8. Mining & Organization

Mining & Organization

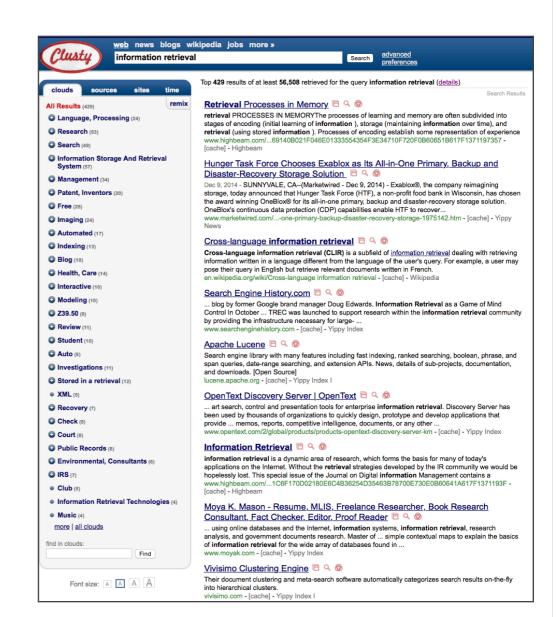
- Retrieving a list of relevant documents (10 blue links) insufficient
 - for vague or exploratory information needs (e.g., "find out about brazil")
 - when there are more documents than users can possibly inspect
- Organizing and visualizing collections of documents can help users to explore and digest the contained information, e.g.:
 - **Clustering** groups content-wise similar documents
 - Faceted search provides users with means of exploration
 - Timelines visualize contents of timestamped document collections

Outline

- 8.1. Clustering
- 8.2. Faceted Search
- 8.3. Tracking Memes
- 8.4. Timelines
- 8.5. Interesting Phrases

8.1. Clustering

- Clustering groups content-wise similar documents
- Clustering can be used to structure a document collection (e.g., entire corpus or query results)
- Clustering methods: DBScan,
 k-Means, *k*-Medoids,
 hierarchical agglomerative clustering



• Example of search result clustering: <u>clusty.com</u>

k-Means

- Cosine similarity sim(c,d) between document vectors c and d
- Clusters C_i represented by a cluster centroid document vector c_i
- k-Means groups documents into k clusters, maximizing the average similarity between documents and their cluster centroid

$$\frac{1}{|D|} \sum_{d \in D} \max_{c \in C} sim(c, d)$$

Document d is assigned to cluster C having most similar centroid

Documents-to-Centroids

- k-Means is typically implemented iteratively with every iteration reading all documents and assigning them to most similar cluster
 - initialize cluster centroids c_1, \ldots, c_k (e.g., as random documents)
 - while not converged (i.e., cluster assignments unchanged)
 - for every document d, determine most similar c_i, and assign it to C_i
 - recompute **ci** as **mean** of documents assigned to cluster **C**_i
- <u>Problem</u>: Iterations need to read the entire document collection, which has cost in O(nkd) with n as number of documents, k as number of clusters and, and d as number of dimensions

Centroids-to-Documents

- Broder et al. [1] devise an alternative method to implement k-Means, which makes use of established IR methods
- <u>Key Ideas</u>:
 - build an **inverted index** of the document collection
 - treat centroids as queries and identify the top-/ most similar documents in every iteration using WAND
 - documents showing up in multiple top-/ results are assigned to the most similar centroid
 - recompute centroids based on assigned documents
 - finally, assign **outliers** to cluster with most similar centroid

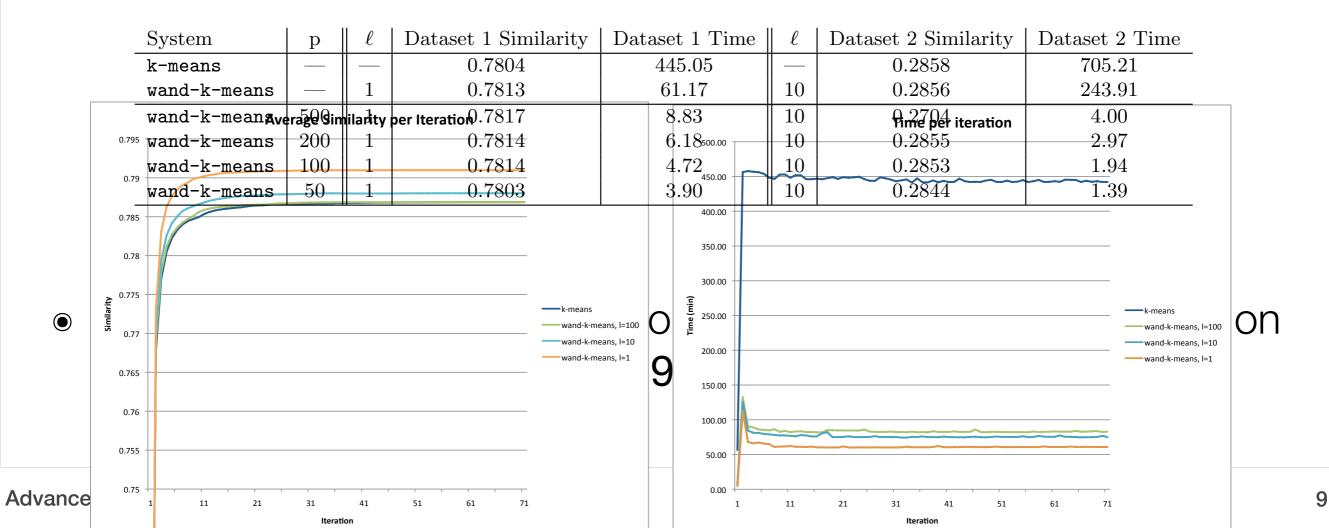
Sparsification

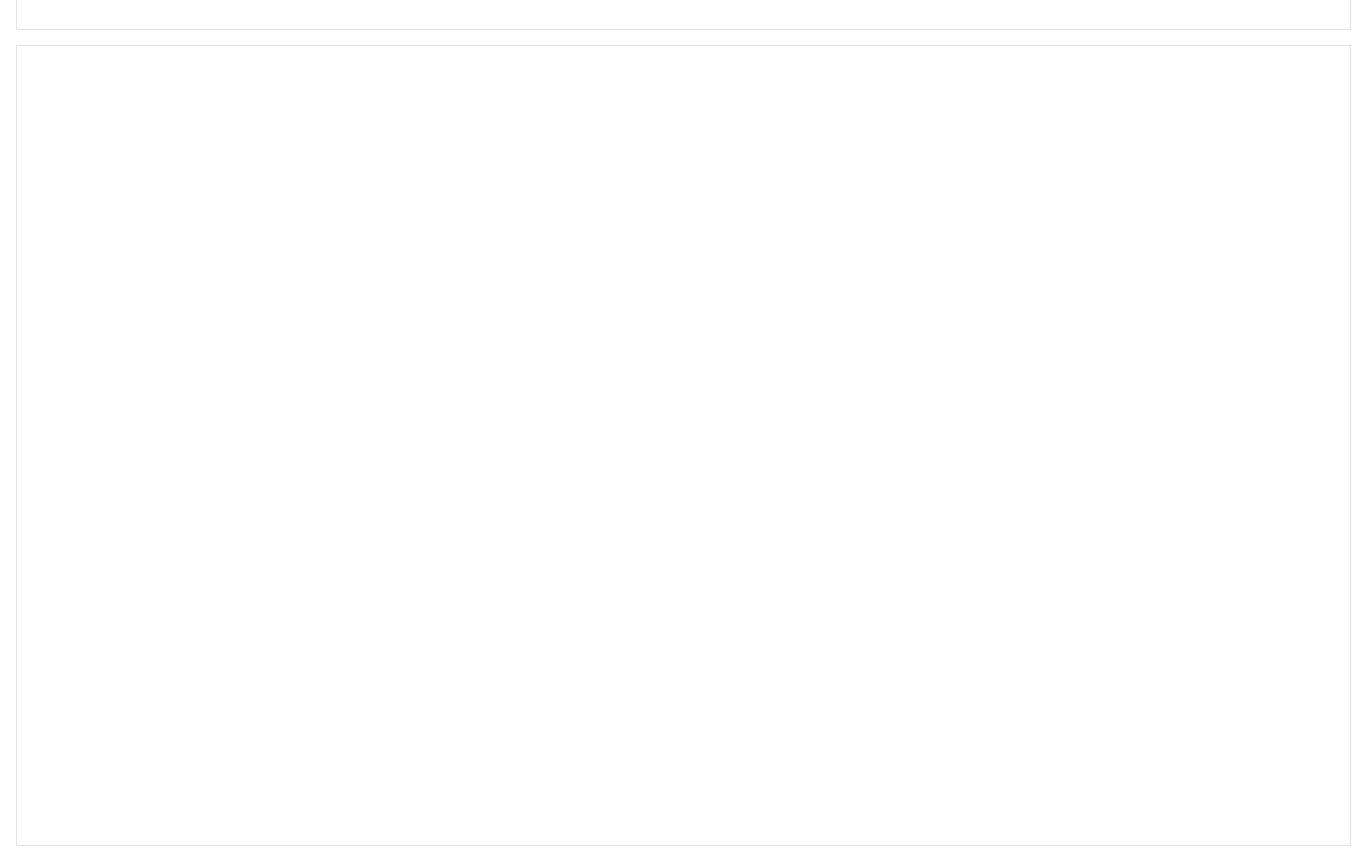
- While documents are typically sparse (i.e., contain only relatively few features with non-zero weight), cluster centroids are dense
- Identification of top-/ most similar documents to a cluster centroid can further be speeded up by sparsifying, i.e., considering only the p features having highest weight

Experiments

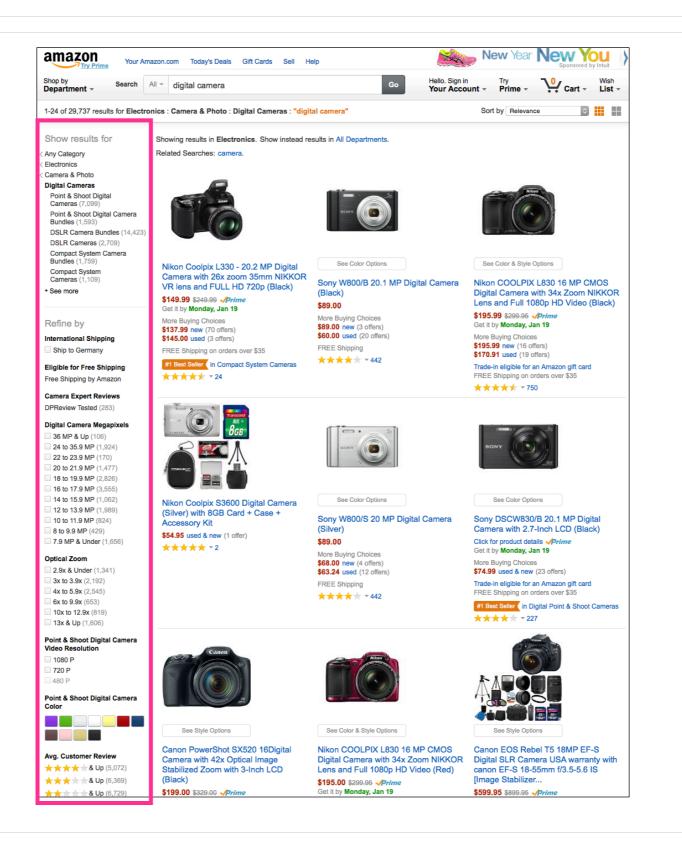
 <u>Datasets</u>: Two datasets each with about 1M documents but different numbers of dimensions: ~26M for (1), ~7M for (2)

System	ℓ	Dataset 1 Similarity	Dataset 1 Time	Dataset 2 Similarity	Dataset 2 Time
k-means		0.7804	445.05	0.2856	705.21
wand-k-means	100	0.7810	83.54	0.2858	324.78
wand-k-means	10	0.7811	75.88	0.2856	243.9
wand-k-means	1	0.7813	61.17	0.2709	100.84





ρ.uni-trier.de	NOTE: The DBLP search has moved
	CompleteSearch DBLP has moved to the new domain www.dblp.org. Please update any links or bookmarks yo
CompleteSearch DBLP	might have set accordingly. The pages under www. informatik.uni-trier.de will eventually be moved there, too. There will be a separate notification about that.
DBLP mirror with extended search capabilities maintained by Hannah Bast, University of Freiburg (formerly MPII Saarbrücken)	Feedback H
zoomed in on 276 documents NEW: get these search results as XML, JSON, JSONP	efficient query processing
2015	Refine by AUTHOR
2015 276 EE Yu Li, Man Lung Yiu: Route-Saver: Leveraging Route APIs for Accurate and Efficient Query Processing at Location-Based Services. IEEE Trans. Knowl. Data Eng. (TKDE) 27(1):235-249 (2015)	Hans-Peter Kriegel (11)
2014	Guoren Wang (8)
275 E Haozhou Wang, Kai Zheng, Han Su, Jiping Wang, Shazia Wasim Sadiq, Xiaofang Zhou: Efficient Aggregate Farthest Neighbour Query Processing on Road Networks. ADC 2014:13-25	Qing Li (7)
274 EE He Li, Jaesoo Yoo: An efficient scheme for continuous skyline query processing over dynamic data set. BigComp 2014:54-59	<u>Yunjun Gao</u> (7) [top 4] [top 50] [top 250]
73 EE Heejung Yang, Chin-Wan Chung: Efficient Iceberg Query Processing in Sensor Networks. Comput. J. (CJ) 57(12):1834-1851 (2014)	
72 EE Jiajia Li, Botao Wang, Guoren Wang, Xin Bi: Efficient Processing of Probabilistic Group Nearest Neighbor Query on Uncertain Data. DASFAA 2014:436-450	Refine by VENUE
271 EE Nikolaos Nodarakis, Evaggelia Pitoura, Spyros Sioutas, Athanasios K. Tsakalidis, Dimitrios Tsoumakos, Giannis Tzimas: Efficient Multidimensional AkNN Query Processing in the Cloud. DEXA 2014:477-491	IEEE Trans. Knowl. Data Eng. (TKDE) (15) ICDE (12) CIKM (10)
270 EE Yunjun Gao, Qing Liu, Baihua Zheng, Gang Chen: On efficient reverse skyline query processing. Expert Syst. Appl. (ESWA) 41(7):3237-3249 (2014)	DASFAA (10)
69 EE Kisung Kim, Bongki Moon, Hyoung-Joo Kim: RG-index: An RDF graph index for efficient SPARQL query processing. Expert Syst. Appl. (ESWA) 41(10):4596-4607 (2014)	[top 4] [top 50] [all 155]
68 EE Alfredo Cuzzocrea, José Cecílio, Pedro Furtado: An Effective and Efficient Middleware for Supporting Distributed Query Processing in Large-Scale Cyber-Physical Systems. IDCS 2014:124-135	Refine by YEAR
67 EE Khaled Mohammed Al-Naami, Sadi Evren Seker, Latifur Khan: GISQF: An Efficient Spatial Query Processing System. IEEE CLOUD 2014:681-688	2015 (1)
66 EE Jia Liu, Bin Xiao, Kai Bu, Lijun Chen: Efficient distributed query processing in large RFID-enabled supply chains. INFOCOM 2014:163-171	2014 (18)
65 EE Yuan-Ko Huang, Lien-Fa Lin: Efficient processing of continuous min-max distance bounded query with updates in road networks. Inf. Sci. (ISCI) 278:187-205 (2014)	<u>2013</u> (21) 2012 (19)
64 EE Qiming Fang, Guangwen Yang: Efficient Top-k Query Processing Algorithms in Highly Distributed Environments. JCP 9(9):2000-2006 (2014)	[top 4] [<u>all 30</u>]
63 EE Jiping Wang, Kai Zheng, Hoyoung Jeung, Haozhou Wang, Bolong Zheng, Xiaofang Zhou: Cost-Efficient Spatial Network Partitioning for Distance-Based Query Processing. MDM 2014:13-22	Refine by TYPE
62 EE Sanjay Chatterji, G. S. Sreedhara, Maunendra Sankar Desarkar: An Efficient Tool for Syntactic Processing of English Query Text. MIKE 2014:278-287	Conference (181)
61 EE Merih Seran Uysal, Christian Beecks, Thomas Seidl: On Efficient Query Processing with the Earth Mover's Distance. PIKM@CIKM 2014:25-32	Journal (90)
60 EE Fabian Nagel, Gavin M. Bierman, Stratis D. Viglas: Code Generation for Efficient Query Processing in Managed Runtimes. PVLDB 7(12):1095-1106 (2014)	Book (3)
EE Tomas Karnagel, Matthias Hille, Mario Ludwig, Dirk Habich, Wolfgang Lehner, Max Heimel, Volker Markl: Demonstrating efficient query processing in heterogeneous environments. SIGMOD 2014:	693- [top 4]
58 EE Junfeng Zhou, Zhifeng Bao, Wei Wang, Jinjia Zhao, Xiaofeng Meng: Efficient query processing for XML keyword queries based on the IDList index. VLDB J. (VLDB) 23(1):25-50 (2014)	
2013	
257 EE Jianbin Qin, Wei Wang, Chuan Xiao, Yifei Lu, Xuemin Lin, Haixun Wang: Asymmetric signature schemes for efficient exact edit similarity query processing. ACM Trans. Database Syst. (TODS) 38(3) (2013)):16



Advanced Topics in Information Retrieval / Mining & Organization

Refine your search further within these categories:	These terms define your c	urrent search. Click the	to remove a term.					
Media (group results) costume (3), drawing (2),	Location: Asia 🗶 start a new sear							
lithograph (1), woodcut (6), woven object (2)	Shapes, Colors, and Materials: fabrics 🗵							
Location: all > Asia Afghanistan (1), China (4), China or Tibet? (3), India (2), Japan (13),		Search © all items C within current results						
Russia (1), Turkey (3), Turkmenistan (1)	28 items (grouped by Afghanistan 1	location)		view ungrouped item				
Date (group results) 17th century (3), 18th century (3), 19th century (70), 20th century (3), date ranges spanning multiple centuries (7), date unknown (2) Themes (group results) music, writing, and sport (5), nautical (1), religion (2) Objects (group results)			eremonia artist century					
clothing (5), food (1), furnishings (4), timepieces (1)	China 4							
Nature (group results) bodies of water (3), fish (1), flowers (2), geological formations (1), heavens (3), invertebrates and arthropods (1), mammals (2), plant material (3), trees (1)			entel la paramente					
Places and Spaces (group results) bridges (1), buildings (1), dwellings (1)	4 boats on lake, Anonymous post World War II	Embroidery no artist 19th century	Embroidery no artist 19th century	Embroidery ; no artist 19th century				

Faceted Search

- Faceted search [3,7] supports the user in exploring/navigating a collection of documents (e.g., query results)
- Facets are orthogonal sets of categories that can be flat or hierarchical, e.g.:

- <u>topic</u>: arts & photography, biographies & memoirs, etc.
- <u>origin</u>: Europe > France > Provence, Asia > China > Beijing, etc.
- price: 1–10\$, 11–50\$, 51–100\$, etc.
- Facets are manually curated or automatically derived from meta-data

Automatic Facet Generation

- Need to manually curate facets prevents their application for large-scale document collections with sparse meta-data
- Dou et al. [3] investigate how facets can be automatically mined in a query-dependent manner from pseudo-relevant documents
- <u>Observation</u>: Categories (e.g., brands, price ranges, colors, sizes, etc.) are typically represented as lists in web pages
- <u>Idea</u>: Extract lists from web pages, rank and cluster them, and use the consolidated lists as facets

List Extraction

- Lists are extracted from web pages using several patterns
 - enumerations of items in text (e.g., we serve beef, lamb, and chicken)
 via: item{, item} * (and|or) {other} item
 - HTML form elements (<SELECT>) and lists () ignoring instructions such as "select" or "chose"
 - as rows and columns of HTML tables (<TABLE>) ignoring header and footer rows
- Items in extracted lists are post-processed, removing nonalphanumeric characters (e.g., brackets), converting them to lower case, and removing items longer than 20 terms

List Weighting

- Some of the extracted lists are **spurious** (e.g., from HTML tables)
- Intuition: Good lists consist of items that are informative to the query, i.e., are mentioned in many pseudo-relevant documents
- Lists weighted taking into account a document matching weight
 S_{DOC} and their average inverse document frequency S_{IDF}

$$S_l = S_{DOC} \cdot S_{IDF}$$

• Document matching weight S_{DOC}

$$S_{DOC} = \sum_{d \in R} (s_d^m \cdot s_d^r)$$

with s_d^m as fraction of list items mention in document d and s_d^r as importance of document d (estimated as rank(d)-1/2)

List Weighting

• Average inverse document S_{IDF} is defined as

$$S_{IDF} = \frac{1}{|l|} \sum_{i \in l} idf(i)$$

- <u>Problem</u>: Individual lists (extracted from a single document) may still contain **noise**, be **incomplete**, or **overlap** with other lists
- Idea: Cluster lists containing similar items to consolidate them and form dimensions that can be used as facets

List Clustering

• Distance between two lists is defined as

$$d(l_1, l_2) = 1 - \frac{|l_1 \cap l_2|}{\min\{|l_1|, |l_2|\}}$$

• Complete-linkage distance between two clusters

$$d(c_1, c_2) = \max_{l_1 \in c_1, \, l_2 \in c_2} d(l_1, l_2)$$

Greedy clustering algorithm

- pick most important not-yet-clustered list
- add nearest lists while cluster diameter is smaller than Diamax
- save cluster it total weight is larger than W_{min}

Dimension and Item Ranking

- Problem: In which order to present dimensions and items therein?
- Importance of a dimension (cluster) is defined as

$$S_c = \sum_{s \in Sites(c)} max_{l \in c, \ l \in s} S_l$$

favoring dimensions grouping lists with high weight

• Importance of an item within a dimension defined as

$$S_{i|c} = \sum_{s \in Sites(c)} \frac{1}{\sqrt{AvgRank(c, i, s)}}$$

favoring items which are often ranked high within containing lists

Anecdotal Results

Dimensions mined from top-100 of commercial search engine

query: watches

1. cartier, breitling, omega, citizen, tag heuer, bulova, casio, rolex, audemars piguet, seiko, accutron, movado, fossil, gucci, ... 2. men's, women's, kids, unisex

3. analog, digital, chronograph, analog digital, quartz, mechanical, manual, automatic, electric, dive, ...

4. dress, casual, sport, fashion, luxury, bling, pocket, ...

5. black, blue, white, green, red, brown, pink, orange, yellow, ...

query: ${\bf lost}$

1. season 1, season 6, season 2, season 3, season 4, season 5

matthew fox, naveen andrews, evangeline lilly, josh holloway, jorge garcia, daniel dae kim, michael emerson, terry o'quinn, ...
 jack, kate, locke, sawyer, claire, sayid, hurley, desmond, boone, charlie, ben, juliet, sun, jin, ana, lucia ...

4. what they died for, across the sea, what kate does, the candidate, the last recruit, everybody loves hugo, the end, ...

query: lost season 5

1. because you left, the lie, follow the leader, jughead, 316, dead is dead, some like it hoth, whatever happened happened, the little prince, this place is death, the variable, ...

2. jack, kate, hurley, sawyer, sayid, ben, juliet, locke, miles, desmond, charlotte, various, sun, none, richard, daniel

3. matthew fox, naveen andrews, evangeline lilly, jorge garcia, henry ian cusick, josh holloway, michael emerson, ...
4. season 1, season 3, season 2, season 6, season 4

query: **flowers**

1. birthday, anniversary, thanksgiving, get well, congratulations, christmas, thank you, new baby, sympathy, fall

2. roses, best sellers, plants, carnations, lilies, sunflowers, tulips, gerberas, orchids, iris

3. blue, orange, pink, red, purple, white, green, yellow

query: what is the fastest animals in the world

1. cheetah, pronghorn antelope, lion, thomson's gazelle, wildebeest, cape hunting dog, elk, coyote, quarter horse

2. birds, fish, mammals, animals, reptiles

3. science, technology, entertainment, nature, sports, lifestyle, travele, gaming, world business

query: the presidents of the united states

1. john adams, thomas jefferson, george washington, john tyler, james madison, abraham lincoln, john quincy adams, william henry harrison, martin van buren, james monroe, ...

2. the presidents of the united states of america, the presidents of the united states ii, love everybody, pure frosting, these are the good times people, freaked out and small, ...

3. kitty, lump, peaches, dune buggy, feather pluckn, back porch, kick out the jams, stranger, boll weevil, ca plane pour moi, ...

4. federalist, democratic-republican, whig, democratic, republican, no party, national union, ...

query: visit beijing

1. tiananmen square, forbidden city, summer palace, temple of heaven, great wall, beihai park, hutong

2. attractions, shopping, dining, nightlife, tours, travel tip, transportation, facts

query: cikm

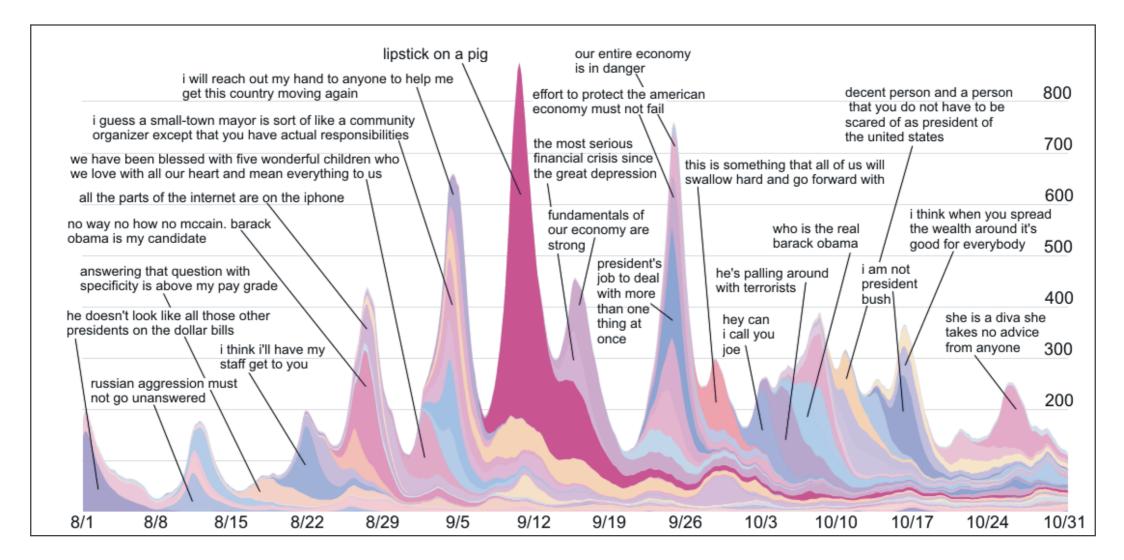
 $1.\,$ databases, information retrieval, knowledge management, industry research track

2. submission, important dates, topics, overview, scope, committee, organization, programme, registration, cfp, publication, programme committee, organisers, ...

3. acl, kdd, chi, sigir, www, icml, focs, ijcai, osdi, sigmod, sosp, stoc, uist, vldb, wsdm, ...

8.3. Tracking Memes

 Leskovec et al. [5] track memes (e.g., "lipstick on a pig") and visualize their volume in traditional news and blogs

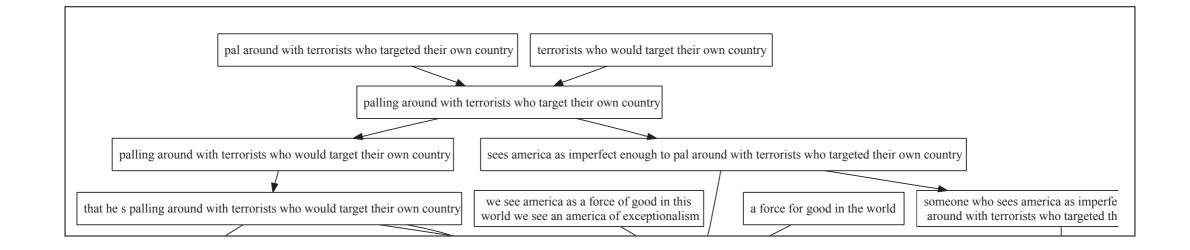


Demo: <u>http://www.memetracker.org</u>

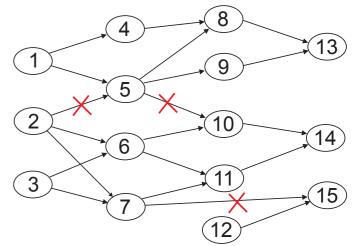
Phrase Graph Construction

- Problem: Memes are often modified as they spread, so that first all mentions of the same meme need to be identified
- Construction of a **phrase graph** G(V, E):
 - vertices V correspond to mentions of a meme that are reasonably long and occur often enough
 - edge (u,v) exists if meme mentions u and v
 - u is strictly shorter than v
 - <u>either</u>: have small directed token-level edit distance
 (i.e., u can be transformed into v by adding at most ε tokens)
 - <u>or</u>: have a **common word sequence** of length at least k
 - edge weights based on edit distance between u and v and how often v occurs in the document collection

Phrase Graph Partitioning



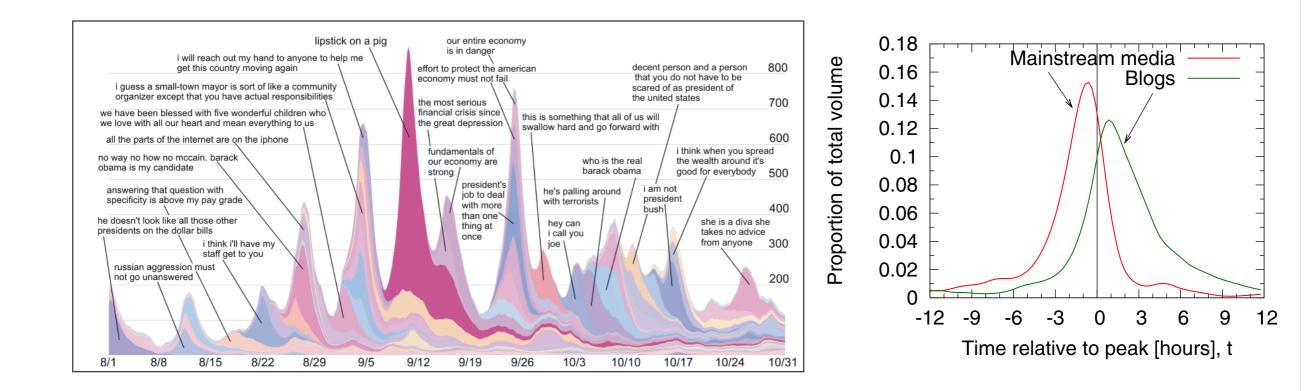
- Phrase graph is an **directed acyclic graph** (DAG) by construction
- Partition G(V, E) by deleting a set of edges having minimum total weight, so that each resulting component is single-rooted



 Phrase graph partitioning is NP-hard, hence addressed by greedy heuristic algorithm

Applications

- Clustering of meme mentions allows for insightful analyses, e.g.:
 - volume of meme per time interval
 - **peek time** of meme in traditional news and social media
 - time lag between peek times in traditional news and social media



8.4. Timelines

 Timelines visualize, e.g., major events and topics and their occurrence/importance as they occur in a collection of timestamped documents

_																				
<u>oise O</u>	nline <u>Dia</u>	ne Nayor	Evan Ha	arrison		A	Always Gro	unded								For	<u>otlights</u>	World B	riefing Eu	urope Britai
	Get	Well Geo	<u>rge</u>				as a ho	mage to	o George	e Harriso	on, the Be	eatle who	died thi :	s year					Short	Crew Has
						Th	ne True Cu	<u>Iprit</u>								E	lope and	Lyric Roc	<u>k From t</u> l	ne Gentle E
							referrin	ng to Arr	nerican l	Ballet Th	ieater's n	nuch-mod	cked 200	2 ballet "	Within Yo	u Withou	t You : A	Tribute	м)т	The Jets'red
						Th	ne True Cu	<u>Ilprit</u>										Th	is Time a	Classical I
						Pre	elude to Kis	<u>55</u>									M	usic of a B	Beatle W	ho Never S
						<u>An C</u>	old Enemy	Smoking	g Hangs	<u>Tough</u>							Persona	ality And P	Posture T	ransform /
						Geor	ge Harrisor	n and th	ne Truly	Indepen	ident Film					Car	a Aidone	John Huzi	inec	
						Yester	<u>rday</u>									See	king a Sy	ynergy Of	Ballet ar	nd Beatle
						George	e Harrison's	s Gift								Georg	e Harrisc	n, " whici	h is to be	e presente
						<u>Ideas a</u>	amp Trends	s The Q	uiet End	l of the (Quietest	<u>Beatle</u>			Balle	t Theater	r Will Roc	k to a Bea	atle the (<u>Quiet One</u>
							the mo	vie "Blue	es Broth	ers 200	0 "and pe	rformed	at the 20	002 Conc	ert for Ge	eorge, a i	tribute oi	rganized	1	
						Georg	ge Harrisor	n World	Music C	atalyst /	And Great	Souled N	Man A Ch	ildlike Sim	plicity Fu	ll of Love	and			
					BOL	DFACE NAM	MES													
					to m	ousic of for	mer Beatl	'e Georg	e Harris	on, wh c	died last	Novemb	er , as hig	hlight of	its fall se	ason at (City			
					Chap	opell, a con	npany adn	ninistrat	tor, the	day Har	rison died	l last No	vember							
					<u>Abbe Rut</u>	tenberg Mi	<u>ichael Ser</u> r	<u>phos</u>												
		<u>Luxuriat</u>	ing in th	e Sprawl	of That	Early 70's	<u>Sound</u>													
'ooked	l romantic	: MEG R	YAN had	dinner o	n Wedne	esday with	h an Austr	alian	not that	t Austral	lian,									
he tre	eated in 2	001 , and	l coercea	d him int	o signing	autograph	?s													
							2002												2002	
un	Jul	Aug	Sep	Oct	Nov	Dec	2002	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	2003	Feb N
	_						11 101			an en										
Bomb)			Richar	rd M. Nix	kon 📍 Ron	ald Reag	an		• Y2	к	Bara	ck Oban	na						
ır				• Wood	stock • 1	Jimmy Ca	rter		Bill Clin	nton 📍	Septem	oer 11th,	2001							
				Moon	Landing					• G	leorge W	. Bush								
				Assass	ination o	of Martin L	uther Kin	ig		Lewins	sky Scan	dal								
		• Joh	n F. Ken	ndey				Ger	man Re	unificat	ion									
		Vietnar	n War						eration [storm									
ALLE ALLE								Fall o	of Berlin	Wall										
© SIN								Georg	e H. W.	Bush										
aeline										200	0									
11 950		1960		1970)	1980		1990	1	200		201	.0	202	20	203	30	204	-0	2050

Timelines

- Swan and Allan [6] devise an approach based on statistical tests to automatically generate a timeline from a collection of timestamped documents (e.g., entire corpus or query result)
 - consider only named entities (e.g., persons, organizations, locations) and noun phrases (e.g., nuclear power plant, debt crisis, car insurance)
 - partition document collection at day granularity

Timelines

- <u>Problem</u>: How to identify significantly time-varying features?
- Assume that the following **statistics** have been computed
 - Nd as the number of documents in the partition for day d
 - N as the number of documents in the document collection
 - fd as the number of documents with feature f in the partition for day d
 - F as the number of documents with feature f in the document collection
- Derive a **contingency table** from these statistics

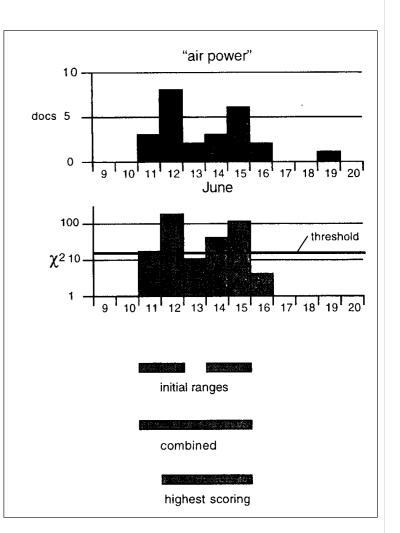
	f	⊐f		f	⊐f
d	fd	Nd - fd	d	а	b
¬d		N - Nd - F + fd	¬d	С	d

X² Statistic

 X² statistic identifies features which occur significantly more often on day d than at other times covered by the collection

$$\chi^{2} = \frac{N(ad - bc)^{2}}{(a+b)(a+c)(b+c)(b+d)}$$

- Keep days with X² score above threshold and coalesce ranges of days allowing for a gap of at most one days in between
- Determine subrange with highest X² score



8.5. Interesting Phrases

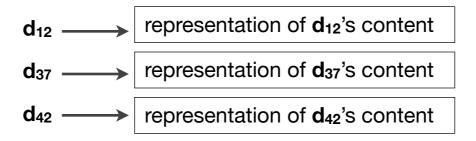
- Bedathur et al. [2] consider the problem of identifying interesting phrases that are descriptive for a given query result D'
- Phrase p is considered interesting if it occurs more often in documents from D' than in the general document collection D

$$I(p, D') = \frac{df(p, D')}{df(p, D)}$$

- Phrase p is only considered if it
 - occurs at least σ times in the document collection (e.g., set as 10)
 - has length of at most λ (e.g., set as 5)

How to Identify Interesting Phrases Efficiently?

• Forward index maintains a representation of every document



- Phrase dictionary keeps frequency df(p, D) for every phrase p
- **High-level algorithm** for identifying top-*k* interesting phrases
 - **access** the forward index for each $d \in D'$
 - merge the |D'| document representations
 - **output** the k most interesting phrases
- Different document representations differ in terms of efficiency

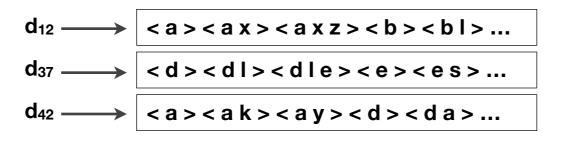
Document Content

 <u>Idea</u>: Represent document content explicitly as a sequence of terms (or compressed term identifiers)

- <u>Benefit</u>:
 - space efficient
- Drawbacks:
 - requires enumeration of all phrases in document including globally infrequent ones that occur less than σ times in D
 - requires **phrase dictionary**

Phrases

 Idea: Keep all globally frequent phrases contained in document d in a consistent (e.g., lexicographic) order



• <u>Benefits</u>:

- considers only globally frequent phrases
- consistent order allows for efficient merging
- Drawbacks:
 - space inefficient
 - requires **phrase dictionary**

Frequency-Ordered Phrases

 Idea: Keep all globally frequent phrases contained in document d in ascending order of their embedded global frequency

$$d_{12} \longrightarrow 5: < x z b > < z b > 6: < q > < x > < x z > 7: < z > ... d_{37} \longrightarrow 5: < e s q > < s q x > 6: < q > < s > < x z > ... d_{42} \longrightarrow 5: < a k q a > < k q a > 6: < q > < x > < x z > ...$$

Interestingness of any unseen phrase is upper-bounded by

$$min(1, \frac{|D'|}{df(p, D)})$$

where p is the last phrase encountered

Frequency-Ordered Phrases

 Idea: Keep all globally frequent phrases contained in document d in ascending order of their embedded global frequency

$$d_{12} \longrightarrow 5: < x z b > < z b > 6: < q > < x > < x z > 7: < z > ... d_{37} \longrightarrow 5: < e s q > < s q x > 6: < q > < s > < x z > ... d_{42} \longrightarrow 5: < a k q a > < k q a > 6: < q > < x > < x z > ...$$

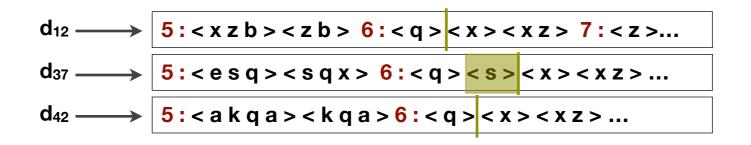
Interestingness of any unseen phrase is upper-bounded by

$$min(1, \frac{|D'|}{df(p, D)}) \qquad \frac{3}{6}$$

where p is the last phrase encountered

Frequency-Ordered Phrases

 Idea: Keep all globally frequent phrases contained in document d in ascending order of their embedded global frequency



- <u>Benefits</u>:
 - early termination possible when no unseen phrase can make it into the top-k most interesting phrases
 - **self-contained** (i.e., no phrase dictionary needed)
- <u>Drawbacks</u>:
 - space inefficient

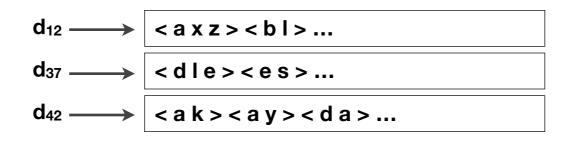
Prefix-Maximal Phrases

 Observation: Globally frequent phrases are often redundant and we do not have to keep all of them

- Definition: A phrase p is prefix-maximal in document d if
 - p is globally frequent
 - d does not contain another globally frequent phrase p' of which p is a prefix
- Prefix-maximal phrase p (e.g., <a x z> in d₁₂) represents all its prefixes (i.e., <a> and <a x>); they're guaranteed to be globally frequent and contained in d

Prefix-Maximal Phrases

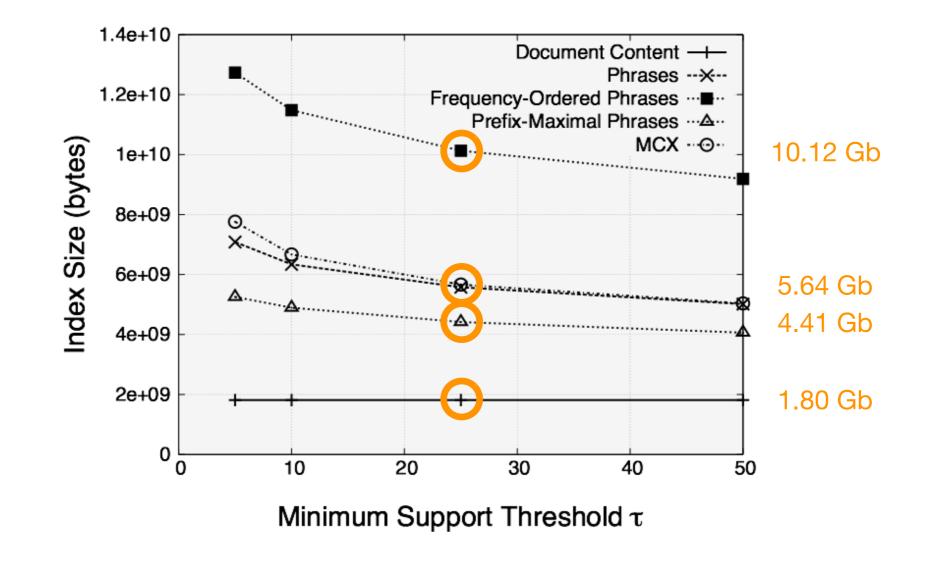
 <u>Idea</u>: Keep only prefix-maximal phrases contained in d in lexicographic order and extract prefixes on-the-fly



- <u>Benefits</u>:
 - space efficient
- <u>Drawbacks</u>:
 - extraction of prefixes entails additional bookkeeping
 - requires **phrase dictionary**

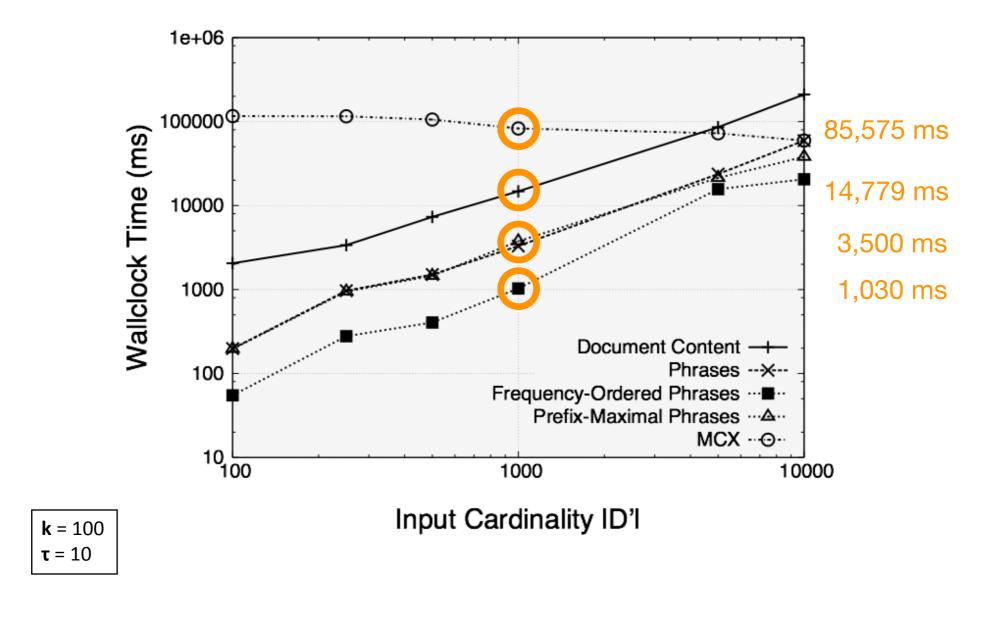
Experiments

<u>Dataset</u>: The New York Times Annotated Corpus consisting of
 1.8 million newspaper articles published in 1987–2007



Experiments

<u>Dataset</u>: The New York Times Annotated Corpus consisting of
 1.8 million newspaper articles published in 1987–2007



Anecdotal Results

• Query: john lennon

- 1) ... since john lennon was assassinated...
- 2) ... lennon's childhood...
- 3) ...post beatles work...

• <u>Query</u>: **bob marley**

1) ...music of bob marley...
 2) ...marley the jamaican musician...
 3) ...i shot the sheriff...

• Query: john mccain

- 1) ... to beat al gore like...
- 2) ... 2000 campaign in arizona...
- 3) ... the senior senator from virginia...

Summary

- Clustering groups similar documents; k-Means can be implemented efficiently by leveraging established IR methods
- Faceted search uses orthogonal sets of categories to allow users to explore/navigate a set of documents (e.g., query results)
- Memes can be tracked and allow for insightful analyses of media attention and time lag between traditional media and blogs
- Timelines identify significant time-varying features in a set of documents (e.g., query results) and visualize them
- Interesting phrases provide insights into query results; they can be determined efficiently by using a suitable index organization

References

- [1] **A. Broder, L. Garcia-Pueyo, V. Josifovski, S. Vassilvitskii, S. Venkatesan:** *Scalable k-Means by Ranked Retrieval*, WSDM 2014
- [2] **S. Bedathur, K. Berberich, J. Dittrich, N. Mamoulis, G.:** Interesting-Phrase Mining for Ad-Hoc Text Analytics, PVLDB 2010
- [3] **Z. Dou, S. Hu, Y. Luo, R. Song, J.-R. Wen:** *Finding Dimensions for Queries*, CIKM 2011
- [4] **M. Hearst:** Clustering Versus Faceted Categories for Information Exploration, CACM 49(4), 2006
- [5] **J. Leskovec, L. Backstrom, J. Kleinberg:** *Meme-tracking and the Dynamics of the News Cycle*, KDD 2009
- [6] **R. Swan and J. Allan:** *Automatic Generation of Timelines*, SIGIR 2000
- [7] K.-P. Yee, K. Swearingen, K. Li, M. Hearst: Faceted Metadata for Image Search and Browsing, CHI 2003