

๏ for every document d, determine most similar ci, and assign it to Ci 

๏ recompute ci as mean of documents assigned to cluster Ci 

๏ Problem: Iterations need to read the entire document 
collection, which has cost in O(nkd) with n as number of 
documents, k as number of clusters and, and d as number of 
dimensions

6
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Centroids-to-Documents
๏ Broder et al. [1] devise an alternative method to implement  

k-Means, which makes use of established IR methods 

๏ Key Ideas:  

๏ build an inverted index of the document collection 

๏ treat centroids as queries and identify the top-l most similar 
documents in every iteration using WAND 

๏ documents showing up in multiple top-l results  
are assigned to the most similar centroid 

๏ recompute centroids based on assigned documents 

๏ finally, assign outliers to cluster with most similar centroid
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Sparsification
๏ While documents are typically sparse (i.e., contain only relatively 

few features with non-zero weight), cluster centroids are dense  

๏ Identification of top-l most similar documents to a cluster centroid 
can further be speeded up by sparsifying, i.e., considering only  
the p features having highest weight

8
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Experiments
๏ Datasets: Two datasets each with about 1M documents but 

different numbers of dimensions: ~26M for (1), ~7M for (2)  

๏ Time per iteration reduced from 445 minutes to 3.9 minutes on 
Dataset 1; 705 minutes to 1.39 minutes on Dataset 2
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System ` Dataset 1 Similarity Dataset 1 Time Dataset 2 Similarity Dataset 2 Time
k-means — 0.7804 445.05 0.2856 705.21
wand-k-means 100 0.7810 83.54 0.2858 324.78
wand-k-means 10 0.7811 75.88 0.2856 243.9
wand-k-means 1 0.7813 61.17 0.2709 100.84

Table 2: The average point to centroid similarity at iteration 13 and average iteration time (in minutes) as
a function of `
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Figure 1: Evaluation of wand-k-means on Data 1 as function of di↵erent values of `: (a) The average point to
centroid similarity at each iteration (b) The running time per iteration.

!"#$%

!"#$$%

!"#&%

!"#&$%

!"##%

!"##$%

!"#'%

!"#'$%

!"#(%

!"#($%

)% ))% *)% +)% ,)% $)% &)% #)%

!"
#
"$%
&"
'(
)

*'+&%,-.)

/0+&%1+)!"#"$%&"'()2+&)*'+&%,-.)

-./0123%

4125.-./01236%78$!%

4125.-./01236%78)!!%

4125.-./01236%78*!!%

4125.-./01236%78$!!%

(a)

!"!!#

$"!!#

%"!!#

&"!!#

'"!!#

(!"!!#

($"!!#

(# ((# $(# )(# %(# *(# &(# +(#

!"
#
$%
&#

"'
(%

)*$+,-.'%

!"#$%/$+%"*$+,-.'%

,-./01023-.45#67*!#

,-./01023-.45#67(!!#

,-./01023-.45#67$!!#

,-./01023-.45#67*!!#

(b)

Figure 2: Evaluation of wand-k-means on Dataset 1 as a function of di↵erent values of p: (a) The average point to

centroid similarity at each iteration (b) The running time per iteration. Note that we de not display the running time

of k-means in part (b) since it is over 50 times slower.

the similarity for those documents that are assigned to some
cluster at each iteration.) Note that we removed the run-
ning time of k-means from Figure 2(b) since it is almost two
orders of magnitude worse than all of the other methods.

4.4 Number of Clusters
Next we investigate the performance of the algorithm as

we increase the number of clusters, k beyond to 3,000 and
6,000.
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System p ` Dataset 1 Similarity Dataset 1 Time ` Dataset 2 Similarity Dataset 2 Time
k-means — — 0.7804 445.05 — 0.2858 705.21
wand-k-means — 1 0.7813 61.17 10 0.2856 243.91
wand-k-means 500 1 0.7817 8.83 10 0.2704 4.00
wand-k-means 200 1 0.7814 6.18 10 0.2855 2.97
wand-k-means 100 1 0.7814 4.72 10 0.2853 1.94
wand-k-means 50 1 0.7803 3.90 10 0.2844 1.39

Table 3: Average point to centroid similarity and iteration time (minutes) at iteration 13 as a function of p .

We observe the same qualitative behavior: the average
similarity of wand-k-means is indistinguishable from k-means,
while the running time is faster by an order of magnitude.

5. RELATED WORK
Clustering. The k-means clustering algorithm remains

a very popular method of clustering over 50 years after its
initial introduction by Lloyd [24]. Its popularity is partly
due to the simplicity of the algorithm and its e↵ectiveness
in practice. Although it can take an exponential number of
steps to converge to a local optimum [34], in all practical sit-
uations it converges after 20-50 iterations (a fact confirmed
by the experiments in Section 4). The latter has been par-
tially explained using smoothed analysis [3, 5] to show that
worst case instances are unlikely to happen.

Although simple, the algorithm has a running time of
O(nkd) per iteration, which can become large as either the
number of points, clusters, or the dimensionality of the dataset
increases. The running time is dominated by the computa-
tion of the nearest cluster center to every point, a process
taking O(kd) time per point. Previous work, [14, 20] used
the fact that both points and clusters lie in a metric space to
reduce the number of such computations. Other authors [28,
29] showed how to use kd-trees and other data structures to
greatly speed up the algorithm in low dimensional situations.

Since the di�culty lies in finding the nearest cluster for
each of the data points, we can instead look for nearest
neighbor search methods. The question of finding a nearest
neighbor has a long and storied history. Recently, locality
sensitive hashing, LSH [2] has gained in popularity. For the
specific case of document retrieval, inverted indices [6] are
the state of the art. We note that a straightforward appli-
cation of both of these approaches would require rebuilding
the data structure and querying it n times during every it-
eration, thereby negating most, if not all, of the savings over
a straightforward naive implementation.

The well known data deluge lead several groups of re-
searchers to investigate the k-means algorithm in the regime
when the number of points, n is very large. Guha et al. [17]
show how to solve k-clustering problems in a data stream
setting where points arrive incrementally one at a time.
Their analysis for the related k-median problem was fur-
ther refined and improved by [13, 25] and most recently by
[10, 31]. However, all of these methods scale poorly with k,
which is the problem we tackle in this work.

As parallel algorithms have reemerged in their popularity
these methods were adapted to speeding up k-means as well,
[1, 7]. In fact the k-means method is implemented in Ma-
hout [16], a popular machine learning package for MapRe-

duce. The all point similarity algorithm proposed in [8] also
uses indexing but focuses on savings achieved by avoiding
the full index construction, rather than repeatedly using the
same index in multiple iterations.
Yet another approach has been suggested by Sculley [30],

who showed how to use a sample of the data to improve the
performance of the k-means algorithm. Similar approaches
were previously used by Jin et al. [19]. Unfortunately this,
and other subsampling methods break down when the av-
erage number of points per cluster is small, requiring large
sample sizes to ensure that no clusters are missed. Finally
our approach is related to subspace clustering [27] where the
data is clustered on a subspace of the dimensions with a goal
to shed noisy or unimportant dimensions. In our approach
we perform the dimension selection based on the centroids
and in an adaptive manner, while executing the clustering
approach. In our current work we are exploring more the
relationship between our approach and some of the reported
subspace clustering approaches.
Indexing. A recent survey and a comparative study of

in-memory Term at a time (TAAT) and document at a time
(DAAT) algorithms was reported in [15]. A large study of
known TAAT and DAAT algorithms was conducted by [22]
on the Terrier IR platform with disk-based postings lists
using TREC collections They found that in terms of the
number of scoring computations, the Mo↵at TAAT algo-
rithm [26] had the best performance, though it came at a
tradeo↵ of loss of precision compared to naive TAAT ap-
proaches and the TAAT and DAAT MAXSCORE algo-
rithms [33]. In this paper we did not evaluate approximate
algorithms such as Mo↵at TAAT [26]. We leave this study
as future work. Finally, a memory-e�cient TAAT query
evaluation algorithm was proposed in [23].

6. CONCLUSION
In this work we showed that using centroids as queries into

a nearest neighbor data structure built on the data points
can be very e↵ective in reducing the number of distance com-
putations needed by the k-means clustering method. Addi-
tionally, we showed that using the full information from the
WAND algorithm, and sparsifying the centroids further im-
proves performance. Our experimental evaluation over two
real world data sets shows that the approach proposed in
this paper is viable in practice, with up to a 20x reduction
in the computation time, especially for large values of k.
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8.2. Faceted Search
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Figure 1: The opening page shows a text search
box and the first level of metadata terms. Hovering
over a facet name yields a tooltip (here shown below
“Location”) explaining the meaning of the facet.

misfiled classification; these issues did not appear to disrupt
the flow of the participants’ searches nor did they negatively
affect their evaluation of the system. The leaf-level category
labels were manually organized into hierarchical facets,
using breadth and depth guidelines similar to those in [2].

INTERFACE DESIGN
The Faceted Category Interface
Unifying Goals
Our design goals are to support search usability guidelines
[16], while avoiding negative consequences like empty
result sets or feelings of being lost. Because searching
and browsing are useful for different types of tasks, our
design strives to seamlessly integrate both searching and
browsing functionality throughout. Results can be selected
by keyword search, by pre-assigned metadata terms, or
by a combination of both. Each facet is associated with a
particular hue throughout the interface. Categories, query
terms, and item groups in each facet are shown in lightly
shaded boxes, whose colors are computed by adjusting value
and saturation but maintaining the appropriate hue.

In working with a large collection of items and a large
number of metadata terms, it is essential to avoid over-
whelming the user with complexity. We do this by keeping
results organized, by sticking to simple point-and-click
interactions instead of imposing any special query syntax on
the user, and by not showing any links that would lead to
zero results. Every hyperlink that selects a new result set is
displayed with a query preview (an indicator of the number
of results to expect).

The design can be thought of as having three stages, by rough
analogy to a game of chess: the opening, middle game,
and endgame. The most natural progression is to proceed
through the stages in order, but users are not forced to do so.

Figure 2: Middle game (items grouped by location).
Opening
The primary aims of the opening are to present a broad
overview of the entire collection and to allow many starting
paths for exploration. The opening page (Figure 1) displays
each metadata facet along with its top-level categories. This
provides many navigation possibilities, while immediately
familiarizing the user with the high-level information struc-
ture of the collection. The opening also provides a text box
for entering keyword searches, giving the user the freedom
to choose between starting by searching or browsing.

Selecting a category or entering a keyword gathers an initial
result set of matching items for further refinement, and
brings the user into the middle game.
Middle Game
In the middle game (Figure 2) the result set is evaluated and
manipulated, usually to narrow it down. There are three main
parts of this display: the result set, which occupies most
of the page; the category terms that apply to the items in
the result set, which are listed along the left by facet (we
refer to this category listing as The Matrix); and the current
query, which is shown at the top. A search box remains
available (for searching within the current result set or within
the entire collection), and a link provides a way to return to
the opening.

The key aim here is organization, so the design offers flexible
methods of organizing the results. The items in the result set
can be sorted on various fields, or they can be grouped into
categories by any facet. Selecting a category both narrows
the result set and organizes the result set in terms of the
newly selected facet. For instance, suppose a user is cur-
rently looking at the results of selecting the category Bridges
from the Places facet. If the user then selects Europe from
the Locations facet, not only is the category Europe added to
the query, but the results are organized by the subcategories
of Europe, namely France, Italy, and so on. Generalizing or
removing a category term broadens the result set. Selecting
an individual item takes the user to the endgame.

Ft. Lauderdale, Florida, USA • April 5-10, 2003                                                                                            Paper: Searching and Organizing 
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Faceted Search
๏ Faceted search [3,7] supports the user  

in exploring/navigating a collection of  
documents (e.g., query results) 

๏ Facets are orthogonal sets of categories 
that can be flat or hierarchical, e.g.: 
๏ topic: arts & photography, biographies & memoirs, etc. 

๏ origin: Europe > France > Provence, Asia > China  > Beijing, etc. 

๏ price: 1–10$, 11–50$, 51–100$, etc.  

๏ Facets are manually curated or automatically derived from meta-data
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Figure 1: The opening page shows a text search
box and the first level of metadata terms. Hovering
over a facet name yields a tooltip (here shown below
“Location”) explaining the meaning of the facet.

misfiled classification; these issues did not appear to disrupt
the flow of the participants’ searches nor did they negatively
affect their evaluation of the system. The leaf-level category
labels were manually organized into hierarchical facets,
using breadth and depth guidelines similar to those in [2].

INTERFACE DESIGN
The Faceted Category Interface
Unifying Goals
Our design goals are to support search usability guidelines
[16], while avoiding negative consequences like empty
result sets or feelings of being lost. Because searching
and browsing are useful for different types of tasks, our
design strives to seamlessly integrate both searching and
browsing functionality throughout. Results can be selected
by keyword search, by pre-assigned metadata terms, or
by a combination of both. Each facet is associated with a
particular hue throughout the interface. Categories, query
terms, and item groups in each facet are shown in lightly
shaded boxes, whose colors are computed by adjusting value
and saturation but maintaining the appropriate hue.

In working with a large collection of items and a large
number of metadata terms, it is essential to avoid over-
whelming the user with complexity. We do this by keeping
results organized, by sticking to simple point-and-click
interactions instead of imposing any special query syntax on
the user, and by not showing any links that would lead to
zero results. Every hyperlink that selects a new result set is
displayed with a query preview (an indicator of the number
of results to expect).

The design can be thought of as having three stages, by rough
analogy to a game of chess: the opening, middle game,
and endgame. The most natural progression is to proceed
through the stages in order, but users are not forced to do so.

Figure 2: Middle game (items grouped by location).
Opening
The primary aims of the opening are to present a broad
overview of the entire collection and to allow many starting
paths for exploration. The opening page (Figure 1) displays
each metadata facet along with its top-level categories. This
provides many navigation possibilities, while immediately
familiarizing the user with the high-level information struc-
ture of the collection. The opening also provides a text box
for entering keyword searches, giving the user the freedom
to choose between starting by searching or browsing.

Selecting a category or entering a keyword gathers an initial
result set of matching items for further refinement, and
brings the user into the middle game.
Middle Game
In the middle game (Figure 2) the result set is evaluated and
manipulated, usually to narrow it down. There are three main
parts of this display: the result set, which occupies most
of the page; the category terms that apply to the items in
the result set, which are listed along the left by facet (we
refer to this category listing as The Matrix); and the current
query, which is shown at the top. A search box remains
available (for searching within the current result set or within
the entire collection), and a link provides a way to return to
the opening.

The key aim here is organization, so the design offers flexible
methods of organizing the results. The items in the result set
can be sorted on various fields, or they can be grouped into
categories by any facet. Selecting a category both narrows
the result set and organizes the result set in terms of the
newly selected facet. For instance, suppose a user is cur-
rently looking at the results of selecting the category Bridges
from the Places facet. If the user then selects Europe from
the Locations facet, not only is the category Europe added to
the query, but the results are organized by the subcategories
of Europe, namely France, Italy, and so on. Generalizing or
removing a category term broadens the result set. Selecting
an individual item takes the user to the endgame.

Ft. Lauderdale, Florida, USA • April 5-10, 2003                                                                                            Paper: Searching and Organizing 
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Automatic Facet Generation
๏ Need to manually curate facets prevents their application for 

large-scale document collections with sparse meta-data  

๏ Dou et al. [3] investigate how facets can be automatically mined 
in a query-dependent manner from pseudo-relevant documents  

๏ Observation: Categories (e.g., brands, price ranges, colors, 
sizes, etc.) are typically represented as lists in web pages  

๏ Idea: Extract lists from web pages, rank and cluster them,  
and use the consolidated lists as facets 
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List Extraction
๏ Lists are extracted from web pages using several patterns 

๏ enumerations of items in text (e.g., we serve beef, lamb, and chicken) 
via: item{, item}* (and|or) {other} item 

๏ HTML form elements (<SELECT>) and lists (<UL><OL>) 
ignoring instructions such as “select” or “chose” 

๏ as rows and columns of HTML tables (<TABLE>)  
ignoring header and footer rows  

๏ Items in extracted lists are post-processed, removing non-
alphanumeric characters (e.g., brackets), converting them to 
lower case, and removing items longer than 20 terms 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List Weighting
๏ Some of the extracted lists are spurious (e.g., from HTML tables) 

๏ Intuition: Good lists consist of items that are informative to the 
query, i.e., are mentioned in many pseudo-relevant documents 

๏ Lists weighted taking into account a document matching weight 
SDOC and their average inverse document frequency SIDF 

๏ Document matching weight SDOC 
 
 
 
with sdm as fraction of list items mention in document d 
and sdr as importance of document d (estimated as rank(d)-1/2) 
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Sl = SDOC · SIDF

SDOC =
X

d2R

(smd · srd)
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List Weighting
๏ Average inverse document SIDF is defined as 
 
 

๏ Problem: Individual lists (extracted from a single document) may 
still contain noise, be incomplete, or overlap with other lists  

๏ Idea: Cluster lists containing similar items to consolidate them and 
form dimensions that can be used as facets

15
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List Clustering
๏ Distance between two lists is defined as  
 
 

๏ Complete-linkage distance between two clusters  
 

๏ Greedy clustering algorithm 
๏ pick most important not-yet-clustered list 

๏ add nearest lists while cluster diameter is smaller than Diamax 

๏ save cluster it total weight is larger than Wmin

16

d(l1, l2) = 1� |l1 \ l2|
min{|l1|, |l2|}

d(c1, c2) = maxl12c1, l22c2d(l1, l2)



Advanced Topics in Information Retrieval / Mining & Organization

Dimension and Item Ranking
๏ Problem: In which order to present dimensions and items therein? 

๏ Importance of a dimension (cluster) is defined as  
 
 
 
favoring dimensions grouping lists with high weight  

๏ Importance of an item within a dimension defined as 
 
 
 
favoring items which are often ranked high within containing lists 

17

Sc =
X

s2Sites(c)

maxl2c, l2sSl

Si|c =
X

s2Sites(c)

1p
AvgRank(c, i, s)



Advanced Topics in Information Retrieval / Mining & Organization

Anecdotal Results
๏ Dimensions mined from top-100 of commercial search engine

18

Table 1: Example query dimensions (automatically
mined by our proposed method in this paper). Items
in each dimension are seperated by commas.
query: watches
1. cartier, breitling, omega, citizen, tag heuer, bulova, casio,
rolex, audemars piguet, seiko, accutron, movado, fossil, gucci, . . .
2. men’s, women’s, kids, unisex
3. analog, digital, chronograph, analog digital, quartz, mechani-
cal, manual, automatic, electric, dive, . . .
4. dress, casual, sport, fashion, luxury, bling, pocket, . . .
5. black, blue, white, green, red, brown, pink, orange, yellow, . . .

query: lost
1. season 1, season 6, season 2, season 3, season 4, season 5
2. matthew fox, naveen andrews, evangeline lilly, josh holloway,
jorge garcia, daniel dae kim, michael emerson, terry o’quinn, . . .
3. jack, kate, locke, sawyer, claire, sayid, hurley, desmond, boone,
charlie, ben, juliet, sun, jin, ana, lucia . . .
4. what they died for, across the sea, what kate does, the candi-
date, the last recruit, everybody loves hugo, the end, . . .

query: lost season 5
1. because you left, the lie, follow the leader, jughead, 316, dead
is dead, some like it hoth, whatever happened happened, the little
prince, this place is death, the variable, . . .
2. jack, kate, hurley, sawyer, sayid, ben, juliet, locke, miles,
desmond, charlotte, various, sun, none, richard, daniel
3. matthew fox, naveen andrews, evangeline lilly, jorge garcia,
henry ian cusick, josh holloway, michael emerson, . . .
4. season 1, season 3, season 2, season 6, season 4

query: flowers
1. birthday, anniversary, thanksgiving, get well, congratulations,
christmas, thank you, new baby, sympathy, fall
2. roses, best sellers, plants, carnations, lilies, sunflowers, tulips,
gerberas, orchids, iris
3. blue, orange, pink, red, purple, white, green, yellow

query: what is the fastest animals in the world
1. cheetah, pronghorn antelope, lion, thomson’s gazelle, wilde-
beest, cape hunting dog, elk, coyote, quarter horse
2. birds, fish, mammals, animals, reptiles
3. science, technology, entertainment, nature, sports, lifestyle,
travele, gaming, world business

query: the presidents of the united states
1. john adams, thomas jefferson, george washington, john tyler,
james madison, abraham lincoln, john quincy adams, william
henry harrison, martin van buren, james monroe, . . .
2. the presidents of the united states of america, the presidents of
the united states ii, love everybody, pure frosting, these are the
good times people, freaked out and small, . . .
3. kitty, lump, peaches, dune buggy, feather pluckn, back porch,
kick out the jams, stranger, boll weevil, ca plane pour moi, . . .
4. federalist, democratic-republican, whig, democratic, republi-
can, no party, national union, . . .

query: visit beijing
1. tiananmen square, forbidden city, summer palace, temple of
heaven, great wall, beihai park, hutong
2. attractions, shopping, dining, nightlife, tours, travel tip, trans-
portation, facts

query: cikm
1. databases, information retrieval, knowledge management, in-
dustry research track
2. submission, important dates, topics, overview, scope, com-
mittee, organization, programme, registration, cfp, publication,
programme committee, organisers, . . .
3. acl, kdd, chi, sigir, www, icml, focs, ijcai, osdi, sigmod, sosp,
stoc, uist, vldb, wsdm, . . .

is unique in two aspects: (1) Open domain: we do not
restrict queries in a specific domain, like products, people,
etc. Our proposed approach is generic and does not rely
on any specific domain knowledge. Thus it can deal with
open-domain queries. (2) Query dependent: instead of a
same pre-defined schema for all queries, we extract dimen-
sions from the top retrieved documents for each query. As a

result, different queries may have different dimensions. For
example, although “lost” and “lost season 5” in Table 1 are
both TV program related queries, their mined dimensions
are different.

As the problem of finding query dimension is new, we
cannot find publicly available evaluation datasets. There-
fore, we create two datasets, namely UserQ, containing 89
queries that are submitted by QDMiner users, and RandQ,
containing 105 randomly sampled queries from logs of a com-
mercial search engine, to evaluate mined dimensions. We use
some existing metrics, such as purity and normalized mutual
information (NMI), to evaluate clustering quality, and use
NDCG to evaluate ranking effectiveness of dimensions. We
further propose two metrics to evaluate the integrated effec-
tiveness of clustering and ranking.

Experimental results show that the purity of query dimen-
sions generated by QDMiner is good. Averagely on UserQ
dataset, it is as high as 91%. The dimensions are also reason-
ably ranked with an average NDCG@5 value 0.69. Among
the top five dimensions, 2.3 dimensions are good, 1.2 ones
are fair, and only 1.5 are bad. We also reveal that the qual-
ity of query dimensions is affected by the quality and the
quantity of search results. Using more of the top results can
generate better query dimensions.

The remainder of this paper is organized as follows. We
briefly introduce related work in Section 2. Following this,
we propose QDminer, our approach to generate query di-
mensions by aggregating frequent lists in top results, in Sec-
tion 3. We discuss evaluation methodology in Section 4 and
report experimental results in Section 5. Finally we conclude
the work in Section 6.

2. RELATED WORK
Finding query dimensions is related to several existing re-

search topics. In this section, we briefly review them and
discuss the difference from our proposed method QDMiner.

2.1 Query Reformulation
Query reformulation is the process of modifying a query

to get search results that can better satisfy a user’s informa-
tion need. It is an important topic in Web search. Several
techniques have been proposed based on relevance feedback,
query log analysis, and distributional similarity [1, 25, 2, 33,
28, 34, 36, 17]. The problem of mining dimensions is differ-
ent from query reformulation, as the main goal of mining
dimensions is to summarize the knowledge and information
contained in the query, rather than to find a list of related
or expanded queries. Some query dimensions include seman-
tically related phrases or terms that can be used as query
reformulations, but some others cannot. For example, for
the query “what is the fastest animals in the world” in Ta-
ble 1, we generate a dimension “cheetah, pronghorn ante-
lope, lion, thomson’s gazelle, wildebeest, ...” which includes
animal names that are direct answers rather than query re-
formulations to the query.

2.2 Query-based Summarization
Query dimensions can be thought as a specific type of

summaries that briefly describe the main topic of given text.
Several approaches [8, 27, 21] have been developed in the
area of text summarization, and they are classified into dif-
ferent categories in terms of their summary construction
methods (abstractive or extractive), the number of sources
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Table 1: Example query dimensions (automatically
mined by our proposed method in this paper). Items
in each dimension are seperated by commas.
query: watches
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rolex, audemars piguet, seiko, accutron, movado, fossil, gucci, . . .
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5. black, blue, white, green, red, brown, pink, orange, yellow, . . .
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3. acl, kdd, chi, sigir, www, icml, focs, ijcai, osdi, sigmod, sosp,
stoc, uist, vldb, wsdm, . . .

is unique in two aspects: (1) Open domain: we do not
restrict queries in a specific domain, like products, people,
etc. Our proposed approach is generic and does not rely
on any specific domain knowledge. Thus it can deal with
open-domain queries. (2) Query dependent: instead of a
same pre-defined schema for all queries, we extract dimen-
sions from the top retrieved documents for each query. As a

result, different queries may have different dimensions. For
example, although “lost” and “lost season 5” in Table 1 are
both TV program related queries, their mined dimensions
are different.

As the problem of finding query dimension is new, we
cannot find publicly available evaluation datasets. There-
fore, we create two datasets, namely UserQ, containing 89
queries that are submitted by QDMiner users, and RandQ,
containing 105 randomly sampled queries from logs of a com-
mercial search engine, to evaluate mined dimensions. We use
some existing metrics, such as purity and normalized mutual
information (NMI), to evaluate clustering quality, and use
NDCG to evaluate ranking effectiveness of dimensions. We
further propose two metrics to evaluate the integrated effec-
tiveness of clustering and ranking.

Experimental results show that the purity of query dimen-
sions generated by QDMiner is good. Averagely on UserQ
dataset, it is as high as 91%. The dimensions are also reason-
ably ranked with an average NDCG@5 value 0.69. Among
the top five dimensions, 2.3 dimensions are good, 1.2 ones
are fair, and only 1.5 are bad. We also reveal that the qual-
ity of query dimensions is affected by the quality and the
quantity of search results. Using more of the top results can
generate better query dimensions.

The remainder of this paper is organized as follows. We
briefly introduce related work in Section 2. Following this,
we propose QDminer, our approach to generate query di-
mensions by aggregating frequent lists in top results, in Sec-
tion 3. We discuss evaluation methodology in Section 4 and
report experimental results in Section 5. Finally we conclude
the work in Section 6.

2. RELATED WORK
Finding query dimensions is related to several existing re-

search topics. In this section, we briefly review them and
discuss the difference from our proposed method QDMiner.

2.1 Query Reformulation
Query reformulation is the process of modifying a query

to get search results that can better satisfy a user’s informa-
tion need. It is an important topic in Web search. Several
techniques have been proposed based on relevance feedback,
query log analysis, and distributional similarity [1, 25, 2, 33,
28, 34, 36, 17]. The problem of mining dimensions is differ-
ent from query reformulation, as the main goal of mining
dimensions is to summarize the knowledge and information
contained in the query, rather than to find a list of related
or expanded queries. Some query dimensions include seman-
tically related phrases or terms that can be used as query
reformulations, but some others cannot. For example, for
the query “what is the fastest animals in the world” in Ta-
ble 1, we generate a dimension “cheetah, pronghorn ante-
lope, lion, thomson’s gazelle, wildebeest, ...” which includes
animal names that are direct answers rather than query re-
formulations to the query.

2.2 Query-based Summarization
Query dimensions can be thought as a specific type of

summaries that briefly describe the main topic of given text.
Several approaches [8, 27, 21] have been developed in the
area of text summarization, and they are classified into dif-
ferent categories in terms of their summary construction
methods (abstractive or extractive), the number of sources
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8.3. Tracking Memes
๏ Leskovec et al. [5] track memes (e.g., “lipstick on a pig”) and 

visualize their volume in traditional news and blogs  
 
 
 
 
 
 
 
 
 
 

๏ Demo: http://www.memetracker.org
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Figure 4: Top 50 threads in the news cycle with highest volume for the period Aug. 1 – Oct. 31, 2008. Each thread consists of all news
articles and blog posts containing a textual variant of a particular quoted phrases. (Phrase variants for the two largest threads in
each week are shown as labels pointing to the corresponding thread.) The data is drawn as a stacked plot in which the thickness of the
strand corresponding to each thread indicates its volume over time. Interactive visualization is available at http://memetracker.org.

Figure 5: Temporal dynamics of top threads as generated by our model. Only two ingredients, namely imitation and a preference to
recent threads, are enough to qualitatively reproduce the observed dynamics of the news cycle.

3. GLOBAL ANALYSIS: TEMPORAL VARI-
ATION AND A PROBABILISTIC MODEL

Having produced phrase clusters, we now construct the individ-
ual elements of the news cycle. We define a thread associated with
a given phrase cluster to be the set of all items (news articles or
blog posts) containing some phrase from the cluster, and we then
track all threads over time, considering both their individual tem-
poral dynamics as well as their interactions with one another.

Using our approach we completely automatically created and
also automatically labeled the plot in Figure 4, which depicts the
50 largest threads for the three-month period Aug. 1 – Oct. 31. It
is drawn as a stacked plot, a style of visualization (see e.g. [16])
in which the thickness of each strand corresponds to the volume of
the corresponding thread over time, with the total area equal to the
total volume. We see that the rising and falling pattern does in fact
tell us about the patterns by which blogs and the media successively
focus and defocus on common story lines.

An important point to note at the outset is that the total number
of articles and posts, as well as the total number of quotes, is ap-
proximately constant over all weekdays in our dataset. (Refer to [1]
for the plots.) As a result, the temporal variation exhibited in Fig-
ure 4 is not the result of variations in the overall amount of global
news and blogging activity from one day to the next. Rather, the

periods when the upper envelope of the curve are high correspond
to times when there is a greater degree of convergence on key sto-
ries, while the low periods indicate that attention is more diffuse,
spread out over many stories. There is a clear weekly pattern in
this (again, despite the relatively constant overall volume), with
the five large peaks between late August and late September corre-
sponding, respectively, to the Democratic and Republican National
Conventions, the overwhelming volume of the “lipstick on a pig”
thread, the beginning of peak public attention to the financial crisis,
and the negotiations over the financial bailout plan. Notice how the
plot captures the dynamics of the presidential campaign coverage
at a very fine resolution. Spikes and the phrases pinpoint the exact
events and moments that triggered large amounts of attention.

Moreover, we have evaluated competing baselines in which we
produce topic clusters using standard methods based on probabilis-
tic term mixtures (e.g. [7, 8]).2 The clusters produced for this time
period correspond to much coarser divisions of the content (poli-
tics, technology, movies, and a number of essentially unrecogniz-
able clusters). This is consistent with our initial observation in Sec-
tion 1 that topical clusters are working at a level of granularity dif-
ferent from what is needed to talk about the news cycle. Similarly,
producing clusters from the most linked-to documents [23] in the

2As these do not scale to the size of the data we have here, we could
only use a subset of 10,000 most highly linked-to articles.
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Phrase Graph Construction
๏ Problem: Memes are often modified as they spread, so that first 

all mentions of the same meme need to be identified 

๏ Construction of a phrase graph G(V, E): 
๏ vertices V correspond to mentions of a meme  

that are reasonably long and occur often enough 

๏ edge (u,v) exists if meme mentions u and v 

๏ u is strictly shorter than v 

๏ either: have small directed token-level edit distance  
(i.e., u can be transformed into v by adding at most ε tokens) 

๏ or: have a common word sequence of length at least k


๏ edge weights based on edit distance between u and v 
and how often v occurs in the document collection
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Phrase Graph Partitioning

๏ Phrase graph is an directed acyclic graph (DAG) by construction 

๏ Partition G(V, E) by deleting a set of edges 
having minimum total weight, so that  
each resulting component is single-rooted 

๏ Phrase graph partitioning is NP-hard,  
hence addressed by greedy heuristic algorithm
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as being so imperfect he is palling around with terrorists who would target their own country

a force for good in the world

we see america as a force for good in this world we see america as
a force for exceptionalism our opponents see america as imperfect

enough to pal around with terrorists who would bomb their own country

s as being so imperfect enough
uld target their own country

america it seems as being so imperfect

this is not a man who sees america as you see america and as i see america

this is not a man who sees america as you see it and how i see america

palling around with terrorists who would target their own country

that he�s palling around with terrorists who would target their own country

pal around with terrorists who targeted their own country

palling around with terrorists who target their own country

this is someone who sees america as impe
around with terrorists who targeted th

our opponent is someone who sees america as imperfect enough to pal around with
terrorists who targeted their own country

our opponent though is someone who sees america it seems as being so imperfect
that he�s palling around with terrorists who would target their own country

this is not a man who sees america as you see it and how i see america we see

imperfect imperfect enough that
ld target their own country

perfect imperfect enough that
would target their own country

is someone who sees america it seems as being so imperfect that he�s palling
around with terrorists who would target their own country

our opponent is someone who sees america it seems as being so imperfect that
he�s palling around with terrorists who would target their own country

our opponent is someone who sees america as imperfect enough to pal around with
terrorists who target their own country

we see america as a force of good in this
world we see an america of exceptionalism

someone who sees america as imperfe
around with terrorists who targeted th

someone who sees america it seems as being so imperfect that he�s palling around
with terrorists who would target their own country

sees america as imperfect enough to pal around with terrorists who targeted their own country

terrorists who would target their own country

imperfect enough that he�s palling around
with terrorists who would target their country

Figure 1: A small portion of the full set of variants of Sarah Palin’s quote, “Our opponent is someone who sees America, it seems,
as being so imperfect, imperfect enough that he’s palling around with terrorists who would target their own country.” The arrows
indicate the (approximate) inclusion of one variant in another, as part of the methodology developed in Section 2.
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Figure 2: Phrase graph. Each phrase is a node and we want to
delete the least edges so that each resulting connected compo-
nent has a single root node/phase, a node with zero out-edges.
By deleting the indicated edges we obtain the optimal solution.

To begin, we define some terminology. We will refer to each
news article or blog post as an item, and refer to a quoted string
that occurs in one or more items as a phrase. Our goal is to pro-
duce phrase clusters, which are collections of phrases deemed to
be close textual variants of one another. We will do this by building
a phrase graph where each phrase is represented by a node and di-
rected edges connect related phrases. Then we partition this graph
in such a way that its components will be the phrase clusters.

We first discuss how to construct the graph, and then how we par-
tition it. The dominant way in which one finds textual variants in
our quote data is excerpting — when phrase p is a contiguous sub-
sequence of the words in phrase q. Thus, we build the phrase graph
to capture these kinds of inclusion relations, relaxing the notion of
inclusion to allow for very small mismatches between phrases.

The phrase graph. First, to avoid spurious phrases, we set a lower
bound L on the word-length of phrases we consider, and a lower
bound M on their frequency — the number of occurrences in the
full corpus. We also eliminate phrases for which at least an ε frac-
tion occur on a single domain — inspection reveals that frequent

phrases with this property are exclusively produced by spammers.
(We use ε = .25, L = 4, and M = 10 in our implementation.)

After this pre-processing, we build a graph G on the set of quoted
phrases. The phrases constitute the nodes; and we include an edge
(p, q) for every pair of phrases p and q such that p is strictly shorter
than q, and p has directed edit distance to q — treating words as
tokens — that is less than a small threshold δ (δ = 1 in our im-
plementation) or there is at least a k-word consecutive overlap be-
tween the phrases we use k = 10). Since all edges (p, q) point from
shorter phrases to longer phrases, we have a directed acyclic graph
(DAG) G at this point. In general, one could use more complicated
natural language processing techniques, or external data to create
the edges in the phrase graph. We experimented with various other
techniques and found the current approach robust and scalable.

Thus, G encodes an approximate inclusion relationship or long
consecutive overlap among all the quoted phrases in the data, al-
lowing for small amounts of textual mutation. Figure 1 depicts a
very small portion of the phrase DAG for our data, zoomed in on
a few of the variants of a quote by Sarah Palin. Only edges with
endpoints not connected by some other path in the DAG are shown.

We now add weights wpq to the edges (p, q) of G, reflecting
the importance of each edge. The weight is defined so that it de-
creases in the directed edit distance from p to q, and increases in
the frequency of q in the corpus. This latter dependence is impor-
tant, since we particularly wish to preserve edges (p, q) when the
inclusion of p in q is supported by many occurrences of q.

Partitioning the phrase graph. How should we recognize a good
phrase cluster, given the structure of G? The central idea is that
we are looking for a collection of phrases related closely enough
that they can all be explained as “belonging” either to a single long
phrase q, or to a single collection of phrases. The outgoing paths
from all phrases in the cluster should flow into a single root node
q, where we define a root in G to be a node with no outgoing edges
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indicate the (approximate) inclusion of one variant in another, as part of the methodology developed in Section 2.
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Figure 2: Phrase graph. Each phrase is a node and we want to
delete the least edges so that each resulting connected compo-
nent has a single root node/phase, a node with zero out-edges.
By deleting the indicated edges we obtain the optimal solution.

To begin, we define some terminology. We will refer to each
news article or blog post as an item, and refer to a quoted string
that occurs in one or more items as a phrase. Our goal is to pro-
duce phrase clusters, which are collections of phrases deemed to
be close textual variants of one another. We will do this by building
a phrase graph where each phrase is represented by a node and di-
rected edges connect related phrases. Then we partition this graph
in such a way that its components will be the phrase clusters.

We first discuss how to construct the graph, and then how we par-
tition it. The dominant way in which one finds textual variants in
our quote data is excerpting — when phrase p is a contiguous sub-
sequence of the words in phrase q. Thus, we build the phrase graph
to capture these kinds of inclusion relations, relaxing the notion of
inclusion to allow for very small mismatches between phrases.

The phrase graph. First, to avoid spurious phrases, we set a lower
bound L on the word-length of phrases we consider, and a lower
bound M on their frequency — the number of occurrences in the
full corpus. We also eliminate phrases for which at least an ε frac-
tion occur on a single domain — inspection reveals that frequent

phrases with this property are exclusively produced by spammers.
(We use ε = .25, L = 4, and M = 10 in our implementation.)

After this pre-processing, we build a graph G on the set of quoted
phrases. The phrases constitute the nodes; and we include an edge
(p, q) for every pair of phrases p and q such that p is strictly shorter
than q, and p has directed edit distance to q — treating words as
tokens — that is less than a small threshold δ (δ = 1 in our im-
plementation) or there is at least a k-word consecutive overlap be-
tween the phrases we use k = 10). Since all edges (p, q) point from
shorter phrases to longer phrases, we have a directed acyclic graph
(DAG) G at this point. In general, one could use more complicated
natural language processing techniques, or external data to create
the edges in the phrase graph. We experimented with various other
techniques and found the current approach robust and scalable.

Thus, G encodes an approximate inclusion relationship or long
consecutive overlap among all the quoted phrases in the data, al-
lowing for small amounts of textual mutation. Figure 1 depicts a
very small portion of the phrase DAG for our data, zoomed in on
a few of the variants of a quote by Sarah Palin. Only edges with
endpoints not connected by some other path in the DAG are shown.

We now add weights wpq to the edges (p, q) of G, reflecting
the importance of each edge. The weight is defined so that it de-
creases in the directed edit distance from p to q, and increases in
the frequency of q in the corpus. This latter dependence is impor-
tant, since we particularly wish to preserve edges (p, q) when the
inclusion of p in q is supported by many occurrences of q.

Partitioning the phrase graph. How should we recognize a good
phrase cluster, given the structure of G? The central idea is that
we are looking for a collection of phrases related closely enough
that they can all be explained as “belonging” either to a single long
phrase q, or to a single collection of phrases. The outgoing paths
from all phrases in the cluster should flow into a single root node
q, where we define a root in G to be a node with no outgoing edges
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Applications
๏ Clustering of meme mentions allows for insightful analyses, e.g.: 

๏ volume of meme per time interval 

๏ peek time of meme in traditional news and social media 

๏ time lag between peek times in traditional news and social media

22

Figure 4: Top 50 threads in the news cycle with highest volume for the period Aug. 1 – Oct. 31, 2008. Each thread consists of all news
articles and blog posts containing a textual variant of a particular quoted phrases. (Phrase variants for the two largest threads in
each week are shown as labels pointing to the corresponding thread.) The data is drawn as a stacked plot in which the thickness of the
strand corresponding to each thread indicates its volume over time. Interactive visualization is available at http://memetracker.org.

Figure 5: Temporal dynamics of top threads as generated by our model. Only two ingredients, namely imitation and a preference to
recent threads, are enough to qualitatively reproduce the observed dynamics of the news cycle.

3. GLOBAL ANALYSIS: TEMPORAL VARI-
ATION AND A PROBABILISTIC MODEL

Having produced phrase clusters, we now construct the individ-
ual elements of the news cycle. We define a thread associated with
a given phrase cluster to be the set of all items (news articles or
blog posts) containing some phrase from the cluster, and we then
track all threads over time, considering both their individual tem-
poral dynamics as well as their interactions with one another.

Using our approach we completely automatically created and
also automatically labeled the plot in Figure 4, which depicts the
50 largest threads for the three-month period Aug. 1 – Oct. 31. It
is drawn as a stacked plot, a style of visualization (see e.g. [16])
in which the thickness of each strand corresponds to the volume of
the corresponding thread over time, with the total area equal to the
total volume. We see that the rising and falling pattern does in fact
tell us about the patterns by which blogs and the media successively
focus and defocus on common story lines.

An important point to note at the outset is that the total number
of articles and posts, as well as the total number of quotes, is ap-
proximately constant over all weekdays in our dataset. (Refer to [1]
for the plots.) As a result, the temporal variation exhibited in Fig-
ure 4 is not the result of variations in the overall amount of global
news and blogging activity from one day to the next. Rather, the

periods when the upper envelope of the curve are high correspond
to times when there is a greater degree of convergence on key sto-
ries, while the low periods indicate that attention is more diffuse,
spread out over many stories. There is a clear weekly pattern in
this (again, despite the relatively constant overall volume), with
the five large peaks between late August and late September corre-
sponding, respectively, to the Democratic and Republican National
Conventions, the overwhelming volume of the “lipstick on a pig”
thread, the beginning of peak public attention to the financial crisis,
and the negotiations over the financial bailout plan. Notice how the
plot captures the dynamics of the presidential campaign coverage
at a very fine resolution. Spikes and the phrases pinpoint the exact
events and moments that triggered large amounts of attention.

Moreover, we have evaluated competing baselines in which we
produce topic clusters using standard methods based on probabilis-
tic term mixtures (e.g. [7, 8]).2 The clusters produced for this time
period correspond to much coarser divisions of the content (poli-
tics, technology, movies, and a number of essentially unrecogniz-
able clusters). This is consistent with our initial observation in Sec-
tion 1 that topical clusters are working at a level of granularity dif-
ferent from what is needed to talk about the news cycle. Similarly,
producing clusters from the most linked-to documents [23] in the

2As these do not scale to the size of the data we have here, we could
only use a subset of 10,000 most highly linked-to articles.
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Figure 6: Only a single aspect of the model does not reproduce dynamic behavior. With only preference to recency (left) no thread
prevails as at every time step the latest thread gets attention. With only imitation (right) a single thread gains most of the attention.
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Figure 7: Thread volume increase and decay over time. Notice
the symmetry, quicker decay than buildup, and lower baseline
popularity after the peak.

level, focusing on the temporal dynamics around the peak intensity
of a typical thread, as well as the interplay between the news media
and blogs in producing the structure of this peak.

Thread volume increase and decay. Recall that the volume of a
thread at a time t is simply the number of items it contains with
timestamp t. First we examine how the volume of a thread changes
over time. A natural conjecture here would be to assume an expo-
nential form for the change in the popularity of a phrase over time.
However, somewhat surprisingly we show next that the exponential
function does not increase fast enough to model the behavior.

Given a thread p, we define its peak time tp as the median of the
times at which it occurred in the dataset. We find that threads tend
to have particularly high volume right around this median time, and
hence the value of tp is quite stable under the addition or deletion
of moderate numbers of items to p. We focus on the 1,000 threads
with the largest total volumes (i.e. the largest number of mentions).
For each thread, we determine its volume over time. As different
phrases have different peak time and volume, we then normalize
and align these curves so that tp = 0 for each, and so that the
volume of each at time 0 was equal to 1. Finally, for each time t
we plot the median volume at t over all 1,000 phrase-clusters. This
is depicted in Figure 7.

In general, one would expect the overall volume of a thread to be
very low initially; then as the mass media begins joining in the vol-
ume would rise; and then as it percolates to blogs and other media
it would slowly decay. However, it seems that the behavior tends to
be quite different from this. First, notice that in Figure 7 the rise and
drop in volume is surprisingly symmetric around the peak, which
suggests little or no evidence for a quick build-up followed by a
slow decay. We find that no one simple justifiable function fits the
data well. Rather, it appears that there are two distinct types of be-
havior: the volume outside an 8-hour window centered at the peak
can be well modeled by an exponential function, e−bx, while the
8-hour time window around the peak is best modeled by a logarith-
mic function, a| log(|x|)|. The exponential function is increasing
too slowly to be able to fit the peak, while the logarithm has a pole
at x = 0 (| log(|x|)| → ∞ as x → 0). This is surprising as it
suggests that the peak is a point of “singularity” where the number
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Figure 8: Time lag for blogs and news media. Thread volume in
blogs reaches its peak typically 2.5 hours after the peak thread
volume in the news sources. Thread volume in news sources in-
creases slowly but decrease quickly, while in blogs the increase
is rapid and decrease much slower.

of mentions effectively diverges. Another way to view this is as a
form of Zeno’s paradox: as we approach time 0 from either side,
the volume increases by a fixed increment each time we shrink our
distance to time 0 by a constant factor.

Fitting the function a log(t) to the spike we find that from the
left t → 0− we have a = 0.076, while as t → 0+ we have
a = 0.092. This suggests that the peak builds up more slowly
and declines faster. A similar contrast holds for the exponential de-
cay parameter b. We fit ebt and notice that from the left b = 1.77,
while after the peak b = 2.15, which similarly suggests that the
popularity slowly builds up, peaks and then decays somewhat more
quickly. Finally, we also note that the background frequency be-
fore the peak is around 0.12, while after the peak it drops to around
0.09, which further suggests that threads are more popular before
they reach their peak, and afterwards they decay very quickly.

Time lag between news media and blogs. A common assertion
about the news cycle is that quoted phrases first appear in the news
media, and then diffuse to the blogosphere, where they dwell for
some time. However, the real question is, how often does this hap-
pen? What about the propagation in the opposite direction? What
is the time lag? As we show next, using our approach we can de-
termine the lag within temporal resolution of less than an hour.

We labeled each of our 1.6 million sites as news media or blogs.
To assign the label we used the following rule: if a site appears on
Google News then we label it as news media, and otherwise we
label it as a blog. Although this rule is not perfect we found it to
work quite well in practice. There are 20,000 different news sites in
Google News, which a tiny number when compared to 1.65 million
sites that we track. However, these news media sites generate about
30% of the total number of documents in our dataset. Moreover, if
we only consider documents that contain frequent phrases then the
share of news media documents further rises to 44%.

By analogy with the previous experiment we take the top 1,000
highest volume threads, align them so that each has an overall peak
at tp = 0, but now create two separate volume curves for each
thread: one consisting of the subsequence of its blog items, and
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8.4. Timelines
๏ Timelines visualize, e.g., major events and topics and their 

occurrence/importance as they occur in a collection of 
timestamped documents

23Figure 1: NEAT screenshot for the query george harrison showing (a) main timeline with relevant news articles
and relevant temporal snippets, (b) overview timeline, and (c) major events as semantic temporal anchors.

2. RELATED WORK
We now put the present work in context with existing

prior research. The “Stu↵ I’ve Seen” system described by
Dumais et al. [9] and similar approaches such as Ringel et
al. [13] also make use of temporal information to facilitate
information access. However, in their setting, typically only
publication dates or timestamps of documents, emails, etc.
are considered. In addition we exploit temporal expressions
contained in news articles’ contents in our work. The Time
Frames system described by Koen and Bender [11] is similar
to our work, since it also uses temporal expressions con-
tained in news articles. Their main focus, though, is on
supporting users in reading news articles, but not on search
and exploration.

Our own earlier work is also related but focuses on di↵er-
ent aspects. Alonso et al. [7] present an approach for clus-
tering and exploring search results in timelines. Berberich
et al. [8] describe a model for temporal information needs
that makes use of temporal expressions. Both approaches
use crowdsourcing for their respective evaluations.

Other related research includes the recently proposed Meme-
tracker system [12] that tracks the mutational flow of so-
called memes over time. Their system, though, focuses on
pre-identified memes and does not support arbitrary ad-hoc

queries. Jones and Diaz [10] show that the temporal pro-
file of a query, determined based on the publication dates of
relevant documents, is useful in query classification. Swan
and Allan [15], as an early piece of research, focus on au-
tomatically generating overview timelines for a collection of
documents. Wang and McCallum [17] is a more recent, more
sophisticated approach along similar lines. It is conceivable
to augment NEAT with such topical overviews.

Google has recently added the view:timeline feature to
display search results along a timeline. Similarly, Google
News Archive Search [2] also visualizes the query results
as a temporal frequency distribution of relevant documents.
While such visualization provides a high-level view of the
topical popularity, they do not makes use of temporal ex-
pressions contained in documents and thus do not provide
interesting snippets corresponding to a time period. Finally,
TimeSearch [5], another related prototype, also makes use
of temporal expressions contained in relevant documents.

3. TEMPORAL EXPLORATION
We now describe NEAT’s exploration interface in more

detail. Figure 1 shows a screenshot of the interface when
displaying results for the query george harrison. In detail,
the interface consists of the following timelines:
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Timelines
๏ Swan and Allan [6] devise an approach based on statistical tests  

to automatically generate a timeline from a collection of 
timestamped documents (e.g., entire corpus or query result) 
๏ consider only named entities (e.g., persons, organizations, locations) 

and noun phrases (e.g., nuclear power plant, debt crisis, car insurance) 

๏ partition document collection at day granularity
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Timelines
๏ Problem: How to identify significantly time-varying features?  

๏ Assume that the following statistics have been computed 
๏ Nd as the number of documents in the partition for day d 

๏ N as the number of documents in the document collection 

๏ fd as the number of documents with feature f in the partition for day d 

๏ F as the number of documents with feature f in the document collection 

๏ Derive a contingency table from these statistics

25
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Χ2 Statistic
๏ Χ2 statistic identifies features which occur significantly more 

often on day d than at other times covered by the collection  
 
 

๏ Keep days with Χ2 score above threshold 
and coalesce ranges of days allowing for 
a gap of at most one days in between 

๏ Determine subrange with highest Χ2 score

26

�2 =
N(ad� bc)2

(a+ b)(a+ c)(b+ c)(b+ d)
10 

"air power" 

docs 5 

June 

m m 

initial ranges 

combined 

highest scoring 

Figure 2: Determination of the time range and X 2 score 
for the noun phrase air power. The top graphic shows the 
number of documents containing the phrase for a period 
of 12 days. The second graphic shows the X 2 values for 
these occurrences. 

choose the highest value. In this case, the 19 occurrences 
from June 12-15 have a X 2 value of 387.94, so we choose 
that  as our score. 

The X 2 calculation is fast. These steps (initial cal- 
culation of ~ ,  tagging, aggregation, and calculating of 
maximum X z) take 12 seconds on an alpha workstation 
for the evaluation sub-corpus (21,255 documents, 287,472 
initial X 2 calculations) and 13 seconds for the full corpus 
(56,784 documents, 802,593 initial X z calculations). (Be- 
fore the calculations can be performed, the inverted list 
is first fetched from disk. The measured times include 
the time for the data fetches, which overwhelms the cal- 
culation time.) 

After selecting terms with significant appearances in 
the news and associated ranges we sort on the maximum 
X 2 value. This gives us a sorted list of the most signif- 
icant features in the corpus and their dates. We then 
cluster these features into topics. The method we use is 
to take the highest ranked unclustered feature, and com- 
pare the time ranges with all lower ranked features. If 
the dates overlap, we perform a X 2 calculation, and if 
the value is above a (fairly low) threshold we mark this 
feature as a potential member of the cluster. When we 
finish processing the list, we perform a standard hierar- 
chical agglomerative clustering on the marked features. 
We then cut the dendrogram at a prespecified thresh- 
old, and take as our valid cluster the one containing the 

Parameter Threshold 
Named entity 6.635 
Noun phrases 15.827 
Initial clustering 3.841 
Final clustering 7.879 

Table 1: Threshold values used in ~2 tests for system. 

original central element, provided there was at least one 
named entity and two noun phrases. 

We knew from prior experiments that  we would need 
different thresholds for the named entities and the noun 
phrases, and that  we would also need to investigate differ- 
ent clustering techniques. Our evaluation method would 
be to compare the generated clusters with the known top- 
ics, which was the final evaluation our assessors would be 
performing. In order to avoid fitting our data for the final 
evaluation, we set aside the evaluation section of TDT-2 
(May and June) and built  and trained our system on the 
training and developments sets. 

Three different clustering schemes were investigated: 
single link, average link ,and complete link. These clus- 
tering operations are expensive (o(nS)),  however, our 
preprocessing of the possible matches on both dates and 
initial matches with the leading feature reduced the po- 
tential clusters to sizes on the order of a few hundred 
elements. Sorting and clustering the features took 23 
seconds on the evaluation corpus and 91 seconds on the 
full corpus. Since these operations can all be performed 
at indexing time the additional overhead is small. 

We found complete link clustering to be too restric- 
tive. If there are a single pair of phrases that do not show 
a high correlation within an otherwise good cluster, this 
pair will split the cluster into two clusters. Single link 
also does not work well. We had some poor clusters in 
our previous work which were due to a single link cluster- 
ing. If a single noise word links strongly to two disjoint 
clusters, single link clustering will combine them. With 
single link, we often saw one big cluster such as "Saddam 
Hussein, Moniea Lewinsky, Richard Butler, Hillary Clin- 
ton, Davos, Nagano, Lillehammer". Average link cluster- 
ing tended to produce uniformly good results, and was 
tolerant of minor weighting errors. 

Our final parameters are presented in Table 1. 

4 .4  E v a l u a t i o n  

Our final run on the evaluation portion of TDT-2 pro- 
duced 146 clusters. We believe that  the clusters of fea- 
tures found are indicative of the major news stories that  
were covered by the news organizations during the time 
spanned by the corpus and provide a good summation of 
these topics. To test this, we hired four students (three 
undergraduates and one graduate student) to evaluate 
the clusters. A list of hyperlinks to stories that  these 
features were extracted from was provided in a sepa- 
rate frame. The evaluator was also given a list of LDC- 
provided topics that  overlapped in time with our cluster, 
and a title for each topic. Each topic contained a hyper- 
link to the LDC-supplied topic description which opened 
in a separate frame, along with a list of hyperlinks for 
relevant stories. Clicking on a story hyperlink brought 
up a new browser window containing the story. 
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8.5. Interesting Phrases
๏ Bedathur et al. [2] consider the problem of identifying interesting 

phrases that are descriptive for a given query result D’ 

๏ Phrase p is considered interesting if it occurs more often in 
documents from D’ than in the general document collection D


๏ Phrase p is only considered if it 
๏ occurs at least σ times in the document collection (e.g., set as 10) 

๏ has length of at most λ (e.g., set as 5)
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How to Identify Interesting Phrases Efficiently?

๏ Forward index maintains a representation of every document 

๏ Phrase dictionary keeps frequency df(p, D) for every phrase p

๏ High-level algorithm for identifying top-k interesting phrases 

๏ access the forward index for each d ∈ D’ 

๏ merge the |D’| document representations 

๏ output the k most interesting phrases 

๏ Different document representations differ in terms of efficiency

28
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Document Content
๏ Idea: Represent document content explicitly as a  

sequence of terms (or compressed term identifiers) 

๏ Benefit: 
๏ space efficient 

๏ Drawbacks: 
๏ requires enumeration of all phrases in document  

including globally infrequent ones that occur less than σ times in D  

๏ requires phrase dictionary

29

< a x z b l k a q x >

< z x z d l e s q x >

< k x z d a k q a y >

d12

d37

d42



Advanced Topics in Information Retrieval / Mining & Organization

Phrases
๏ Idea: Keep all globally frequent phrases contained in document  

d in a consistent (e.g., lexicographic) order 
 
 

๏ Benefits: 
๏ considers only globally frequent phrases 

๏ consistent order allows for efficient merging 

๏ Drawbacks: 
๏ space inefficient 

๏ requires phrase dictionary
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Frequency-Ordered Phrases
๏ Idea: Keep all globally frequent phrases contained in document  

d in ascending order of their embedded global frequency  
  

๏ Interestingness of any unseen phrase is upper-bounded by 
 
 
 
where p is the last phrase encountered
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Frequency-Ordered Phrases
๏ Idea: Keep all globally frequent phrases contained in document  

d in ascending order of their embedded global frequency  
  

๏ Interestingness of any unseen phrase is upper-bounded by 
 
 
 
where p is the last phrase encountered
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Frequency-Ordered Phrases
๏ Idea: Keep all globally frequent phrases contained in document  

d in ascending order of their embedded global frequency  
 
 

๏ Benefits: 
๏ early termination possible when no unseen phrase 

can make it into the top-k most interesting phrases 

๏ self-contained (i.e., no phrase dictionary needed) 

๏ Drawbacks: 

๏ space inefficient
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Prefix-Maximal Phrases
๏ Observation: Globally frequent phrases are often redundant  

and we do not have to keep all of them 
 
 

๏ Definition: A phrase p is prefix-maximal in document d if 
๏ p is globally frequent 

๏ d does not contain another globally frequent phrase p’ 
of which p is a prefix 

๏ Prefix-maximal phrase p (e.g., <a x z> in d12) represents all its 
prefixes (i.e., <a> and <a x>); they’re guaranteed to be globally 
frequent and contained in d
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Prefix-Maximal Phrases
๏ Idea: Keep only prefix-maximal phrases contained in d in 

lexicographic order and extract prefixes on-the-fly 
 
 

๏ Benefits: 
๏ space efficient 

๏ Drawbacks: 
๏ extraction of prefixes entails additional bookkeeping 

๏ requires phrase dictionary
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Experiments
๏ Dataset: The New York Times Annotated Corpus consisting of  

1.8 million newspaper articles published in 1987– 2007
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Experiments
๏ Dataset: The New York Times Annotated Corpus consisting of  

1.8 million newspaper articles published in 1987– 2007
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Anecdotal Results
๏ Query: john lennon  

1) …since john lennon was assassinated…  
2) …lennon’s childhood…  
3) …post beatles work… 

๏ Query: bob marley 
1) …music of bob marley…  
2) …marley the jamaican musician… 
3) …i shot the sheriff… 

๏ Query: john mccain  
1) …to beat al gore like… 
2) …2000 campaign in arizona…  
3) …the senior senator from virginia…  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Summary
๏ Clustering groups similar documents; k-Means can be 

implemented efficiently by leveraging established IR methods 

๏ Faceted search uses orthogonal sets of categories to allow  
users to explore/navigate a set of documents (e.g., query results) 

๏ Memes can be tracked and allow for insightful analyses of 
media attention and time lag between traditional media and blogs 

๏ Timelines identify significant time-varying features in a set of 
documents (e.g., query results) and visualize them 

๏ Interesting phrases provide insights into query results; they can 
be determined efficiently by using a suitable index organization
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